1
|
Minami S, Fujii Y, Yoshioka Y, Hatori A, Kaneko K, Ochiya T, Chikazu D. Extracellular vesicles from mouse bone marrow macrophages-derived osteoclasts treated with zoledronic acid contain miR-146a-5p and miR-322-3p, which inhibit osteoclast function. Bone 2024; 190:117323. [PMID: 39510435 DOI: 10.1016/j.bone.2024.117323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/24/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
Medication-related osteonecrosis of the jaw (MRONJ) is an intractable form of osteonecrosis of the jaw that rarely occurs in patients using bone resorption inhibitors such as bisphosphonates (BPs). Then, extracellular vesicles (EVs) carry various signaling molecules, such as mRNAs, microRNAs (miRNAs), and proteins, and have attracted attention as intercellular communication tools. Recently, the role of EVs in communication between osteoclasts and surrounding bone cells has been confirmed. This study aimed to elucidate the effects of EVs derived from osteoclasts treated with zoledronic acid (ZA), one of the BPs on osteoclast function. EVs were isolated by ultracentrifugation of the culture supernatant of osteoclasts treated with ZA, and miRNAs were extracted from these EVs. Tartrate-resistant acid phosphatase staining of the ZA treated osteoclasts showed reduced osteoclastogenesis. In addition, pit assay showed that ZA significantly decreased the bone resorption capacity of osteoclasts. miRNA-seq analysis identified 11 upregulated and 5 downregulated differentially expressed genes (DEGs) in the miRNA of EVs derived from ZA-treated osteoclasts compared to EVs derived from osteoclasts not treated with ZA. qRT-PCR analysis confirmed the amount of these specific miRNAs, with miR-146a-5p, and miR-322-3p being significantly upregulated by ZA. Overexpression of miR-146a-5p in osteoclasts inhibited osteoclastogenesis and decreased the mRNA expression of osteoclast markers. In addition, Traf6 was identified as a candidate target gene of miR-146a-5p in several miRNA databases. Indeed, the overexpression of miR-146a-5p decreased the expression level of Traf6 in osteoclasts. Additionally, overexpression of miR-322-3p in the pre-osteoblast, MC3T3-E1 cells, resulted in a significant increase in the mRNA expression levels of Sp7. Our data indicate that BPs attenuate osteoclastogenesis by simultaneously altering the characteristics of osteoclast-derived EVs. Overexpression of miR-146a-5p and miR-322-3p influences osteoclast differentiation, and Traf6 is a target gene of miR-146a-5p. On the other hand, Overexpression of miR-322-3p affects osteoblast differentiation. We suggest that ZA-treated osteoclast-derived EVs may play an important role in osteoclast function and bone resorption.
Collapse
Affiliation(s)
- Sakura Minami
- Department of Oral and Maxillofacial Surgery, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo 160-0023, Japan; Department of Molecular and Cellular Medicine, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo 160-0023, Japan
| | - Yasuyuki Fujii
- Department of Oral and Maxillofacial Surgery, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo 160-0023, Japan.
| | - Yusuke Yoshioka
- Department of Molecular and Cellular Medicine, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo 160-0023, Japan
| | - Ayano Hatori
- Department of Oral and Maxillofacial Surgery, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo 160-0023, Japan
| | - Kotaro Kaneko
- Department of Oral and Maxillofacial Surgery, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo 160-0023, Japan
| | - Takahiro Ochiya
- Department of Molecular and Cellular Medicine, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo 160-0023, Japan
| | - Daichi Chikazu
- Department of Oral and Maxillofacial Surgery, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo 160-0023, Japan
| |
Collapse
|
2
|
Li J, Wu J, Xie Y, Yu X. Bone marrow adipocytes and lung cancer bone metastasis: unraveling the role of adipokines in the tumor microenvironment. Front Oncol 2024; 14:1360471. [PMID: 38571500 PMCID: PMC10987778 DOI: 10.3389/fonc.2024.1360471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 03/08/2024] [Indexed: 04/05/2024] Open
Abstract
Bone is a common site of metastasis for lung cancer. The "seed and soil" hypothesis suggests that the bone marrow microenvironment ("soil") may provide a conducive survival environment for metastasizing tumor cells ("seeds"). The bone marrow microenvironment, comprising a complex array of cells, includes bone marrow adipocytes (BMAs), which constitute about 70% of the adult bone marrow volume and may play a significant role in tumor bone metastasis. BMAs can directly provide energy for tumor cells, promoting their proliferation and migration. Furthermore, BMAs participate in the tumor microenvironment's osteogenesis regulation, osteoclast(OC) regulation, and immune response through the secretion of adipokines, cytokines, and inflammatory factors. However, the precise mechanisms of BMAs in lung cancer bone metastasis remain largely unclear. This review primarily explores the role of BMAs and their secreted adipokines (leptin, adiponectin, Nesfatin-1, Resistin, chemerin, visfatin) in lung cancer bone metastasis, aiming to provide new insights into the mechanisms and clinical treatment of lung cancer bone metastasis.
Collapse
Affiliation(s)
- Jian Li
- Laboratory of Endocrinology and Metabolism/Department of Endocrinology and Metabolism, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
- Department of Endocrinology and Metabolism, Shandong Second Provincial General Hospital, Jinan, China
| | - Jialu Wu
- Laboratory of Endocrinology and Metabolism/Department of Endocrinology and Metabolism, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yanni Xie
- Laboratory of Endocrinology and Metabolism/Department of Endocrinology and Metabolism, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xijie Yu
- Laboratory of Endocrinology and Metabolism/Department of Endocrinology and Metabolism, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Tian Q, Tian C, Lu Y, Yan B, Zhang K, Wu C. Poly (lactic-co-glycolic acid)-encapsulated Endostar-loaded calcium phosphate cement as anti-tumor bone cement for the treatment of bone metastasis in lung cancer. ENVIRONMENTAL TOXICOLOGY 2024. [PMID: 38400521 DOI: 10.1002/tox.24166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/14/2024] [Accepted: 01/20/2024] [Indexed: 02/25/2024]
Abstract
Lung cancer is one of the most common malignant tumors in the world. In approximately 30%-40% of lung cancer patients, bone metastases ensues with osteolytic destruction. Worse still, intractable pain, pathological fracture, and nerve compression caused by bone metastases are currently the bottleneck of research, diagnosis, and treatment of lung cancer. Therefore, the present study aims at investigating the effectiveness of a new composite material made of calcium phosphate cement (CPC) and Endostar on repairing bone defects in vitro and in vivo. As indicated in results, the mechanical properties of CPC+Endostar and CPC+PLGA+Endostar do not differ from those of pure CPC. The PLGA-embedded Endostar slow-release microspheres were designed and prepared, and were combined with CPC. Poly (lactic-co-glycolic acid (PLGA) is a biodegradable polymer material in vivo, so the effect on its mechanical properties is negligible. CPC+Endostar and CPC+PLGA+Endostar have been proved to inhibit cell proliferation, promote apoptosis and block cell cycle in G2 phase; the expression levels of osteoclast-related genes CXCL2, TGF-β1, IGF-1, IL-6, and RANKL were significantly decreased while osteogenic ability and alkaline phosphatase activity observably enhanced. In vivo studies have revealed that the expression levels of TRAP, RANKL, and Caspase3 in CPC+PLGA+ENDO-treated tumor tissues after 3 weeks were higher than those in other groups with the prolongation of animal treatment time, while the expression levels of OPN and BCL2 were lower than those in other groups. In hematoxylin and eosin and TUNEL staining, 3 weeks of CPC+PLGA+ENDO-treatment yielded higher tissue necrosis and apoptosis than other groups; computed tomography and magnetic resonance imaging results showed the posterior edge bone damage reduced as a result of the CPC+PLGA+ENDO grafting in vertebral pedicle. Overall, the feasibility and reliability of CPC-loaded Endostar in the treatment of bone metastasis in lung cancer were investigated in this study, so as to promote the basic research and treatment of bone metastasis in lung cancer and other malignant tumors.
Collapse
Affiliation(s)
- QingHua Tian
- Department of Diagnostic and Interventional Radiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cong Tian
- Department of Oncology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - YingYing Lu
- Department of Diagnostic and Interventional Radiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - BiCong Yan
- Department of Diagnostic and Interventional Radiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kaixian Zhang
- Department of Oncology, Tengzhou Central People's Hospital Affiliated to Jining Medical College, Tengzhou, China
| | - ChunGen Wu
- Department of Diagnostic and Interventional Radiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Chen GD, Liang SJ, Huang L, Yu HR, Wu YL, Wei QZ, Zhang ZQ. Associations of Dietary Anthocyanidins Intake with Bone Health in Children: A Cross-Sectional Study. Calcif Tissue Int 2023; 113:393-402. [PMID: 37656219 DOI: 10.1007/s00223-023-01128-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 08/08/2023] [Indexed: 09/02/2023]
Abstract
PURPOSE Bone health and body composition share several common mechanisms like oxidative stress and inflammation. Anthocyanins have antioxidant and anti-inflammatory properties. We have reported that anthocyanins are associated with better body composition in children, but the associations with bone health have not been elucidated. We aimed to explore the association of anthocyanins with bone mineral content (BMC) and bone mineral density (BMD) at multiple sites in children. METHODS In this cross-sectional study, 452 Chinese children aged 6-9 years were recruited. A validated 79-item food frequency questionnaire was used to collect dietary information. BMC and BMD at multiple sites (whole body; whole body excluding head, WBEH; limbs; arms; legs) were measured by dual-energy X-ray. RESULTS Higher dietary intake of total anthocyanidins (per one standard deviation increase) was associated with a 1.28-13.6 g (1.31-1.60%, compared to median) higher BMC at all sites and a 3.61-6.96 mg (0.65-0.90%) higher BMD at the whole body, WBEH, and arm sites after controlling for a number of possible covariates. The results were similar and more pronounced for cyanidin, but not for delphinidin and peonidin. Higher dietary intake of cyanidin (per one standard deviation increase) was associated with a 1.33-15.4 g (1.48-1.68%) higher BMC at all sites and a 4.15-7.77 mg (0.66-1.00%) higher BMD at all sites except the legs. No statistically significant associations with BMC or BMD were found for dietary intake of delphinidin and peonidin. CONCLUSIONS Higher dietary intake of total anthocyanidins and cyanidins were associated with higher BMC and BMD in Chinese children.
Collapse
Affiliation(s)
- Geng-Dong Chen
- Department of Obstetrics, Foshan Institute of Fetal Medicine, Southern Medical University Affiliated Maternal & Child Health Hospital of Foshan, Foshan, 528000, Guangdong, China
| | - Shu-Jun Liang
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, No.1023-1063, Tainan Road, Baiyun District, Guangzhou City, Guangdong Province, 510515, People's Republic of China
| | - Lan Huang
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, No.1023-1063, Tainan Road, Baiyun District, Guangzhou City, Guangdong Province, 510515, People's Republic of China
| | - Hao-Ran Yu
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, No.1023-1063, Tainan Road, Baiyun District, Guangzhou City, Guangdong Province, 510515, People's Republic of China
| | - Yu-Lin Wu
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, No.1023-1063, Tainan Road, Baiyun District, Guangzhou City, Guangdong Province, 510515, People's Republic of China
| | - Qin-Zhi Wei
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, No.1023-1063, Tainan Road, Baiyun District, Guangzhou City, Guangdong Province, 510515, People's Republic of China.
| | - Zhe-Qing Zhang
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, No.1023-1063, Tainan Road, Baiyun District, Guangzhou City, Guangdong Province, 510515, People's Republic of China.
| |
Collapse
|
5
|
Wang B, Cui S, Mao B, Zhang Q, Tian F, Zhao J, Tang X, Chen W. Cyanidin Alleviated CCl 4-Induced Acute Liver Injury by Regulating the Nrf2 and NF-κB Signaling Pathways. Antioxidants (Basel) 2022; 11:antiox11122383. [PMID: 36552590 PMCID: PMC9774769 DOI: 10.3390/antiox11122383] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/25/2022] [Accepted: 11/25/2022] [Indexed: 12/04/2022] Open
Abstract
Acute liver injury has multiple causes and can result in liver failure. In this study, we evaluated the hepatoprotective ability of cyanidin (Cy) and investigated its associated mechanisms. Cy administration significantly and dose-dependently ameliorated acute liver injury induced by carbon tetrachloride (CCl4). High-dose Cy showed effects comparable to those achieved by the positive control (silymarin). Severe oxidative stress and inflammatory responses in the liver tissue induced by CCl4 were significantly mitigated by Cy supplementation. The total antioxidant capacity and the activity of superoxide dismutase, catalase, and glutathione peroxidase were increased and the content of malondialdehyde, lipid peroxide, tumor necrosis factor α, interleukin-1β, and interleukin-6 were decreased. Additionally, the Nrf2 and NF-κB signaling pathways, which regulate antioxidative and inflammatory responses, were analyzed using quantitative real-time polymerase chain reaction and western blot assay. Cy treatment not only increased Nrf2 transcription and expression but also decreased NF-κB signaling. Moreover, molecular docking simulation indicated that Cy had high affinity for Keap1 and NF-κB/p65, which may promote nuclear translocation of Nrf2 and inhibit that of NF-κB. In summary, Cy treatment exerted antioxidative and anti-inflammatory effects and ameliorated liver injury by increasing Nrf2 and inhibiting the NF-κB pathway, demonstrating the potential of Cy as a therapeutic agent in liver injury.
Collapse
Affiliation(s)
- Bulei Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Shumao Cui
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Bingyong Mao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Qiuxiang Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xin Tang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Correspondence:
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
6
|
Chen L, Hu B, Wang X, Chen Y, Zhou B. Functional role of cyanidin-3-O-glucoside in osteogenesis: A pilot study based on RNA-seq analysis. Front Nutr 2022; 9:995643. [PMID: 36245484 PMCID: PMC9562617 DOI: 10.3389/fnut.2022.995643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
Cyanidin-3-O-glucoside (C3G) is the most widely distributed anthocyanin and it can reportedly reduce the risk of osteoporosis, but the molecular mechanism by which C3G promotes bone formation is poorly understood. In the current study, RNA sequencing (RNA-seq) was used to investigate the mechanism of action of C3G in osteogenesis. MC3T3-E1 mouse osteoblasts were divided into a C3G (100 μmol/L)-treated group and a vehicle-treated control group, and differentially expressed genes (DEGs) in groups were evaluated via RNA-seq analysis. The functions of the DEGs were evaluated by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses, and the genes were validated by quantitative real-time PCR. The RNA-seq analysis identified 34 genes that were upregulated in C3G-treated cells compared to vehicle-treated cells, and 17 that were downregulated GO and KEGG pathway analyses indicated that these genes were highly enriched in functions related to lysosomes and glycolipid biosynthesis, among others. The differential expression of ATPase H+-transporting V0 subunit C (Atp6v0c), chemokine (C-X3-C motif) ligand 1 (Cx3cl1), and lymphocyte antigen 6 complex, locus A (Ly6a) genes was validated by quantitative real-time-PCR. Because these genes have been previously implicated in osteoporosis, they are potential target genes of C3G action in MC3T3-E1 cells. These results provide molecular level evidence for the therapeutic potential of C3G in the treatment of osteoporosis and other disorders of bone metabolism.
Collapse
Affiliation(s)
- Lin Chen
- School of Public Health, Shenyang Medical College, Shenyang, China
| | - Bosen Hu
- School of Public Health, Shenyang Medical College, Shenyang, China
| | - Xiaohong Wang
- School of Public Health, Shenyang Medical College, Shenyang, China
| | - Yong Chen
- Central Hospital Affiliated to Shenyang Medical College, Shenyang, China
| | - Bo Zhou
- School of Public Health, Shenyang Medical College, Shenyang, China
- *Correspondence: Bo Zhou
| |
Collapse
|
7
|
Cyanidin attenuates the high hydrostatic pressure-induced degradation of cellular matrix of nucleus pulposus cell via blocking the Wnt/β-catenin signaling. Tissue Cell 2022; 76:101798. [DOI: 10.1016/j.tice.2022.101798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/29/2022] [Accepted: 04/08/2022] [Indexed: 11/20/2022]
|
8
|
Phytochemicals targeting JAK/STAT pathway in the treatment of rheumatoid arthritis: Is there a future? Biochem Pharmacol 2022; 197:114929. [DOI: 10.1016/j.bcp.2022.114929] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/05/2022] [Accepted: 01/13/2022] [Indexed: 12/13/2022]
|
9
|
Mao W, Huang G, Chen H, Xu L, Qin S, Li A. Research Progress of the Role of Anthocyanins on Bone Regeneration. Front Pharmacol 2021; 12:773660. [PMID: 34776985 PMCID: PMC8585783 DOI: 10.3389/fphar.2021.773660] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/14/2021] [Indexed: 12/22/2022] Open
Abstract
Bone regeneration in osteoporosis and fragility fractures which are highly associated with age remains a great challenge in the orthopedic field, even though the bone is subjected to a continuous process of remodeling which persists throughout lifelong. Regulation of osteoblast and osteoclast differentiation is recognized as effective therapeutic targets to accelerate bone regeneration in osteopenic conditions. Anthocyanins (ACNs), a class of naturally occurring compounds obtained from colored plants, have received increasing attention recently because of their well-documented biological effects, such as antioxidant, anti-inflammation, and anti-apoptosis in chronic diseases, like osteoporosis. Here, we summarized the detailed research progress on ACNs on bone regeneration and their molecular mechanisms on promoting osteoblast differentiation as well as inhibiting osteoclast formation and differentiation to explore their promising therapeutic application in repressing bone loss and helping fragility fracture healing. Better understanding the role and mechanisms of ACNs on bone regeneration is helpful for the prevention or treatment of osteoporosis and also for the exploration of new bone regenerative medicine.
Collapse
Affiliation(s)
- Wei Mao
- Department of Orthopedics, Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, China.,Department of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Guowei Huang
- Department of Orthopedics, Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, China
| | - Huan Chen
- Department of Orthopedics, Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, China
| | - Liangliang Xu
- Lingnan Medical Research Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shengnan Qin
- Department of Orthopedics, Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, China
| | - Aiguo Li
- Department of Orthopedics, Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, China
| |
Collapse
|
10
|
Mai CT, Zheng DC, Li XZ, Zhou H, Xie Y. Liver X receptors conserve the therapeutic target potential for the treatment of rheumatoid arthritis. Pharmacol Res 2021; 170:105747. [PMID: 34186192 DOI: 10.1016/j.phrs.2021.105747] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/21/2021] [Accepted: 06/24/2021] [Indexed: 01/03/2023]
Abstract
Rheumatoid arthritis (RA) is a chronic multi-system autoimmune disease with extremely complex pathogenesis. Significantly altered lipid paradox related to the inflammatory burden is reported in RA patients, inducing 50% higher cardiovascular risks. Recent studies have also demonstrated that lipid metabolism can regulate many functions of immune cells in which metabolic pathways have altered. The nuclear liver X receptors (LXRs), including LXRα and LXRβ, play a central role in regulating lipid homeostasis and inflammatory responses. Undoubtedly, LXRs have been considered as an attractive therapeutic target for the treatment of RA. However, there are some contradictory effects of LXRs agonists observed in previous animal studies where both pro-inflammatory role and anti-inflammatory role were revealed for LXRs activation in RA. Therefore, in addition to updating the knowledge of LXRs as the prominent regulators of lipid homeostasis, the purpose of this review is to summarize the effects of LXRs agonists in RA-associated immune cells, to explore the underlying reasons for the contradictory therapeutic effects of LXRs agonists observed in RA animal models, and to discuss future strategy for the treatment of RA with LXRs modulators.
Collapse
Affiliation(s)
- Chu-Tian Mai
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau; Faculty of Chinese Medicines, Macau University of Science and Technology, Taipa, Macau
| | - De-Chong Zheng
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau; Faculty of Chinese Medicines, Macau University of Science and Technology, Taipa, Macau
| | - Xin-Zhi Li
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau
| | - Hua Zhou
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau; Faculty of Chinese Medicines, Macau University of Science and Technology, Taipa, Macau
| | - Ying Xie
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau.
| |
Collapse
|
11
|
Human Amniotic Epithelial Cells as a Tool to Investigate the Effects of Cyanidin 3- O-Glucoside on Cell Differentiation. Int J Mol Sci 2021; 22:ijms22073768. [PMID: 33916494 PMCID: PMC8038597 DOI: 10.3390/ijms22073768] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/22/2021] [Accepted: 04/01/2021] [Indexed: 12/26/2022] Open
Abstract
Cyanidin, a kind of anthocyanin, has been reported to have chemotherapeutic activities in humans. Human amniotic epithelial cells (hAECs) are considered a potential source of pluripotent stem cells. hAECs have been used as a novel tool in regenerative cellular therapy and cell differentiation studies. In this study, to explore the effects of cyanidin-3-O-glucoside (Cy3G) on hAECs and their mechanisms, we investigated the transcriptomic changes in the Cy3G-treated cells using microarray analysis. Among the differentially expressed genes (Fold change > 1.1; p-value < 0.05), 109 genes were upregulated and 232 were downregulated. Ratios of upregulated and downregulated genes were 0.22% and 0.47% of the total expressed genes, respectively. Next, we explored the enriched gene ontology, i.e., the biological process, molecular function, and cellular component of the 37 upregulated (>1.3-fold change) and 124 downregulated (<1.3-fold change) genes. Significantly enriched biological processes by the upregulated genes included “response to muscle activity,” and the genes involved in this gene ontology (GO) were Metrnl and SRD5A1, which function in the adipocyte. On the other hand, the cell cycle biological process was significantly enriched by the downregulated genes, including some from the SMC gene family. An adipogenesis-associated gene DDX6 was also included in the cell cycle biological process. Thus, our findings suggest the prospects of Cy3G in modulating adipocyte differentiation in hAECs.
Collapse
|
12
|
Hu B, Chen L, Chen Y, Zhang Z, Wang X, Zhou B. Cyanidin-3-glucoside Regulates Osteoblast Differentiation via the ERK1/2 Signaling Pathway. ACS OMEGA 2021; 6:4759-4766. [PMID: 33644583 PMCID: PMC7905819 DOI: 10.1021/acsomega.0c05603] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/02/2021] [Indexed: 05/08/2023]
Abstract
Osteoporosis, characterized by a gradual decrease in the number of osteoblasts and a gradual increase in bone resorption of osteoclasts in bone tissue, is a global chronic disease, which severely impairs the quality of life of the elderly. Therefore, it is extremely urgent to study the prevention and treatment of osteoporosis. It has been reported that anthocyanins can regulate bone metabolism and prevent osteoporosis. Cyanidin-3-O-glucoside (C3G), the most common type of anthocyanin in nature, widely exists in a variety of vegetables and fruits. Although it has been shown that C3G has multiple effects on osteoclasts, its impact(s) and underlying mechanism(s) on osteoblasts are still not clear. Here, we evaluated the effect of C3G on cell proliferation and differentiation of osteoblasts (extracted from the hip joint of patients with osteoporosis) and MC3T3-E1 (a kind of osteoblast cell line from mice). We also test the ability of osteoblasts to mineralize after C3G treatment. To find the underlying mechanism of the above effects, we further evaluated the role of the ERK signaling pathway in C3G regulation of osteoblasts. The results showed that C3G treatment enhanced osteoblast proliferation rate, osteoblast mineralization points, the mRNA levels and protein expression levels of OC (osteocalcin), and the level of ERK phosphorylation, which could be blocked by pretreatment with ERK signaling pathway inhibitor. The above results not only indicate that the ERK pathway was involved in C3G regulation of osteoblast differentiation but also provide strong suggestive evidence that osteoblasts may be promising targets in preventive and therapeutic strategies for osteoporosis.
Collapse
Affiliation(s)
- Bosen Hu
- School
of Public Health, Shenyang Medical College, 146 North Huanghe Street, Shenyang, Liaoning 110034, China
| | - Lin Chen
- School
of Public Health, Shenyang Medical College, 146 North Huanghe Street, Shenyang, Liaoning 110034, China
| | - Yong Chen
- Central
Hospital Affiliated to Shenyang Medical College, 5 South 7th West Rd, Shenyang, Liaoning 110024, China
| | - Zhuo Zhang
- School
of Public Health, Shenyang Medical College, 146 North Huanghe Street, Shenyang, Liaoning 110034, China
| | - Xiaohong Wang
- School
of Public Health, Shenyang Medical College, 146 North Huanghe Street, Shenyang, Liaoning 110034, China
| | - Bo Zhou
- School
of Public Health, Shenyang Medical College, 146 North Huanghe Street, Shenyang, Liaoning 110034, China
- . Phone: +86-159-981-18508
| |
Collapse
|
13
|
Hu H, Wang D, Li L, Yin H, He G, Zhang Y. Role of microRNA-335 carried by bone marrow mesenchymal stem cells-derived extracellular vesicles in bone fracture recovery. Cell Death Dis 2021; 12:156. [PMID: 33542183 PMCID: PMC7862274 DOI: 10.1038/s41419-021-03430-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 01/30/2023]
Abstract
Mesenchymal stem cells (MSCs) have the potential to reduce healing time and treat nonunion in fracture patients. In this study, bone marrow MSCs-derived extracellular vesicles (B-EVs) were firstly extracted and identified. CD9-/- and normal mice were enrolled for the establishment of fracture models and then injected with B-EVs. Osteoblast differentiation and fracture recovery were estimated. The levels of osteoblast-related genes were detected, and differentially expressed microRNAs (miRs) in B-EVs-treated normal fracture mice were screened and verified. The downstream mechanisms of miR were predicted and assessed. The loss-of functions of miR-335 in B-EV and gain-of-functions of VapB were performed in animal and cell experiments to evaluate their roles in bone fracture. Collectively, B-EVs promoted bone fracture recovery and osteoblast differentiation by releasing miR-335. miR-335 downregulation in B-EVs impaired B-EV functions in fracture recovery and osteoblast differentiation. miR-335 could target VapB, and VapB overexpression reversed the effects of B-EVs on osteoblast differentiation. B-EV treatment activated the Wnt/β-catenin pathway in fracture mice and osteoblasts-like cells. Taken together, the study suggested that B-EVs carry miR-335 to promote bone fracture recovery via VapB and the Wnt/β-catenin pathway. This study may offer insights into bone fracture treatment.
Collapse
Affiliation(s)
- Haifeng Hu
- Department of Orthopaedics, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Dong Wang
- Department of Orthopaedics, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Lihong Li
- Department of Clinical Laboratory, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Haiyang Yin
- Department of Orthopaedics, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Guoyu He
- Department of Orthopaedics, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yonghong Zhang
- Department of Orthopaedics, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China.
| |
Collapse
|
14
|
Wu S, Pan Y, Mao Y, Chen Y, He Y. Current progress and mechanisms of bone metastasis in lung cancer: a narrative review. Transl Lung Cancer Res 2021; 10:439-451. [PMID: 33569325 PMCID: PMC7867745 DOI: 10.21037/tlcr-20-835] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Lung cancer is a kind of malignant tumor with rapid progression and poor prognosis. Distant metastasis has been the main cause of mortality among lung cancer patients. Bone is one of the most common sites. Among all lung cancer patients with bone metastasis, most of them are osteolytic metastasis. Some serious clinical consequences like bone pain, pathological fractures, spinal instability, spinal cord compression and hypercalcemia occur as well. Since the severity of bone metastasis in lung cancer, it is undoubtedly necessary to know how lung cancer spread to bone, how can we diagnose it and how can we treat it. Here, we reviewed the process, possible mechanisms, diagnosis methods and current treatment of bone metastasis in lung cancer. We divided the process of bone metastasis in lung cancer into three steps: tumor invasion, tumor cell migration and invasion in bone tissue. It may be influenced by genetic factors, microenvironment and other adhesion-related factors. Imaging examination, laboratory examination, and pathological examination are used to diagnose lung cancer metastasis to bone. Surgery, radiotherapy, targeted therapy, bisphosphonate, radiation therapy and chemotherapy are the common clinical treatment methods currently. We also found some problems remained to be solved. For example, drugs for skeletal related events mainly target on osteoclasts at present, which increase the ratio of patients in osteoporosis and fractures in the long term. In all, this review provides the direction for future research on bone metastasis in lung cancer.
Collapse
Affiliation(s)
- Shengyu Wu
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China.,Medical School, Tongji University, Shanghai, China
| | - Yue Pan
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China.,Medical School, Tongji University, Shanghai, China
| | - Yanyu Mao
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China.,Medical School, Tongji University, Shanghai, China
| | - Yu Chen
- Spine Center, Orthopedic department, Shanghai Changzheng Hospital, Shanghai, China
| | - Yayi He
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| |
Collapse
|
15
|
Osteoclast Multinucleation: Review of Current Literature. Int J Mol Sci 2020; 21:ijms21165685. [PMID: 32784443 PMCID: PMC7461040 DOI: 10.3390/ijms21165685] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 12/14/2022] Open
Abstract
Multinucleation is a hallmark of osteoclast maturation. The unique and dynamic multinucleation process not only increases cell size but causes functional alterations through reconstruction of the cytoskeleton, creating the actin ring and ruffled border that enable bone resorption. Our understanding of the molecular mechanisms underlying osteoclast multinucleation has advanced considerably in this century, especially since the identification of DC-STAMP and OC-STAMP as “master fusogens”. Regarding the molecules and pathways surrounding these STAMPs, however, only limited progress has been made due to the absence of their ligands. Various molecules and mechanisms other than the STAMPs are involved in osteoclast multinucleation. In addition, several preclinical studies have explored chemicals that may be able to target osteoclast multinucleation, which could enable us to control pathogenic bone metabolism more precisely. In this review, we will focus on recent discoveries regarding the STAMPs and other molecules involved in osteoclast multinucleation.
Collapse
|
16
|
Dai J, Dong R, Han X, Li J, Gong X, Bai Y, Kang F, Liang M, Zeng F, Hou Z, Dong S. Osteoclast-derived exosomal let-7a-5p targets Smad2 to promote the hypertrophic differentiation of chondrocytes. Am J Physiol Cell Physiol 2020; 319:C21-C33. [PMID: 32374679 DOI: 10.1152/ajpcell.00039.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The invasion of osteoclasts into the cartilage via blood vessels advances the process of endochondral ossification, and dysregulation of dynamic intercellular interactions results in skeletal dysplasias. Although the regulation of osteoclasts by growth plate chondrocytes has been reported in detail, the effect of osteoclasts on chondrocytes remains to be determined. In this study, ATDC5 cells and bone marrow mesenchymal stem cells were differentiated into chondrocytes and treated with conditioned medium obtained from bone marrow macrophages differentiated to osteoclast precursors and osteoclasts. Exosomes were inhibited in conditioned medium or isolated directly from osteoclasts to further determine whether osteoclast-derived exosomes play an important role in chondrocyte hypertrophy. Additionally, exosomal miRNAs were detected, and let-7a-5p was selected as an miRNA with significantly increased expression in osteoclast-derived exosomes. Experiments were performed to verify the potential target Smad2 and investigate how let-7a-5p affected chondrocytes. The results suggest that both osteoclast precursors and osteoclasts promote chondrocyte hypertrophy and that the promotive effect of osteoclasts is more significant than that of osteoclast precursors. Osteoclast-derived exosomes promote the hypertrophic differentiation of chondrocytes. Moreover, osteoclast-derived exosomal let-7a-5p inhibits Smad2 to decrease the transforming growth factor-β-induced inhibition of chondrocyte hypertrophy. Our research reveals the role of osteoclasts in the regulation of chondrocytes and provides insights into the highly coordinated intercellular process of endochondral ossification.
Collapse
Affiliation(s)
- Jingjin Dai
- Department of Biomedical Materials Science, Third Military Medical University (Army Medical University), Chongqing, China
| | - Rui Dong
- Department of Biomedical Materials Science, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xinyun Han
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jianmei Li
- Department of Biomedical Materials Science, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xiaoshan Gong
- Department of Biomedical Materials Science, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yun Bai
- Department of Biomedical Materials Science, Third Military Medical University (Army Medical University), Chongqing, China
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Fei Kang
- Department of Biomedical Materials Science, Third Military Medical University (Army Medical University), Chongqing, China
| | - Mengmeng Liang
- Department of Biomedical Materials Science, Third Military Medical University (Army Medical University), Chongqing, China
| | - Fanchun Zeng
- Department of Biomedical Materials Science, Third Military Medical University (Army Medical University), Chongqing, China
| | - Zhiyong Hou
- Department of Orthopedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Shiwu Dong
- Department of Biomedical Materials Science, Third Military Medical University (Army Medical University), Chongqing, China
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
17
|
Samarpita S, Ganesan R, Rasool M. Cyanidin prevents the hyperproliferative potential of fibroblast-like synoviocytes and disease progression via targeting IL-17A cytokine signalling in rheumatoid arthritis. Toxicol Appl Pharmacol 2020; 391:114917. [PMID: 32044269 DOI: 10.1016/j.taap.2020.114917] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 01/31/2020] [Accepted: 02/06/2020] [Indexed: 12/24/2022]
Abstract
The hyperplastic phenotype of fibroblast-like synoviocytes (FLSs) plays an important role for synovitis, chronic inflammation and joint destruction in rheumatoid arthritis (RA). Interleukin 17A (IL-17A), a signature pro-inflammatory cytokine effectively influences the hyperplastic transformation of FLS cells and synovial pannus growth. IL-17A cytokine signalling participates in RA pathology by regulating an array of pro-inflammatory mediators and osteoclastogenesis. Cyanidin, a key flavonoid inhibits IL-17A/IL-17 receptor A (IL-17RA) interaction and alleviates progression and disease severity of psoriasis and asthma. However, the therapeutic efficacy of cyanidin on IL-17A cytokine signalling in RA remains unknown. In the present study, cyanidin inhibited IL-17A induced migratory and proliferative capacity of FLS cells derived from adjuvant-induced arthritis (AA) rats. Cyanidin treatment reduced IL-17A mediated reprogramming of AA-FLS cells to overexpress IL-17RA. In addition, significantly decreased expression of IL-17A dependent cyr61, IL-23, GM-CSF, and TLR3 were observed in AA-FLS cells in response to cyanidin. At the molecular level, cyanidin modulated IL-17/IL-17RA dependent JAK/STAT-3 signalling in AA-FLS cells. Importantly, cyanidin activated PIAS3 protein to suppress STAT-3 specific transcriptional activation in AA-FLS cells. Cyanidin treatment to AA rats attenuated clinical symptoms, synovial pannus growth, immune cell infiltration, and bone erosion. Cyanidin reduced serum level of IL-23 and GM-CSF and expression of Cyr 61 and TLR3 in the synovial tissue of AA rats. Notably, the level of p-STAT-3 protein was significantly decreased in the synovial tissue of AA rats treated with cyanidin. This study provides the first evidence that cyanidin can be used as IL-17/17RA signalling targeting therapeutic drug for the treatment of RA and this need to be investigated in RA patients.
Collapse
Affiliation(s)
- Snigdha Samarpita
- Immunopathology Lab, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632 014, Tamil Nadu, India
| | - Ramamoorthi Ganesan
- Immunology Program, Department of Clinical Science, H. Lee Moffitt Cancer Center, Tampa, Florida 33612, United States
| | - Mahaboobkhan Rasool
- Immunopathology Lab, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632 014, Tamil Nadu, India.
| |
Collapse
|
18
|
Sakaki JR, Melough MM, Chun OK. Anthocyanins and anthocyanin-rich food as antioxidants in bone pathology. Pathology 2020. [DOI: 10.1016/b978-0-12-815972-9.00014-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
19
|
Alhasyimi AA, Rosyida NF, Rihadini MS. Postorthodontic Relapse Prevention by Administration of Grape Seed (Vitis vinifera) Extract Containing Cyanidine in Rats. Eur J Dent 2019; 13:629-634. [PMID: 31891981 PMCID: PMC6938446 DOI: 10.1055/s-0039-3401440] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Objective
The aim of this study was to analyze the effect of grape seed extract containing cyanidin on osteoclastogenesis (by means of receptor activator of nuclear factor-κ B ligand [RANKL] and osteoprotegerin [OPG] levels) and the number of osteoclasts during orthodontic relapse in Wistar rats.
Materials and Methods
This study is an
in vivo
quasi experimental research. A total of 32 male Wistar rats were used in the study, which were randomly split equally into two groups, grape seed (GS) and control group (CG). All rats were given an orthodontic force of 35 cN using a stainless steel 3-spin coil spring that was activated for 7 days and then conditioned to be passive. During this phase, the GS group was administered grape seed extract containing cyanidin once per day. Orthodontic appliances were removed from both groups afterward, and then the alveolar bone tissue was isolated consecutively according to observation days (days 1, 3, 7, and 14), while OPG and RANKL levels were analyzed in their gingival crevicular fluid using a specific enzyme-linked immunosorbent assay (ELISA). Tissues were then stained with hematoxylin–eosin (H&E) and observed under a light microscope to count the number of osteoclast cells. Data were analyzed statistically using an independent
t
-test (
p
< 0.05).
Results
The number of osteoclasts in the GS group was significantly lower than that in the CG group on all experiment days (
p
= 0.021;
p
= 0.001;
p
= 0.024;
p
= 0.001;
p
< 0.05). ELISA results showed that the RANKL level of the GS group was significantly lower on days 3 and 7 (
p
= 0.025;
p
= 0.039;
p
< 0.05), while the OPG level was significantly higher on days 1 and 3 in the GS group than in the CG group (
p
= 0.039;
p
= 0.021;
p
< 0.05).
Conclusion
Grape seed extract can prevent postorthodontic relapse movement by inhibiting osteoclastogenesis and reducing the number of osteoclasts in Wistar rats.
Collapse
Affiliation(s)
- Ananto Ali Alhasyimi
- Department of Orthodontics, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakart, Indonesia
| | - Niswati Fathmah Rosyida
- Department of Orthodontics, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakart, Indonesia
| | - Mufliha Santi Rihadini
- Department of Orthodontics, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakart, Indonesia
| |
Collapse
|
20
|
Kim KJ, Lee Y, Son SR, Lee H, Son YJ, Lee MK, Lee M. Water Extracts of Hull-less Waxy Barley ( Hordeum vulgare L.) Cultivar 'Boseokchal' Inhibit RANKL-induced Osteoclastogenesis. Molecules 2019; 24:E3735. [PMID: 31623242 PMCID: PMC6832910 DOI: 10.3390/molecules24203735] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/09/2019] [Accepted: 10/15/2019] [Indexed: 12/31/2022] Open
Abstract
Osteoporosis is a disease that leads to reduced bone mineral density. The increase in patient and medical costs because of global aging is recognized as a problem. Decreased bone mass is a common symptom of bone diseases such as Paget's disease, rheumatoid arthritis, and multiple myeloma. Osteoclasts, which directly affect bone mass, show a marked increase in differentiation and activation in the aforementioned diseases. Moreover, these multinucleated cells made from monocytes/macrophages under the influence of RANKL and M-CSF, are the only cells capable of resorbing bones. In this study, we found that the water extracts of Boseokchal (BSC-W) inhibited osteoclast differentiation in vitro and investigated its inhibitory mechanism. BSC-W was obtained by extracting flour of Boseokchal using hexane and water. To osteoclast differentiation, bone marrow-derived macrophage cells (BMMs) were cultured with the vehicle (0.1% DMSO) or BSC-W in the presence of M-CSF and RANKL for 4 days. Cytotoxicity was measured by CCK-8. Gene expression of cells was confirmed by real-time PCR. Protein expression of cells was observed by western blot assay. Bone resorption activity of osteoclast evaluated by bone pit formation assay using an Osteo Assay Plate. BSC-W inhibited RANKL-induced osteoclastogenesis in a dose-dependent manner without exerting a cytotoxic effect on BMMs. BSC-W decreased the transcriptional and translational expression of c-Fos and NFATc1, which are regulators of osteoclastogenesis and reduced the mRNA expression level of TRAP, DC-STAMP, and cathepsin K, which are osteoclast differentiation marker. Furthermore, BSC-W reduced the resorption activity of osteoclasts. Taken together, our results indicate that BSC-W is a useful candidate for health functional foods or therapeutic agents that can help treat bone diseases such as osteoporosis.
Collapse
Affiliation(s)
- Kwang-Jin Kim
- Department of Pharmacy, Sunchon National University, Suncheon 57922, Korea.
| | - Yongjin Lee
- Department of Pharmacy, Sunchon National University, Suncheon 57922, Korea.
| | - So-Ri Son
- Department of Biomedical Science and technology, Graduate School, Kyung Hee University, Seoul 02447, Korea.
| | - Hyunjin Lee
- Department of Crop Foundation, National Institute of Crop Science (NICS), Rural Development Administration (RDA), Wanju 55365, Korea.
| | - Young-Jin Son
- Department of Pharmacy, Sunchon National University, Suncheon 57922, Korea.
| | - Mi-Kyung Lee
- Department of Food and Nutrition, Sunchon National University, Jeonnam, Suncheon 57922, Korea.
| | - Mija Lee
- Department of Crop Foundation, National Institute of Crop Science (NICS), Rural Development Administration (RDA), Wanju 55365, Korea.
| |
Collapse
|
21
|
Chen X, Ouyang Z, Shen Y, Liu B, Zhang Q, Wan L, Yin Z, Zhu W, Li S, Peng D. CircRNA_28313/miR-195a/CSF1 axis modulates osteoclast differentiation to affect OVX-induced bone absorption in mice. RNA Biol 2019; 16:1249-1262. [PMID: 31204558 DOI: 10.1080/15476286.2019.1624470] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Osteoblastic bone formation and osteoclastic bone resorption dynamically maintain the bone homeostasis; in the present study, we attempt to investigate the mechanism of the excessive activation of osteoclasts inducing the deregulation of bone homeostasis from the perspective of non-coding RNA regulation. Differentially expressed patterns of circRNAs were examined in non-treated and RANKL + CSF1-treated bone marrow monocyte/macrophage (BMM) cells and differentially-expressed miRNAs during osteoclast differentiation were analyzed and identified. We found that circRNA_28313 was significantly induced by RANKL + CSF1 treatment. circRNA_28313 knockdown significantly inhibited RANKL + CSF1-induced differentiation of osteoclasts within BMM cells in vitro, while suppressed ovariectomized (OVX)-induced bone resorption in mice in vivo. Via bioinformatics analyses, it has been demonstrated that miR-195a might bind to circRNA_28313 and CSF1 and together form a circRNA-miRNA-mRNA network. circRNA_28313 relieves miR-195a-mediated suppression on CSF1 via acting as a ceRNA, therefore modulating the osteoclast differentiation in BMM cells. In conclusion, circRNA_28313, miR-195a, and CSF1 form a ceRNA network to function in RANKL + CSF1-induced osteoclast differentiation, thus affecting OVX-induced bone absorption in mice.
Collapse
Affiliation(s)
- Xia Chen
- a Department of Orthopaedics, The Second Xiangya Hospital, Central South University , Changsha , Hunan , PR China
| | - Zhengxiao Ouyang
- a Department of Orthopaedics, The Second Xiangya Hospital, Central South University , Changsha , Hunan , PR China
| | - Yi Shen
- a Department of Orthopaedics, The Second Xiangya Hospital, Central South University , Changsha , Hunan , PR China
| | - Bo Liu
- a Department of Orthopaedics, The Second Xiangya Hospital, Central South University , Changsha , Hunan , PR China
| | - Qiang Zhang
- a Department of Orthopaedics, The Second Xiangya Hospital, Central South University , Changsha , Hunan , PR China
| | - Lu Wan
- a Department of Orthopaedics, The Second Xiangya Hospital, Central South University , Changsha , Hunan , PR China
| | - Ziqing Yin
- a Department of Orthopaedics, The Second Xiangya Hospital, Central South University , Changsha , Hunan , PR China
| | - Wei Zhu
- a Department of Orthopaedics, The Second Xiangya Hospital, Central South University , Changsha , Hunan , PR China
| | - Shuai Li
- a Department of Orthopaedics, The Second Xiangya Hospital, Central South University , Changsha , Hunan , PR China
| | - Dan Peng
- a Department of Orthopaedics, The Second Xiangya Hospital, Central South University , Changsha , Hunan , PR China
| |
Collapse
|
22
|
Ma Q, Liang M, Wu Y, Ding N, Duan L, Yu T, Bai Y, Kang F, Dong S, Xu J, Dou C. Mature osteoclast-derived apoptotic bodies promote osteogenic differentiation via RANKL-mediated reverse signaling. J Biol Chem 2019; 294:11240-11247. [PMID: 31167789 DOI: 10.1074/jbc.ra119.007625] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 05/21/2019] [Indexed: 11/06/2022] Open
Abstract
In bone remodeling, after a lifespan of ∼2 weeks, osteoclasts undergo apoptosis in each bone turnover cycle, resulting in generation of a large number of apoptotic bodies (ABs). However, the biological roles of osteoclast-derived ABs (OC-ABs) in bone remodeling have not been investigated and remain unknown. In this study, we stimulated bone marrow macrophages with receptor activator of NF-κB ligand (RANKL) to obtain both preosteoclasts and mature osteoclasts (mOCs). We then used alendronate to induce apoptosis in preosteoclasts and mOCs and generate the respective ABs and used flow cytometry and immunoblotting to characterize the sizes and immunogenic characteristics of the extracted ABs. We show that mOC-ABs are engulfed by preosteoblastic MC3T3-E1 cells and promote the viability of these cells. Among all osteoclast-derived extracellular vesicles, mOC-ABs had the highest osteogenic potency. We further observed that mOC-ABs had the highest vesicular receptor activator of NF-κB (RANK) levels among all types of osteoclast-derived extracellular vesicles. Of note, masking of vesicular RANK by soluble RANKL strongly abolished the osteogenic potency of osteoclast-derived ABs. Mechanistically, we found that mOC-ABs induce osteoblast differentiation by activatingPI3K/AKT/mechanistic target of rapamycin (mTOR)/ribosomal protein S6 kinase signaling. In conclusion, OC-ABs promote osteogenic differentiation by stimulating osteoblast differentiation via activation of RANKL reverse signaling. These findings provide important insights into the reversal phase between the bone resorption and formation stages during bone remodeling and identify an AB-dependent cellular signaling mechanism in osteoclast-osteoblast coupling.
Collapse
Affiliation(s)
- Qinyu Ma
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Mengmeng Liang
- Department of Biomedical Materials Science, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Yutong Wu
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Ning Ding
- Department of Blood Purification, General Hospital of Shenyang Military Area Command, Shenyang 110000, China
| | - Lianli Duan
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Tao Yu
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Yun Bai
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Fei Kang
- Department of Biomedical Materials Science, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Shiwu Dong
- Department of Biomedical Materials Science, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Jianzhong Xu
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Ce Dou
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing 400038, China .,Department of Orthopedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| |
Collapse
|
23
|
Collins MW, Saag KG, Singh JA. Is there a role for cherries in the management of gout? Ther Adv Musculoskelet Dis 2019; 11:1759720X19847018. [PMID: 31205513 PMCID: PMC6535740 DOI: 10.1177/1759720x19847018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 03/28/2019] [Indexed: 01/08/2023] Open
Abstract
Despite the availability of effective urate-lowering therapy (ULT) and anti-inflammatory drugs for the treatment of gout, there is considerable interest in novel treatment approaches. Patients with gout often have a multitude of comorbidities, leading to concern over drug-drug interactions and medication adverse events. The cherry is a small nutrient-rich fruit that has garnered a great deal of attention in recent years as a nonpharmacologic option for the treatment of a multitude of disease manifestations. Perhaps a quarter of patients with gout try cherries or cherry products to treat their gout, which have antioxidant and anti-inflammatory (IL-6, TNF-α, IL-1β, IL-8, COX-I and -II) properties, hypouricemic effects, and the ability to downregulate NFkB-mediated osteoclastogenesis. Based on these properties, cherries may reduce both the acute and chronic inflammation associated with recurrent gout flares and its chronic destructive arthropathy. In this review, we explore the potential benefits of cherries and cherry products as a nonpharmacologic option for the treatment of gout.
Collapse
Affiliation(s)
- Marcum W. Collins
- UAB Hospital, 1720 2nd Avenue South, FOT 839, Birmingham, AL 35294, USA
| | | | | |
Collapse
|
24
|
Panahande SB, Maghbooli Z, Hossein-Nezhad A, Qorbani M, Moeini-Nodeh S, Haghi-Aminjan H, Hosseini S. Effects of French maritime pine bark extract (Oligopin®) supplementation on bone remodeling markers in postmenopausal osteopenic women: A randomized clinical trial. Phytother Res 2019; 33:1233-1240. [PMID: 30907034 DOI: 10.1002/ptr.6320] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 12/26/2018] [Accepted: 01/28/2019] [Indexed: 01/08/2023]
Abstract
French maritime pine bark extract (FMPBE; Oligopin®), a dietary supplement, is rich in procyanidin. The objective of this study was to determine the effects of FMPBE on bone remodeling in postmenopausal osteopenic women. This randomized, double-blinded, placebo-controlled clinical trial was conducted on 40 postmenopausal osteopenic women. Individuals were randomly assigned to either FMPBE (250 mg/day, n = 21) or placebo (250-mg starch/day, n = 19) for 12 weeks. Biochemical indices, including bone remodeling marker, were assessed before and after the intervention. After the 12-week intervention, that is, FMPBE supplementation, a significant increase in bone alkaline phosphatase (BAP), procollagen type 1 amino-terminal propeptide (P1NP) levels and a significant decrease in C-terminal telopeptide of type I collagen (CTx1) were observed. Compared with the control group, FMPBE supplementation resulted in a significant increase in P1NP (0.015), BAP levels (0.001), and BAP/CTx1 ratio (p = 0.001) and a significant decrease in CTx1 levels (0.006). FMPBE supplementation for 12 weeks in postmenopausal osteopenic women produced favorable effects on bone markers. Meanwhile, further research is needed to determine whether FMPBE supplements can be used as a preventive strategy for bone loss in postmenopausal osteopenic women.
Collapse
Affiliation(s)
- Seyed Bahman Panahande
- Osteoporosis Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.,Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, International Campus, Tehran University of Medical Sciences, Tehran, Iran
| | - Zhila Maghbooli
- Multiple Sclerosis Research Center, Neurosciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Arash Hossein-Nezhad
- Department of Medicine, Section of Endocrinology, Nutrition, and Diabetes, Vitamin D, Skin and Bone Research Laboratory, Boston University Medical Campus, Boston, Massachusetts, USA
| | - Mostafa Qorbani
- Department of Epidemiology, Non-communicable diseases Research center, Alborz University of Medical Sciences, Karaj, Iran
| | - Shermineh Moeini-Nodeh
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Haghi-Aminjan
- Drug and Advanced Sciences Research Center, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Saeed Hosseini
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, International Campus, Tehran University of Medical Sciences, Tehran, Iran.,Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
25
|
Yang J, Tang R, Yi J, Chen Y, Li X, Yu T, Fei J. Diallyl disulfide alleviates inflammatory osteolysis by suppressing osteoclastogenesis via NF-κB-NFATc1 signal pathway. FASEB J 2019; 33:7261-7273. [PMID: 30857415 PMCID: PMC6554198 DOI: 10.1096/fj.201802172r] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Skeletal homeostasis is closely effectuated by the regulation of bone formation and bone resorption. Osteoclasts are multinuclear giant cells responsible for bone resorption. Overactivated osteoclasts and excessive bone resorption result in various lytic bone diseases, such as osteoporosis, osteoarthritis, periprosthetic infection, and inflammatory aseptic loosening of orthopedic implants. In consideration of the severe side effects caused by the currently available drugs, exploitation of novel drugs has gradually attracted attention. Because of its anti-inflammatory, antioxidant, and antitumor capacities, diallyl disulfide (DADS), a major oil-soluble organosulfur ingredient compound derived from garlic, has been widely researched. However, the effects of DADS on osteoclasts and lytic bone diseases are still unknown. In this study, we investigated the effects of DADS on receptor activator of NF-κB ligand (RANKL)- and LPS-mediated osteoclastogenesis, LPS-stimulated proinflammatory cytokines related to osteoclasts, and LPS-induced inflammatory osteolysis. The results showed that DADS significantly inhibited RANKL-mediated osteoclast formation, fusion, and bone resorption in a dose-dependent manner via inhibiting the NF-κB and signal transducer and activator of transcription 3 signaling and restraining the interaction of NF-κB p65 with nuclear factor of activated T cells cytoplasmic 1. Furthermore, DADS also markedly suppressed LPS-induced osteoclastogenesis and reduced the production of proinflammatory cytokines with LPS stimulation to indirectly mediate osteoclast formation. Consistent with the in vitro results, DADS prevented the LPS-induced severe bone loss by blocking the osteoclastogenesis. All of the results indicate that DADS may be a potential and exploitable drug used for preventing and impeding osteolytic lesions.-Yang, J., Tang, R., Yi, J., Chen, Y., Li, X., Yu, T., Fei, J. Diallyl disulfide alleviates inflammatory osteolysis by suppressing osteoclastogenesis via NF-κB-NFATc1 signal pathway.
Collapse
Affiliation(s)
- Jing Yang
- Center of Trauma, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Ruohui Tang
- Center of Trauma, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Jin Yi
- Center of Trauma, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Yueqi Chen
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China; and
| | - Xianghe Li
- Department of Orthopedics, Guizhou Provincial People's Hospital, Guizhou Medical University, Guiyang, China
| | - Tao Yu
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China; and
| | - Jun Fei
- Center of Trauma, Daping Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
26
|
Zhou L, Tang S, Yang L, Huang X, Zou L, Huang Y, Dong S, Zhou X, Yang X. Cerium ion promotes the osteoclastogenesis through the induction of reactive oxygen species. J Trace Elem Med Biol 2019; 52:126-135. [PMID: 30732873 DOI: 10.1016/j.jtemb.2018.12.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/23/2018] [Accepted: 12/10/2018] [Indexed: 11/21/2022]
Abstract
Cerium and cerium containing materials have been drawing increasing attentions in industrial and biomedical applications in recent decades. The increased applications of cerium have also increased the risk of human body exposed to cerium ions. Due to its similar ionic radius to calcium(II), cerium(III) have found mainly deposited in the skeletal system. However, the effects of cerium(III) on the bone metabolism homeostasis remain poorly understood. In the present study, the effect of cerium(III) on the osteoclastogenesis which plays a pivotal role in bone metabolism homeostasis was investigated. Cerium(III) could enhance the expression and activity of NADPH oxidase1 (Nox1) leading to the elevation of intracellular reactive oxygen species (ROS) level. The augmentation of ROS level activated the RANKL dependent osteoclasts differentiation pathways resulted in the promotion of osteoclastogenesis, while anions associated with cerium(III) cation have no effects on the differentiation of osteoclasts. The cerium(III) activated osteoclasts exhibited enhanced bone resorption capability. These results provided fundamental information for understanding the potential effects of cerium(III) on the metabolism homeostasis of skeletal system which is of great reference value for future biomedical applications of cerium salts.
Collapse
Affiliation(s)
- Lan Zhou
- School of Biomedical Engineering and Medical Imaging, Third Military Medical University, China
| | - Shupei Tang
- Institute of Immunology, Third Military Medical University, China
| | - Lu Yang
- School of Biomedical Engineering and Medical Imaging, Third Military Medical University, China
| | - Xiaoyong Huang
- Institute of Immunology, Third Military Medical University, China
| | - Ling Zou
- School of Biomedical Engineering and Medical Imaging, Third Military Medical University, China
| | - Yu Huang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, China
| | - Shiwu Dong
- School of Biomedical Engineering and Medical Imaging, Third Military Medical University, China
| | - Xinyuan Zhou
- Institute of Immunology, Third Military Medical University, China.
| | - Xiaochao Yang
- School of Biomedical Engineering and Medical Imaging, Third Military Medical University, China.
| |
Collapse
|
27
|
Tang R, Yi J, Yang J, Chen Y, Luo W, Dong S, Fei J. Interleukin-37 inhibits osteoclastogenesis and alleviates inflammatory bone destruction. J Cell Physiol 2018; 234:7645-7658. [PMID: 30414292 PMCID: PMC6587950 DOI: 10.1002/jcp.27526] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 09/10/2018] [Indexed: 12/30/2022]
Abstract
Excessive osteoclast formation is one of the important pathological features of inflammatory bone destruction. Interleukin‐37 (IL‐37) is an anti‐inflammatory agent that is present throughout the body, but it displays low physiological retention. In our study, high levels of the IL‐37 protein were detected in clinical specimens from patients with bone infections. However, the impact of IL‐37 on osteoclast formation remains unclear. Next, IL‐37 alleviated the inflammatory bone destruction in the mouse in vivo. We used receptor activator of nuclear factor‐κB ligand and lipopolysaccharide to trigger osteoclastogenesis under physiological and pathological conditions to observe the role of IL‐37 in this process and explore the potential mechanism of this phenomenon. In both induction models, IL‐37 exerted inhibitory effects on osteoclast differentiation and bone resorption. Furthermore, IL‐37 decreased the phosphorylation of inhibitor of κBα and p65 and the expression of nuclear factor of activated T cells c1, while the dimerization inhibitor of myeloid differentiation factor 88 reversed the effects. These data provide evidence that IL‐37 modulates osteoclastogenesis and a theoretical basis for the clinical application of IL‐37 as a treatment for bone loss–related diseases.
Collapse
Affiliation(s)
- Ruohui Tang
- Center of Trauma of Daping Hospital, Third Military Medical University, Chongqing, China
| | - Jin Yi
- Center of Trauma of Daping Hospital, Third Military Medical University, Chongqing, China
| | - Jing Yang
- Center of Trauma of Daping Hospital, Third Military Medical University, Chongqing, China
| | - Yueqi Chen
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University (Army Medical University), Chongqing, China
| | - Wei Luo
- Department of Osteological, Guizhou Province People's Hospital, Guiyang, China
| | - Shiwu Dong
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University (Army Medical University), Chongqing, China.,State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, China
| | - Jun Fei
- Center of Trauma of Daping Hospital, Third Military Medical University, Chongqing, China.,State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, China
| |
Collapse
|
28
|
Lei C, Xueming H, Ruihang D. MLN64 deletion suppresses RANKL-induced osteoclastic differentiation and attenuates diabetic osteoporosis in streptozotocin (STZ)-induced mice. Biochem Biophys Res Commun 2018; 505:1228-1235. [DOI: 10.1016/j.bbrc.2018.10.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 10/01/2018] [Indexed: 02/06/2023]
|
29
|
Ding N, Wang Y, Dou C, Liu F, Guan G, Wei K, Yang J, Yang M, Tan J, Zeng W, Zhu C. Physalin D regulates macrophage M1/M2 polarization via the STAT1/6 pathway. J Cell Physiol 2018; 234:8788-8796. [PMID: 30317606 DOI: 10.1002/jcp.27537] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 09/10/2018] [Indexed: 12/12/2022]
Abstract
The in vitro and in vivo effects of physalin D on macrophage M1/M2 polarization were investigated. In silico analysis was first performed for biological function prediction of different physalins. The results suggest physalins have similar predicted biological functions due to their similarities in chemical structures. The cytotoxicity of physalins was then analyzed based on cell apoptosis rate and cell viability evaluation. Physalin D was chosen for further study due to its minimal cytotoxicity. Bone marrow macrophages were isolated and induced with lipopolysaccharide/interferon (IFN)-γ for M1 polarization and interleukin (IL)-4/IL-13 for M2 polarization. The results showed that physalin D can repolarize M1 phenotype cells toward M2 phenotype. In addition, physalin D is protective in M2 macrophages to maintain the M2 phenotype in the presence of IFN-γ. On the molecular level, we found that physalin D suppressed the signal transducers and activators of transcription (STAT)1 activation and blocked STAT1 nuclear translocation. Conversely, physalin D can also activate STAT6 and enhance STAT6 nuclear translocation for M2 polarization. Taken together, these results suggested that physalin D regulates macrophage M1/M2 polarization via the STAT1/6 pathway.
Collapse
Affiliation(s)
- Ning Ding
- Department of Anatomy, Third Military Medical University, Chongqing, China
| | - Yuxing Wang
- Department of Anatomy, Third Military Medical University, Chongqing, China
| | - Ce Dou
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Feila Liu
- Department of Anatomy, Third Military Medical University, Chongqing, China
| | - Ge Guan
- Department of Anatomy, Third Military Medical University, Chongqing, China
| | - Keyu Wei
- Department of Anatomy, Third Military Medical University, Chongqing, China
| | - Jingyuan Yang
- Department of Anatomy, Third Military Medical University, Chongqing, China
| | - Mingcan Yang
- Department of Anatomy, Third Military Medical University, Chongqing, China
| | - Ju Tan
- Department of Anatomy, Third Military Medical University, Chongqing, China
| | - Wen Zeng
- Department of Anatomy, Third Military Medical University, Chongqing, China
| | - Chuhong Zhu
- Department of Anatomy, Third Military Medical University, Chongqing, China
| |
Collapse
|
30
|
Lu X, He W, Yang W, Li J, Han W, Liu Q, Zhang T, Jiang J, Qin A, Qian Y. Dual effects of baicalin on osteoclast differentiation and bone resorption. J Cell Mol Med 2018; 22:5029-5039. [PMID: 30010244 PMCID: PMC6156465 DOI: 10.1111/jcmm.13785] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 06/05/2018] [Accepted: 06/12/2018] [Indexed: 01/10/2023] Open
Abstract
Osteoclasts (OC) are critical cells responsible for many bone diseases such as osteoporosis. It is of great interest to identify agents that can regulate the activity of OC to treat osteolytic bone diseases. In this study, we found that baicalin exerted a two‐way regulatory effect on OC in a concentration‐dependent manner in vitro and in vivo. In detail, baicalin at a low concentration (below 1 μmol/L) enhanced OC differentiation and bone resorption, but baicalin at a high concentration (above 2 μmol/L) exhibited inhibitory effects on OC. We demonstrated that baicalin at low concentrations enhanced the mitogen‐activated protein kinase (MAPK) (ERK) signalling pathway and activated c‐Fos and NFATc1 expression, and thus enhanced gene expression, OC differentiation and bone resorption. However, baicalin at higher levels not only suppressed ERK phosphorylation and c‐fos and NFATc1 expression, but also altered the expression of apoptosis‐related proteins, and therefore inhibiting OC function. This dual effect was further verified in an LPS‐induced mouse calvarial osteolysis model, evidenced by enhanced osteolysis at a lower concentration but reduced bone loss at a higher concentration. Overall, our findings indicate that baicalin exerts dose‐dependent effects on OC formation and function. Therefore, caution should be applied when using baicalin to treating OC‐related bone diseases.
Collapse
Affiliation(s)
- Xuanyuan Lu
- Department of Orthopaedics, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, Zhejiang, China
| | - Wei He
- Department of Orthopaedics, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, Zhejiang, China
| | - Wanlei Yang
- Department of Orthopaedics, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, Zhejiang, China
| | - Jianlei Li
- Department of Orthopaedics, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, Zhejiang, China
| | - Weiqi Han
- Department of Orthopaedics, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, Zhejiang, China
| | - Qian Liu
- Research Centre for Regenerative Medicine, Guangxi Medical University, Guangxi, China
| | - Tan Zhang
- Department of Orthopaedics, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, Zhejiang, China
| | - Jiawei Jiang
- Department of Orthopaedics, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, Zhejiang, China
| | - An Qin
- Department of Orthopedics, Shanghai Key Laboratory of Orthopedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yu Qian
- Department of Orthopaedics, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, Zhejiang, China
| |
Collapse
|
31
|
Ding N, Liu C, Yao L, Bai Y, Cheng P, Li Z, Luo K, Mei T, Li J, Xing J, Gao X, Ma Q, Xu J, Luo F, Dou C. Alendronate induces osteoclast precursor apoptosis via peroxisomal dysfunction mediated ER stress. J Cell Physiol 2018; 233:7415-7423. [PMID: 29600563 DOI: 10.1002/jcp.26587] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 03/08/2018] [Indexed: 12/23/2022]
Abstract
Nitrogen-containing bisphosphonates including alendronate (ALN) are the current first line antiresorptive drug in treating osteoporosis. In our study, we found that ALN administration impaired the secretion of platelet derived growth factor-BB (PDGF-BB), the most important angiogenic cytokines produced by preosteoclast (POC), in both sham and ovariectomized (OVX) mice. To further understand this phenomenon, we induced bone marrow macrophages (BMMs) to POCs in vitro and detected the effects of ALN particularly in POCs. The proapoptotic effect of ALN in POCs was confirmed by flow cytometry. On the molecular level, we found that farnesyl diphosphate synthase (FDPS) inhibition of ALN led to peroxisomal dysfunction and up regulation of cytoprotective protein glucose-regulated protein (GRP) 78. Peroxisomal dysfunction further induced endoplasmic reticulum (ER) stress in POCs and finally resulted in cell apoptosis marked by reduced expression of B-cell lymphoma 2 (Bcl-2) and increased expressions of CCAAT/enhancer binding protein homologous protein (CHOP), Bcl2 associated X (Bax), and cleaved caspase-3. We concluded that ALN has no selectivity in inhibiting POC and mature osteoclast. For POCs, ALN inhibition of FDPS leads to peroxisomal dysfunction, which further mediates ER stress and finally causes cell apoptosis. Considering that decreased angiogenesis is also an important issue in treating osteoporosis, how to preserve pro-angiogenic POCs while depleting mature osteoclasts is a problem worthy to be solved.
Collapse
Affiliation(s)
- Ning Ding
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Chuan Liu
- Department of Biomedical Materials Science, Third Military Medical University (Army Medical University), Chongqing, China.,Department of Urology, The Army General Hospital, Beijing, China
| | - Li Yao
- Department of Urology, The Army General Hospital, Beijing, China
| | - Yun Bai
- Department of Biomedical Materials Science, Third Military Medical University (Army Medical University), Chongqing, China
| | - Peng Cheng
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Zhilin Li
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Keyu Luo
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Tieniu Mei
- Department of Surgery, Shigatse Branch of Xinqiao Hospital, The Third Military Medical University (Army Medical University), Shigatse, China
| | - Jianhua Li
- Department of Orthopedics, The 88 Hospital of PLA, Taian, China
| | - Junchao Xing
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xiaoliang Gao
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Qinyu Ma
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jianzhong Xu
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Fei Luo
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Ce Dou
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Department of Biomedical Materials Science, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
32
|
Dou C, Ding N, Luo F, Hou T, Cao Z, Bai Y, Liu C, Xu J, Dong S. Graphene-Based MicroRNA Transfection Blocks Preosteoclast Fusion to Increase Bone Formation and Vascularization. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1700578. [PMID: 29619305 PMCID: PMC5826985 DOI: 10.1002/advs.201700578] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 10/25/2017] [Indexed: 05/26/2023]
Abstract
The objective of this study is to design a graphene-based miRNA transfection drug delivery system for antiresorptive therapy. An efficient nonviral gene delivery system is developed using polyethylenimine (PEI) functionalized graphene oxide (GO) complex loaded with miR-7b overexpression plasmid. GO-PEI complex exhibits excellent transfection efficiency within the acceptable range of cytotoxicity. The overexpression of miR-7b after GO-PEI-miR-7b transfection significantly abrogates osteoclast (OC) fusion and bone resorption activity by hampering the expression of an essential fusogenic molecule dendritic cell-specific transmembrane protein. However, osteoclastogenesis occurs without cell-cell fusion and preosteoclast (POC) is preserved. Through preservation of POC, GO-PEI-miR-7b transfection promotes mesenchymal stem cell osteogenesis and endothelial progenitor cells angiogenesis in the coculture system. Platelet-derived growth factor-BB secreted by POC is increased by GO-PEI-miR-7b both in vitro and in vivo. In treating osteoporotic ovariectomized mice, GO-PEI-miR-7b significantly enhances bone mineral density, bone volume as well as bone vascularization through increasing CD31hiEmcnhi cell number. This study provides a cell-cell fusion targeted miRNA transfection drug delivery strategy in treating bone disorders with excessive osteoclastic bone resorption.
Collapse
Affiliation(s)
- Ce Dou
- Department of OrthopedicsSouthwest HospitalThird Military Medical UniversityChongqing400038China
| | - Ning Ding
- Department of OrthopedicsSouthwest HospitalThird Military Medical UniversityChongqing400038China
| | - Fei Luo
- Department of OrthopedicsSouthwest HospitalThird Military Medical UniversityChongqing400038China
| | - Tianyong Hou
- Department of OrthopedicsSouthwest HospitalThird Military Medical UniversityChongqing400038China
| | - Zhen Cao
- Department of Biomedical Materials ScienceThird Military Medical UniversityChongqing400038China
| | - Yun Bai
- Department of Biomedical Materials ScienceThird Military Medical UniversityChongqing400038China
| | - Chuan Liu
- Department of Biomedical Materials ScienceThird Military Medical UniversityChongqing400038China
| | - Jianzhong Xu
- Department of OrthopedicsSouthwest HospitalThird Military Medical UniversityChongqing400038China
| | - Shiwu Dong
- Department of Biomedical Materials ScienceThird Military Medical UniversityChongqing400038China
| |
Collapse
|
33
|
Cao Z, Huang S, Dou C, Xiang Q, Dong S. Cyanidin suppresses autophagic activity regulating chondrocyte hypertrophic differentiation. J Cell Physiol 2017; 233:2332-2342. [DOI: 10.1002/jcp.26105] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 07/18/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Zhen Cao
- Department of Biomedical Materials Science; Third Military Medical University; Chongqing China
- Department of Anatomy; Third Military Medical University; Chongqing China
| | - Song Huang
- School of Pathology and Laboratory Medicine; The University of Western Australia; Nedlands Australia
| | - Ce Dou
- Department of Biomedical Materials Science; Third Military Medical University; Chongqing China
| | - Qiang Xiang
- Department of Emergency; Southwest Hospital, Third Military Medical University; Chongqing China
| | - Shiwu Dong
- Department of Biomedical Materials Science; Third Military Medical University; Chongqing China
| |
Collapse
|
34
|
Wang Y, Liu X, Dou C, Cao Z, Liu C, Dong S, Fei J. Staphylococcal protein A promotes osteoclastogenesis through MAPK signaling during bone infection. J Cell Physiol 2017; 232:2396-2406. [PMID: 28185243 PMCID: PMC5485048 DOI: 10.1002/jcp.25774] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 01/04/2017] [Indexed: 01/31/2023]
Abstract
Bone infection is a common and serious complication in the orthopedics field, which often leads to excessive bone destruction and non‐union. Osteoclast is the only type of cells which have the function of bone resorption. Its over activation is closely related to excessive bone loss. Staphylococcus aureus (S. aureus) is a major pathogen causing bone infection, which can produce a large number of strong pathogenic substances staphylococcal protein A (SPA). However, few studies were reported about the effects of SPA on osteoclastogenesis. In our study, we observed that S. aureus activated osteoclasts and promoted bone loss in bone infection specimens. Then, we investigated the effects of SPA on RANKL‐induced osteoclastogenesis in vitro, the results revealed that SPA promoted osteoclastic differentiation and fusion, and enhanced osteoclastic bone resorption. In addition, we also showed that SPA upregulated the expression of NFATc1 and c‐FOS through the activation of MAPK signaling to promote osteoclastogenesis. Our findings might help us better understand the pathogenic role of S. aureus in bone infection and develop new therapeutic strategies for infectious bone diseases.
Collapse
Affiliation(s)
- Yuan Wang
- Center of Trauma of Daping Hospital, Third Military Medical University, Chongqing, China
| | - Xin Liu
- Center of Trauma of Daping Hospital, Third Military Medical University, Chongqing, China
| | - Ce Dou
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing, China
| | - Zhen Cao
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing, China
| | - Chuan Liu
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing, China
| | - Shiwu Dong
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing, China
| | - Jun Fei
- Center of Trauma of Daping Hospital, Third Military Medical University, Chongqing, China.,State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, China
| |
Collapse
|
35
|
Jiang H, Si Y, Li Z, Huang X, Chen S, Zheng Y, Xu G, Chen X, Chen Y, Liu Y, Xiong H, Huang Q, Liang M, Zhang Z. TREM-2 promotes acquired cholesteatoma-induced bone destruction by modulating TLR4 signaling pathway and osteoclasts activation. Sci Rep 2016; 6:38761. [PMID: 27934908 PMCID: PMC5146948 DOI: 10.1038/srep38761] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 11/07/2016] [Indexed: 02/08/2023] Open
Abstract
Triggering receptor expressed on myeloid cells (TREM) has been broadly studied in inflammatory disease. However, the expression and function of TREM-2 remain undiscovered in acquired cholesteatoma. The expression of TREM-2 was significantly higher in human acquired cholesteatoma than in normal skin from the external auditory canal, and its expression level was positively correlated with the severity of bone destruction. Furthermore, TREM-2 was mainly expressed on dendritic cells (DCs). In human acquired cholesteatoma, the expression of proinflammatory cytokines (IL-1β, TNF-α and IL-6) and matrix metalloproteinases (MMP-2, MMP-8 and MMP-9) were up-regulated, and their expression levels were positively correlated with TREM-2 expression. Osteoclasts were activated in human acquired cholesteatoma. In an animal model, TREM-2 was up-regulated in mice with experimentally acquired cholesteatoma. TREM-2 deficiency impaired the maturation of experimentally acquired cholesteatoma and protected against bone destruction induced by experimentally acquired cholesteatoma. Additional data showed that TREM-2 up-regulated IL-1β and IL-6 expression via TLR4 instead of the TLR2 signaling pathway and promoted MMP-2 and MMP-8 secretion and osteoclast activation in experimentally acquired cholesteatoma. Therefore, TREM-2 might enhance acquired cholesteatoma-induced bone destruction by amplifying the inflammatory response via TLR4 signaling pathways and promoting MMP secretion and osteoclast activation.
Collapse
Affiliation(s)
- Huaili Jiang
- Department of Otolaryngology Head and Neck Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, China
| | - Yu Si
- Department of Otolaryngology Head and Neck Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, China
| | - Zhuohao Li
- Department of Otolaryngology Head and Neck Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, China
| | - Xi Huang
- Department of Immunology, Institute of Human Virology, Zhongshan School of Medicine and Key Laboratory of Tropical Diseases Control, Ministry of Education Sun Yat-sen University, Guangzhou, China
| | - Suijun Chen
- Department of Otolaryngology Head and Neck Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, China
| | - Yiqing Zheng
- Department of Otolaryngology Head and Neck Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, China
| | - Guo Xu
- Department of Otolaryngology Head and Neck Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, China
| | - Ximing Chen
- Department of Otolaryngology Head and Neck Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, China
| | - Yubin Chen
- Department of Otolaryngology Head and Neck Surgery, The third affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yi Liu
- Department of Otolaryngology Head and Neck Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, China
| | - Hao Xiong
- Department of Otolaryngology Head and Neck Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, China
| | - Qiuhong Huang
- Department of Otolaryngology Head and Neck Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, China
| | - Maojin Liang
- Department of Otolaryngology Head and Neck Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, China
| | - Zhigang Zhang
- Department of Otolaryngology Head and Neck Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, China
| |
Collapse
|
36
|
Furuta T, Miyaki S, Ishitobi H, Ogura T, Kato Y, Kamei N, Miyado K, Higashi Y, Ochi M. Mesenchymal Stem Cell-Derived Exosomes Promote Fracture Healing in a Mouse Model. Stem Cells Transl Med 2016; 5:1620-1630. [PMID: 27460850 DOI: 10.5966/sctm.2015-0285] [Citation(s) in RCA: 325] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 06/28/2016] [Indexed: 12/13/2022] Open
Abstract
: Paracrine signaling by bone-marrow-derived mesenchymal stem cells (MSCs) plays a major role in tissue repair. Although the production of regulatory cytokines by MSC transplantation is a critical modulator of tissue regeneration, we focused on exosomes, which are extracellular vesicles that contain proteins and nucleic acids, as a novel additional modulator of cell-to-cell communication and tissue regeneration. To address this, we used radiologic imaging, histological examination, and immunohistochemical analysis to evaluate the role of exosomes isolated from MSC-conditioned medium (CM) in the healing process in a femur fracture model of CD9-/- mice, a strain that is known to produce reduced levels of exosomes. We found that the bone union rate in CD9-/- mice was significantly lower than wild-type mice because of the retardation of callus formation. The retardation of fracture healing in CD9-/- mice was rescued by the injection of exosomes, but this was not the case after the injection of exosomes-free conditioned medium (CM-Exo). The levels of the bone repair-related cytokines, monocyte chemotactic protein-1 (MCP-1), MCP-3, and stromal cell-derived factor-1 in exosomes were low compared with levels in CM and CM-Exo, suggesting that bone repair may be in part mediated by other exosome components, such as microRNAs. These results suggest that exosomes in CM facilitate the acceleration of fracture healing, and we conclude that exosomes are a novel factor of MSC paracrine signaling with an important role in the tissue repair process. SIGNIFICANCE This work focuses on exosomes, which are extracellular vesicles, as a novel additional modulator of cell-to-cell communication. This study evaluated the role of exosomes isolated from mesenchymal stem cell (MSC)-conditioned medium (MSC-CM) in the fracture-healing process of CD9-/- mice, a strain that is known to produce reduced levels of exosomes. Retardation of fracture healing in CD9-/- mice was rescued by the injection of MSC exosomes, but this was not the case after the injection of exosome-free CM. This study finds that MSC exosomes are a novel factor of MSC paracrine signaling, with an important role in the tissue repair process.
Collapse
Affiliation(s)
- Taisuke Furuta
- Department of Orthopaedics Surgery, Integrated Health Sciences, Institute of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan
| | - Shigeru Miyaki
- Department of Orthopaedics Surgery, Integrated Health Sciences, Institute of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan
- Department of Regenerative Medicine, Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan
| | - Hiroyuki Ishitobi
- Department of Regenerative Medicine, Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan
| | - Toshihiko Ogura
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Yoshio Kato
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Naosuke Kamei
- Department of Orthopaedics Surgery, Integrated Health Sciences, Institute of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan
- Department of Regenerative Medicine, Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan
| | - Kenji Miyado
- Department of Reproductive Biology, National Center for Child Health and Development, Tokyo, Japan
| | - Yukihito Higashi
- Department of Regenerative Medicine, Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan
| | - Mitsuo Ochi
- Department of Orthopaedics Surgery, Integrated Health Sciences, Institute of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
37
|
Dou C, Chen Y, Ding N, Li N, Jiang H, Zhao C, Kang F, Cao Z, Quan H, Luo F, Xu J, Dong S. Xanthotoxin prevents bone loss in ovariectomized mice through the inhibition of RANKL-induced osteoclastogenesis. Osteoporos Int 2016; 27:2335-2344. [PMID: 26809192 DOI: 10.1007/s00198-016-3496-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 01/15/2016] [Indexed: 11/29/2022]
Abstract
UNLABELLED Xanthotoxin (XAT) is extracted from the seeds of Ammi majus. Here, we reported that XAT has an inhibitory effect on osteoclastogenesis in vitro through the suppression of both receptor activator of nuclear factor-κB ligand (RANKL)-induced ROS generation and Ca(2+) oscillations. In vivo studies showed that XAT treatment decreases the osteoclast number, prevents bone loss, and restores bone strength in ovariectomized mice. INTRODUCTION Excessive osteoclast formation and the resultant increase in bone resorption activity are key pathogenic factors of osteoporosis. In the present study, we have investigated the effects of XAT, a natural furanocoumarin, on the RANKL-mediated osteoclastogenesis in vitro and on ovariectomy-mediated bone loss in vivo. METHODS Cytotoxicity of XAT was evaluated using bone marrow macrophages (BMMs). Osteoclast differentiation, formation, and fusion were assessed using the tartrate-resistant acid phosphatase (TRAP) stain, the actin cytoskeleton and focal adhesion (FAK) stain, and the fusion assay, respectively. Osteoclastic bone resorption was evaluated using the pit formation assay. Reactive oxygen species (ROS) generation and removal were evaluated using dichlorodihydrofluorescein diacetate (DCFH-DA). Ca(2+) oscillations and their downstream signaling targets were then detected. The ovariectomized (OVX) mouse model was adopted for our in vivo studies. RESULTS In vitro assays revealed that XAT inhibited the differentiation, formation, fusion, and bone resorption activity of osteoclasts. The inhibitory effect of XAT on osteoclastogenesis was associated with decreased intracellular ROS generation. XAT treatment also suppressed RANKL-induced Ca(2+) oscillations and the activation of the resultant downstream calcium-CaMKK/PYK2 signaling. Through these two mechanisms, XAT downregulated the key osteoclastogenic factors nuclear factor of activated T cells c1 (NFATc1) and c-FOS. Our in vivo studies showed that XAT treatment decreases the osteoclast number, prevents bone loss, rescues bone microarchitecture, and restores bone strength in OVX mice. CONCLUSION Our findings indicate that XAT is protective against ovariectomy-mediated bone loss through the inhibition of RANKL-mediated osteoclastogenesis. Therefore, XAT may be considered to be a new therapeutic candidate for treating osteoporosis.
Collapse
Affiliation(s)
- C Dou
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Gaotanyan Street No.30, Chongqing, 400038, China
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Y Chen
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Gaotanyan Street No.30, Chongqing, 400038, China
| | - N Ding
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Gaotanyan Street No.30, Chongqing, 400038, China
| | - N Li
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Gaotanyan Street No.30, Chongqing, 400038, China
| | - H Jiang
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Gaotanyan Street No.30, Chongqing, 400038, China
| | - C Zhao
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Gaotanyan Street No.30, Chongqing, 400038, China
| | - F Kang
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Gaotanyan Street No.30, Chongqing, 400038, China
| | - Z Cao
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Gaotanyan Street No.30, Chongqing, 400038, China
| | - H Quan
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Gaotanyan Street No.30, Chongqing, 400038, China
| | - F Luo
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - J Xu
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - S Dong
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Gaotanyan Street No.30, Chongqing, 400038, China.
| |
Collapse
|
38
|
Cordycepin Prevents Bone Loss through Inhibiting Osteoclastogenesis by Scavenging ROS Generation. Nutrients 2016; 8:231. [PMID: 27104563 PMCID: PMC4848699 DOI: 10.3390/nu8040231] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 03/18/2016] [Accepted: 04/05/2016] [Indexed: 12/22/2022] Open
Abstract
Cordycepin was previously reported to have anti-tumor, anti-inflammatory and anti-oxidant activity. However, the potential role of cordycepin in bone metabolism and cell biology of osteoclasts remains unclear. In our study, we focused on the in vitro effects of cordycepin on osteoclastogenesis and its in vivo effects in ovariectomized (OVX) mice. Osteoclast differentiation, formation and fusion were evaluated by Tartrate-resistant acid phosphatase (TRAP) stain, focal adhesion stain and fusion assay, respectively. Osteoclastic bone resorption was evaluated by pit formation assay. Reactive oxygen species (ROS) generation and removal were detected by the ROS assay. OVX mice were orally administered with 10 mg/kg of cordycepin daily for four weeks. In vitro results revealed that cordycepin inhibited receptor activator of nuclear factor κB ligand (RANKL)-induced osteoclast differentiation, formation, fusion and bone resorption activity. We further proved that cordycepin treatments scavenged the generation of ROS, upregulated interferon regulatory factor 8 (IRF-8) and suppressed the activity of nuclear factor of activated T cells c1 (NFATc1) during osteoclastogenesis. In vivo results indicated cordycepin prevents bone loss, rescues bone microarchitecture, and restores bone mineralization in OVX mice. Our observations strongly suggested that cordycepin is an efficient osteoclast inhibitor and hold potential therapeutic value in preventing bone loss among postmenopausal osteoporosis patients.
Collapse
|
39
|
Dou C, Ding N, Xing J, Zhao C, Kang F, Hou T, Quan H, Chen Y, Dai Q, Luo F, Xu J, Dong S. Dihydroartemisinin attenuates lipopolysaccharide-induced osteoclastogenesis and bone loss via the mitochondria-dependent apoptosis pathway. Cell Death Dis 2016; 7:e2162. [PMID: 27031959 PMCID: PMC4823966 DOI: 10.1038/cddis.2016.69] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 01/27/2016] [Accepted: 03/02/2016] [Indexed: 12/19/2022]
Abstract
Dihydroartemisinin (DHA) is a widely used antimalarial drug isolated from the plant Artemisia annua. Recent studies suggested that DHA has antitumor effects utilizing its reactive oxygen species (ROS) yielding mechanism. Here, we reported that DHA is inhibitory on lipopolysaccharide (LPS)-induced osteoclast (OC) differentiation, fusion and bone-resorption activity in vitro. Intracellular ROS detection revealed that DHA could remarkably increase ROS accumulation during LPS-induced osteoclastogenesis. Moreover, cell apoptosis was also increased by DHA treatment. We found that DHA-activated caspase-3 increased Bax/Bcl-2 ratio during LPS-induced osteoclastogenesis. Meanwhile, the translocation of apoptotic inducing factor (AIF) and the release of cytochrome c from the mitochondria into the cytosol were observed, indicating that ROS-mediated mitochondrial dysfunction is crucial in DHA-induced apoptosis during LPS-induced osteoclastogenesis. In vivo study showed that DHA treatment decreased OC number, prevents bone loss, rescues bone microarchitecture and restores bone strength in LPS-induced bone-loss mouse model. Together, our findings indicate that DHA is protective against LPS-induced bone loss through apoptosis induction of osteoclasts via ROS accumulation and the mitochondria-dependent apoptosis pathway. Therefore, DHA may be considered as a new therapeutic candidate for treating inflammatory bone loss.
Collapse
Affiliation(s)
- C Dou
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing 400038, China.,Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing 400038, China
| | - N Ding
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - J Xing
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - C Zhao
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing 400038, China
| | - F Kang
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing 400038, China
| | - T Hou
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - H Quan
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing 400038, China
| | - Y Chen
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing 400038, China
| | - Q Dai
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - F Luo
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - J Xu
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - S Dong
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing 400038, China.,China Orthopedic Regenerative Medicine Group, Chongqing 400038, China
| |
Collapse
|
40
|
Dou C, Li N, Ding N, Liu C, Yang X, Kang F, Cao Z, Quan H, Hou T, Xu J, Dong S. HDAC2 regulates FoxO1 during RANKL-induced osteoclastogenesis. Am J Physiol Cell Physiol 2016; 310:C780-7. [PMID: 26962001 DOI: 10.1152/ajpcell.00351.2015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 02/23/2016] [Indexed: 11/22/2022]
Abstract
The bone-resorbing osteoclast (OC) is essential for bone homeostasis, yet deregulation of OCs contributes to diseases such as osteoporosis, osteopetrosis, and rheumatoid arthritis. Here we show that histone deacetylase 2 (HDAC2) is a key positive regulator during receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclastogenesis and bone resorption. Bone marrow macrophages (BMMs) showed increased HDAC2 expression during osteoclastogenesis. HDAC2 overexpression enhanced, whereas HDAC2 deletion suppressed osteoclastogenesis and bone resorption using lentivirus infection. Mechanistically, upon RANKL activation, HDAC2 activated Akt; Akt directly phosphorylates and abrogates Forkhead box protein O1 (FoxO1), which is a negative regulator during osteoclastogenesis through reducing reactive oxygen species. HDAC2 deletion in BMMs resulted in decreased Akt activation and increased FoxO1 activity during osteoclastogenesis. In conclusion, HDAC2 activates Akt thus suppresses FoxO1 transcription results in enhanced osteoclastogenesis. Our data imply the potential value of HDAC2 as a new target in regulating osteoclast differentiation and function.
Collapse
Affiliation(s)
- Ce Dou
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing, China; and Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Nan Li
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing, China; and
| | - Ning Ding
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing, China; and
| | - Chuan Liu
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing, China; and
| | - Xiaochao Yang
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing, China; and
| | - Fei Kang
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing, China; and
| | - Zhen Cao
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing, China; and
| | - Hongyu Quan
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing, China; and
| | - Tianyong Hou
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jianzhong Xu
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Shiwu Dong
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing, China; and
| |
Collapse
|
41
|
Dou C, Cao Z, Yang B, Ding N, Hou T, Luo F, Kang F, Li J, Yang X, Jiang H, Xiang J, Quan H, Xu J, Dong S. Changing expression profiles of lncRNAs, mRNAs, circRNAs and miRNAs during osteoclastogenesis. Sci Rep 2016; 6:21499. [PMID: 26856880 PMCID: PMC4746671 DOI: 10.1038/srep21499] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 01/19/2016] [Indexed: 01/01/2023] Open
Abstract
Bone is a dynamic organ continuously undergoing shaping, repairing and remodeling. The homeostasis of bone is maintained by the balance between osteoblastic bone formation and osteoclastic bone resorption. Osteoclasts (OCs) are specialized multinucleated cells derived from hematopoietic stem cells (HSCs) or monocytes/macrophage progenitor cells. There are different stages during osteoclastogenesis, and one of the most important steps to form functional osteoclasts is realized by cell-cell fusion. In our study, microarray was performed to detect the expression profiles of lncRNA, mRNA, circRNA and miRNA at different stages during osteoclastogenesis of RAW264.7 cells. Often changed RNAs were selected and clustered among the four groups with Venn analysis. The results revealed that expressions of 518 lncRNAs, 207 mRNAs, 24 circRNAs and 37 miRNAs were often altered at each stage during OC differentiation. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) biological pathway analysis were performed to predict the functions of differentially expressed lncRNAs and co-expressed potential targeting genes. Co-expression networks of lncRNA-mRNA and circRNA-miRNA were constructed based on the correlation analysis between the differentially expressed RNAs. The present study provided a systematic perspective on the potential function of non-coding RNAs (ncRNAs) during osteoclastogenesis.
Collapse
Affiliation(s)
- Ce Dou
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China.,Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing, China
| | - Zhen Cao
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing, China
| | - Bo Yang
- Department of Anatomy, Third Military Medical University, Chongqing, China
| | - Ning Ding
- Department of Anatomy, Third Military Medical University, Chongqing, China
| | - Tianyong Hou
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Fei Luo
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Fei Kang
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing, China
| | - Jianmei Li
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing, China
| | - Xiaochao Yang
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing, China
| | - Hong Jiang
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing, China
| | - Junyu Xiang
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing, China
| | - Hongyu Quan
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing, China
| | - Jianzhong Xu
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Shiwu Dong
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing, China.,China Orthopedic Regenerative Medicine Group (CORMed), Chongqing, China
| |
Collapse
|
42
|
Indran IR, Liang RLZ, Min TE, Yong EL. Preclinical studies and clinical evaluation of compounds from the genus Epimedium for osteoporosis and bone health. Pharmacol Ther 2016; 162:188-205. [PMID: 26820757 DOI: 10.1016/j.pharmthera.2016.01.015] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The morbidity and mortality associated with fractures due to osteoporosis or "porous bone" contributes significantly to global healthcare costs and will increase exponentially with ageing populations. In menopausal women, the onset of menopause and rapid estrogen withdrawal leads to osteoporotic fractures. Healthy bone requires the coordinated remodeling function of osteoclasts, osteoblasts, and osteocytes in the basic bone multicellular unit, regulated by estrogen, RANKL/OPG, ROS, growth factors, and other kinase signaling pathways. Anti-osteoporotic drugs in current use such as hormone replacement therapy, selective estrogen receptor modulators, and bisphosphonates are designed to target these pathways, but all have their limitations. Extracts of the dried aerial parts of the traditional Chinese medicinal plant Epimedium (Berberidaceae) has long been used for bone health. Some nine Epimedium prenylflavonoid compounds have been reported to target estrogen signaling and other bone morphogenesis pathways in mesenchymal stem cell, osteoblast, and osteoclast cell lineages. Epimedium prenylflavonoids and enriched extracts can exert beneficial effects on bone health in estrogen-deficient and other osteoporosis animal models. The development of sensitive and rapid mass chromatographic techniques to quantify compounds extracted from Epimedium, including icariin and icaritin, has been used to standardize production and to study the pharmacokinetics and metabolism of Epimedium in animal models and humans. Recent clinical trials have reported positive effects on bone health, suggesting that compounds or extracts of Epimedium have the potential to be developed as agents, alone or in combination with other drugs, to prevent or delay the onset of osteoporosis and reduce the risk of hip fractures.
Collapse
Affiliation(s)
- Inthrani Raja Indran
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Ryan Lim Zhen Liang
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Tan Ee Min
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Eu-Leong Yong
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
43
|
SUMIYOSHI N, ISHITOBI H, MIYAKI S, MIYADO K, ADACHI N, OCHI M. The role of tetraspanin CD9 in osteoarthritis using three different mouse models . Biomed Res 2016; 37:283-291. [DOI: 10.2220/biomedres.37.283] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Norihiko SUMIYOSHI
- Department of Orthopaedic Surgery, Graduate School of Biomedical Sciences, Hiroshima University
| | - Hiroyuki ISHITOBI
- Department of Regenerative Medicine, Hiroshima University Hospital
- Research Fellow of the Japan Society for the Promotion of Science
| | - Shigeru MIYAKI
- Department of Orthopaedic Surgery, Graduate School of Biomedical Sciences, Hiroshima University
- Department of Regenerative Medicine, Hiroshima University Hospital
| | - Kenji MIYADO
- Department of Reproductive Biology, National Center for Child Health and Development
| | - Nobuo ADACHI
- Department of Orthopaedic Surgery, Graduate School of Biomedical Sciences, Hiroshima University
| | - Mitsuo OCHI
- Department of Orthopaedic Surgery, Graduate School of Biomedical Sciences, Hiroshima University
| |
Collapse
|
44
|
The Role of Anthocyanins in Health as Antioxidant, in Bone Health and as Heart Protecting Agents. ANTHOCYANINS AND HUMAN HEALTH: BIOMOLECULAR AND THERAPEUTIC ASPECTS 2016. [DOI: 10.1007/978-3-319-26456-1_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
45
|
Abstract
A light-to-moderate wine consumption has been shown to provide several beneficial effects on the skeletal system, including reduced risk of bone mass loss and fractures. Wine is rich in phenolic compounds, strong phytoestrogens and natural antioxidants, to which bone protection is mainly attributed. The objective of this review was to give an overview of the exact mechanisms by which wine consumption is involved in bone protection. We found a great variety of in vitro research on the beneficial effects of isolated wine phenolics on the skeletal system, with a significant lack of evidence of their in vivo effects. In addition, we found almost no studies investigating how wine, a mixture of these phenolics dissolved in ethanol, affects the skeletal system. Our results warrant further research on this interesting topic.
Collapse
Affiliation(s)
- Zvonimir Kutleša
- Orthopedic Clinic, Clinical Hospital Centre Split, Split, Croatia
| | - Danijela Budimir Mršić
- Department of Diagnostic and Interventional Radiology, University Hospital Split, Spinciceva 1, 21000, Split, Croatia.
| |
Collapse
|