1
|
Sanese P, Fasano C, Lepore Signorile M, De Marco K, Forte G, Disciglio V, Grossi V, Simone C. Methyltransferases in cancer drug resistance: Unlocking the potential of targeting SMYD3 to sensitize cancer cells. Biochim Biophys Acta Rev Cancer 2024; 1879:189203. [PMID: 39461625 DOI: 10.1016/j.bbcan.2024.189203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/27/2024] [Accepted: 10/21/2024] [Indexed: 10/29/2024]
Abstract
Drug resistance is a significant challenge in oncology and is driven by various mechanisms, among which a crucial role is played by enhanced DNA repair. Thus, targeting DNA damage response (DDR) factors with specific inhibitors is emerging as a promising therapeutic strategy. An important process involved in the modulation of DNA repair pathways, and hence in drug resistance, is post-translational modification (PTM). PTMs such as methylation affect protein function and are critical in cancer biology. Methylation is catalyzed by specific enzymes called protein methyltransferases. In recent years, the SET domain-containing N-lysine methyltransferase SMYD3 has emerged as a significant oncogenic driver. It is overexpressed in several tumor types and plays a signal-dependent role in promoting gastrointestinal cancer formation and development. Recent evidence indicates that SMYD3 is involved in the maintenance of cancer genome integrity and contributes to drug resistance in response to genotoxic stress by regulating DDR mechanisms. Several potential SMYD3 interactors implicated in DNA repair, especially in the homologous recombination and non-homologous end-joining pathways, have been identified by in silico analyses and confirmed by experimental validation, showing that SMYD3 promotes DDR protein interactions and enzymatic activity, thereby sustaining cancer cell survival. Targeting SMYD3, in combination with standard or targeted therapy, shows promise in overcoming drug resistance in colorectal, gastric, pancreatic, breast, endometrial, and lung cancer models, supporting the integration of SMYD3 inhibition into cancer treatment regimens. In this review, we describe the role played by SMYD3 in drug resistance and analyze its potential as a molecular target to sensitize cancer cells to treatment.
Collapse
Affiliation(s)
- Paola Sanese
- Medical Genetics, National Institute of Gastroenterology, IRCCS "Saverio de Bellis" Research Hospital, Castellana Grotte (Ba), 70013, Italy.
| | - Candida Fasano
- Medical Genetics, National Institute of Gastroenterology, IRCCS "Saverio de Bellis" Research Hospital, Castellana Grotte (Ba), 70013, Italy
| | - Martina Lepore Signorile
- Medical Genetics, National Institute of Gastroenterology, IRCCS "Saverio de Bellis" Research Hospital, Castellana Grotte (Ba), 70013, Italy
| | - Katia De Marco
- Medical Genetics, National Institute of Gastroenterology, IRCCS "Saverio de Bellis" Research Hospital, Castellana Grotte (Ba), 70013, Italy
| | - Giovanna Forte
- Medical Genetics, National Institute of Gastroenterology, IRCCS "Saverio de Bellis" Research Hospital, Castellana Grotte (Ba), 70013, Italy
| | - Vittoria Disciglio
- Medical Genetics, National Institute of Gastroenterology, IRCCS "Saverio de Bellis" Research Hospital, Castellana Grotte (Ba), 70013, Italy
| | - Valentina Grossi
- Medical Genetics, National Institute of Gastroenterology, IRCCS "Saverio de Bellis" Research Hospital, Castellana Grotte (Ba), 70013, Italy
| | - Cristiano Simone
- Medical Genetics, National Institute of Gastroenterology, IRCCS "Saverio de Bellis" Research Hospital, Castellana Grotte (Ba), 70013, Italy; Medical Genetics, Department of Precision and Regenerative Medicine and Jonic Area (DiMePRe-J), University of Bari Aldo Moro, Bari 70124, Italy.
| |
Collapse
|
2
|
Ding Q, Cai J, Jin L, Hu W, Song W, Rose P, Tang Z, Zhan Y, Bao L, Lei W, Zhu YZ. A novel small molecule ZYZ384 targeting SMYD3 for hepatocellular carcinoma via reducing H3K4 trimethylation of the Rac1 promoter. MedComm (Beijing) 2024; 5:e711. [PMID: 39286779 PMCID: PMC11401973 DOI: 10.1002/mco2.711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/19/2024] [Accepted: 06/04/2024] [Indexed: 09/19/2024] Open
Abstract
SMYD3 (SET and MYND domain-containing 3) is a histone lysine methyltransferase highly expressed in different types of cancer(s) and is a promising epigenetic target for developing novel antitumor therapeutics. No selective inhibitors for this protein have been developed for cancer treatment. Therefore, the current study describes developing and characterizing a novel small molecule ZYZ384 screened and synthesized based on SMYD3 structure. Virtual screening was initially used to identify a lead compound and followed up by modification to get the novel molecules. Several technologies were used to facilitate compound screening about these novel molecules' binding affinities and inhibition activities with SMYD3 protein; the antitumor activity has been assessed in vitro using various cancer cell lines. In addition, a tumor-bearing nude mice model was established, and the activity of the selected molecule was determined in vivo. Both RNA-seq and chip-seq were performed to explore the antitumor mechanism. This work identified a novel small molecule ZYZ384 targeting SMYD3 with antitumor activity and impaired hepatocellular carcinoma tumor growth by reducing H3K4 trimethylation of the Rac1 promoter triggering the tumor cell cycle arrest through the AKT pathway.
Collapse
Affiliation(s)
- Qian Ding
- State Key Laboratory of Quality Research in Chinese Medicine & Laboratory of Drug Discovery from Natural Resources and Industrialization & School of Pharmacy Macau University of Science and Technology Macau SAR China
- Affiliated Hospital of Guangdong Medical University Zhanjiang China
- Joint Laboratory of TCM Innovation (Transformation) of Guizhou and Macau Guizhou University of Traditional Chinese Medicine Guiyang China
| | - Jianghong Cai
- State Key Laboratory of Quality Research in Chinese Medicine & Laboratory of Drug Discovery from Natural Resources and Industrialization & School of Pharmacy Macau University of Science and Technology Macau SAR China
| | - Li Jin
- State Key Laboratory of Quality Research in Chinese Medicine & Laboratory of Drug Discovery from Natural Resources and Industrialization & School of Pharmacy Macau University of Science and Technology Macau SAR China
| | - Wei Hu
- State Key Laboratory of Quality Research in Chinese Medicine & Laboratory of Drug Discovery from Natural Resources and Industrialization & School of Pharmacy Macau University of Science and Technology Macau SAR China
| | - Wu Song
- State Key Laboratory of Quality Research in Chinese Medicine & Laboratory of Drug Discovery from Natural Resources and Industrialization & School of Pharmacy Macau University of Science and Technology Macau SAR China
| | - Peter Rose
- School of Biosciences University of Nottingham Loughborough UK
| | - Zhiyuan Tang
- Department of Pharmacy Affiliated Hospital of Nantong University & Medical School of Nantong University Nantong China
| | - Yangyang Zhan
- Department of Pharmacy, Shanghai Eastern Hepatobiliary Surgery Hospital Navy Military Medical University Shanghai China
| | - Leilei Bao
- Department of Pharmacy, Shanghai Eastern Hepatobiliary Surgery Hospital Navy Military Medical University Shanghai China
| | - Wei Lei
- Affiliated Hospital of Guangdong Medical University Zhanjiang China
| | - Yi Zhun Zhu
- State Key Laboratory of Quality Research in Chinese Medicine & Laboratory of Drug Discovery from Natural Resources and Industrialization & School of Pharmacy Macau University of Science and Technology Macau SAR China
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy Fudan University Shanghai China
| |
Collapse
|
3
|
Geng W, An J, Dong K, Zhang H, Zhang X, Liu Y, Xu R, Liu Y, Huang X, Song H, Yan W, Sun A, He F, Wang J, Gao H, Tian C. ZNF8 Orchestrates with Smad3 to Promote Lung Metastasis by Recruiting SMYD3 in Breast Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404904. [PMID: 39225541 PMCID: PMC11515916 DOI: 10.1002/advs.202404904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/03/2024] [Indexed: 09/04/2024]
Abstract
Most deaths in breast cancer patients are attributed to metastasis, and lung metastasis is associated with a particularly poor prognosis; therefore it is imperative to identify potential target for intervention. The transforming growth factor-β (TGF-β) pathway plays a vital role in breast cancer metastasis, in which Smad3 is the key mediator and performs specific functions by binding with different cofactors. However, Smad3 cofactors involved in lung metastasis have not yet been identified. This study first establishes the interactome of Smad3 in breast cancer cells and identifies ZNF8 as a novel Smad3 cofactor. Furthermore, the results reveal that ZNF8 is closely associated with breast cancer lung metastasis prognosis, and specifically facilitates TGF-β pathway-mediated breast cancer lung metastasis by participating in multiple processes. Mechanistically, ZNF8 binds with Smad3 to enhance the H3K4me3 modification and promote the expression of lung metastasis signature genes by recruiting SMYD3. SMYD3 inhibition by BCI121 effectively prevents ZNF8-mediated lung metastasis. Overall, the study identifies a novel cofactor of TGF-β/Smad3 that promotes lung metastasis in breast cancer and introduces potential therapeutic strategies for the early management of breast cancer lung metastasis.
Collapse
Affiliation(s)
- Wenwen Geng
- Department of Breast SurgeryQilu Hospital (Qingdao)Cheeloo College of MedicineShandong UniversityQingdaoShandong266000China
- Laboratory of OncologyQilu Hospital (Qingdao)Cheeloo College of MedicineShandong UniversityQingdaoShandong266000China
| | - Junhua An
- Department of Breast SurgeryQilu Hospital (Qingdao)Cheeloo College of MedicineShandong UniversityQingdaoShandong266000China
- Laboratory of OncologyQilu Hospital (Qingdao)Cheeloo College of MedicineShandong UniversityQingdaoShandong266000China
| | - Ke Dong
- Department of Breast SurgeryQilu Hospital (Qingdao)Cheeloo College of MedicineShandong UniversityQingdaoShandong266000China
- Laboratory of OncologyQilu Hospital (Qingdao)Cheeloo College of MedicineShandong UniversityQingdaoShandong266000China
| | - Hailu Zhang
- State Key Laboratory of Medical ProteomicsBeijing Proteome Research CenterNational Center for Protein Sciences (Beijing)Beijing Institute of LifeomicsBeijing102206China
- College of Life SciencesHebei UniversityBaodingHebei071002China
| | - Xiuyuan Zhang
- State Key Laboratory of Medical ProteomicsBeijing Proteome Research CenterNational Center for Protein Sciences (Beijing)Beijing Institute of LifeomicsBeijing102206China
| | - Yuchen Liu
- State Key Laboratory of Medical ProteomicsBeijing Proteome Research CenterNational Center for Protein Sciences (Beijing)Beijing Institute of LifeomicsBeijing102206China
| | - Rong Xu
- State Key Laboratory of Medical ProteomicsBeijing Proteome Research CenterNational Center for Protein Sciences (Beijing)Beijing Institute of LifeomicsBeijing102206China
| | - Yifan Liu
- State Key Laboratory of Medical ProteomicsBeijing Proteome Research CenterNational Center for Protein Sciences (Beijing)Beijing Institute of LifeomicsBeijing102206China
| | - Xiaofen Huang
- State Key Laboratory of Medical ProteomicsBeijing Proteome Research CenterNational Center for Protein Sciences (Beijing)Beijing Institute of LifeomicsBeijing102206China
- College of Life SciencesHebei UniversityBaodingHebei071002China
| | - Haiyun Song
- Department of PathologyQilu Hospital (Qingdao)Cheeloo College of MedicineShandong UniversityQingdaoShandong266000China
| | - Wei Yan
- The First Medical Center of Chinese PLA General HospitalBeijing100036China
| | - Aihua Sun
- State Key Laboratory of Medical ProteomicsBeijing Proteome Research CenterNational Center for Protein Sciences (Beijing)Beijing Institute of LifeomicsBeijing102206China
- College of Life SciencesHebei UniversityBaodingHebei071002China
- Research Unit of Proteomics Dirven Cancer Precision MedicineChinese Academy of Medical SciencesBeijing102206China
| | - Fuchu He
- State Key Laboratory of Medical ProteomicsBeijing Proteome Research CenterNational Center for Protein Sciences (Beijing)Beijing Institute of LifeomicsBeijing102206China
- Research Unit of Proteomics Dirven Cancer Precision MedicineChinese Academy of Medical SciencesBeijing102206China
| | - Jian Wang
- State Key Laboratory of Medical ProteomicsBeijing Proteome Research CenterNational Center for Protein Sciences (Beijing)Beijing Institute of LifeomicsBeijing102206China
- College of Life SciencesHebei UniversityBaodingHebei071002China
| | - Haidong Gao
- Department of Breast SurgeryQilu Hospital (Qingdao)Cheeloo College of MedicineShandong UniversityQingdaoShandong266000China
- Laboratory of OncologyQilu Hospital (Qingdao)Cheeloo College of MedicineShandong UniversityQingdaoShandong266000China
| | - Chunyan Tian
- State Key Laboratory of Medical ProteomicsBeijing Proteome Research CenterNational Center for Protein Sciences (Beijing)Beijing Institute of LifeomicsBeijing102206China
- College of Life SciencesHebei UniversityBaodingHebei071002China
- Research Unit of Proteomics Dirven Cancer Precision MedicineChinese Academy of Medical SciencesBeijing102206China
| |
Collapse
|
4
|
Sanese P, De Marco K, Lepore Signorile M, La Rocca F, Forte G, Latrofa M, Fasano C, Disciglio V, Di Nicola E, Pantaleo A, Bianco G, Spilotro V, Ferroni C, Tubertini M, Labarile N, De Marinis L, Armentano R, Gigante G, Lantone V, Lantone G, Naldi M, Bartolini M, Varchi G, Del Rio A, Grossi V, Simone C. The novel SMYD3 inhibitor EM127 impairs DNA repair response to chemotherapy-induced DNA damage and reverses cancer chemoresistance. J Exp Clin Cancer Res 2024; 43:151. [PMID: 38812026 PMCID: PMC11137994 DOI: 10.1186/s13046-024-03078-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/21/2024] [Indexed: 05/31/2024] Open
Abstract
BACKGROUND SMYD3 has been found implicated in cancer progression. Its overexpression correlates with cancer growth and invasion, especially in gastrointestinal tumors. SMYD3 transactivates multiple oncogenic mechanisms, favoring cancer development. Moreover, it was recently shown that SMYD3 is required for DNA restoration by promoting homologous recombination (HR) repair. METHODS In cellulo and in vivo models were employed to investigate the role of SMYD3 in cancer chemoresistance. Analyses of SMYD3-KO cells, drug-resistant cancer cell lines, patients' residual gastric or rectal tumors that were resected after neoadjuvant therapy and mice models were performed. In addition, the novel SMYD3 covalent inhibitor EM127 was used to evaluate the impact of manipulating SMYD3 activity on the sensitization of cancer cell lines, tumorspheres and cancer murine models to chemotherapeutics (CHTs). RESULTS Here we report that SMYD3 mediates cancer cell sensitivity to CHTs. Indeed, cancer cells lacking SMYD3 functions showed increased responsiveness to CHTs, while restoring its expression promoted chemoresistance. Specifically, SMYD3 is essential for the repair of CHT-induced double-strand breaks as it methylates the upstream sensor ATM and allows HR cascade propagation through CHK2 and p53 phosphorylation, thereby promoting cancer cell survival. SMYD3 inhibition with the novel compound EM127 showed a synergistic effect with CHTs in colorectal, gastric, and breast cancer cells, tumorspheres, and preclinical colorectal cancer models. CONCLUSIONS Overall, our results show that targeting SMYD3 may be an effective therapeutic strategy to overcome chemoresistance.
Collapse
Affiliation(s)
- Paola Sanese
- Medical Genetics, National Institute of Gastroenterology, IRCCS "Saverio de Bellis" Research Hospital, Castellana Grotte (Ba), 70013, Italy
| | - Katia De Marco
- Medical Genetics, National Institute of Gastroenterology, IRCCS "Saverio de Bellis" Research Hospital, Castellana Grotte (Ba), 70013, Italy
| | - Martina Lepore Signorile
- Medical Genetics, National Institute of Gastroenterology, IRCCS "Saverio de Bellis" Research Hospital, Castellana Grotte (Ba), 70013, Italy
| | - Francesca La Rocca
- Medical Genetics, National Institute of Gastroenterology, IRCCS "Saverio de Bellis" Research Hospital, Castellana Grotte (Ba), 70013, Italy
| | - Giovanna Forte
- Medical Genetics, National Institute of Gastroenterology, IRCCS "Saverio de Bellis" Research Hospital, Castellana Grotte (Ba), 70013, Italy
| | - Marialaura Latrofa
- Medical Genetics, National Institute of Gastroenterology, IRCCS "Saverio de Bellis" Research Hospital, Castellana Grotte (Ba), 70013, Italy
| | - Candida Fasano
- Medical Genetics, National Institute of Gastroenterology, IRCCS "Saverio de Bellis" Research Hospital, Castellana Grotte (Ba), 70013, Italy
| | - Vittoria Disciglio
- Medical Genetics, National Institute of Gastroenterology, IRCCS "Saverio de Bellis" Research Hospital, Castellana Grotte (Ba), 70013, Italy
| | - Elisabetta Di Nicola
- Medical Genetics, National Institute of Gastroenterology, IRCCS "Saverio de Bellis" Research Hospital, Castellana Grotte (Ba), 70013, Italy
| | - Antonino Pantaleo
- Medical Genetics, National Institute of Gastroenterology, IRCCS "Saverio de Bellis" Research Hospital, Castellana Grotte (Ba), 70013, Italy
| | - Giusy Bianco
- Animal Facility, National Institute of Gastroenterology, IRCCS "Saverio de Bellis" Research Hospital, Castellana Grotte (Ba), 70013, Italy
| | - Vito Spilotro
- Animal Facility, National Institute of Gastroenterology, IRCCS "Saverio de Bellis" Research Hospital, Castellana Grotte (Ba), 70013, Italy
| | - Claudia Ferroni
- Institute of Organic Synthesis and Photoreactivity - National Research Council, Bologna, 40129, Italy
| | - Matilde Tubertini
- Institute of Organic Synthesis and Photoreactivity - National Research Council, Bologna, 40129, Italy
- Department of Chemical and Environmental Sciences, University of Insubria, Como, 22100, Italy
| | - Nicoletta Labarile
- Histopathology Unit, National Institute of Gastroenterology, IRCCS "Saverio de Bellis" Research Hospital, Castellana Grotte (Ba), 70013, Italy
| | - Lucia De Marinis
- Histopathology Unit, National Institute of Gastroenterology, IRCCS "Saverio de Bellis" Research Hospital, Castellana Grotte (Ba), 70013, Italy
| | - Raffaele Armentano
- Histopathology Unit, National Institute of Gastroenterology, IRCCS "Saverio de Bellis" Research Hospital, Castellana Grotte (Ba), 70013, Italy
| | - Gianluigi Gigante
- General Surgery Unit, National Institute of Gastroenterology, IRCCS "Saverio de Bellis" Research Hospital, Castellana Grotte (Ba), 70013, Italy
| | - Valerio Lantone
- General Surgery Unit, National Institute of Gastroenterology, IRCCS "Saverio de Bellis" Research Hospital, Castellana Grotte (Ba), 70013, Italy
- General Surgery Unit, Department of Precision and Regenerative Medicine and Jonic Area (DiMePRe-J), University of Bari Aldo Moro, Bari, 70124, Italy
| | | | - Marina Naldi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Bologna, 40126, Italy
| | - Manuela Bartolini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Bologna, 40126, Italy
| | - Greta Varchi
- Institute of Organic Synthesis and Photoreactivity - National Research Council, Bologna, 40129, Italy
| | - Alberto Del Rio
- Institute of Organic Synthesis and Photoreactivity - National Research Council, Bologna, 40129, Italy
- Innovamol Consulting Srl, Modena, 41126, Italy
| | - Valentina Grossi
- Medical Genetics, National Institute of Gastroenterology, IRCCS "Saverio de Bellis" Research Hospital, Castellana Grotte (Ba), 70013, Italy.
| | - Cristiano Simone
- Medical Genetics, National Institute of Gastroenterology, IRCCS "Saverio de Bellis" Research Hospital, Castellana Grotte (Ba), 70013, Italy.
- Medical Genetics, Department of Precision and Regenerative Medicine and Jonic Area (DiMePRe-J), University of Bari Aldo Moro, Bari, 70124, Italy.
| |
Collapse
|
5
|
Agborbesong E, Zhou JX, Zhang H, Li LX, Harris PC, Calvet JP, Li X. SMYD3 Controls Ciliogenesis by Regulating Distinct Centrosomal Proteins and Intraflagellar Transport Trafficking. Int J Mol Sci 2024; 25:6040. [PMID: 38892227 PMCID: PMC11172885 DOI: 10.3390/ijms25116040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/26/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
The primary cilium is a microtubule-based sensory organelle that plays a critical role in signaling pathways and cell cycle progression. Defects in the structure and/or function of the primary cilium result in developmental diseases collectively known as ciliopathies. However, the constituents and regulatory mechanisms of the primary cilium are not fully understood. In recent years, the activity of the epigenetic modifier SMYD3 has been shown to play a key role in the regulation of cell cycle progression. However, whether SMYD3, a histone/lysine methyltransferase, contributes to the regulation of ciliogenesis remains unknown. Here, we report that SMYD3 drives ciliogenesis via the direct and indirect regulation of cilia-associated components. We show that SMYD3 is a novel component of the distal appendage and is required for centriolar appendage assembly. The loss of SMYD3 decreased the percentage of ciliated cells and resulted in the formation of stumpy cilia. We demonstrated that SMYD3 modulated the recruitment of centrosome proteins (Cep164, Fbf1, Ninein, Ttbk2 and Cp110) and the trafficking of intraflagellar transport proteins (Ift54 and Ift140) important for cilia formation and maintenance, respectively. In addition, we showed that SMYD3 regulated the transcription of cilia genes and bound to the promoter regions of C2cd3, Cep164, Ttbk2, Dync2h1 and Cp110. This study provides insights into the role of SMYD3 in cilia biology and suggests that SMYD3-mediated cilia formation/function may be relevant for cilia-dependent signaling in ciliopathies.
Collapse
Affiliation(s)
- Ewud Agborbesong
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Julie Xia Zhou
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Hongbing Zhang
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Linda Xiaoyan Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Peter C. Harris
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - James P. Calvet
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Xiaogang Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
6
|
Huang Y, Tang M, Hu Z, Cai B, Chen G, Jiang L, Xia Y, Guan P, Li X, Mao Z, Wan X, Lu W. SMYD3 promotes endometrial cancer through epigenetic regulation of LIG4/XRCC4/XLF complex in non-homologous end joining repair. Oncogenesis 2024; 13:3. [PMID: 38191478 PMCID: PMC10774296 DOI: 10.1038/s41389-023-00503-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 11/30/2023] [Accepted: 12/07/2023] [Indexed: 01/10/2024] Open
Abstract
Endometrial cancer (EC) stands as one of the most prevalent malignancies affecting the female genital tract, witnessing a rapid surge in incidence globally. Despite the well-established association of histone methyltransferase SMYD3 with the development and progression of various cancers, its specific oncogenic role in endometrial cancer remains unexplored. In the present study, we report that the expression level of SMYD3 is significantly upregulated in EC samples and associated with EC progression. Through meticulous in vivo and in vitro experiments, we reveal that depletion of SMYD3 curtails cell proliferation, migration, and invasion capabilities, leading to compromised non-homologous end joining repair (NHEJ) and heightened sensitivity of EC cells to radiation. Furthermore, our pathway enrichment analysis underscores the pivotal involvement of the DNA damage repair pathway in regulating EC progression. Mechanistically, in response to DNA damage, SMYD3 is recruited to these sites in a PARP1-dependent manner, specifically methylating LIG4. This methylation sets off a sequential assembly of the LIG4/XRCC4/XLF complex, actively participating in the NHEJ pathway and thereby fostering EC progression. Notably, our findings highlight the promise of SMYD3 as a crucial player in NHEJ repair and its direct correlation with EC progression. Intriguingly, pharmacological intervention targeting SMYD3 with its specific inhibitor, BCI-121, emerges as a potent strategy, markedly suppressing the tumorigenicity of EC cells and significantly enhancing the efficacy of radiotherapy. Collectively, our comprehensive data position SMYD3 as a central factor in NHEJ repair and underscore its potential as a promising pharmacological target for endometrial cancer therapy, validated through both in vitro and in vivo systems.
Collapse
Affiliation(s)
- Yujia Huang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Ming Tang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
| | - Zhiyi Hu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Bailian Cai
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Guofang Chen
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Lijun Jiang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Yan Xia
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Pujun Guan
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, 610000, China
| | - Xiaoqi Li
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Zhiyong Mao
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Xiaoping Wan
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
| | - Wen Lu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
7
|
Yu L, Wei Y, Lu T, Li Z, Lai S, Yan Y, Chen C, Wen W. The SMYD3-dependent H3K4me3 status of IGF2 intensifies local Th2 differentiation in CRSwNP via positive feedback. Cell Commun Signal 2023; 21:345. [PMID: 38037054 PMCID: PMC10688075 DOI: 10.1186/s12964-023-01375-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023] Open
Abstract
Chronic rhinosinusitis with nasal polyps (CRSwNP) is a heterogeneous and common upper airway disease divided into various inflammatory endotypes. Recent epidemiological findings showed a T helper 2 (Th2)-skewed dominance in CRSwNP patients. Histone modification alterations can regulate transcriptional and translational expression, resulting in abnormal pathogenic changes and the occurrence of diseases. Trimethylation of histone H3 lysine 4 (H3K4me3) is considered an activator of gene expression through modulation of accessibility for transcription, which is closely related to CRSwNP. H3K4me3 levels in the human nasal epithelium may change under Th2-biased inflammatory conditions, resulting in exaggerated local nasal Th2 responses via the regulation of naïve CD4+ T-cell differentiation. Here, we revealed that the level of SET and MYND domain-containing protein 3 (SMYD3)-mediated H3K4me3 was increased in NPs from Th2 CRSwNP patients compared with those from healthy controls. We demonstrated that SMYD3-mediated H3K4me3 is increased in human nasal epithelial cells under Th2-biased inflammatory conditions via S-adenosyl-L-methionine (SAM) production and further found that the H3K4me3high status of insulin-like growth factor 2 (IGF2) produced in primary human nasal epithelial cells could promote naïve CD4+ T-cell differentiation into Th2 cells. Moreover, we found that SAM production was dependent on the c-Myc/methionine adenosyltransferase 2A (MAT2A) axis in the nasal epithelium. Understanding histone modifications in the nasal epithelium has immense potential utility in the development of novel classes of therapeutics targeting Th2 polarization in Th2 CRSwNP. Video Abstract.
Collapse
Affiliation(s)
- Lei Yu
- Department of Otolaryngology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
| | - Yi Wei
- Department of Otolaryngology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China
- Otorhinolaryngology Institute of Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China
- Guangzhou Key Laboratory of Otorhinolaryngology, Guangzhou, Guangdong, P.R. China
| | - Tong Lu
- Department of Otolaryngology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China
| | - Zhengqi Li
- Department of Otolaryngology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China
| | - Shimin Lai
- Department of Otolaryngology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China
| | - Yan Yan
- Department of Otolaryngology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China
| | - Changhui Chen
- Department of Otolaryngology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China
| | - Weiping Wen
- Department of Otolaryngology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China.
- Department of Otolaryngology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China.
- Otorhinolaryngology Institute of Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China.
- Guangzhou Key Laboratory of Otorhinolaryngology, Guangzhou, Guangdong, P.R. China.
| |
Collapse
|
8
|
De Marco K, Lepore Signorile M, Di Nicola E, Sanese P, Fasano C, Forte G, Disciglio V, Pantaleo A, Varchi G, Del Rio A, Grossi V, Simone C. SMYD3 Modulates the HGF/MET Signaling Pathway in Gastric Cancer. Cells 2023; 12:2481. [PMID: 37887325 PMCID: PMC10605494 DOI: 10.3390/cells12202481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/28/2023] Open
Abstract
Gastric cancer (GC) is the third most deadly cancer worldwide. Considerable efforts have been made to find targetable drivers in order to improve patient outcomes. MET is one of the most important factors involved in GC initiation and progression as it plays a major role in GC invasiveness and is related to cancer stemness. Unfortunately, treatment strategies targeting MET are still limited, with a proportion of patients responding to therapy but later developing resistance. Here, we showed that MET is a molecular partner of the SMYD3 methyltransferase in GC cells. Moreover, we found that SMYD3 pharmacological inhibition affects the HGF/MET downstream signaling pathway. Extensive cellular analyses in GC models indicated that EM127, a novel active site-selective covalent SMYD3 inhibitor, can be used as part of a synergistic approach with MET inhibitors in order to enhance the targeting of the HGF/MET pathway. Importantly, our data were confirmed in a 3D GC cell culture system, which was used as a surrogate to evaluate stemness characteristics. Our findings identify SMYD3 as a promising therapeutic target to impair the HGF/MET pathway for the treatment of GC.
Collapse
Affiliation(s)
- Katia De Marco
- Medical Genetics, National Institute for Gastroenterology—IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (K.D.M.); (M.L.S.); (E.D.N.); (P.S.); (C.F.); (G.F.); (V.D.); (A.P.)
| | - Martina Lepore Signorile
- Medical Genetics, National Institute for Gastroenterology—IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (K.D.M.); (M.L.S.); (E.D.N.); (P.S.); (C.F.); (G.F.); (V.D.); (A.P.)
| | - Elisabetta Di Nicola
- Medical Genetics, National Institute for Gastroenterology—IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (K.D.M.); (M.L.S.); (E.D.N.); (P.S.); (C.F.); (G.F.); (V.D.); (A.P.)
| | - Paola Sanese
- Medical Genetics, National Institute for Gastroenterology—IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (K.D.M.); (M.L.S.); (E.D.N.); (P.S.); (C.F.); (G.F.); (V.D.); (A.P.)
| | - Candida Fasano
- Medical Genetics, National Institute for Gastroenterology—IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (K.D.M.); (M.L.S.); (E.D.N.); (P.S.); (C.F.); (G.F.); (V.D.); (A.P.)
| | - Giovanna Forte
- Medical Genetics, National Institute for Gastroenterology—IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (K.D.M.); (M.L.S.); (E.D.N.); (P.S.); (C.F.); (G.F.); (V.D.); (A.P.)
| | - Vittoria Disciglio
- Medical Genetics, National Institute for Gastroenterology—IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (K.D.M.); (M.L.S.); (E.D.N.); (P.S.); (C.F.); (G.F.); (V.D.); (A.P.)
| | - Antonino Pantaleo
- Medical Genetics, National Institute for Gastroenterology—IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (K.D.M.); (M.L.S.); (E.D.N.); (P.S.); (C.F.); (G.F.); (V.D.); (A.P.)
| | - Greta Varchi
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), 40129 Bologna, Italy; (G.V.); (A.D.R.)
| | - Alberto Del Rio
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), 40129 Bologna, Italy; (G.V.); (A.D.R.)
- Innovamol Consulting Srl, 41126 Modena, Italy
| | - Valentina Grossi
- Medical Genetics, National Institute for Gastroenterology—IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (K.D.M.); (M.L.S.); (E.D.N.); (P.S.); (C.F.); (G.F.); (V.D.); (A.P.)
| | - Cristiano Simone
- Medical Genetics, National Institute for Gastroenterology—IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (K.D.M.); (M.L.S.); (E.D.N.); (P.S.); (C.F.); (G.F.); (V.D.); (A.P.)
- Medical Genetics, Department of Precision and Regenerative Medicine and Jonic Area (DiMePRe-J), University of Bari Aldo Moro, 70124 Bari, Italy
| |
Collapse
|
9
|
Sun J, Li Y, Shi M, Tian H, Li J, Zhu K, Guo Y, Mu Y, Geng J, Li Z. A Positive Feedback Loop of lncRNA HOXD-AS2 and SMYD3 Facilitates Hepatocellular Carcinoma Progression via the MEK/ERK Pathway. J Hepatocell Carcinoma 2023; 10:1237-1256. [PMID: 37533602 PMCID: PMC10390764 DOI: 10.2147/jhc.s416946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/20/2023] [Indexed: 08/04/2023] Open
Abstract
Purpose HOX cluster-embedded long noncoding RNAs (HOX-lncRNAs) have been shown to be tightly related to hepatocellular carcinoma (HCC). However, the potential biological roles and underlying molecular mechanism of HOX-lncRNAs in HCC largely remains to be elucidated. Methods The expression signature of eighteen HOX-lncRNAs in HCC cell lines were measured by qRT-PCR. HOXD-AS2 expression and its clinical significance in HCC was investigated by bioinformatics analysis utilizing the TCGA data. Subcellular localization of HOXD-AS2 in HCC cells was observed by RNA-FISH. Loss‑of‑function experiments in vitro and in vivo were conducted to probe the roles of HOXD-AS2 in HCC. Potential HOXD-AS2-controlled genes and signaling pathways were revealed by RNA-seq. Rescue experiments were performed to validate that SMYD3 mediates HOXD-AS2 promoting HCC progression. The positive feedback loop of HOXD-AS2 and SMYD3 was identified by luciferase reporter assay and ChIP-qPCR. Results HOXD-AS2 was dramatically elevated in HCC, and its up-regulation exhibited a positive association with aggressive clinical features (T stage, pathologic stage, histologic grade, AFP level, and vascular invasion) and unfavorable prognosis of HCC patients. HOXD-AS2 was distributed both in the nucleus and the cytoplasm of HCC cells. Knockdown of HOXD-AS2 restrained the proliferation, migration, invasion of HCC cells in vitro, as well as tumor growth in subcutaneous mouse model. Transcriptome analysis demonstrated that SMYD3 expression and activity of MEK/ERK pathway were impaired by silencing HOXD-AS2 in HCC cells. Rescue experiments revealed that SMYD3 as downstream target mediated oncogenic functions of HOXD-AS2 in HCC cells through altering the expression of cyclin B1, cyclin E1, MMP2 as well as the activity of MEK/ERK pathway. Additionally, HOXD-AS2 was uncovered to be positively regulated at transcriptional level by its downstream gene of SMYD3. Conclusion HOXD-AS2, a novel oncogenic HOX-lncRNA, facilitates HCC progression by forming a positive feedback loop with SMYD3 and activating the MEK/ERK pathway.
Collapse
Affiliation(s)
- Jin Sun
- National-Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
- Center for Tumor and Immunology, the Precision Medical Institute, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Yingnan Li
- National-Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
- Center for Tumor and Immunology, the Precision Medical Institute, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Mengjiao Shi
- National-Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Hongwei Tian
- National-Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
- Center for Tumor and Immunology, the Precision Medical Institute, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Jun Li
- National-Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
- Center for Tumor and Immunology, the Precision Medical Institute, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Kai Zhu
- National-Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
- Center for Tumor and Immunology, the Precision Medical Institute, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Ying Guo
- National-Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
- Center for Tumor and Immunology, the Precision Medical Institute, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Yanhua Mu
- National-Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
- Center for Tumor and Immunology, the Precision Medical Institute, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Jing Geng
- National-Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
- Center for Tumor and Immunology, the Precision Medical Institute, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Zongfang Li
- National-Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
- Center for Tumor and Immunology, the Precision Medical Institute, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
- Department of Geriatric General Surgery, the Second Affiliated Hospital of Xi’ an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| |
Collapse
|
10
|
Nigam N, Bernard B, Sevilla S, Kim S, Dar MS, Tsai D, Robbins Y, Burkitt K, Sievers C, Allen CT, Bennett RL, Tettey TT, Carter B, Rinaldi L, Lingen MW, Sater H, Edmondson EF, Moshiri A, Saeed A, Cheng H, Luo X, Brennan K, Koparde V, Chen C, Das S, Andresson T, Abdelmaksoud A, Murali M, Sakata S, Takeuchi K, Chari R, Nakamura Y, Uppaluri R, Sunwoo JB, Van Waes C, Licht JD, Hager GL, Saloura V. SMYD3 represses tumor-intrinsic interferon response in HPV-negative squamous cell carcinoma of the head and neck. Cell Rep 2023; 42:112823. [PMID: 37463106 PMCID: PMC10407766 DOI: 10.1016/j.celrep.2023.112823] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 04/03/2023] [Accepted: 07/03/2023] [Indexed: 07/20/2023] Open
Abstract
Cancers often display immune escape, but the mechanisms are incompletely understood. Herein, we identify SMYD3 as a mediator of immune escape in human papilloma virus (HPV)-negative head and neck squamous cell carcinoma (HNSCC), an aggressive disease with poor response to immunotherapy with pembrolizumab. SMYD3 depletion induces upregulation of multiple type I interferon (IFN) response and antigen presentation machinery genes in HNSCC cells. Mechanistically, SMYD3 binds to and regulates the transcription of UHRF1, encoding for a reader of H3K9me3, which binds to H3K9me3-enriched promoters of key immune-related genes, recruits DNMT1, and silences their expression. SMYD3 further maintains the repression of immune-related genes through intragenic deposition of H4K20me3. In vivo, Smyd3 depletion induces influx of CD8+ T cells and increases sensitivity to anti-programmed death 1 (PD-1) therapy. SMYD3 overexpression is associated with decreased CD8 T cell infiltration and poor response to neoadjuvant pembrolizumab. These data support combining SMYD3 depletion strategies with checkpoint blockade to overcome anti-PD-1 resistance in HPV-negative HNSCC.
Collapse
Affiliation(s)
- Nupur Nigam
- Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA
| | - Benjamin Bernard
- Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA
| | - Samantha Sevilla
- Collaborative Bioinformatics Resource, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Sohyoung Kim
- Laboratory of Receptor Biology and Gene Expression, NCI, NIH, Bethesda, MD 20892, USA
| | - Mohd Saleem Dar
- Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA
| | - Daniel Tsai
- Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA
| | - Yvette Robbins
- Translational Tumor Immunology Program, NIDCD, NIH, Bethesda, MD 20892, USA
| | - Kyunghee Burkitt
- Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA
| | - Cem Sievers
- Translational Tumor Immunology Program, NIDCD, NIH, Bethesda, MD 20892, USA
| | - Clint T Allen
- Translational Tumor Immunology Program, NIDCD, NIH, Bethesda, MD 20892, USA
| | | | - Theophilus T Tettey
- Laboratory of Receptor Biology and Gene Expression, NCI, NIH, Bethesda, MD 20892, USA
| | - Benjamin Carter
- National Heart, Lung and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Lorenzo Rinaldi
- Laboratory of Receptor Biology and Gene Expression, NCI, NIH, Bethesda, MD 20892, USA
| | - Mark W Lingen
- University of Chicago, Department of Pathology, Chicago, IL 60637, USA
| | - Houssein Sater
- GU Malignancies Branch, NCI, NIH, Bethesda, MD 20892, USA
| | - Elijah F Edmondson
- Molecular Histopathology Laboratory, Frederick National Laboratory for Cancer Research, NIH, Frederick, MD 21702, USA
| | - Arfa Moshiri
- Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA
| | - Abbas Saeed
- Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA
| | - Hui Cheng
- National Institute of Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, USA
| | - Xiaolin Luo
- Ionis Pharmaceuticals, Carlsbad, CA 92010, USA
| | - Kevin Brennan
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Vishal Koparde
- Collaborative Bioinformatics Resource, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Chen Chen
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sudipto Das
- Protein Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc, Frederick, MD 21702, USA
| | - Thorkell Andresson
- Protein Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc, Frederick, MD 21702, USA
| | - Abdalla Abdelmaksoud
- Collaborative Bioinformatics Resource, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Madhavi Murali
- Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA
| | - Seiji Sakata
- Pathology Project for Molecular Targets, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo 135-0063, Japan; Division of Pathology, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo 135-0063, Japan
| | - Kengo Takeuchi
- Pathology Project for Molecular Targets, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo 135-0063, Japan; Division of Pathology, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo 135-0063, Japan; Department of Pathology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo 135-0063, Japan
| | - Raj Chari
- Genome Modification Core, Laboratory Animal Sciences Program, Frederick National Lab for Cancer Research, Frederick, MD 21702, USA
| | - Yusuke Nakamura
- Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo 135-0063, Japan
| | | | - John B Sunwoo
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Carter Van Waes
- National Institute of Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, USA
| | | | - Gordon L Hager
- Laboratory of Receptor Biology and Gene Expression, NCI, NIH, Bethesda, MD 20892, USA
| | - Vassiliki Saloura
- Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
11
|
Wang S, You X, Liu X, Fengwei Zhang, Zhou H, Shang X, Cai L. SMYD3 induces sorafenib resistance by activating SMAD2/3-mediated epithelial-mesenchymal transition in hepatocellular carcinoma. iScience 2023; 26:106994. [PMID: 37534166 PMCID: PMC10391607 DOI: 10.1016/j.isci.2023.106994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 03/19/2023] [Accepted: 05/25/2023] [Indexed: 08/04/2023] Open
Abstract
Drug resistance prominently hampers the effects of systemic therapy of sorafenib to hepatocellular carcinoma (HCC). Epigenetics have critical regulatory roles in drug resistance. However, the contributions of histone methylatransferase SET and MYND domain containing 3 (SMYD3) to sorafenib resistance in HCC remain largely unknown. Here, using our established sorafenib-resistant HCC cell and xenograft models, we found SMYD3 was markedly elevated in sorafenib-resistant tumors and cells. Functionally, loss- and gain-of-function studies showed that SMYD3 promoted the migration, invasion, metastasis and stemness of sorafenib-resistant HCC cells. Mechanistically, SMYD3 is required for SMAD2/3-mediated epithelial-mesenchymal transition (EMT) in sorafenib-resistant HCC cells by interacting with SMAD2/3 and epigenetically promoting the expression of SOX4, ZEB1, SNAIL1 and MMP9 genes. In summary, our data demonstrate that targeting SMYD3 is an effective approach to overcome sorafenib resistance in HCC.
Collapse
Affiliation(s)
- Shanshan Wang
- Central Laboratory, Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine, 208 Huancheng Dong Road, Hangzhou 310003, Zhejiang, China
| | - Xin You
- College of Life Science, Northeast Agricultural University, Harbin 150030, Heilong Jiang, China
| | - Xiaoshu Liu
- Central Laboratory, Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine, 208 Huancheng Dong Road, Hangzhou 310003, Zhejiang, China
| | - Fengwei Zhang
- Central Laboratory, Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine, 208 Huancheng Dong Road, Hangzhou 310003, Zhejiang, China
| | - Hongjuan Zhou
- Central Laboratory, Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine, 208 Huancheng Dong Road, Hangzhou 310003, Zhejiang, China
| | - Xuechai Shang
- Central Laboratory, Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine, 208 Huancheng Dong Road, Hangzhou 310003, Zhejiang, China
| | - Long Cai
- Central Laboratory, Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine, 208 Huancheng Dong Road, Hangzhou 310003, Zhejiang, China
| |
Collapse
|
12
|
Zeng Y, Ma G, Cai F, Wang P, Liang H, Zhang R, Deng J, Liu Y. SMYD3 drives the proliferation in gastric cancer cells via reducing EMP1 expression in an H4K20me3-dependent manner. Cell Death Dis 2023; 14:386. [PMID: 37386026 PMCID: PMC10310787 DOI: 10.1038/s41419-023-05907-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 06/10/2023] [Accepted: 06/19/2023] [Indexed: 07/01/2023]
Abstract
Protein lysine methyltransferase SET and MYND domain-containing 3 (SMYD3) is aberrantly expressed in various cancer settings. The mechanisms that SMYD3 activates the expression of critical pro-tumoral genes in an H3K4me3-dependent manner have been well described in previous reports. Besides H3K4me3, H4K20me3 is another catalytic product of SMYD3, however it is a transcriptionally repressive hallmark. Since it is not clear that how SMYD3-elicited transcriptionally repressive program functions in cancer, we used gastric cancer (GC) as a model to investigate the roles of SMYD3-H4K20me3. Herein, online bioinformatics tools, quantitative PCR, western blotting and immunohistochemistry assays demonstrated that SMYD3 expression was markedly increased in GC tissues from our institutional and The Cancer Genome Atlas (TCGA) cohort. Additionally, aberrantly increased SMYD3 expression was closely associated with aggressive clinical characteristics and poor prognosis. Depletion of endogenous SMYD3 expression using shRNAs significantly attenuates the proliferation in GC cells and Akt signaling pathway in vitro and in vivo. Mechanistically, chromatin immunoprecipitation (ChIP) assay showed that SMYD3 epigenetically repressed the expression of epithelial membrane protein 1 (EMP1) in an H4K20me3-dependent manner. Gain-of-function and rescue experiments validated that EMP1 inhibited the propagation of GC cells and reduced p-Akt (S473) level. Based on these data, pharmaceutical inhibition of SMYD3 activity using the small inhibitor BCI-121 deactivated Akt signaling pathway in GC cells and further impaired the cellular viability in vitro and in vivo. Together, these results demonstrate that SMYD3 promotes the proliferation in GC cells and may be a valid target for therapeutic intervention of patients with GC.
Collapse
Affiliation(s)
- Yi Zeng
- Department of Gastric Surgery, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, PR China
- Department of Gastrointestinal Surgical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350000, Fujian, PR China
| | - Gang Ma
- Department of Gastric Surgery, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, PR China
| | - Fenglin Cai
- Department of Gastric Surgery, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, PR China
- Department of Biochemistry and Molecular Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300060, PR China
| | - Pengliang Wang
- Department of Gastric Surgery, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, PR China
- Department of Gastrointestinal Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, PR China
| | - Han Liang
- Department of Gastric Surgery, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, PR China
| | - Rupeng Zhang
- Department of Gastric Surgery, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, PR China
| | - Jingyu Deng
- Department of Gastric Surgery, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, PR China.
| | - Yong Liu
- Department of Gastric Surgery, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, PR China.
| |
Collapse
|
13
|
Liu R, Wu J, Guo H, Yao W, Li S, Lu Y, Jia Y, Liang X, Tang J, Zhang H. Post-translational modifications of histones: Mechanisms, biological functions, and therapeutic targets. MedComm (Beijing) 2023; 4:e292. [PMID: 37220590 PMCID: PMC10200003 DOI: 10.1002/mco2.292] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/25/2023] Open
Abstract
Histones are DNA-binding basic proteins found in chromosomes. After the histone translation, its amino tail undergoes various modifications, such as methylation, acetylation, phosphorylation, ubiquitination, malonylation, propionylation, butyrylation, crotonylation, and lactylation, which together constitute the "histone code." The relationship between their combination and biological function can be used as an important epigenetic marker. Methylation and demethylation of the same histone residue, acetylation and deacetylation, phosphorylation and dephosphorylation, and even methylation and acetylation between different histone residues cooperate or antagonize with each other, forming a complex network. Histone-modifying enzymes, which cause numerous histone codes, have become a hot topic in the research on cancer therapeutic targets. Therefore, a thorough understanding of the role of histone post-translational modifications (PTMs) in cell life activities is very important for preventing and treating human diseases. In this review, several most thoroughly studied and newly discovered histone PTMs are introduced. Furthermore, we focus on the histone-modifying enzymes with carcinogenic potential, their abnormal modification sites in various tumors, and multiple essential molecular regulation mechanism. Finally, we summarize the missing areas of the current research and point out the direction of future research. We hope to provide a comprehensive understanding and promote further research in this field.
Collapse
Affiliation(s)
- Ruiqi Liu
- Cancer CenterDepartment of Radiation OncologyZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
- Graduate DepartmentBengbu Medical College, BengbuAnhuiChina
| | - Jiajun Wu
- Graduate DepartmentBengbu Medical College, BengbuAnhuiChina
- Otolaryngology & Head and Neck CenterCancer CenterDepartment of Head and Neck SurgeryZhejiang Provincial People's HospitalAffiliated People's Hospital, Hangzhou Medical CollegeHangzhouZhejiangChina
| | - Haiwei Guo
- Otolaryngology & Head and Neck CenterCancer CenterDepartment of Head and Neck SurgeryZhejiang Provincial People's HospitalAffiliated People's Hospital, Hangzhou Medical CollegeHangzhouZhejiangChina
| | - Weiping Yao
- Cancer CenterDepartment of Radiation OncologyZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
- Graduate DepartmentBengbu Medical College, BengbuAnhuiChina
| | - Shuang Li
- Cancer CenterDepartment of Radiation OncologyZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
- Graduate DepartmentJinzhou Medical UniversityJinzhouLiaoningChina
| | - Yanwei Lu
- Cancer CenterDepartment of Radiation OncologyZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
| | - Yongshi Jia
- Cancer CenterDepartment of Radiation OncologyZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
| | - Xiaodong Liang
- Cancer CenterDepartment of Radiation OncologyZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
- Graduate DepartmentBengbu Medical College, BengbuAnhuiChina
| | - Jianming Tang
- Department of Radiation OncologyThe First Hospital of Lanzhou UniversityLanzhou UniversityLanzhouGansuChina
| | - Haibo Zhang
- Cancer CenterDepartment of Radiation OncologyZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
| |
Collapse
|
14
|
Yang Z, Liu F, Li Z, Liu N, Yao X, Zhou Y, Zhang L, Jiang P, Liu H, Kong L, Lang C, Xu X, Jia J, Nakajima T, Gu W, Zheng L, Zhang Z. Histone lysine methyltransferase SMYD3 promotes oral squamous cell carcinoma tumorigenesis via H3K4me3-mediated HMGA2 transcription. Clin Epigenetics 2023; 15:92. [PMID: 37237385 DOI: 10.1186/s13148-023-01506-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND Epigenetic dysregulation is essential to the tumorigenesis of oral squamous cell carcinoma (OSCC). SET and MYND domain-containing protein 3 (SMYD3), a histone lysine methyltransferase, is implicated in gene transcription regulation and tumor development. However, the roles of SMYD3 in OSCC initiation are not fully understood. The present study investigated the biological functions and mechanisms involved in the SMYD3-mediated tumorigenesis of OSCC utilizing bioinformatic approaches and validation assays with the aim of informing the development of targeted therapies for OSCC. RESULTS 429 chromatin regulators were screened by a machine learning approach and aberrant expression of SMYD3 was found to be closely associated with OSCC formation and poor prognosis. Data profiling of single-cell and tissue demonstrated that upregulated SMYD3 significantly correlated with aggressive clinicopathological features of OSCC. Alterations in copy number and DNA methylation patterns may contribute to SMYD3 overexpression. Functional experimental results suggested that SMYD3 enhanced cancer cell stemness and proliferation in vitro and tumor growth in vivo. SMYD3 was observed to bind to the High Mobility Group AT-Hook 2 (HMGA2) promoter and elevated tri-methylation of histone H3 lysine 4 at the corresponding site was responsible for transactivating HMGA2. SMYD3 also was positively linked to HMGA2 expression in OSCC samples. Furthermore, treatment with the SMYD3 chemical inhibitor BCI-121 exerted anti-tumor effects. CONCLUSIONS Histone methyltransferase activity and transcription-potentiating function of SMYD3 were found to be essential for tumorigenesis and the SMYD3-HMGA2 is a potential therapeutic target in OSCC.
Collapse
Affiliation(s)
- Zongcheng Yang
- Department of Stomatology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Fen Liu
- Department of Clinical Laboratory, Linyi Central Hospital, Linyi, Shandong, People's Republic of China
| | - Zongkai Li
- Department of Stomatology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Nianping Liu
- Department of Stomatology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Xinfeng Yao
- Department of Stomatology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Yu Zhou
- Department of Stomatology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Liyu Zhang
- Department of Stomatology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Pan Jiang
- Department of Stomatology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Honghong Liu
- Department of Stomatology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Lingming Kong
- Department of General Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Chuandong Lang
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Xin Xu
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, People's Republic of China
| | - Jihui Jia
- Department of Microbiology/Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Takahito Nakajima
- Department of Diagnostic and Interventional Radiology, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Wenchao Gu
- Department of Diagnostic and Interventional Radiology, University of Tsukuba, Tsukuba, Ibaraki, Japan.
- Department of Diagnostic Radiology and Nuclear Medicine, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan.
| | - Lixin Zheng
- Department of Microbiology/Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China.
| | - Zhihong Zhang
- Department of Stomatology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, People's Republic of China.
| |
Collapse
|
15
|
Zhao J, Yang S, Xu Y, Qin S, Bie F, Chen L, Zhou F, Xie J, Liu X, Shu B, Qi S. Mechanical pressure-induced dedifferentiation of myofibroblasts inhibits scarring via SMYD3/ITGBL1 signaling. Dev Cell 2023:S1534-5807(23)00190-9. [PMID: 37192621 DOI: 10.1016/j.devcel.2023.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/21/2022] [Accepted: 04/24/2023] [Indexed: 05/18/2023]
Abstract
Pressure therapy (PT) is an effective intervention for reducing scarring, but its underlying mechanism remains largely unclear. Here, we demonstrate that human scar-derived myofibroblasts dedifferentiate into normal fibroblasts in response to PT, and we identify how SMYD3/ITGBL1 contributes to the nuclear relay of mechanical signals. In clinical specimens, reductions in SMYD3 and ITGBL1 expression levels are strongly associated with the anti-scarring effects of PT. The integrin β1/ILK pathway is inhibited in scar-derived myofibroblasts upon PT, leading to decreased TCF-4 and subsequently to reductions in SMYD3 expression, which reduces the levels of H3K4 trimethylation (H3K4me3) and further suppresses ITGBL1 expression, resulting the dedifferentiation of myofibroblasts into fibroblasts. In animal models, blocking SMYD3 expression results in reductions of scarring, mimicking the positive effects of PT. Our results show that SMYD3 and ITGBL1 act as sensors and mediators of mechanical pressure to inhibit the progression of fibrogenesis and provide therapeutic targets for fibrotic diseases.
Collapse
Affiliation(s)
- Jingling Zhao
- Department of Burns, Wound Repair and Reconstruction, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Shuai Yang
- Department of Neurosurgery, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, Guangdong, China
| | - Yingbin Xu
- Department of Burns, Wound Repair and Reconstruction, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Shitian Qin
- Department of Burns, Wound Repair and Reconstruction, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Fan Bie
- Department of Burns, Wound Repair and Reconstruction, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Lei Chen
- Department of Burns, Wound Repair and Reconstruction, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Fei Zhou
- Department of Burns, Wound Repair and Reconstruction, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Julin Xie
- Department of Burns, Wound Repair and Reconstruction, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Xusheng Liu
- Department of Burns, Wound Repair and Reconstruction, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Bin Shu
- Department of Burns, Wound Repair and Reconstruction, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China.
| | - Shaohai Qi
- Department of Burns, Wound Repair and Reconstruction, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China.
| |
Collapse
|
16
|
Padilla A, Manganaro JF, Huesgen L, Roess DA, Brown MA, Crans DC. Targeting Epigenetic Changes Mediated by Members of the SMYD Family of Lysine Methyltransferases. Molecules 2023; 28:molecules28042000. [PMID: 36838987 PMCID: PMC9967872 DOI: 10.3390/molecules28042000] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/24/2023] Open
Abstract
A comprehensive understanding of the mechanisms involved in epigenetic changes in gene expression is essential to the clinical management of diseases linked to the SMYD family of lysine methyltransferases. The five known SMYD enzymes catalyze the transfer of donor methyl groups from S-adenosylmethionine (SAM) to specific lysines on histones and non-histone substrates. SMYDs family members have distinct tissue distributions and tissue-specific functions, including regulation of development, cell differentiation, and embryogenesis. Diseases associated with SMYDs include the repressed transcription of SMYD1 genes needed for the formation of ion channels in the heart leading to heart failure, SMYD2 overexpression in esophageal squamous cell carcinoma (ESCC) or p53-related cancers, and poor prognosis associated with SMYD3 overexpression in more than 14 types of cancer including breast cancer, colon cancer, prostate cancer, lung cancer, and pancreatic cancer. Given the importance of epigenetics in various pathologies, the development of epigenetic inhibitors has attracted considerable attention from the pharmaceutical industry. The pharmacologic development of the inhibitors involves the identification of molecules regulating both functional SMYD SET (Suppressor of variegation, Enhancer of Zeste, Trithorax) and MYND (Myeloid-Nervy-DEAF1) domains, a process facilitated by available X-ray structures for SMYD1, SMYD2, and SMYD3. Important leads for potential pharmaceutical agents have been reported for SMYD2 and SMYD3 enzymes, and six epigenetic inhibitors have been developed for drugs used to treat myelodysplastic syndrome (Vidaza, Dacogen), cutaneous T-cell lymphoma (Zoinza, Isrodax), and peripheral T-cell lymphoma (Beleodag, Epidaza). The recently demonstrated reversal of SMYD histone methylation suggests that reversing the epigenetic effects of SMYDs in cancerous tissues may be a desirable target for pharmacological development.
Collapse
Affiliation(s)
- Alyssa Padilla
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523-1617, USA
| | - John F. Manganaro
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523-1872, USA
| | - Lydia Huesgen
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523-1617, USA
| | - Deborah A. Roess
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523-1617, USA
| | - Mark A. Brown
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO 80523-1005, USA
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO 80523-1678, USA
- Graduate Degree Program in Ecology, Department of Ethnic Studies, Global Health and Health Disparities, Colorado School of Public Health, Colorado State University, Fort Collins, CO 80523-1612, USA
- Correspondence: (M.A.B.); (D.C.C.)
| | - Debbie C. Crans
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523-1872, USA
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO 80523-1005, USA
- Correspondence: (M.A.B.); (D.C.C.)
| |
Collapse
|
17
|
Zhu HP, Chai J, Qin R, Leng HJ, Wen X, Peng C, He G, Han B. Discovery of tetrahydrofuranyl spirooxindole-based SMYD3 inhibitors against gastric cancer via inducing lethal autophagy. Eur J Med Chem 2023; 246:115009. [PMID: 36527933 DOI: 10.1016/j.ejmech.2022.115009] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/29/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
SMYD3 is a histone methyltransferase involved in transcriptional regulation, and its overexpression in various forms of cancer justifies that blocking SMYD3 functions can serve as a novel therapeutic strategy in cancer treatment. Herein, a series of novel tetrahydrofuranyl spirooxindoles were designed and synthesized based on a structure-based drug design strategy. Subsequent biochemical analysis suggested that these novel SMYD3 inhibitors showed good anticancer activity against stomach adenocarcinoma both in vitro and in vivo. Among them, compound 7r exhibited potent inhibitory capacities against SMYD3 and BGC823 cells with IC50 values of 0.81 and 0.75 μM, respectively. Mechanistic investigations showed that 7r could suppress Akt methylation and activation by SMYD3 and trigger lethal autophagic flux inhibition via the Akt-mTOR pathway. Collectively, our results may bridge the rational discovery of privileged structures, epigenetic targeting of SMYD3, and regulation of autophagic cell death.
Collapse
Affiliation(s)
- Hong-Ping Zhu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, 610106, China
| | - Jinlong Chai
- Department of Dermatology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Rui Qin
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Hai-Jun Leng
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, 610106, China
| | - Xiang Wen
- Department of Dermatology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Gu He
- Department of Dermatology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China; Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China.
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
18
|
Inhibition of histone methyltransferase Smyd3 rescues NMDAR and cognitive deficits in a tauopathy mouse model. Nat Commun 2023; 14:91. [PMID: 36609445 PMCID: PMC9822922 DOI: 10.1038/s41467-022-35749-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 12/22/2022] [Indexed: 01/07/2023] Open
Abstract
Pleiotropic mechanisms have been implicated in Alzheimer's disease (AD), including transcriptional dysregulation, protein misprocessing and synaptic dysfunction, but how they are mechanistically linked to induce cognitive deficits in AD is unclear. Here we find that the histone methyltransferase Smyd3, which catalyzes histone H3 lysine 4 trimethylation (H3K4me3) to activate gene transcription, is significantly elevated in prefrontal cortex (PFC) of AD patients and P301S Tau mice, a model of tauopathies. A short treatment with the Smyd3 inhibitor, BCI-121, rescues cognitive behavioral deficits, and restores synaptic NMDAR function and expression in PFC pyramidal neurons of P301S Tau mice. Fbxo2, which encodes an E3 ubiquitin ligase controlling the degradation of NMDAR subunits, is identified as a downstream target of Smyd3. Smyd3-induced upregulation of Fbxo2 in P301S Tau mice is linked to the increased NR1 ubiquitination. Fbxo2 knockdown in PFC leads to the recovery of NMDAR function and cognitive behaviors in P301S Tau mice. These data suggest an integrated mechanism and potential therapeutic strategy for AD.
Collapse
|
19
|
Short Linear Motifs in Colorectal Cancer Interactome and Tumorigenesis. Cells 2022; 11:cells11233739. [PMID: 36496998 PMCID: PMC9737320 DOI: 10.3390/cells11233739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/16/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
Colorectal tumorigenesis is driven by alterations in genes and proteins responsible for cancer initiation, progression, and invasion. This multistage process is based on a dense network of protein-protein interactions (PPIs) that become dysregulated as a result of changes in various cell signaling effectors. PPIs in signaling and regulatory networks are known to be mediated by short linear motifs (SLiMs), which are conserved contiguous regions of 3-10 amino acids within interacting protein domains. SLiMs are the minimum sequences required for modulating cellular PPI networks. Thus, several in silico approaches have been developed to predict and analyze SLiM-mediated PPIs. In this review, we focus on emerging evidence supporting a crucial role for SLiMs in driver pathways that are disrupted in colorectal cancer (CRC) tumorigenesis and related PPI network alterations. As a result, SLiMs, along with short peptides, are attracting the interest of researchers to devise small molecules amenable to be used as novel anti-CRC targeted therapies. Overall, the characterization of SLiMs mediating crucial PPIs in CRC may foster the development of more specific combined pharmacological approaches.
Collapse
|
20
|
Discovery of the 4-aminopiperidine-based compound EM127 for the site-specific covalent inhibition of SMYD3. Eur J Med Chem 2022; 243:114683. [PMID: 36116234 DOI: 10.1016/j.ejmech.2022.114683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 08/01/2022] [Accepted: 08/11/2022] [Indexed: 11/22/2022]
Abstract
Recent findings support the hypothesis that inhibition of SMYD3 methyltransferase may be a therapeutic avenue for some of the deadliest cancer types. Herein, active site-selective covalent SMYD3 inhibitors were designed by introducing an appropriate reactive cysteine trap into reversible first-generation SMYD3 inhibitors. The 4-aminopiperidine derivative EM127 (11C) bearing a 2-chloroethanoyl group as reactive warhead showed selectivity for Cys186, located in the substrate/histone binding pocket. Selectivity towards Cys186 was retained even at high inhibitor/enzyme ratio, as shown by mass spectrometry. The mode of interaction with the SMYD3 substrate/histone binding pocket was revealed by crystallographic studies. In enzymatic assays, 11C showed a stronger SMYD3 inhibitory effect compared to the reference inhibitor EPZ031686. Remarkably, 11C attenuated the proliferation of MDA-MB-231 breast cancer cell line at the same low micromolar range of concentrations that reduced SMYD3 mediated ERK signaling in HCT116 colorectal cancer and MDA-MB-231 breast cancer cells. Furthermore, 11C (5 μM) strongly decreased the steady-state mRNA levels of genes important for tumor biology such as cyclin dependent kinase 2, c-MET, N-cadherin and fibronectin 1, all known to be regulated, at least in part, by SMYD3. Thus, 11C is as a first example of second generation SMYD3 inhibitors; this agent represents a covalent and a site specific SMYD3 binder capable of potent and prolonged attenuation of methyltransferase activity.
Collapse
|
21
|
Feoli A, Viviano M, Cipriano A, Milite C, Castellano S, Sbardella G. Lysine methyltransferase inhibitors: where we are now. RSC Chem Biol 2022; 3:359-406. [PMID: 35441141 PMCID: PMC8985178 DOI: 10.1039/d1cb00196e] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/10/2021] [Indexed: 12/14/2022] Open
Abstract
Protein lysine methyltransferases constitute a large family of epigenetic writers that catalyse the transfer of a methyl group from the cofactor S-adenosyl-l-methionine to histone- and non-histone-specific substrates. Alterations in the expression and activity of these proteins have been linked to the genesis and progress of several diseases, including cancer, neurological disorders, and growing defects, hence they represent interesting targets for new therapeutic approaches. Over the past two decades, the identification of modulators of lysine methyltransferases has increased tremendously, clarifying the role of these proteins in different physio-pathological states. The aim of this review is to furnish an updated outlook about the protein lysine methyltransferases disclosed modulators, reporting their potency, their mechanism of action and their eventual use in clinical and preclinical studies.
Collapse
Affiliation(s)
- Alessandra Feoli
- Department of Pharmacy, Epigenetic Med Chem Lab, University of Salerno via Giovanni Paolo II 132 I-84084 Fisciano SA Italy +39-089-96-9602 +39-089-96-9770
| | - Monica Viviano
- Department of Pharmacy, Epigenetic Med Chem Lab, University of Salerno via Giovanni Paolo II 132 I-84084 Fisciano SA Italy +39-089-96-9602 +39-089-96-9770
| | - Alessandra Cipriano
- Department of Pharmacy, Epigenetic Med Chem Lab, University of Salerno via Giovanni Paolo II 132 I-84084 Fisciano SA Italy +39-089-96-9602 +39-089-96-9770
| | - Ciro Milite
- Department of Pharmacy, Epigenetic Med Chem Lab, University of Salerno via Giovanni Paolo II 132 I-84084 Fisciano SA Italy +39-089-96-9602 +39-089-96-9770
| | - Sabrina Castellano
- Department of Pharmacy, Epigenetic Med Chem Lab, University of Salerno via Giovanni Paolo II 132 I-84084 Fisciano SA Italy +39-089-96-9602 +39-089-96-9770
| | - Gianluca Sbardella
- Department of Pharmacy, Epigenetic Med Chem Lab, University of Salerno via Giovanni Paolo II 132 I-84084 Fisciano SA Italy +39-089-96-9602 +39-089-96-9770
| |
Collapse
|
22
|
Fasano C, Lepore Signorile M, De Marco K, Forte G, Sanese P, Grossi V, Simone C. Identifying novel SMYD3 interactors on the trail of cancer hallmarks. Comput Struct Biotechnol J 2022; 20:1860-1875. [PMID: 35495117 PMCID: PMC9039736 DOI: 10.1016/j.csbj.2022.03.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 12/30/2022] Open
Abstract
SMYD3 overexpression in several human cancers highlights its crucial role in carcinogenesis. Nonetheless, SMYD3 specific activity in cancer development and progression is currently under debate. Taking advantage of a library of rare tripeptides, which we first tested for their in vitro binding affinity to SMYD3 and then used as in silico probes, we recently identified BRCA2, ATM, and CHK2 as direct SMYD3 interactors. To gain insight into novel SMYD3 cancer-related roles, here we performed a comprehensive in silico analysis to cluster all potential SMYD3-interacting proteins identified by screening the human proteome for the previously tested tripeptides, based on their involvement in cancer hallmarks. Remarkably, we identified mTOR, BLM, MET, AMPK, and p130 as new SMYD3 interactors implicated in cancer processes. Further studies are needed to characterize the functional mechanisms underlying these interactions. Still, these findings could be useful to devise novel therapeutic strategies based on the combined inhibition of SMYD3 and its newly identified molecular partners. Of note, our in silico methodology may be useful to search for unidentified interactors of other proteins of interest.
Collapse
Affiliation(s)
- Candida Fasano
- Medical Genetics, National Institute for Gastroenterology, IRCCS ‘S. de Bellis’ Research Hospital, Castellana Grotte (Ba), Italy
- Corresponding authors at: Medical Genetics, National Institute for Gastroenterology, IRCCS ‘S. de Bellis’ Research Hospital, Castellana Grotte (Ba), Italy (C.Fasano, C. Simone).
| | - Martina Lepore Signorile
- Medical Genetics, National Institute for Gastroenterology, IRCCS ‘S. de Bellis’ Research Hospital, Castellana Grotte (Ba), Italy
| | - Katia De Marco
- Medical Genetics, National Institute for Gastroenterology, IRCCS ‘S. de Bellis’ Research Hospital, Castellana Grotte (Ba), Italy
| | - Giovanna Forte
- Medical Genetics, National Institute for Gastroenterology, IRCCS ‘S. de Bellis’ Research Hospital, Castellana Grotte (Ba), Italy
| | - Paola Sanese
- Medical Genetics, National Institute for Gastroenterology, IRCCS ‘S. de Bellis’ Research Hospital, Castellana Grotte (Ba), Italy
| | - Valentina Grossi
- Medical Genetics, National Institute for Gastroenterology, IRCCS ‘S. de Bellis’ Research Hospital, Castellana Grotte (Ba), Italy
| | - Cristiano Simone
- Medical Genetics, National Institute for Gastroenterology, IRCCS ‘S. de Bellis’ Research Hospital, Castellana Grotte (Ba), Italy
- Medical Genetics, Department of Biomedical Sciences and Human Oncology (DIMO), University of Bari Aldo Moro, Bari, Italy
- Corresponding authors at: Medical Genetics, National Institute for Gastroenterology, IRCCS ‘S. de Bellis’ Research Hospital, Castellana Grotte (Ba), Italy (C.Fasano, C. Simone).
| |
Collapse
|
23
|
Design, synthesis, and biological evaluation of SMYD3 inhibitors possessing N-thiazole benzenesulfonamide moiety as potential anti-cancer agents. JOURNAL OF SAUDI CHEMICAL SOCIETY 2022. [DOI: 10.1016/j.jscs.2022.101482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
24
|
Asuthkar S, Venkataraman S, Avilala J, Shishido K, Vibhakar R, Veo B, Purvis IJ, Guda MR, Velpula KK. SMYD3 Promotes Cell Cycle Progression by Inducing Cyclin D3 Transcription and Stabilizing the Cyclin D1 Protein in Medulloblastoma. Cancers (Basel) 2022; 14:cancers14071673. [PMID: 35406445 PMCID: PMC8997160 DOI: 10.3390/cancers14071673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/11/2022] [Accepted: 03/22/2022] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Medulloblastoma is the most common malignant pediatric brain tumor and is classified into four molecular subgroups: Wnt, Shh, Group 3, and Group 4. Of these subgroups, patients with Myc+ Group 3 MB have the worst prognosis. Using an RNAi functional genomic screen, we identified the lysine methyltransferase SMYD3 as a crucial epigenetic regulator responsible for promoting Group 3 MB cell growth. We demonstrated that SMYD3 drives MB cell cycle progression by inducing cyclin D3 transcription and preventing cyclin D1 ubiquitination. Using in vitro and ex vivo studies, we showed that SMYD3 suppression by shRNA and BCI-121 significantly impaired proliferation, resulting in the downregulation of cyclin D3, cyclin D1, and pRBSer795. Moreover, we are the first to show that SMYD3 methylates the cyclin D1 protein, indicating that the SMYD3 stabilizes cyclin D1 through post-translational modification. Collectively, our studies position SMYD3 as a promising treatment option for Group 3 Myc+ MB patients. Abstract Medulloblastoma (MB) is the most common malignant pediatric brain tumor. Maximum safe resection, postoperative craniospinal irradiation, and chemotherapy are the standard of care for MB patients. MB is classified into four subgroups: Shh, Wnt, Group 3, and Group 4. Of these subgroups, patients with Myc+ Group 3 MB have the worst prognosis, necessitating alternative therapies. There is increasing interest in targeting epigenetic modifiers for treating pediatric cancers, including MB. Using an RNAi functional genomic screen, we identified the lysine methyltransferase SMYD3, as a crucial epigenetic regulator that drives the growth of Group 3 Myc+ MB cells. We demonstrated that SMYD3 directly binds to the cyclin D3 promoter to activate its transcription. Further, SMYD3 depletion significantly reduced MB cell proliferation and led to the downregulation of cyclin D3, cyclin D1, pRBSer795, with concomitant upregulations in RB in vitro. Similar results were obtained following pharmacological inhibition of SMYD3 using BCI-121 ex vivo. SMYD3 knockdown also promoted cyclin D1 ubiquitination, indicating that SMYD3 plays a vital role in stabilizing the cyclin D1 protein. Collectively, our studies demonstrate that SMYD3 drives cell cycle progression in Group 3 Myc+ MB cells and that targeting SMYD3 has the potential to improve clinical outcomes for high-risk patients.
Collapse
Affiliation(s)
- Swapna Asuthkar
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL 61605, USA; (J.A.); (K.S.); (I.J.P.); (M.R.G.); (K.K.V.)
- Correspondence:
| | - Sujatha Venkataraman
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (S.V.); (R.V.); (B.V.)
| | - Janardhan Avilala
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL 61605, USA; (J.A.); (K.S.); (I.J.P.); (M.R.G.); (K.K.V.)
| | - Katherine Shishido
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL 61605, USA; (J.A.); (K.S.); (I.J.P.); (M.R.G.); (K.K.V.)
| | - Rajeev Vibhakar
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (S.V.); (R.V.); (B.V.)
| | - Bethany Veo
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (S.V.); (R.V.); (B.V.)
| | - Ian J. Purvis
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL 61605, USA; (J.A.); (K.S.); (I.J.P.); (M.R.G.); (K.K.V.)
| | - Maheedhara R. Guda
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL 61605, USA; (J.A.); (K.S.); (I.J.P.); (M.R.G.); (K.K.V.)
| | - Kiran K. Velpula
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL 61605, USA; (J.A.); (K.S.); (I.J.P.); (M.R.G.); (K.K.V.)
- Department of Pediatrics, University of Illinois College of Medicine at Peoria, Peoria, IL 61605, USA
- Department of Neurosurgery, University of Illinois College of Medicine at Peoria, Peoria, IL 61605, USA
| |
Collapse
|
25
|
Zhao Y, Yang M, Wang S, Abbas SJ, Zhang J, Li Y, Shao R, Liu Y. An Overview of Epigenetic Methylation in Pancreatic Cancer Progression. Front Oncol 2022; 12:854773. [PMID: 35296007 PMCID: PMC8918690 DOI: 10.3389/fonc.2022.854773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/07/2022] [Indexed: 11/13/2022] Open
Abstract
Over the past decades, the aberrant epigenetic modification, apart from genetic alteration, has emerged as dispensable events mediating the transformation of pancreatic cancer (PC). However, the understanding of molecular mechanisms of methylation modifications, the most abundant epigenetic modifications, remains superficial. In this review, we focused on the mechanistic insights of DNA, histone, and RNA methylation that regulate the progression of PC. The methylation regulators including writer, eraser and reader participate in the modification of gene expression associated with cell proliferation, invasion and apoptosis. Some of recent clinical trials on methylation drug targeting were also discussed. Understanding the novel regulatory mechanisms in the methylation modification may offer alternative opportunities to improve therapeutic efficacy to fight against this dismal disease.
Collapse
Affiliation(s)
- Yuhao Zhao
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
| | - Mao Yang
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
| | - Shijia Wang
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
| | - Sk Jahir Abbas
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai, China
| | - Junzhe Zhang
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
| | - Yongsheng Li
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
| | - Rong Shao
- Department of Pharmacology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Yingbin Liu, ; Rong Shao,
| | - Yingbin Liu
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
- *Correspondence: Yingbin Liu, ; Rong Shao,
| |
Collapse
|
26
|
Jarrell DK, Hassell KN, Alshiraihi I, Crans DC, Brown MA. Structural Analysis of SMYD3 Lysine Methyltransferase for the Development of Competitive and Specific Enzyme Inhibitors. Diseases 2021; 10:4. [PMID: 35076487 PMCID: PMC8788566 DOI: 10.3390/diseases10010004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/03/2021] [Accepted: 12/11/2021] [Indexed: 12/17/2022] Open
Abstract
Lysine methylation is among the key posttranslational modifications to histones that contribute to epigenetic regulation. SMYD3 is a lysine methyltransferase that is essential for the proliferation of a range of tumorigenic cells. The findings that SMYD3 is significantly upregulated in most colorectal carcinomas, hepatocellular carcinomas, and breast cell carcinomas support a model in which its aberrant expression modifies established patterns of gene expression, ultimately driving unrestrained proliferation. Herein, we dissect the unique structural features of SMYD3 relative to other SET enzymes, with an emphasis on the implications for selective design of therapeutics for the clinical management of cancer. Further, we illustrate the ability of inhibitors targeting the SET domain of SMYD3 to reduce the viability of colorectal and lung carcinoma cells.
Collapse
Affiliation(s)
- Dillon K. Jarrell
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kelly N. Hassell
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA; (K.N.H.); (D.C.C.)
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO 80523, USA;
| | - Ilham Alshiraihi
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO 80523, USA;
- Biology Department, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Debbie C. Crans
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA; (K.N.H.); (D.C.C.)
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO 80523, USA;
| | - Mark A. Brown
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO 80523, USA;
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO 80523, USA;
- Graduate Degree Program in Ecology, Department of Ethnic Studies, Global Health and Health Disparities, Colorado School of Public Health, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
27
|
Zhong S, Jeong JH, Huang C, Chen X, Dickinson SI, Dhillon J, Yang L, Luo JL. Targeting INMT and interrupting its methylation pathway for the treatment of castration resistant prostate cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:307. [PMID: 34587977 PMCID: PMC8482636 DOI: 10.1186/s13046-021-02109-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 09/19/2021] [Indexed: 02/07/2023]
Abstract
Background Castration-resistant prostate cancer (CRPC) is associated with a very poor prognosis, and the treatment of which remains a serious clinical challenge. Methods RNA-seq, qPCR, western blot and immunohistochemistry were employed to identify and confirm the high expression of indolethylamine N-methyltransferase (INMT) in CRPC and the clinical relevance. Chip assay was used to identify Histone-Lysine N-Methyltransferase (SMYD3) as a major epigenetic regulator of INMT. LC-MS/MS were used to identify new substrates of INMT methylation in CRPC tissues. Gene knockdown/overexpression, MTT and mouse cancer models were used to examine the role of INMT as well as the anticancer efficacy of INMT inhibitor N,N-dimethyltryptamine (DMT), the SMYD3 inhibitor BCl-12, the selenium compounds methaneseleninic acid (MSA) and Se-(Methyl)selenocysteine hydrochloride (MSC), and the newly identified endogenous INMT substrate Bis(7)-tacrine. Results We found that the expression of INMT was highly increased in CRPC and was correlated with poor prognosis of clinical prostate cancer (PCa). INMT promoted PCa castration resistance via detoxification of anticancer metabolites. Knockdown of INMT or treatment with INMT inhibitor N,N-dimethyltryptamine (DMT) significantly suppressed CRPC development. Histone-Lysine N-Methyltransferase SMYD3 was a major epigenetic regulator of INMT expression, treatment with SMYD3 inhibitor BCl-121 suppressed INMT expression and inhibits CRPC development. Importantly, INMT knockdown significantly increased the anticancer effect of the exogenous selenium compounds methaneseleninic acid (MSA) and Se-(Methyl)selenocysteine hydrochloride (MSC) as well as the endogenous metabolite Bis(7)-tacrine. Conclusions Our study suggests that INMT drives PCa castration resistance through detoxification of anticancer metabolites, targeting INMT or its regulator SMYD3 or/and its methylation metabolites represents an effective therapeutic avenue for CRPC treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-02109-z.
Collapse
Affiliation(s)
- Shangwei Zhong
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Ji-Hak Jeong
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, 33458, USA.,College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Changhao Huang
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Xueyan Chen
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | | | - Jasreman Dhillon
- Department of Pathology, Moffitt Cancer Center, 2902 Magnolia Drive, Tampa, FL, 33612, USA
| | - Li Yang
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, 33458, USA. .,Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China.
| | - Jun-Li Luo
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, 33458, USA.
| |
Collapse
|
28
|
Liu XY, Guo CH, Xi ZY, Xu XQ, Zhao QY, Li LS, Wang Y. Histone methylation in pancreatic cancer and its clinical implications. World J Gastroenterol 2021; 27:6004-6024. [PMID: 34629816 PMCID: PMC8476335 DOI: 10.3748/wjg.v27.i36.6004] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/12/2021] [Accepted: 04/22/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer (PC) is an aggressive human cancer. Appropriate methods for the diagnosis and treatment of PC have not been found at the genetic level, thus making epigenetics a promising research path in studies of PC. Histone methylation is one of the most complicated types of epigenetic modifications and has proved crucial in the development of PC. Histone methylation is a reversible process regulated by readers, writers, and erasers. Some writers and erasers can be recognized as potential biomarkers and candidate therapeutic targets in PC because of their unusual expression in PC cells compared with normal pancreatic cells. Based on the impact that writers have on the development of PC, some inhibitors of writers have been developed. However, few inhibitors of erasers have been developed and put to clinical use. Meanwhile, there is not enough research on the reader domains. Therefore, the study of erasers and readers is still a promising area. This review focuses on the regulatory mechanism of histone methylation, and the diagnosis and chemotherapy of PC based on it. The future of epigenetic modification in PC research is also discussed.
Collapse
Affiliation(s)
- Xing-Yu Liu
- The First Hospital of Jilin University, Jilin University, Changchun 130021, Jilin Province, China
| | - Chuan-Hao Guo
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, Jilin Province, China
| | - Zhi-Yuan Xi
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, Jilin Province, China
| | - Xin-Qi Xu
- The First Hospital of Jilin University, Jilin University, Changchun 130021, Jilin Province, China
| | - Qing-Yang Zhao
- The First Hospital of Jilin University, Jilin University, Changchun 130021, Jilin Province, China
| | - Li-Sha Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, Jilin Province, China
| | - Ying Wang
- The First Hospital of Jilin University, Jilin University, Changchun 130021, Jilin Province, China
| |
Collapse
|
29
|
Novel insights into SMYD2 and SMYD3 inhibitors: from potential anti-tumoural therapy to a variety of new applications. Mol Biol Rep 2021; 48:7499-7508. [PMID: 34510321 DOI: 10.1007/s11033-021-06701-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 09/07/2021] [Indexed: 01/02/2023]
Abstract
The revelance of the epigenetic regulation of cancer led to the design and testing of many drugs targeting epigenetic modifiers. The Su(Var)3-9, Enhancer-of-zeste and Trithorax (SET) and myeloid, Nervy, and DEAF-1 (MYND) domain-containing protein 2 (SMYD2) and 3 (SMYD3) are methyltransferases which act on histone and non-histone proteins to promote tumorigenesis in many cancer types. In addition to their oncogenic roles, SMYD2 and SMYD3 are involved in many other physiopathological conditions. In this review we will focus on the advances made in the last five years in the field of pharmacology regarding drugs targeting SMYD2 (such as LLY-507 or AZ505) and SMYD3 (such as BCI-121 or EPZ031686) and their potential cellular and molecular mechanisms of action and application in anti-tumoural therapy and/or against other diseases.
Collapse
|
30
|
Luo M, Yang X, Chen HN, Nice EC, Huang C. Drug resistance in colorectal cancer: An epigenetic overview. Biochim Biophys Acta Rev Cancer 2021; 1876:188623. [PMID: 34481016 DOI: 10.1016/j.bbcan.2021.188623] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 02/08/2023]
Abstract
Colorectal cancer (CRC) is a leading cause of cancer-related deaths worldwide. Despite significant progress that has been made in therapies against CRC over the past decades, drug resistance is still a major limitation in CRC treatment. Numerous investigations have unequivocally shown that epigenetic regulation plays an important role in CRC drug resistance because of the high rate of epigenetic alterations in multiple genes during cancer development or drug treatment. Furthermore, the reversibility of epigenetic alterations provides novel therapeutic strategies to overcome drug resistance using small molecules, which can target non-coding RNAs or reverse histone modification and DNA methylation. In this review, we discuss epigenetic regulation in CRC drug resistance and the possible role of preventing or reversing CRC drug resistance using epigenetic therapy in CRC treatment.
Collapse
Affiliation(s)
- Maochao Luo
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang 315020, China; State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Xingyue Yang
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang 315020, China; State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Hai-Ning Chen
- Department of Gastrointestinal Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia.
| | - Canhua Huang
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang 315020, China; State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China.
| |
Collapse
|
31
|
Playing on the Dark Side: SMYD3 Acts as a Cancer Genome Keeper in Gastrointestinal Malignancies. Cancers (Basel) 2021; 13:cancers13174427. [PMID: 34503239 PMCID: PMC8430692 DOI: 10.3390/cancers13174427] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 01/17/2023] Open
Abstract
Simple Summary The activity of SMYD3 in promoting carcinogenesis is currently under debate. Growing evidence seems to confirm that SMYD3 overexpression correlates with poor prognosis, cancer growth and invasion, especially in gastrointestinal tumors. In this review, we dissect the emerging role played by SMYD3 in the regulation of cell cycle and DNA damage response by promoting homologous recombination (HR) repair and hence cancer cell genomic stability. Considering the crucial role of PARP1 in other DNA repair mechanisms, we also discuss a recently evaluated synthetic lethality approach based on the combined use of SMYD3 and PARP inhibitors. Interestingly, a significant proportion of HR-proficient gastrointestinal tumors expressing high levels of SMYD3 from the PanCanAtlas dataset seem to be eligible for this innovative strategy. This promising approach could be taken advantage of for therapeutic applications of SMYD3 inhibitors in cancer treatment. Abstract The SMYD3 methyltransferase has been found overexpressed in several types of cancers of the gastrointestinal (GI) tract. While high levels of SMYD3 have been positively correlated with cancer progression in cellular and advanced mice models, suggesting it as a potential risk and prognosis factor, its activity seems dispensable for autonomous in vitro cancer cell proliferation. Here, we present an in-depth analysis of SMYD3 functional role in the regulation of GI cancer progression. We first describe the oncogenic activity of SMYD3 as a transcriptional activator of genes involved in tumorigenesis, cancer development and transformation and as a co-regulator of key cancer-related pathways. Then, we dissect its role in orchestrating cell cycle regulation and DNA damage response (DDR) to genotoxic stress by promoting homologous recombination (HR) repair, thereby sustaining cancer cell genomic stability and tumor progression. Based on this evidence and on the involvement of PARP1 in other DDR mechanisms, we also outline a synthetic lethality approach consisting of the combined use of SMYD3 and PARP inhibitors, which recently showed promising therapeutic potential in HR-proficient GI tumors expressing high levels of SMYD3. Overall, these findings identify SMYD3 as a promising target for drug discovery.
Collapse
|
32
|
Gradl S, Steuber H, Weiske J, Szewczyk MM, Schmees N, Siegel S, Stoeckigt D, Christ CD, Li F, Organ S, Abbey M, Kennedy S, Chau I, Trush V, Barsyte-Lovejoy D, Brown PJ, Vedadi M, Arrowsmith C, Husemann M, Badock V, Bauser M, Haegebarth A, Hartung IV, Stresemann C. Discovery of the SMYD3 Inhibitor BAY-6035 Using Thermal Shift Assay (TSA)-Based High-Throughput Screening. SLAS DISCOVERY 2021; 26:947-960. [PMID: 34154424 DOI: 10.1177/24725552211019409] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
SMYD3 (SET and MYND domain-containing protein 3) is a protein lysine methyltransferase that was initially described as an H3K4 methyltransferase involved in transcriptional regulation. SMYD3 has been reported to methylate and regulate several nonhistone proteins relevant to cancer, including mitogen-activated protein kinase kinase kinase 2 (MAP3K2), vascular endothelial growth factor receptor 1 (VEGFR1), and the human epidermal growth factor receptor 2 (HER2). In addition, overexpression of SMYD3 has been linked to poor prognosis in certain cancers, suggesting SMYD3 as a potential oncogene and attractive cancer drug target. Here we report the discovery of a novel SMYD3 inhibitor. We performed a thermal shift assay (TSA)-based high-throughput screening (HTS) with 410,000 compounds and identified a novel benzodiazepine-based SMYD3 inhibitor series. Crystal structures revealed that this series binds to the substrate binding site and occupies the hydrophobic lysine binding pocket via an unprecedented hydrogen bonding pattern. Biochemical assays showed substrate competitive behavior. Following optimization and extensive biophysical validation with surface plasmon resonance (SPR) analysis and isothermal titration calorimetry (ITC), we identified BAY-6035, which shows nanomolar potency and selectivity against kinases and other PKMTs. Furthermore, BAY-6035 specifically inhibits methylation of MAP3K2 by SMYD3 in a cellular mechanistic assay with an IC50 <100 nM. Moreover, we describe a congeneric negative control to BAY-6035. In summary, BAY-6035 is a novel selective and potent SMYD3 inhibitor probe that will foster the exploration of the biological role of SMYD3 in diseased and nondiseased tissues.
Collapse
Affiliation(s)
- Stefan Gradl
- Bayer AG, Global Drug Discovery, Berlin, Germany
| | | | - Joerg Weiske
- Bayer AG, Global Drug Discovery, Berlin, Germany
| | - Magda M Szewczyk
- Structural Genomics Consortium, University of Toronto, Toronto, Canada
| | | | | | | | | | - Fengling Li
- Structural Genomics Consortium, University of Toronto, Toronto, Canada
| | - Shawna Organ
- Structural Genomics Consortium, University of Toronto, Toronto, Canada
| | - Megha Abbey
- Structural Genomics Consortium, University of Toronto, Toronto, Canada
| | - Steven Kennedy
- Structural Genomics Consortium, University of Toronto, Toronto, Canada
| | - Irene Chau
- Structural Genomics Consortium, University of Toronto, Toronto, Canada
| | - Viacheslav Trush
- Structural Genomics Consortium, University of Toronto, Toronto, Canada
| | | | - Peter J Brown
- Structural Genomics Consortium, University of Toronto, Toronto, Canada
| | - Masoud Vedadi
- Structural Genomics Consortium, University of Toronto, Toronto, Canada
| | - Cheryl Arrowsmith
- Structural Genomics Consortium, University of Toronto, Toronto, Canada
| | | | | | | | | | | | | |
Collapse
|
33
|
Fittipaldi R, Floris P, Proserpio V, Cotelli F, Beltrame M, Caretti G. The Lysine Methylase SMYD3 Modulates Mesendodermal Commitment during Development. Cells 2021; 10:cells10051233. [PMID: 34069776 PMCID: PMC8157265 DOI: 10.3390/cells10051233] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/11/2021] [Accepted: 05/11/2021] [Indexed: 12/26/2022] Open
Abstract
SMYD3 (SET and MYND domain containing protein 3) is a methylase over-expressed in cancer cells and involved in oncogenesis. While several studies uncovered key functions for SMYD3 in cancer models, the SMYD3 role in physiological conditions has not been fully elucidated yet. Here, we dissect the role of SMYD3 at early stages of development, employing mouse embryonic stem cells (ESCs) and zebrafish as model systems. We report that SMYD3 depletion promotes the induction of the mesodermal pattern during in vitro differentiation of ESCs and is linked to an upregulation of cardiovascular lineage markers at later stages. In vivo, smyd3 knockdown in zebrafish favors the upregulation of mesendodermal markers during zebrafish gastrulation. Overall, our study reveals that SMYD3 modulates levels of mesendodermal markers, both in development and in embryonic stem cell differentiation.
Collapse
Affiliation(s)
- Raffaella Fittipaldi
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy; (R.F.); (P.F.); (V.P.); (F.C.); (M.B.)
| | - Pamela Floris
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy; (R.F.); (P.F.); (V.P.); (F.C.); (M.B.)
| | - Valentina Proserpio
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy; (R.F.); (P.F.); (V.P.); (F.C.); (M.B.)
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy
| | - Franco Cotelli
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy; (R.F.); (P.F.); (V.P.); (F.C.); (M.B.)
| | - Monica Beltrame
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy; (R.F.); (P.F.); (V.P.); (F.C.); (M.B.)
| | - Giuseppina Caretti
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy; (R.F.); (P.F.); (V.P.); (F.C.); (M.B.)
- Correspondence: ; Tel.: +39-025-031-5002
| |
Collapse
|
34
|
Talibov VO, Fabini E, FitzGerald EA, Tedesco D, Cederfeldt D, Talu MJ, Rachman MM, Mihalic F, Manoni E, Naldi M, Sanese P, Forte G, Lepore Signorile M, Barril X, Simone C, Bartolini M, Dobritzsch D, Del Rio A, Danielson UH. Discovery of an Allosteric Ligand Binding Site in SMYD3 Lysine Methyltransferase. Chembiochem 2021; 22:1597-1608. [PMID: 33400854 PMCID: PMC8248052 DOI: 10.1002/cbic.202000736] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 12/30/2020] [Indexed: 12/15/2022]
Abstract
SMYD3 is a multifunctional epigenetic enzyme with lysine methyltransferase activity and various interaction partners. It is implicated in the pathophysiology of cancers but with an unclear mechanism. To discover tool compounds for clarifying its biochemistry and potential as a therapeutic target, a set of drug-like compounds was screened in a biosensor-based competition assay. Diperodon was identified as an allosteric ligand; its R and S enantiomers were isolated, and their affinities to SMYD3 were determined (KD =42 and 84 μM, respectively). Co-crystallization revealed that both enantiomers bind to a previously unidentified allosteric site in the C-terminal protein binding domain, consistent with its weak inhibitory effect. No competition between diperodon and HSP90 (a known SMYD3 interaction partner) was observed although SMYD3-HSP90 binding was confirmed (KD =13 μM). Diperodon clearly represents a novel starting point for the design of tool compounds interacting with a druggable allosteric site, suitable for the exploration of noncatalytic SMYD3 functions and therapeutics with new mechanisms of action.
Collapse
Affiliation(s)
- Vladimir O. Talibov
- Department of Chemistry–BMCUppsala UniversityHusargatan 3754 24UppsalaSweden
| | - Edoardo Fabini
- Department of Pharmacy and BiotechnologyAlma Mater Studiorum University of BolognaVia Belmeloro 640126BolognaItaly
- Institute for Organic Synthesis and PhotoreactivityNational Research CouncilVia P. Gobetti 10140129BolognaItaly
| | - Edward A. FitzGerald
- Department of Chemistry–BMCUppsala UniversityHusargatan 3754 24UppsalaSweden
- Beactica Therapeutics ABVirdings allé 2754 50UppsalaSweden
| | - Daniele Tedesco
- Department of Pharmacy and BiotechnologyAlma Mater Studiorum University of BolognaVia Belmeloro 640126BolognaItaly
- Institute for Organic Synthesis and PhotoreactivityNational Research CouncilVia P. Gobetti 10140129BolognaItaly
| | - Daniela Cederfeldt
- Department of Chemistry–BMCUppsala UniversityHusargatan 3754 24UppsalaSweden
| | - Martin J. Talu
- Department of Chemistry–BMCUppsala UniversityHusargatan 3754 24UppsalaSweden
| | - Moira M. Rachman
- Institut de Biomedicina de la Universitat de Barcelona (IBUB) and Facultat de FarmaciaUniversitat de BarcelonaAv. Joan XXIII 27–3108028BarcelonaSpain
| | - Filip Mihalic
- Department of Chemistry–BMCUppsala UniversityHusargatan 3754 24UppsalaSweden
| | - Elisabetta Manoni
- Institute for Organic Synthesis and PhotoreactivityNational Research CouncilVia P. Gobetti 10140129BolognaItaly
| | - Marina Naldi
- Department of Pharmacy and BiotechnologyAlma Mater Studiorum University of BolognaVia Belmeloro 640126BolognaItaly
- Centre for Applied Biomedical ResearchAlma Mater Studiorum University of BolognaVia Zamboni, 33Bologna40126Italy
| | - Paola Sanese
- Medical Genetics, National Institute for GastroenterologyIRCCS ‘S. de Bellis' Research Hospital70013BariItaly
| | - Giovanna Forte
- Medical Genetics, National Institute for GastroenterologyIRCCS ‘S. de Bellis' Research Hospital70013BariItaly
| | - Martina Lepore Signorile
- Medical Genetics, National Institute for GastroenterologyIRCCS ‘S. de Bellis' Research Hospital70013BariItaly
| | - Xavier Barril
- Institut de Biomedicina de la Universitat de Barcelona (IBUB) and Facultat de FarmaciaUniversitat de BarcelonaAv. Joan XXIII 27–3108028BarcelonaSpain
- Catalan Institution for Research and Advanced Studies (ICREA)Passeig Lluis Companys 2308010BarcelonaSpain
| | - Cristiano Simone
- Medical Genetics, National Institute for GastroenterologyIRCCS ‘S. de Bellis' Research Hospital70013BariItaly
- Medical Genetics, Department of Biomedical Sciences and Human Oncology (DIMO)University of Bari Aldo Moro70124BariItaly
| | - Manuela Bartolini
- Department of Pharmacy and BiotechnologyAlma Mater Studiorum University of BolognaVia Belmeloro 640126BolognaItaly
| | - Doreen Dobritzsch
- Department of Chemistry–BMCUppsala UniversityHusargatan 3754 24UppsalaSweden
| | - Alberto Del Rio
- Institute for Organic Synthesis and PhotoreactivityNational Research CouncilVia P. Gobetti 10140129BolognaItaly
- Innovamol Consulting SrlVia Giardini 470/H41124ModenaItaly
| | - U. Helena Danielson
- Department of Chemistry–BMCUppsala UniversityHusargatan 3754 24UppsalaSweden
- Science for Life LaboratoryUppsala UniversityUppsala752 37Sweden
| |
Collapse
|
35
|
Rapanelli M, Tan T, Wang W, Wang X, Wang ZJ, Zhong P, Frick L, Qin L, Ma K, Qu J, Yan Z. Behavioral, circuitry, and molecular aberrations by region-specific deficiency of the high-risk autism gene Cul3. Mol Psychiatry 2021; 26:1491-1504. [PMID: 31455858 DOI: 10.1038/s41380-019-0498-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/10/2019] [Accepted: 05/03/2019] [Indexed: 02/06/2023]
Abstract
Cullin 3 (Cul3) gene, which encodes a core component of the E3 ubiquitin ligase complex that mediates proteasomal degradation, has been identified as a true high-risk factor for autism. Here, by combining behavioral, electrophysiological, and proteomic approaches, we have examined how Cul3 deficiency contributes to the etiology of different aspects of autism. Heterozygous mice with forebrain Cul3 deletion displayed autism-like social interaction impairment and sensory-gating deficiency. Region-specific deletion of Cul3 leads to distinct phenotypes, with social deficits linked to the loss of Cul3 in prefrontal cortex (PFC), and stereotypic behaviors linked to the loss of Cul3 in striatum. Correlated with these behavioral alterations, Cul3 deficiency in forebrain or PFC induces NMDA receptor hypofunction, while Cul3 loss in striatum causes a cell type-specific alteration of neuronal excitability in striatal circuits. Large-scale profiling has identified sets of misregulated proteins resulting from Cul3 deficiency in different regions, including Smyd3, a histone methyltransferase involved in gene transcription. Inhibition or knockdown of Smyd3 in forebrain Cul3-deficient mice ameliorates social deficits and restores NMDAR function in PFC. These results have revealed for the first time a potential molecular mechanism underlying the manifestation of different autism-like behavioral deficits by Cul3 deletion in cortico-striatal circuits.
Collapse
Affiliation(s)
- Maximiliano Rapanelli
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Tao Tan
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Wei Wang
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Xue Wang
- New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY, USA
| | - Zi-Jun Wang
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Ping Zhong
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Luciana Frick
- Hunter James Kelly Research Institute, Department of Neurology, State University of New York at Buffalo, Buffalo, NY, USA
| | - Luye Qin
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Kaijie Ma
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Jun Qu
- New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY, USA
| | - Zhen Yan
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
36
|
Targeting Smyd3 by next-generation antisense oligonucleotides suppresses liver tumor growth. iScience 2021; 24:102473. [PMID: 34113819 PMCID: PMC8169948 DOI: 10.1016/j.isci.2021.102473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/23/2021] [Accepted: 04/22/2021] [Indexed: 12/13/2022] Open
Abstract
The oncogenic function of suppressor of variegation, enhancer of zeste and MYeloid-Nervy-DEAF1-domain family methyltransferase Smyd3 has been implicated in various malignancies, including hepatocellular carcinoma (HCC). Here, we show that targeting Smyd3 by next-generation antisense oligonucleotides (Smyd3-ASO) is an efficient approach to modulate its mRNA levels in vivo and to halt the growth of already initiated liver tumors. Smyd3-ASO treatment dramatically decreased tumor burden in a mouse model of chemically induced HCC and negatively affected the growth rates, migration, oncosphere formation, and xenograft growth capacity of a panel of human hepatic cancer cell lines. Smyd3-ASOs prevented the activation of oncofetal genes and the development of cancer-specific gene expression program. The results point to a mechanism by which Smyd3-ASO treatment blocks cellular de-differentiation, a hallmark feature of HCC development, and, as a result, it inhibits the expansion of hepatic cancer stem cells, a population that has been presumed to resist chemotherapy.
Collapse
|
37
|
Alshiraihi IM, Jarrell DK, Arhouma Z, Hassell KN, Montgomery J, Padilla A, Ibrahim HM, Crans DC, Kato TA, Brown MA. In Silico/In Vitro Hit-to-Lead Methodology Yields SMYD3 Inhibitor That Eliminates Unrestrained Proliferation of Breast Carcinoma Cells. Int J Mol Sci 2020; 21:ijms21249549. [PMID: 33333978 PMCID: PMC7765450 DOI: 10.3390/ijms21249549] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 12/29/2022] Open
Abstract
SMYD3 is a lysine methyltransferase that regulates the expression of over 80 genes and is required for the uncontrolled proliferation of most breast, colorectal, and hepatocellular carcinomas. The elimination of SMYD3 restores normal expression patterns of these genes and halts aberrant cell proliferation, making it a promising target for small molecule inhibition. In this study, we sought to establish a proof of concept for our in silico/in vitro hit-to-lead enzyme inhibitor development platform and to identify a lead small molecule candidate for SMYD3 inhibition. We used Schrodinger® software to screen libraries of small molecules in silico and the five compounds with the greatest predicted binding affinity within the SMYD3 binding pocket were purchased and assessed in vitro in direct binding assays and in breast cancer cell lines. We have confirmed the ability of one of these inhibitors, Inhibitor-4, to restore normal rates of cell proliferation, arrest the cell cycle, and induce apoptosis in breast cancer cells without affecting wildtype cell behavior. Our results provide a proof of concept for this fast and affordable small molecule hit-to-lead methodology as well as a promising candidate small molecule SMYD3 inhibitor for the treatment of human cancer.
Collapse
Affiliation(s)
- Ilham M. Alshiraihi
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO 80523-1005, USA; (I.M.A.); (Z.A.); (K.N.H.); (D.C.C.); (T.A.K.)
- Department of Biology, University of Tabuk, Tabuk 47713, Saudi Arabia
| | - Dillon K. Jarrell
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, CO 80045-7109, USA;
| | - Zeyad Arhouma
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO 80523-1005, USA; (I.M.A.); (Z.A.); (K.N.H.); (D.C.C.); (T.A.K.)
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523-1872, USA
| | - Kelly N. Hassell
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO 80523-1005, USA; (I.M.A.); (Z.A.); (K.N.H.); (D.C.C.); (T.A.K.)
| | - Jaelyn Montgomery
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523-1617, USA; (J.M.); (A.P.)
| | - Alyssa Padilla
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523-1617, USA; (J.M.); (A.P.)
| | - Hend M. Ibrahim
- Department of Medical Biochemistry, Zagazig University, Zagazig 44511, Egypt;
- Department of Environmental & Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523-1618, USA
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO 80523-1678, USA
| | - Debbie C. Crans
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO 80523-1005, USA; (I.M.A.); (Z.A.); (K.N.H.); (D.C.C.); (T.A.K.)
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523-1872, USA
| | - Takamitsu A. Kato
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO 80523-1005, USA; (I.M.A.); (Z.A.); (K.N.H.); (D.C.C.); (T.A.K.)
- Department of Environmental & Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523-1618, USA
| | - Mark A. Brown
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO 80523-1005, USA; (I.M.A.); (Z.A.); (K.N.H.); (D.C.C.); (T.A.K.)
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO 80523-1678, USA
- Epidemiology Section, Colorado School of Public Health, Fort Collins, CO 80523-1612, USA
- Institute for Learning and Teaching, Colorado State University, Fort Collins, CO 80523-1052, USA
- Department of Ethnic Studies, Colorado State University, Fort Collins, CO 80523-1790, USA
- Correspondence:
| |
Collapse
|
38
|
Cell geometry and the cytoskeleton impact the nucleo-cytoplasmic localisation of the SMYD3 methyltransferase. Sci Rep 2020; 10:20598. [PMID: 33244033 PMCID: PMC7691988 DOI: 10.1038/s41598-020-75833-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 09/25/2020] [Indexed: 12/14/2022] Open
Abstract
Mechanical cues from the cellular microenvironment are converted into biochemical signals controlling diverse cell behaviours, including growth and differentiation. But it is still unclear how mechanotransduction ultimately affects nuclear readouts, genome function and transcriptional programs. Key signaling pathways and transcription factors can be activated, and can relocalize to the nucleus, upon mechanosensing. Here, we tested the hypothesis that epigenetic regulators, such as methyltransferase enzymes, might also contribute to mechanotransduction. We found that the SMYD3 lysine methyltransferase is spatially redistributed dependent on cell geometry (cell shape and aspect ratio) in murine myoblasts. Specifically, elongated rectangles were less permissive than square shapes to SMYD3 nuclear accumulation, via reduced nuclear import. Notably, SMYD3 has both nuclear and cytoplasmic substrates. The distribution of SMYD3 in response to cell geometry correlated with cytoplasmic and nuclear lysine tri-methylation (Kme3) levels, but not Kme2. Moreover, drugs targeting cytoskeletal acto-myosin induced nuclear accumulation of Smyd3. We also observed that square vs rectangular geometry impacted the nuclear-cytoplasmic relocalisation of several mechano-sensitive proteins, notably YAP/TAZ proteins and the SETDB1 methyltransferase. Thus, mechanical cues from cellular geometric shapes are transduced by a combination of transcription factors and epigenetic regulators shuttling between the cell nucleus and cytoplasm. A mechanosensitive epigenetic machinery could potentially affect differentiation programs and cellular memory.
Collapse
|
39
|
Sanese P, Fasano C, Buscemi G, Bottino C, Corbetta S, Fabini E, Silvestri V, Valentini V, Disciglio V, Forte G, Lepore Signorile M, De Marco K, Bertora S, Grossi V, Guven U, Porta N, Di Maio V, Manoni E, Giannelli G, Bartolini M, Del Rio A, Caretti G, Ottini L, Simone C. Targeting SMYD3 to Sensitize Homologous Recombination-Proficient Tumors to PARP-Mediated Synthetic Lethality. iScience 2020; 23:101604. [PMID: 33205017 PMCID: PMC7648160 DOI: 10.1016/j.isci.2020.101604] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/07/2020] [Accepted: 09/21/2020] [Indexed: 12/17/2022] Open
Abstract
SMYD3 is frequently overexpressed in a wide variety of cancers. Indeed, its inactivation reduces tumor growth in preclinical in vivo animal models. However, extensive characterization in vitro failed to clarify SMYD3 function in cancer cells, although confirming its importance in carcinogenesis. Taking advantage of a SMYD3 mutant variant identified in a high-risk breast cancer family, here we show that SMYD3 phosphorylation by ATM enables the formation of a multiprotein complex including ATM, SMYD3, CHK2, and BRCA2, which is required for the final loading of RAD51 at DNA double-strand break sites and completion of homologous recombination (HR). Remarkably, SMYD3 pharmacological inhibition sensitizes HR-proficient cancer cells to PARP inhibitors, thereby extending the potential of the synthetic lethality approach in human tumors. SMYD3 phosphorylation by ATM favors the formation of HR complexes during DSB response SMYD3 mediates DSB repair by promoting RAD51 recruitment at DNA damage sites SMYD3 inhibition triggers a compensatory PARP-dependent DNA damage response Co-targeting SMYD3/PARP leads to synthetic lethality in HR-proficient cancer cells
Collapse
Affiliation(s)
- Paola Sanese
- Medical Genetics, National Institute of Gastroenterology "S. de Bellis" Research Hospital, Castellana Grotte, Bari 70013, Italy
| | - Candida Fasano
- Medical Genetics, National Institute of Gastroenterology "S. de Bellis" Research Hospital, Castellana Grotte, Bari 70013, Italy
| | - Giacomo Buscemi
- Institute of Molecular Genetics, IGM "Luigi Luca Cavalli-Sforza", National Research Council (CNR), Pavia 27100, Italy
| | - Cinzia Bottino
- Department of Biosciences, University of Milan, Milan 20133, Italy
| | - Silvia Corbetta
- Department of Biosciences, University of Milan, Milan 20133, Italy
| | - Edoardo Fabini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Bologna 40126, Italy.,BioChemoInformatics Unit, Institute of Organic Synthesis and Photoreactivity (ISOF), National Research Council (CNR), Bologna 40129, Italy
| | - Valentina Silvestri
- Department of Molecular Medicine, University of Roma "La Sapienza", Roma 00185, Italy
| | - Virginia Valentini
- Department of Molecular Medicine, University of Roma "La Sapienza", Roma 00185, Italy
| | - Vittoria Disciglio
- Medical Genetics, National Institute of Gastroenterology "S. de Bellis" Research Hospital, Castellana Grotte, Bari 70013, Italy
| | - Giovanna Forte
- Medical Genetics, National Institute of Gastroenterology "S. de Bellis" Research Hospital, Castellana Grotte, Bari 70013, Italy
| | - Martina Lepore Signorile
- Medical Genetics, National Institute of Gastroenterology "S. de Bellis" Research Hospital, Castellana Grotte, Bari 70013, Italy
| | - Katia De Marco
- Medical Genetics, National Institute of Gastroenterology "S. de Bellis" Research Hospital, Castellana Grotte, Bari 70013, Italy
| | - Stefania Bertora
- Medical Genetics, National Institute of Gastroenterology "S. de Bellis" Research Hospital, Castellana Grotte, Bari 70013, Italy
| | - Valentina Grossi
- Medical Genetics, National Institute of Gastroenterology "S. de Bellis" Research Hospital, Castellana Grotte, Bari 70013, Italy
| | - Ummu Guven
- Department of Biosciences, University of Milan, Milan 20133, Italy
| | - Natale Porta
- Department of Medical-Surgical Sciences and Biotechnology, Polo Pontino University of Roma "La Sapienza", Latina 04100, Italy
| | - Valeria Di Maio
- Department of Medical-Surgical Sciences and Biotechnology, Polo Pontino University of Roma "La Sapienza", Latina 04100, Italy
| | - Elisabetta Manoni
- BioChemoInformatics Unit, Institute of Organic Synthesis and Photoreactivity (ISOF), National Research Council (CNR), Bologna 40129, Italy
| | - Gianluigi Giannelli
- Medical Genetics, National Institute of Gastroenterology "S. de Bellis" Research Hospital, Castellana Grotte, Bari 70013, Italy
| | - Manuela Bartolini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Bologna 40126, Italy
| | - Alberto Del Rio
- BioChemoInformatics Unit, Institute of Organic Synthesis and Photoreactivity (ISOF), National Research Council (CNR), Bologna 40129, Italy.,Innovamol Consulting Srl, Modena 41123, Italy
| | | | - Laura Ottini
- Department of Molecular Medicine, University of Roma "La Sapienza", Roma 00185, Italy
| | - Cristiano Simone
- Medical Genetics, National Institute of Gastroenterology "S. de Bellis" Research Hospital, Castellana Grotte, Bari 70013, Italy.,Department of Biomedical Sciences and Human Oncology (DIMO), Medical Genetics; University of Bari Aldo Moro, Bari 70124, Italy
| |
Collapse
|
40
|
Chandra P, Dixit R, Pratap A, Mishra S, Mishra R, Shukla VK. Analysis of SET and MYND Domain-Containing Protein 3 (SMYD3) Expression in Gallbladder Cancer: a Pilot Study. Indian J Surg Oncol 2020; 12:111-117. [PMID: 33994736 DOI: 10.1007/s13193-020-01168-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 07/07/2020] [Indexed: 11/29/2022] Open
Abstract
The Suvar, Enhancer of zeste, and Trithorax (SET) and myeloid-Nervy-DEAF-1 (MYND) domain-containing protein 3 (SMYD3) is a histone lysine methyltransferase and has been recently unveiled to play significant roles in the progression of human cancer via regulating various key cancer-associated genes and pathways. The role of SMYD3 in gallbladder cancer (GBC) still needs to be studied. In the present study, we examined the SMYD3 gene expression at mRNA and protein level to look its impact on risk for developing gallbladder carcinogenesis. SMYD3 expression was evaluated by immunohistochemistry and reverse transcriptase PCR (RT-PCR) from 30 cases each of GBC and cholelithiasis patients. The expression was compared with different clinicopathological parameters. The SMYD3 expression was found to be significantly upregulated in GBC than cholelithiasis group (p < 0.05). The SMYD3 with increased expression level was observed in 73.3% of the GBC cases (p < 0.05). Moreover, mRNA SMYD3 expression was observed in 73.3% of GBC and 10% of control (p < 0.05). Our results indicated that the overexpression of SMYD3 plays an important role in the GBC progression, and SMYD3 may represent useful biomarker for gallbladder cancer patients.
Collapse
Affiliation(s)
- Pushkar Chandra
- Department of General Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221 005 India
| | - Ruhi Dixit
- Department of General Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221 005 India
| | - Arvind Pratap
- Department of General Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221 005 India
| | - Suman Mishra
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Rajnikant Mishra
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Vijay Kumar Shukla
- Department of General Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221 005 India
| |
Collapse
|
41
|
Zhang L, Jin Y, Yang H, Li Y, Wang C, Shi Y, Wang Y. SMYD3 promotes epithelial ovarian cancer metastasis by downregulating p53 protein stability and promoting p53 ubiquitination. Carcinogenesis 2020; 40:1492-1503. [PMID: 31002112 DOI: 10.1093/carcin/bgz078] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/28/2019] [Accepted: 04/17/2019] [Indexed: 12/13/2022] Open
Abstract
Epithelial ovarian cancer (EOC) has a very poor prognosis because of tumor invasiveness. Here, we reported that SET and MYND domain containing protein 3 (SMYD3), a lysine methyltransferase, was frequently upregulated in EOC and associated with poor prognosis. A series of in vitro assays demonstrated that SMYD3 significantly upgraded the migration ability of EOC cells. The results of in vivo EOC metastasis models further confirmed that overexpression of SMYD3 promoted EOC progression. Mechanistic investigations indicated that SMYD3 cloud decrease p53 protein stability and induce epithelial-mesenchymal transition in EOC cells. SMYD3 interacts with p53 directly via the post-SET domain and destabilizes p53 by inducing p53 translocation from the nucleus to the cytoplasm and promoting p53 ubiquitination modification independent of MDM2. Furthermore, the mass spectrometry results showed that SMYD3 interacts with UBE2R2, an ubiquitin-conjugating enzyme (E2) of the ubiquitin-proteasome pathway. The combination of UBE2R2-SMYD3-p53 significantly promotes the ubiquitination and degradation of p53. These results pointed that SMYD3 might be a new E3 ligase of p53. Further analysis confirmed that lysines 381, 382 and 386 of p53 are the key sites for the ubiquitination modification of SMYD3 to p53. In summary, our results define the important role of SMYD3 in the metastasis process of EOC and present a new therapeutic target against EOC.
Collapse
Affiliation(s)
- Liwei Zhang
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Gynecologic Oncology, Shanghai, China
| | - Yue Jin
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Gynecologic Oncology, Shanghai, China
| | - Hao Yang
- Shanghai Key Laboratory for Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Yu Li
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Gynecologic Oncology, Shanghai, China
| | - Chao Wang
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Gynecologic Oncology, Shanghai, China
| | - Yongheng Shi
- Department of Pathology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yu Wang
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Gynecologic Oncology, Shanghai, China
| |
Collapse
|
42
|
SMYD3: An Oncogenic Driver Targeting Epigenetic Regulation and Signaling Pathways. Cancers (Basel) 2020; 12:cancers12010142. [PMID: 31935919 PMCID: PMC7017119 DOI: 10.3390/cancers12010142] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 12/26/2019] [Accepted: 01/01/2020] [Indexed: 12/20/2022] Open
Abstract
SMYD3 is a member of the SMYD lysine methylase family and plays an important role in the methylation of various histone and non-histone targets. Aberrant SMYD3 expression contributes to carcinogenesis and SMYD3 upregulation was proposed as a prognostic marker in various solid cancers. Here we summarize SMYD3-mediated regulatory mechanisms, which are implicated in the pathophysiology of cancer, as drivers of distinct oncogenic pathways. We describe SMYD3-dependent mechanisms affecting cancer progression, highlighting SMYD3 interplay with proteins and RNAs involved in the regulation of cancer cell proliferation, migration and invasion. We also address the effectiveness and mechanisms of action for the currently available SMYD3 inhibitors. The findings analyzed herein demonstrate that a complex network of SMYD3-mediated cytoplasmic and nuclear interactions promote oncogenesis across different cancer types. These evidences depict SMYD3 as a modulator of the transcriptional response and of key signaling pathways, orchestrating multiple oncogenic inputs and ultimately, promoting transcriptional reprogramming and tumor transformation. Further insights into the oncogenic role of SMYD3 and its targeting of different synergistic oncogenic signals may be beneficial for effective cancer treatment.
Collapse
|
43
|
Codato R, Perichon M, Divol A, Fung E, Sotiropoulos A, Bigot A, Weitzman JB, Medjkane S. The SMYD3 methyltransferase promotes myogenesis by activating the myogenin regulatory network. Sci Rep 2019; 9:17298. [PMID: 31754141 PMCID: PMC6872730 DOI: 10.1038/s41598-019-53577-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/31/2019] [Indexed: 12/21/2022] Open
Abstract
The coordinated expression of myogenic regulatory factors, including MyoD and myogenin, orchestrates the steps of skeletal muscle development, from myoblast proliferation and cell-cycle exit, to myoblast fusion and myotubes maturation. Yet, it remains unclear how key transcription factors and epigenetic enzymes cooperate to guide myogenic differentiation. Proteins of the SMYD (SET and MYND domain-containing) methyltransferase family participate in cardiac and skeletal myogenesis during development in zebrafish, Drosophila and mice. Here, we show that the mammalian SMYD3 methyltransferase coordinates skeletal muscle differentiation in vitro. Overexpression of SMYD3 in myoblasts promoted muscle differentiation and myoblasts fusion. Conversely, silencing of endogenous SMYD3 or its pharmacological inhibition impaired muscle differentiation. Genome-wide transcriptomic analysis of murine myoblasts, with silenced or overexpressed SMYD3, revealed that SMYD3 impacts skeletal muscle differentiation by targeting the key muscle regulatory factor myogenin. The role of SMYD3 in the regulation of skeletal muscle differentiation and myotube formation, partially via the myogenin transcriptional network, highlights the importance of methyltransferases in mammalian myogenesis.
Collapse
Affiliation(s)
- Roberta Codato
- Université de Paris, Epigenetics and Cell Fate, CNRS, Paris, France
| | - Martine Perichon
- Université de Paris, Epigenetics and Cell Fate, CNRS, Paris, France
| | - Arnaud Divol
- Université de Paris, Epigenetics and Cell Fate, CNRS, Paris, France
- Atos, Paris, France
| | - Ella Fung
- Université de Paris, Epigenetics and Cell Fate, CNRS, Paris, France
- Pfizer, Boston, MA, USA
| | | | - Anne Bigot
- Université de Paris, Institut de Myologie, INSERM, Paris, France
| | | | - Souhila Medjkane
- Université de Paris, Epigenetics and Cell Fate, CNRS, Paris, France.
| |
Collapse
|
44
|
Lyu T, Jiang Y, Jia N, Che X, Li Q, Yu Y, Hua K, Bast RC, Feng W. SMYD3 promotes implant metastasis of ovarian cancer via H3K4 trimethylation of integrin promoters. Int J Cancer 2019; 146:1553-1567. [PMID: 31503345 DOI: 10.1002/ijc.32673] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 07/07/2019] [Accepted: 08/20/2019] [Indexed: 12/16/2022]
Abstract
Detachment of cancer cells from the primary tumor and formation of spheroids in ascites is required for implantation metastasis in epithelial ovarian cancer (EOC), but the underlying mechanism of this process has not been thoroughly elucidated. To mimic this process, ovarian cancer cells were grown in 3D and 2D culture. Hey and OVCA433 spheroids exhibited decreased cell proliferation and enhanced adhesion and invasion. SMYD3 expression was elevated in ovarian carcinoma spheroids in association with increased H3K4 methylation. Depletion of SMYD3 by transient siRNA, stable shRNA knockdown and the SMYD3 inhibitor BCI-121 all decreased spheroid invasion and adhesion. Gene expression arrays revealed downregulation of integrin family members. Inhibition assays confirmed that invasion and adhesion of spheroids are mediated by ITGB6 and ITGAM. SMYD3-deficient cells regained the ability to invade and adhere after forced overexpression of SMYD3, ITGB6 and ITGAM. However, this biological ability was not restored by forced overexpression of SMYD3 in ITGB6- and/or ITGAM-deficient cancer cells. SMYD3 and H3K4me3 binding at the ITGB6 and ITGAM promoters was increased in spheroids compared to that in monolayer cells, and the binding was decreased when SMYD3 expression was inhibited, consistent with the expression changes in integrins. SMYD3 expression and integrin-mediated adhesion were also activated in an intraperitoneal xenograft model and in EOC patient spheroids. In vivo, SMYD3 knockdown inhibited tumor metastasis and reduced ascites volume in both the intraperitoneal xenograft model and a PDX model. Overall, our results suggest that the SMYD3-H3K4me3-integrin pathway plays a crucial role in ovarian cancer metastasis to the peritoneal surface.
Collapse
Affiliation(s)
- Tianjiao Lyu
- Department of Gynecology and Obstetrics, Ruijin Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China.,Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine - Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Yahui Jiang
- Department of Gynecology and Obstetrics, Ruijin Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China.,Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine - Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Nan Jia
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine - Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Xiaoxia Che
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine - Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Qin Li
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine - Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Yinhua Yu
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine - Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China.,Department of Experimental Therapeutics, University of Texas, M.D. Anderson Cancer Center, Houston, TX
| | - Keqin Hua
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine - Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Robert C Bast
- Department of Experimental Therapeutics, University of Texas, M.D. Anderson Cancer Center, Houston, TX
| | - Weiwei Feng
- Department of Gynecology and Obstetrics, Ruijin Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China.,Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| |
Collapse
|
45
|
Wu X, Xu Q, Chen P, Yu C, Ye L, Huang C, Li T. Effect of SMYD3 on biological behavior and H3K4 methylation in bladder cancer. Cancer Manag Res 2019; 11:8125-8133. [PMID: 31564972 PMCID: PMC6730607 DOI: 10.2147/cmar.s213885] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/24/2019] [Indexed: 12/20/2022] Open
Abstract
Purpose Our goal was to investigate the effect of SMYD3 on the biological behavior and histone 3 lysine-4 (H3K4) methylation of bladder cancer (BLAC). Patients and methods qRT-PCR identified that SMYD3 expression level in BLAC cell lines (T24, 5637, BUI-87 and J-82) and human normal uroepithelial cell line SV-HUC1. We also constructed green fluorescence protein lentiviral vector using the gene short hairpin RNA (shRNA) system. We used Western blot to analyze the SMYD3, H3K4me1, H3K4me2 and H3K4me3 expression levels in shRNA transfection lines. We also performed a colony-forming assay to determine colony-forming ability, cell counting kit-8 for cell proliferation detection, Transwell assay to determine cell migration and invasion and Annexin V-FITC/PI double staining to analyze cell apoptosis. Results The SMYD3 expression level was significantly higher in BLAC cell lines (T24, 5637, BUI-87 and J-82) than in human normal uroepithelial cell line SV-HUC1, and exhibited the highest expression level in T24 cells, among the cell lines tested. qRT-PCR and Western blot analysis results showed that SMYD3 was successfully suppressed in shRNA transfection lines, and identified that SMYD3 suppression resulted inhibited H3K4me2 and H3K4me3 but not H3K4me1. SMYD3 knockdown cells accelerated cell apoptosis and exhibited low cell colony-forming ability, proliferation ability, inhibition of cell migration and invasion compared with normal cells. Conclusion SMYD3 may be activated in BLAC cells to increase H3K4 activity to modulate cell proliferation, migration and invasion ability. The data will be a useful source for future therapy.
Collapse
Affiliation(s)
- Xiang Wu
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou 350001, People's Republic of China.,Department of Urology, Fujian Provincial Hospital, Fuzhou 350001, People's Republic of China
| | - Qingjiang Xu
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou 350001, People's Republic of China.,Department of Urology, Fujian Provincial Hospital, Fuzhou 350001, People's Republic of China
| | - Pingzhou Chen
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou 350001, People's Republic of China.,Department of Urology, Fujian Provincial Hospital, Fuzhou 350001, People's Republic of China
| | - Chenbo Yu
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou 350001, People's Republic of China.,Department of Urology, Fujian Provincial Hospital, Fuzhou 350001, People's Republic of China
| | - Liefu Ye
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou 350001, People's Republic of China.,Department of Urology, Fujian Provincial Hospital, Fuzhou 350001, People's Republic of China
| | - Chen Huang
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou 350001, People's Republic of China.,Department of Thoracic Surgery, Fujian Provincial Hospital, Fuzhou 350001, People's Republic of China
| | - Tao Li
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou 350001, People's Republic of China.,Department of Urology, Fujian Provincial Hospital, Fuzhou 350001, People's Republic of China
| |
Collapse
|
46
|
Fabini E, Talibov VO, Mihalic F, Naldi M, Bartolini M, Bertucci C, Del Rio A, Danielson UH. Unveiling the Biochemistry of the Epigenetic Regulator SMYD3. Biochemistry 2019; 58:3634-3645. [PMID: 31389685 DOI: 10.1021/acs.biochem.9b00420] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
SET and MYND domain-containing protein 3 (SMYD3) is a lysine methyltransferase that plays a central role in a variety of cancer diseases, exerting its pro-oncogenic activity by methylation of key proteins, of both nuclear and cytoplasmic nature. However, the role of SMYD3 in the initiation and progression of cancer is not yet fully understood and further biochemical characterization is required to support the discovery of therapeutics targeting this enzyme. We have therefore developed robust protocols for production, handling, and crystallization of SMYD3 and biophysical and biochemical assays for clarification of SMYD3 biochemistry and identification of useful lead compounds. Specifically, a time-resolved biosensor assay was developed for kinetic characterization of SMYD3 interactions. Functional differences in SMYD3 interactions with its natural small molecule ligands SAM and SAH were revealed, with SAM forming a very stable complex. A variety of peptides mimicking putative substrates of SMYD3 were explored in order to expose structural features important for recognition. The interaction between SMYD3 and some peptides was influenced by SAM. A nonradioactive SMYD3 activity assay using liquid chromatography-mass spectrometry (LC-MS) analysis explored substrate features of importance also for methylation. Methylation was notable only toward MAP kinase kinase kinase 2 (MAP3K2_K260)-mimicking peptides, although binary and tertiary complexes were detected also with other peptides. The analysis supported a random bi-bi mechanistic model for SMYD3 methyltransferase catalysis. Our work unveiled complexities in SMYD3 biochemistry and resulted in procedures suitable for further studies and identification of novel starting points for design of effective and specific leads for this potential oncology target.
Collapse
Affiliation(s)
- Edoardo Fabini
- Department of Pharmacy and Biotechnology , Alma Mater Studiorum University of Bologna , Bologna , Italy.,Institute of Organic Synthesis and Photoreactivity (ISOF) , National Research Council (CNR) , Bologna , Italy
| | | | - Filip Mihalic
- Department of Chemistry - BMC , Uppsala University , Uppsala , Sweden
| | - Marina Naldi
- Department of Pharmacy and Biotechnology , Alma Mater Studiorum University of Bologna , Bologna , Italy.,Center for Applied Biomedical Research (C.R.B.A.) , S. Orsola-Malpighi Hospital , Bologna , Italy
| | - Manuela Bartolini
- Department of Pharmacy and Biotechnology , Alma Mater Studiorum University of Bologna , Bologna , Italy
| | - Carlo Bertucci
- Department of Pharmacy and Biotechnology , Alma Mater Studiorum University of Bologna , Bologna , Italy
| | - Alberto Del Rio
- Institute of Organic Synthesis and Photoreactivity (ISOF) , National Research Council (CNR) , Bologna , Italy.,Innovamol Consulting Srl , Modena , Italy
| | - U Helena Danielson
- Department of Chemistry - BMC , Uppsala University , Uppsala , Sweden.,Science for Life Laboratory , Uppsala University , Uppsala , Sweden
| |
Collapse
|
47
|
Fenizia C, Bottino C, Corbetta S, Fittipaldi R, Floris P, Gaudenzi G, Carra S, Cotelli F, Vitale G, Caretti G. SMYD3 promotes the epithelial-mesenchymal transition in breast cancer. Nucleic Acids Res 2019; 47:1278-1293. [PMID: 30544196 PMCID: PMC6379668 DOI: 10.1093/nar/gky1221] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 11/19/2018] [Accepted: 11/23/2018] [Indexed: 12/20/2022] Open
Abstract
SMYD3 is a methylase previously linked to cancer cell invasion and migration. Here we show that SMYD3 favors TGFβ-induced epithelial–mesenchymal transition (EMT) in mammary epithelial cells, promoting mesenchymal and EMT transcription factors expression. SMYD3 directly interacts with SMAD3 but it is unnecessary for SMAD2/3 phosphorylation and nuclear translocation. Conversely, SMYD3 is indispensable for SMAD3 direct association to EMT genes regulatory regions. Accordingly, SMYD3 knockdown or its pharmacological blockade with the BCI121 inhibitor dramatically reduce TGFβ-induced SMAD3 association to the chromatin. Remarkably, BCI121 treatment attenuates mesenchymal genes transcription in the mesenchymal-like MDA-MB-231 cell line and reduces their invasive ability in vivo, in a zebrafish xenograft model. In addition, clinical datasets analysis revealed that higher SMYD3 levels are linked to a less favorable prognosis in claudin-low breast cancers and to a reduced metastasis free survival in breast cancer patients. Overall, our data point at SMYD3 as a pivotal SMAD3 cofactor that promotes TGFβ-dependent mesenchymal gene expression and cell migration in breast cancer, and support SMYD3 as a promising pharmacological target for anti-cancer therapy.
Collapse
Affiliation(s)
- Claudio Fenizia
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Cinzia Bottino
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Silvia Corbetta
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Raffaella Fittipaldi
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Pamela Floris
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Germano Gaudenzi
- Laboratory of Geriatric and Oncologic Neuroendocrinology Research, Istituto Auxologico Italiano IRCCS, Milan, Italy
| | - Silvia Carra
- Laboratory of Endocrine and Metabolic Research, Istituto Auxologico Italiano IRCCS, Milan, Italy
| | - Franco Cotelli
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Giovanni Vitale
- Laboratory of Geriatric and Oncologic Neuroendocrinology Research, Istituto Auxologico Italiano IRCCS, Milan, Italy.,Department of Clinical Sciences and Community Health (DISCCO), University of Milan, Milan, Italy
| | - Giuseppina Caretti
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| |
Collapse
|
48
|
Dilworth D, Barsyte-Lovejoy D. Targeting protein methylation: from chemical tools to precision medicines. Cell Mol Life Sci 2019; 76:2967-2985. [PMID: 31104094 PMCID: PMC11105543 DOI: 10.1007/s00018-019-03147-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 05/10/2019] [Indexed: 12/15/2022]
Abstract
The methylation of proteins is integral to the execution of many important biological functions, including cell signalling and transcriptional regulation. Protein methyltransferases (PMTs) are a large class of enzymes that carry out the addition of methyl marks to a broad range of substrates. PMTs are critical for normal cellular physiology and their dysregulation is frequently observed in human disease. As such, PMTs have emerged as promising therapeutic targets with several inhibitors now in clinical trials for oncology indications. The discovery of chemical inhibitors and antagonists of protein methylation signalling has also profoundly impacted our general understanding of PMT biology and pharmacology. In this review, we present general principles for drugging protein methyltransferases or their downstream effectors containing methyl-binding modules, as well as best-in-class examples of the compounds discovered and their impact both at the bench and in the clinic.
Collapse
Affiliation(s)
- David Dilworth
- Structural Genomics Consortium, University of Toronto, Toronto, ON, M5G 1L7, Canada
| | - Dalia Barsyte-Lovejoy
- Structural Genomics Consortium, University of Toronto, Toronto, ON, M5G 1L7, Canada.
| |
Collapse
|
49
|
Grossi V, Forte G, Sanese P, Peserico A, Tezil T, Lepore Signorile M, Fasano C, Lovaglio R, Bagnulo R, Loconte DC, Susca FC, Resta N, Simone C. The longevity SNP rs2802292 uncovered: HSF1 activates stress-dependent expression of FOXO3 through an intronic enhancer. Nucleic Acids Res 2019; 46:5587-5600. [PMID: 29733381 PMCID: PMC6009585 DOI: 10.1093/nar/gky331] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 04/17/2018] [Indexed: 12/19/2022] Open
Abstract
The HSF and FOXO families of transcription factors play evolutionarily conserved roles in stress resistance and lifespan. In humans, the rs2802292 G-allele at FOXO3 locus has been associated with longevity in all human populations tested; moreover, its copy number correlated with reduced frequency of age-related diseases in centenarians. At the molecular level, the intronic rs2802292 G-allele correlated with increased expression of FOXO3, suggesting that FOXO3 intron 2 may represent a regulatory region. Here we show that the 90-bp sequence around the intronic single nucleotide polymorphism rs2802292 has enhancer functions, and that the rs2802292 G-allele creates a novel HSE binding site for HSF1, which induces FOXO3 expression in response to diverse stress stimuli. At the molecular level, HSF1 mediates the occurrence of a promoter–enhancer interaction at FOXO3 locus involving the 5′UTR and the rs2802292 region. These data were confirmed in various cellular models including human HAP1 isogenic cell lines (G/T). Our functional studies highlighted the importance of the HSF1-FOXO3-SOD2/CAT/GADD45A cascade in cellular stress response and survival by promoting ROS detoxification, redox balance and DNA repair. Our findings suggest the existence of an HSF1-FOXO3 axis in human cells that could be involved in stress response pathways functionally regulating lifespan and disease susceptibility.
Collapse
Affiliation(s)
- Valentina Grossi
- Medical Genetics, Department of Biomedical Sciences and Human Oncology (DIMO), University of Bari Aldo Moro, Bari 70124, Italy
| | - Giovanna Forte
- Medical Genetics, National Institute for Gastroenterology, IRCCS 'S. de Bellis', Castellana Grotte (Ba) 70013, Italy
| | - Paola Sanese
- Medical Genetics, Department of Biomedical Sciences and Human Oncology (DIMO), University of Bari Aldo Moro, Bari 70124, Italy
| | - Alessia Peserico
- Medical Genetics, Department of Biomedical Sciences and Human Oncology (DIMO), University of Bari Aldo Moro, Bari 70124, Italy
| | - Tugsan Tezil
- Medical Genetics, Department of Biomedical Sciences and Human Oncology (DIMO), University of Bari Aldo Moro, Bari 70124, Italy
| | - Martina Lepore Signorile
- Medical Genetics, Department of Biomedical Sciences and Human Oncology (DIMO), University of Bari Aldo Moro, Bari 70124, Italy.,Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Candida Fasano
- Medical Genetics, National Institute for Gastroenterology, IRCCS 'S. de Bellis', Castellana Grotte (Ba) 70013, Italy
| | - Rosaura Lovaglio
- Medical Genetics, Department of Biomedical Sciences and Human Oncology (DIMO), University of Bari Aldo Moro, Bari 70124, Italy
| | - Rosanna Bagnulo
- Medical Genetics, Department of Biomedical Sciences and Human Oncology (DIMO), University of Bari Aldo Moro, Bari 70124, Italy
| | - Daria C Loconte
- Medical Genetics, Department of Biomedical Sciences and Human Oncology (DIMO), University of Bari Aldo Moro, Bari 70124, Italy
| | - Francesco C Susca
- Medical Genetics, Department of Biomedical Sciences and Human Oncology (DIMO), University of Bari Aldo Moro, Bari 70124, Italy
| | - Nicoletta Resta
- Medical Genetics, Department of Biomedical Sciences and Human Oncology (DIMO), University of Bari Aldo Moro, Bari 70124, Italy
| | - Cristiano Simone
- Medical Genetics, Department of Biomedical Sciences and Human Oncology (DIMO), University of Bari Aldo Moro, Bari 70124, Italy.,Medical Genetics, National Institute for Gastroenterology, IRCCS 'S. de Bellis', Castellana Grotte (Ba) 70013, Italy
| |
Collapse
|
50
|
Jiang Y, Lyu T, Che X, Jia N, Li Q, Feng W. Overexpression of SMYD3 in Ovarian Cancer is Associated with Ovarian Cancer Proliferation and Apoptosis via Methylating H3K4 and H4K20. J Cancer 2019; 10:4072-4084. [PMID: 31417652 PMCID: PMC6692630 DOI: 10.7150/jca.29861] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 05/05/2019] [Indexed: 12/13/2022] Open
Abstract
Background: Epigenetic regulation has been verified as a key mechanism in tumorigenesis. SET and MYND domain-containing protein 3 (SMYD3), a histone methyltransferase, is a promising epigenetic therapeutic target and is overexpressed in numerous human tumors. SMYD3 can promote oncogenic progression by methylating lysines to integrate cytoplasmic kinase signaling cascades or by methylating histone lysines to regulate specific gene transcription. However, the exact role of SMYD3 in the progression of ovarian cancer is still unknown. Methods: Immunohistochemistry was employed to test SMYD3 expression in ovarian cancer tissues from clinical patients. CCK-8 assay, Real-time cell analysis (RTCA), colony formation assay, cell cycle and apoptosis tested by Flow cytometer were employed to test the effects of SMYD3 on cell proliferation and apoptosis in ovarian cancer cell lines. A PCR array was used to identify the downstream targets of SMYD3. And, PCR and Western blot were used to verify their expression. The binding of SMYD3 on the promoter of target genes were tested by ChIP assays. We also use nude mice subcutaneous tumor model and patient-derived xenograft (PDX) model to investigate the tumor promotive function of SMYD3 in vivo. Results: SMYD3 expression was higher in ovarian cancer tissues and cell lines than in normal ovarian epithelial tissue and human ovarian surface epithelial cells (HOSEpiC). After silencing SMYD3, the proliferation of ovarian cancer cells was significantly inhibited in vitro. In addition, the SMYD3-specific small-molecule inhibitor BCI-121 suppressed ovarian cancer cell proliferation. Downregulation of SMYD3 led to S phase arrest and increased the cell apoptosis rate. Furthermore, a PCR array revealed that SMYD3 knockdown caused the upregulation of the cyclin-dependent kinase (CDK) inhibitors CDKN2A (p16INK4), CDKN2B (p15INK4B), CDKN3 and CDC25A, which may be responsible for the S phase arrest. In addition, the upregulation of CD40LG and downregulation of BIRC3 may explain the increased cell apoptosis rate after silencing SMYD3. We also discovered that SMYD3 bound on the promoter of CDKN2A and down-regulated its expression by triple-methylating H4K20. In addition, SMYD3 bound on the promoter of BIRC3 and up-regulated its expression by triple-methylating H3K4. Finally, knocking down SMYD3 could inhibit ovarian cancer growth in nude mice subcutaneous tumor model and PDX model. Conclusion: Our results demonstrated that SMYD3 was overexpressed in ovarian cancer and contributes to the regulation of tumor proliferation and apoptosis via SMYD3-H4K20me3-CDKN2A pathway and SMYD3-H3K4me3-BIRC3 pathway. Thus, SMYD3 is a promising epigenetic therapeutic target for ovarian cancer.
Collapse
Affiliation(s)
- Yahui Jiang
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, 419 Fang Xie Road, Shanghai, 200011. China.,Shanghai Key Laboratory of Female Reproductive Endocrine - Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, 419 Fang Xie Road, Shanghai, 200011. China
| | - Tianjiao Lyu
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, 419 Fang Xie Road, Shanghai, 200011. China.,Shanghai Key Laboratory of Female Reproductive Endocrine - Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, 419 Fang Xie Road, Shanghai, 200011. China.,Department of Gynecology and Obstetrics, Ruijin Hospital,Shanghai Jiaotong University , School of Medicine, 197 Ruijin Road, Shanghai, 200025, China
| | - Xiaoxia Che
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, 419 Fang Xie Road, Shanghai, 200011. China.,Shanghai Key Laboratory of Female Reproductive Endocrine - Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, 419 Fang Xie Road, Shanghai, 200011. China
| | - Nan Jia
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, 419 Fang Xie Road, Shanghai, 200011. China.,Shanghai Key Laboratory of Female Reproductive Endocrine - Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, 419 Fang Xie Road, Shanghai, 200011. China
| | - Qin Li
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, 419 Fang Xie Road, Shanghai, 200011. China.,Shanghai Key Laboratory of Female Reproductive Endocrine - Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, 419 Fang Xie Road, Shanghai, 200011. China
| | - Weiwei Feng
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, 419 Fang Xie Road, Shanghai, 200011. China.,Department of Gynecology and Obstetrics, Ruijin Hospital,Shanghai Jiaotong University , School of Medicine, 197 Ruijin Road, Shanghai, 200025, China
| |
Collapse
|