1
|
Vaishampayan P, Lee Y. Redox-active vitamin C suppresses human osteosarcoma growth by triggering intracellular ROS-iron-calcium signaling crosstalk and mitochondrial dysfunction. Redox Biol 2024; 75:103288. [PMID: 39083898 PMCID: PMC11342202 DOI: 10.1016/j.redox.2024.103288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024] Open
Abstract
Pharmacological vitamin C (VC) has gained attention for its pro-oxidant characteristics and selective ability to induce cancer cell death. However, defining its role in cancer has been challenging due to its complex redox properties. In this study, using a human osteosarcoma (OS) model, we show that the redox-active property of VC is critical for inducing non-apoptotic cancer cell death via intracellular reactive oxygen species (ROS)-iron-calcium crosstalk and mitochondrial dysfunction. In both 2D and 3D OS cell culture models, only the oxidizable form of VC demonstrated potent dose-dependent cytotoxicity, while non-oxidizable and oxidized VC derivatives had minimal effects. Live-cell imaging showed that only oxidizable VC caused a surge in cytotoxic ROS, dependent on iron rather than copper. Inhibitors of ferroptosis, a form of iron-dependent cell death, along with classical apoptosis inhibitors, were unable to completely counteract the cytotoxic effects induced by VC. Further pharmacological and genetic inhibition analyses showed that VC triggers calcium release through inositol 1,4,5-trisphosphate receptors (IP3Rs), leading to mitochondrial ROS production and eventual cell death. RNA sequencing revealed down-regulation of genes involved in the mitochondrial electron transport chain and oxidative phosphorylation upon pharmacological VC treatment. Consistently, high-dose VC reduced mitochondrial membrane potential, oxidative phosphorylation, and ATP levels, with ATP reconstitution rescuing VC-induced cytotoxicity. In vivo OS xenograft studies demonstrated reduced tumor growth with high-dose VC administration, concomitant with the altered expression of mitochondrial ATP synthase (MT-ATP). These findings emphasize VC's potential clinical utility in osteosarcoma treatment by inducing mitochondrial metabolic dysfunction through a vicious intracellular ROS-iron-calcium cycle.
Collapse
Affiliation(s)
- Prajakta Vaishampayan
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, 99202, USA
| | - Yool Lee
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, 99202, USA; Department of Integrative Physiology and Neuroscience, College of Veterinary Medicine, Washington State University, Pullman, WA, 99164, USA; Sleep and Performance Research Center, Washington State University, Spokane, WA, 99202, USA; Steve Gleason Institute for Neuroscience, Washington State University, Spokane, WA, 99202, USA.
| |
Collapse
|
2
|
Alghareeb SA, Alfhili MA, Alsughayyir J. Stimulation of Hemolysis and Eryptosis by β-Caryophyllene Oxide. Life (Basel) 2023; 13:2299. [PMID: 38137900 PMCID: PMC10744803 DOI: 10.3390/life13122299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND Eryptosis stimulated by anticancer drugs can lead to anemia in patients. β-caryophyllene oxide (CPO) is an anticancer sesquiterpene present in various plants; however, its effect on the structure and function of human red blood cells (RBCs) remains unexplored. The aim of this study was to investigate the hemolytic and eryptotic activities and underlying molecular mechanisms of CPO in human RBCs. METHODS Cells were treated with 10-100 μM of CPO for 24 h at 37 °C, and hemolysis, LDH, AST, and AChE activities were photometrically assayed. Flow cytometry was employed to determine changes in cell volume from FSC, phosphatidylserine (PS) externalization by annexin-V-FITC, intracellular calcium by Fluo4/AM, and oxidative stress by 2',7'-dichlorodihydrofluorescein diacetate (H2DCFDA). Cells were also cotreated with CPO and specific signaling inhibitors and antihemolytic agents. Furthermore, whole blood was exposed to CPO to assess its toxicity to other peripheral blood cells. RESULTS CPO induced concentration-responsive hemolysis with LDH and AST leakage, in addition to PS exposure, cell shrinkage, Ca2+ accumulation, oxidative stress, and reduced AChE activity. The toxicity of CPO was ameliorated by D4476, staurosporin, and necrosulfonamide. ATP and PEG 8000 protected the cells from hemolysis, while urea and isotonic sucrose had opposite effects. CONCLUSIONS CPO stimulates hemolysis and eryptosis through energy depletion, Ca2+ buildup, oxidative stress, and the signaling mediators casein kinase 1α, protein kinase C, and mixed lineage kinase domain-like pseudokinase. Development of CPO as an anticancer therapeutic must be approached with prudence to mitigate adverse effects on RBCs using eryptosis inhibitors, Ca2+ channel blockers, and antioxidants.
Collapse
Affiliation(s)
| | | | - Jawaher Alsughayyir
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 12372, Saudi Arabia; (S.A.A.); (M.A.A.)
| |
Collapse
|
3
|
Shih CY, Wang PT, Chung WP, Wang WH, Chiang IT, Su WC, Huang WL, Teng H. Concise nanotherapeutic modality for cancer involving graphene oxide dots in conjunction with ascorbic acid. NANOSCALE 2023. [PMID: 37183719 DOI: 10.1039/d3nr00431g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Cancer cells tend to have higher intracellular reactive oxygen species (ROS) levels and are more vulnerable to ROS-generating therapies such as ascorbic acid (H2Asc) therapy, whose potency has been explored by several clinical trials. However, its efficiency is restricted by the requirement of pharmacologically high local H2Asc concentrations. Here, we show that nitrogen-doped graphene oxide dots (NGODs), which are highly crystalline and biocompatible, can serve as a catalytic medium for improving H2Asc cancer therapy at orally achievable physiological H2Asc concentrations. NGODs catalyze H2Asc oxidation for H2O2 and dehydroascorbic acid generation to disrupt cancer cells by consuming intracellular glutathione (GSH) and inducing ROS damage. This is the first study to demonstrate the direct consumption of GSH using a carbon-based nano-catalyst (NGODs), which further expedites tumor killing. In addition, as in our previous study, NGODs can also serve as a highly efficient photosensitizer for photodynamic therapy. Under illumination, NGODs produce a considerable amount of H2O2 in the presence of physiological levels of H2Asc as a hole scavenger and further enhance the therapeutic efficiency. Thus, a concise nanotherapeutic modality could be achieved through the conjunction of multifunctional NGODs and H2Asc to selectively eliminate deep-seated and superficial tumors simultaneously (under 65% of normal cell viability, it kills almost all cancer cells). Note that this level of therapeutic versatility generally requires multiple components and complex manufacturing processes that run into difficulties with FDA regulations and clinical applications. In this study, the concise NGOD-H2Asc nanotherapeutic modality has demonstrated its great potential in cancer therapy.
Collapse
Affiliation(s)
- Chun-Yan Shih
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan.
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan 70101, Taiwan.
- Hierarchical Green-Energy Materials (Hi-GEM) Research Center, National Cheng Kung University, Tainan 70101, Taiwan
| | - Pei-Ting Wang
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan.
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan 70101, Taiwan.
- Hierarchical Green-Energy Materials (Hi-GEM) Research Center, National Cheng Kung University, Tainan 70101, Taiwan
| | - Wei-Pang Chung
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan 70101, Taiwan.
- Department of Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Wen-Hsiu Wang
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - I-Ting Chiang
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan 70101, Taiwan.
| | - Wu-Chou Su
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan 70101, Taiwan.
- Department of Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Wei-Lun Huang
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan 70101, Taiwan.
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Hsisheng Teng
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan.
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan 70101, Taiwan.
- Hierarchical Green-Energy Materials (Hi-GEM) Research Center, National Cheng Kung University, Tainan 70101, Taiwan
| |
Collapse
|
4
|
Qiu J, Yang T, Long Y, He P, Shen W, Zhang B, Shi X, Peng L, Li Z, Zhang X. Mitochondrial respiration inhibitor enhances the anti-tumor effect of high-dose ascorbic acid in castration-resistant prostate cancer. J Mol Med (Berl) 2023; 101:125-138. [PMID: 36478125 DOI: 10.1007/s00109-022-02273-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 11/08/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022]
Abstract
Previous evidences have demonstrated that anti-tumor effect of high-dose ascorbic acid is associated with the generation of reactive oxygen species (ROS) via autoxidation. Hypoxia induces therapy resistance in castration-resistant prostate cancer. As a mitochondrial respiration inhibitor, metformin has the potential to improve tumor oxygenation. In this study, we evaluate the anti-tumor effect of ascorbic acid combined with metformin in prostate cancer. We demonstrated that ascorbic acid inhibits prostate cancer cells proliferation by generating ROS, and metformin enhances the anti-tumor effects of ascorbic acid. Mechanistically, metformin reduces oxygen consumption rate and NADP+/NADPH value in prostate cancer cells, thereby increases the ROS content induced by ascorbic acid. In addition, our data demonstrated that ascorbic acid inhibits p-AKT signaling in a ROS-dependent pathway, leading to inhibition of p-mTOR expression. And metformin inhibits the p-mTOR expression by activating the AMPK signaling pathway, exerting a synergistic effect on tumor suppression with ascorbic acid. Furthermore, metformin improves tumor oxygenation, and the combined treatment effect of ascorbic acid and metformin were demonstrated in a xenograft model of prostate cancer. Taken together, our data demonstrate that metformin enhances the anti-tumor proliferation effect of ascorbic acid by increasing ROS content in castration-resistant prostate cancer. This provides a new strategy for the clinical application of high-dose ascorbic acid as an anti-tumor drug. KEY MESSAGES: Ascorbic acid inhibits tumor growth by inducing ROS generation. As a mitochondrial respiration inhibitor, metformin inhibits cellular oxygen consumption rate to improve oxygenation of prostate cancer. Metformin enhances anti-tumor effect of ascorbic acid by increasing ROS content. Ascorbic acid inhibits the mTOR expression via PI3K-AKT pathway, and metformin inhibits the mTOR expression by inhibiting AMPK signaling in prostate cancer cells.
Collapse
Affiliation(s)
- Jia Qiu
- Department of Nuclear Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.,Medical Imaging Center, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Tianhong Yang
- Department of Nuclear Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yali Long
- Department of Nuclear Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Peng He
- Department of Nuclear Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.,Department of Ultrasound Medicine & Ultrasonic Medical Engineering Key Laboratory of Nanchong City, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Wanqing Shen
- Department of Nuclear Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Bing Zhang
- Department of Nuclear Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xinchong Shi
- Department of Nuclear Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Lei Peng
- Department of Nuclear Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Zhoulei Li
- Department of Nuclear Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xiangsong Zhang
- Department of Nuclear Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
5
|
Li X, Han Z, Wang T, Ma C, Li H, Lei H, Yang Y, Wang Y, Pei Z, Liu Z, Cheng L, Chen G. Cerium oxide nanoparticles with antioxidative neurorestoration for ischemic stroke. Biomaterials 2022; 291:121904. [PMID: 36403323 DOI: 10.1016/j.biomaterials.2022.121904] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/26/2022] [Accepted: 11/04/2022] [Indexed: 11/12/2022]
Abstract
Oxidative stress and mitochondrial damage are the main mechanisms of ischemia-reperfusion injury in ischemic stroke. Herein, cerium oxide nanoparticles with powerful free radical scavenging ability were used as carriers to load dl-3-n-butylphthalide (NBP-CeO2 NPs) for the combined treatment of ischemic stroke. NBP-CeO2 NPs could eliminate reactive oxygen species (ROS) in mouse brain microvascular endothelial cells and hippocampal neurons after oxygen-glucose deprivation/reoxygenation (OGD/R), and also save mitochondrial membrane potential, morphology, and function, thus alleviating the in vitro blood brain barrier (BBB) disruption and neuronal apoptosis. In the middle cerebral artery embolization/recanalization (MCAO/R) mouse model, the NBP-CeO2 NPs also possessed superior ROS scavenging ability, protected mitochondria, and preserved BBB integrity, thereby reducing cerebral infarction and cerebral edema and inhibiting neuroinflammation and neuronal apoptosis. The long-term neurobehavioral tests indicated that the NBP-CeO2 NPs significantly improved sensorimotor function and spatial learning ability by promoting angiogenesis after ischemic stroke. Therefore, the NBP-CeO2 NPs provided a novel therapeutic approach for ischemic stroke by combining antioxidant and neurovascular repair abilities, highlighting its wide application in ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Xiang Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Zhihui Han
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Tianyi Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Cheng Ma
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Haiying Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Huali Lei
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Yuqi Yang
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Yuanjie Wang
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Zifan Pei
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Liang Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China.
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China.
| |
Collapse
|
6
|
Exogenous iron impairs the anti-cancer effect of ascorbic acid both in vitro and in vivo. J Adv Res 2022; 46:149-158. [PMID: 35777727 PMCID: PMC10105075 DOI: 10.1016/j.jare.2022.06.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 06/18/2022] [Accepted: 06/20/2022] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION The anti-cancer effect of high concentrations of ascorbic acid (AA) has been well established while its underlying mechanisms remain unclear. The association between iron and AA has attracted great attention but was still controversial due to the complicated roles of iron in tumors. OBJECTIVES Our study aims to explore the anti-cancer mechanisms of AA and the interaction between AA and iron in cancer. METHODS The MTT and ATP assays were used to evaluate the cytotoxicity of AA. Reactive oxygen species (ROS) generation, calcium (Ca2+), and lipid peroxidation were monitored with flow cytometry. Mitochondrial dysfunction was assessed by mitochondrial membrane potential (MMP) detection with JC-1 or tetramethylrhodamine methyl ester (TMRM) staining. Mitochondrial swelling was monitored with MitoTracker Green probe. FeSO4 (Fe2+), FeCl3 (Fe3+), Ferric ammonium citrate (Fe3+), hemin chloride (Fe3+) were used as an iron donor to investigate the effects of iron on AA's anti-tumor activity. The in vivo effects of AA and iron were analyzed in xenograft zebrafish and allograft mouse models. RESULTS High concentrations of AA exhibited cytotoxicity in a panel of cancer cells. AA triggered ROS-dependent non-apoptotic cell death. AA-induced cell death was essentially mediated by the accumulated intracellular Ca2+, which was partly originated from endoplasmic reticulum (ER). Surprisingly, exogenous iron could significantly reverse AA-induced ROS generation, Ca2+ overloaded, and cell death. Especially, the iron supplements significantly impaired the in vivo anti-tumor activity of AA. CONCLUSIONS Our study elucidated the protective roles of iron in ROS/Ca2+ mediated necrosis triggered by AA both in vitro and in vivo, which might shed novel insight into the anti-cancer mechanisms and provide clinical application strategies for AA in cancer treatment.
Collapse
|
7
|
Targeting Protein Kinase C for Cancer Therapy. Cancers (Basel) 2022; 14:cancers14051104. [PMID: 35267413 PMCID: PMC8909172 DOI: 10.3390/cancers14051104] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 12/18/2022] Open
Abstract
Simple Summary The protein kinase C (PKC) family belongs to serine-threonine kinases and consists of several subtypes. Increasing evidence suggests that PKCs are critical players in carcinogenesis. Interestingly, PKCs exert both promotive and suppressive effects on tumor cell growth and metastasis, which have attracted immense attention. Herein, we systematically review the current advances in the structure, regulation and biological functions of PKCs, especially the relationship of PKCs with anti-cancer therapy-induced cell death, including the current knowledge of PKCs function in tumor metabolism and microenvironment. Moreover, we discuss the potential role of PKCs as a target for therapeutic intervention in cancer from basic research and clinical trials. Abstract Protein kinase C (PKC) isoforms, a group of serine-threonine kinases, are important regulators in carcinogenesis. Numerous studies have demonstrated that PKC isoforms exert both positive and negative effects on cancer cell demise. In this review, we systematically summarize the current findings on the architecture, activity regulation and biological functions of PKCs, especially their relationship with anti-cancer therapy-induced cell death. Additionally, we elaborate on current knowledge of the effects of PKCs on tumor metabolism and microenvironment, which have gained increasing attention in oncology-related areas. Furthermore, we underscore the basic experimental and clinical implications of PKCs as a target for cancer therapy to evaluate their therapeutic benefits and potential applications.
Collapse
|
8
|
Understanding the Therapeutic Potential of Ascorbic Acid in the Battle to Overcome Cancer. Biomolecules 2021; 11:biom11081130. [PMID: 34439796 PMCID: PMC8392841 DOI: 10.3390/biom11081130] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/22/2021] [Accepted: 07/28/2021] [Indexed: 02/06/2023] Open
Abstract
Cancer, a fatal disease, is also one of the main causes of death worldwide. Despite various developments to prevent and treat cancer, the side effects of anticancer drugs remain a major concern. Ascorbic acid is an essential vitamin required by our bodies for normal physiological function and also has antioxidant and anticancer activity. Although the body cannot synthesize ascorbic acid, it is abundant in nature through foods and other natural sources and also exists as a nutritional food supplement. In anticancer drug development, ascorbic acid has played an important role by inhibiting the development of cancer through various mechanisms, including scavenging reactive oxygen species (ROS), selectively producing ROS and encouraging their cytotoxicity against tumour cells, preventing glucose metabolism, serving as an epigenetic regulator, and regulating the expression of HIF in tumour cells. Several ascorbic acid analogues have been produced to date for their anticancer and antioxidant activity. The current review summarizes the mechanisms behind ascorbic acid's antitumor activity, presents a compilation of its derivatives and their biological activity as anticancer agents, and discusses delivery systems such as liposomes, nanoparticles against cancer, and patents on ascorbic acid as anticancer agents.
Collapse
|
9
|
Wang G, Cheng X, Zhang J, Liao Y, Jia Y, Qing C. Possibility of inducing tumor cell senescence during therapy. Oncol Lett 2021; 22:496. [PMID: 33981358 PMCID: PMC8108274 DOI: 10.3892/ol.2021.12757] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 02/17/2021] [Indexed: 12/17/2022] Open
Abstract
The treatment options for cancer include surgery, radiotherapy and chemotherapy. However, the traditional approach of high-dose chemotherapy brings tremendous toxic side effects to patients, as well as potentially causing drug resistance. Drug resistance affects cell proliferation, cell senescence and apoptosis. Cellular senescence refers to the process in which cells change from an active proliferative status to a growth-arrested status. There are multiple factors that regulate this process and cellular senescence is activated by various pathways. Senescent cells present specific characteristics, such as an increased cell volume, flattened cell body morphology, ceased cell division and the expression of β-galactosidase. Tumor senescence can be categorized into replicative senescence and premature senescence. Cellular senescence may inhibit the occurrence and development of tumors, serving as an innovative strategy for the treatment of cancer. The present review mainly focuses on senescent biomarkers, methods for the induction of cellular senescence and its possible application in the treatment of cancer.
Collapse
Affiliation(s)
- Guohui Wang
- School of Pharmaceutical Sciences and Yunnan Provincial Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Xianliang Cheng
- School of Pharmaceutical Sciences and Yunnan Provincial Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Jingyi Zhang
- School of Pharmaceutical Sciences and Yunnan Provincial Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Yuan Liao
- School of Pharmaceutical Sciences and Yunnan Provincial Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Yinnong Jia
- School of Pharmaceutical Sciences and Yunnan Provincial Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Chen Qing
- School of Pharmaceutical Sciences and Yunnan Provincial Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| |
Collapse
|
10
|
Li R, Wu K, Li Y, Liang X, Lai KP, Chen J. Integrative pharmacological mechanism of vitamin C combined with glycyrrhizic acid against COVID-19: findings of bioinformatics analyses. Brief Bioinform 2021; 22:1161-1174. [PMID: 32662814 PMCID: PMC7462346 DOI: 10.1093/bib/bbaa141] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/03/2020] [Accepted: 06/08/2020] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE Coronavirus disease 2019 (COVID-19) is a fatal and fast-spreading viral infection. To date, the number of COVID-19 patients worldwide has crossed over six million with over three hundred and seventy thousand deaths (according to the data from World Health Organization; updated on 2 June 2020). Although COVID-19 can be rapidly diagnosed, efficient clinical treatment of COVID-19 remains unavailable, resulting in high fatality. Some clinical trials have identified vitamin C (VC) as a potent compound pneumonia management. In addition, glycyrrhizic acid (GA) is clinically as an anti-inflammatory medicine against pneumonia-induced inflammatory stress. We hypothesized that the combination of VC and GA is a potential option for treating COVID-19. METHODS The aim of this study was to determine pharmacological targets and molecular mechanisms of VC + GA treatment for COVID-19, using bioinformational network pharmacology. RESULTS We uncovered optimal targets, biological processes and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways of VC + GA against COVID-19. Our findings suggested that combinatorial VC and GA treatment for COVID-19 was associated with elevation of immunity and suppression of inflammatory stress, including activation of the T cell receptor signaling pathway, regulation of Fc gamma R-mediated phagocytosis, ErbB signaling pathway and vascular endothelial growth factor signaling pathway. We also identified 17 core targets of VC + GA, which suggest as antimicrobial function. CONCLUSIONS For the first time, our study uncovered the pharmacological mechanism underlying combined VC and GA treatment for COVID-19. These results should benefit efforts to address the most pressing problem currently facing the world.
Collapse
Affiliation(s)
| | - Ka Wu
- Guilin Medical University
| | - Yu Li
- Guilin Medical University
| | | | | | | |
Collapse
|
11
|
Chen L, Song H, Luo Z, Cui H, Zheng W, Liu Y, Li W, Luo F, Liu J. PHLPP2 is a novel biomarker and epigenetic target for the treatment of vitamin C in pancreatic cancer. Int J Oncol 2020; 56:1294-1303. [PMID: 32319585 DOI: 10.3892/ijo.2020.5001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 02/07/2020] [Indexed: 11/06/2022] Open
Abstract
Epigenetic dysregulations are closely associated with the development of pancreatic ductal adenocarcinoma (PDAC), which is one of the most aggressive malignancies and currently has limited treatment options. Vitamin C (VC), an epigenetic mediator, exerts antitumor effects on several types of cancer. However, the clinical application of VC is limited, particularly in PDAC. Thus, to investigate the antitumor effects and explore the potential clinical application of VC in PDAC, the survival of patients from The Cancer Genome Atlas database were analyzed, and proliferation, apoptosis and migration assays were performed in the present study. It was first established that high expression levels of the sodium‑dependent VC transporter 2, a critical VC transporter, predicted a good prognosis in patients with pancreatic adenocarcinoma. It was further confirmed that VC directly inhibited proliferation, induced apoptosis and suppressed migration of human pancreatic cancer cells. Global 5‑hydroxymethylcytosine (5hmC) content was significantly upregulated in pancreatic cancer cells following VC treatment, predominantly relying on ten‑eleven translocation 2. Furthermore, VC could specifically increase 5hmC levels at the promotor region on PH domain leucine‑rich repeat protein phosphatase 2 (PHLPP2) and enhance PHLPP2 expression levels. When PHLPP2 expression levels were knocked down, VC was able to partially overcome the inhibition of pancreatic cancer cells. These results illustrated a novel and precise mechanism of action of epigenetic alterations that underly the inhibition of VC in pancreatic cancer, and emphasized that PHLPP2 may be a new biomarker and epigenetic target for the clinical treatment of VC in PDAC.
Collapse
Affiliation(s)
- Lin Chen
- Department of Digestive Diseases of Huashan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai 200040, P.R. China
| | - Huan Song
- Department of Digestive Diseases of Huashan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai 200040, P.R. China
| | - Zhongguang Luo
- Department of Digestive Diseases of Huashan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai 200040, P.R. China
| | - Haoshu Cui
- Department of Digestive Diseases of Huashan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai 200040, P.R. China
| | - Wanwei Zheng
- Department of Digestive Diseases of Huashan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai 200040, P.R. China
| | - Yao Liu
- Department of Digestive Diseases of Huashan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai 200040, P.R. China
| | - Wenshuai Li
- Department of Digestive Diseases of Huashan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai 200040, P.R. China
| | - Feifei Luo
- Department of Digestive Diseases of Huashan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai 200040, P.R. China
| | - Jie Liu
- Department of Digestive Diseases of Huashan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai 200040, P.R. China
| |
Collapse
|
12
|
Vitamin C controls neuronal necroptosis under oxidative stress. Redox Biol 2019; 29:101408. [PMID: 31926631 PMCID: PMC6938857 DOI: 10.1016/j.redox.2019.101408] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/09/2019] [Accepted: 12/11/2019] [Indexed: 12/31/2022] Open
Abstract
Under physiological conditions, vitamin C is the main antioxidant found in the central nervous system and is found in two states: reduced as ascorbic acid (AA) and oxidized as dehydroascorbic acid (DHA). However, under pathophysiological conditions, AA is oxidized to DHA. The oxidation of AA and subsequent production of DHA in neurons are associated with a decrease in GSH concentrations, alterations in glucose metabolism and neuronal death. To date, the endogenous molecules that act as intrinsic regulators of neuronal necroptosis under conditions of oxidative stress are unknown. Here, we show that treatment with AA regulates the expression of pro- and antiapoptotic genes. Vitamin C also regulates the expression of RIPK1/MLKL, whereas the oxidation of AA in neurons induces morphological alterations consistent with necroptosis and MLKL activation. The activation of necroptosis by AA oxidation in neurons results in bubble formation, loss of membrane integrity, and ultimately, cellular explosion. These data suggest that necroptosis is a target for cell death induced by vitamin C.
Collapse
|
13
|
Dual role of Endoplasmic Reticulum Stress-Mediated Unfolded Protein Response Signaling Pathway in Carcinogenesis. Int J Mol Sci 2019; 20:ijms20184354. [PMID: 31491919 PMCID: PMC6770252 DOI: 10.3390/ijms20184354] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/30/2019] [Accepted: 09/03/2019] [Indexed: 12/24/2022] Open
Abstract
Cancer constitutes a grave problem nowadays in view of the fact that it has become one of the main causes of death worldwide. Poor clinical prognosis is presumably due to cancer cells metabolism as tumor microenvironment is affected by oxidative stress. This event triggers adequate cellular response and thereby creates appropriate conditions for further cancer progression. Endoplasmic reticulum (ER) stress occurs when the balance between an ability of the ER to fold and transfer proteins and the degradation of the misfolded ones become distorted. Since ER is an organelle relatively sensitive to oxidative damage, aforementioned conditions swiftly cause the activation of the unfolded protein response (UPR) signaling pathway. The output of the UPR, depending on numerous factors, may vary and switch between the pro-survival and the pro-apoptotic branch, and hence it displays opposing effects in deciding the fate of the cancer cell. The role of UPR-related proteins in tumorigenesis, such as binding the immunoglobulin protein (BiP) and inositol-requiring enzyme-1α (IRE1α), activating transcription factor 6 (ATF6) or the protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK), has already been specifically described so far. Nevertheless, due to the paradoxical outcomes of the UPR activation as well as gaps in current knowledge, it still needs to be further investigated. Herein we would like to elicit the actual link between neoplastic diseases and the UPR signaling pathway, considering its major branches and discussing its potential use in the development of a novel, anti-cancer, targeted therapy.
Collapse
|
14
|
Wattanathamsan O, Hayakawa Y, Pongrakhananon V. Molecular mechanisms of natural compounds in cell death induction and sensitization to chemotherapeutic drugs in lung cancer. Phytother Res 2019; 33:2531-2547. [DOI: 10.1002/ptr.6422] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/06/2019] [Accepted: 05/26/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Onsurang Wattanathamsan
- Inter‐department program of Pharmacology, Graduate SchoolChulalongkorn University Bangkok Thailand
- Preclinical Toxicity and Efficacy Assessment of Medicines and Chemicals Research ClusterChulalongkorn University Bangkok Thailand
| | - Yoshihiro Hayakawa
- Division of Pathogenic Biochemistry, Department of Bioscience, Institute of Natural MedicineUniversity of Toyama Toyama Japan
| | - Varisa Pongrakhananon
- Preclinical Toxicity and Efficacy Assessment of Medicines and Chemicals Research ClusterChulalongkorn University Bangkok Thailand
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical SciencesChulalongkorn University Bangkok Thailand
| |
Collapse
|
15
|
Irimie AI, Braicu C, Pasca S, Magdo L, Gulei D, Cojocneanu R, Ciocan C, Olariu A, Coza O, Berindan-Neagoe I. Role of Key Micronutrients from Nutrigenetic and Nutrigenomic Perspectives in Cancer Prevention. ACTA ACUST UNITED AC 2019; 55:medicina55060283. [PMID: 31216637 PMCID: PMC6630934 DOI: 10.3390/medicina55060283] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 05/28/2019] [Accepted: 06/13/2019] [Indexed: 02/06/2023]
Abstract
Regarding cancer as a genetic multi-factorial disease, a number of aspects need to be investigated and analyzed in terms of cancer's predisposition, development and prognosis. One of these multi-dimensional factors, which has gained increased attention in the oncological field due to its unelucidated role in risk assessment for cancer, is diet. Moreover, as studies advance, a clearer connection between diet and the molecular alteration of patients is becoming identifiable and quantifiable, thereby replacing the old general view associating specific phenotypical changes with the differential intake of nutrients. Respectively, there are two major fields concentrated on the interrelation between genome and diet: nutrigenetics and nutrigenomics. Nutrigenetics studies the effects of nutrition at the gene level, whereas nutrigenomics studies the effect of nutrients on genome and transcriptome patterns. By precisely evaluating the interaction between the genomic profile of patients and their nutrient intake, it is possible to envision a concept of personalized medicine encompassing nutrition and health care. The list of nutrients that could have an inhibitory effect on cancer development is quite extensive, with evidence in the scientific literature. The administration of these nutrients showed significant results in vitro and in vivo regarding cancer inhibition, although more studies regarding administration in effective doses in actual patients need to be done.
Collapse
Affiliation(s)
- Alexandra Iulia Irimie
- Department of Prosthetic Dentistry and Dental Materials, Division Dental Propaedeutics, Aesthetic, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, 23 Marinescu Street, 40015 Cluj-Napoca, Romania.
| | - Cornelia Braicu
- Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 40015 Cluj-Napoca, Romania.
| | - Sergiu Pasca
- Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 40015 Cluj-Napoca, Romania.
| | - Lorand Magdo
- Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 40015 Cluj-Napoca, Romania.
| | - Diana Gulei
- MEDFUTURE-Research Center for Advanced Medicine, University of Medicine and Pharmacy Iuliu Hatieganu, 23 Marinescu Street, 40015 Cluj-Napoca, Romania.
| | - Roxana Cojocneanu
- Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 40015 Cluj-Napoca, Romania.
| | - Cristina Ciocan
- MEDFUTURE-Research Center for Advanced Medicine, University of Medicine and Pharmacy Iuliu Hatieganu, 23 Marinescu Street, 40015 Cluj-Napoca, Romania.
| | - Andrei Olariu
- Nordlogic Software, 10-12, Rene Descartes Street 400486 Cluj-Napoca, Romania.
| | - Ovidiu Coza
- Department of Radiotherapy with High Energies and Brachytherapy, Oncology Institute "Prof. Dr. Ion Chiricuta", Street Republicii, No. 34-36, 400015 Cluj-Napoca, Romania.
- Department of Radiotherapy and Medical Oncology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Street Louis Pasteur, No. 4, 400349 Cluj-Napoca, Romania.
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 40015 Cluj-Napoca, Romania.
- MEDFUTURE-Research Center for Advanced Medicine, University of Medicine and Pharmacy Iuliu Hatieganu, 23 Marinescu Street, 40015 Cluj-Napoca, Romania.
- Department of Functional Genomics and Experimental Pathology, "Prof. Dr. Ion Chiricuta" The Oncology Institute, 34-36 Republicii Street, 400015 Cluj-Napoca, Romania.
| |
Collapse
|
16
|
Cui J, Zheng X, Yang D, Hu Y, An C, Bo Y, Li H, Zhang Y, Niu M, Xue X, Lu Y, Tang Y, Yin H, Li Z, Gao W, Wu Y. Astragali radix total flavonoid synergizes cisplatin to inhibit proliferation and enhances the chemosensitivity of laryngeal squamous cell carcinoma. RSC Adv 2019; 9:24471-24482. [PMID: 35527911 PMCID: PMC9069756 DOI: 10.1039/c9ra04701h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 07/19/2019] [Indexed: 01/26/2023] Open
Abstract
Laryngeal squamous cell carcinoma (LSCC) is the most common head and neck cancer. Astragali radix extracts play crucial roles in the regulation of cancer progression. However, the role of Astragali radix extracts in LSCC and the related mechanisms remains unclear. Here, we evaluated the inhibitory effects of the combined use of Astragali radix total flavonoid (TFA) and cisplatin (CDDP) on an LSCC mouse model by pharmacodynamics. Ultra-high-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) was employed to define the prototype of TFA in vivo. The potential drug targets were identified through the integrative analysis of LSCC microarrays, RNA sequencing data and the main bioactive component of TFA. Furthermore, a protein–protein interaction network, compound–target network and target–pathway network were constructed based on the prototype and potential drug targets to identify the main targets and pathways. Animal experiments showed that TFA has significant synergistic antitumor activity with cisplatin and attenuates the nephrotoxicity caused by CDDP chemotherapy, improving the survival of LSCC-bearing mice. Using UPLC-MS/MS, we identified 8 constituents of TFA in experimental mice serum: formononetin, ononin, calycosin, calycosin-7-O-β-D-glucoside, 7,2′-dihydroxy-3′,4′-dimethoxyisoflavan, 7,2′-dihydroxy-3′,4′-dimethoxyisoflavaneglucoside, 3-hydroxy-9,10-dimethoxypterocarpan and 9,10-dimethoxyptercarpan-3-O-β-d-glucoside. Integrative analysis predicted 19 target genes for TFA constituents, and the target genes were mainly involved in the EGFR-related cancer signaling, metabolism and oxidative stress. Collectively, these findings highlight the role of TFA in the regulation of LSCC and provide potential targets for a high-efficiency and low-toxicity therapeutic strategy of LSCC. Astragali radix total flavonoid synergizes with cisplatin to inhibit tumorigenesis of laryngeal squamous cell carcinoma.![]()
Collapse
|
17
|
de Carvalho Melo-Cavalcante AA, da Rocha Sousa L, Alencar MVOB, de Oliveira Santos JV, da Mata AMO, Paz MFCJ, de Carvalho RM, Nunes NMF, Islam MT, Mendes AN, Gonçalves JCR, da Silva FCC, Ferreira PMP, de Castro E Sousaa JM. Retinol palmitate and ascorbic acid: Role in oncological prevention and therapy. Biomed Pharmacother 2018; 109:1394-1405. [PMID: 30551390 DOI: 10.1016/j.biopha.2018.10.115] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 10/19/2018] [Accepted: 10/20/2018] [Indexed: 12/14/2022] Open
Abstract
Cancer development has been directly related to oxidative stress. During chemotherapy, some cancer patients use dietary antioxidants to avoid nutritional deficiencies due to cancer treatment. Among the antioxidants consumed, there are vitamins, including retinyl palmitate (PR) and ascorbic acid (AA), which have the capacity to reduce free radicals formation, protect cellular structures and maintain the cellular homeostasis. This systematic review evaluated the antioxidant and antitumor mechanisms of retinol palmitate (a derivative of vitamin A) and/or ascorbic acid (vitamin C) in cancer-related studies. Ninety-seven (97) indexed articles in the databases PubMed and Science Direct, published between 2013 and 2017, including 23 clinical studies (5 for every single compound while 13 in interaction) and 74 non-clinical studies (37 for retinol palmitate, 36 for ascorbic acid and 1 in interaction) were considered. Antioxidant and antitumor effects, with controversies over dosage and route of administration, were observed for the test compounds in their isolated form or associated in clinical studies. Prevention of cancer risks against oxidative damage was seen in lower doses of retinol palmitate and/or vitamin C. However, at high doses, they can generate reactive oxygen species, cytotoxicity and apoptosis in test systems. Non-clinical studies using cell lines have allowed understanding the mechanisms related to antioxidants and antitumor effects of the isolated compounds, however, studies on vitamin interactions, acting as antioxidants and/or antitumor are still rare and controversial. More studies, mainly related to modulation of antineoplastic drugs are needed for understanding the risks and benefits of their use during treatment in order to achieve effectiveness in cancer therapy and patient's quality of life.
Collapse
Affiliation(s)
- Ana Amélia de Carvalho Melo-Cavalcante
- Postgraduate Program in Pharmaceutical Sciences. Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil; Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City-700000, Vietnam
| | - Leonardo da Rocha Sousa
- Postgraduate Program in Pharmaceutical Sciences. Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil; Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City-700000, Vietnam
| | - Marcus Vinícius Oliveira Barros Alencar
- Postgraduate Program in Pharmaceutical Sciences. Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil; Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City-700000, Vietnam
| | - José Victor de Oliveira Santos
- Postgraduate Program in Pharmaceutical Sciences. Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil; Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City-700000, Vietnam
| | - Ana Maria Oliveira da Mata
- Postgraduate Program in Pharmaceutical Sciences. Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil; Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City-700000, Vietnam
| | - Márcia Fernanda Correia Jardim Paz
- Postgraduate Program in Pharmaceutical Sciences. Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil; Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City-700000, Vietnam
| | - Ricardo Melo de Carvalho
- Postgraduate Program in Pharmaceutical Sciences. Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil; Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City-700000, Vietnam
| | - Nárcia Mariana Fonseca Nunes
- Postgraduate Program in Pharmaceutical Sciences. Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil; Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City-700000, Vietnam
| | - Muhammad Torequl Islam
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City-700000, Vietnam; Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City-700000, Vietnam
| | - Anderson Nogueira Mendes
- Department of Biophysics and Physiology of Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil; Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City-700000, Vietnam
| | - Juan Carlos Ramos Gonçalves
- Department of Biochemistry and Pharmacology, Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil; Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City-700000, Vietnam
| | - Felipe Cavalcanti Carneiro da Silva
- Postgraduate Program in Pharmaceutical Sciences. Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil; Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City-700000, Vietnam; Department of Biological Sciences, Federal University of Piauí, Picos, Piauí, 64.067-670, Brazil
| | - Paulo Michel Pinheiro Ferreira
- Postgraduate Program in Pharmaceutical Sciences. Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil; Department of Biophysics and Physiology of Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil; Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City-700000, Vietnam
| | - João Marcelo de Castro E Sousaa
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City-700000, Vietnam; Department of Biological Sciences, Federal University of Piauí, Picos, Piauí, 64.067-670, Brazil.
| |
Collapse
|
18
|
He PJ, Ge RF, Mao WJ, Chung PS, Ahn JC, Wu HT. Oxidative stress induced by carboplatin promotes apoptosis and inhibits migration of HN-3 cells. Oncol Lett 2018; 16:7131-7138. [PMID: 30546448 PMCID: PMC6256460 DOI: 10.3892/ol.2018.9563] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 09/07/2018] [Indexed: 12/16/2022] Open
Abstract
Laryngeal squamous cell carcinoma (LSCC) is currently a serious public health problem in China; thus, it is urgent to identify effective treatment strategies for this disease. Previous studies demonstrated that reactive oxygen species (ROS) serve important roles in the apoptosis of LSCC cells. It has also been indicated that carboplatin (CBDCA), a second-generation platinum compound with broad antineoplastic properties, is able to induce oxidative stress to produce ROS, which in turn promotes apoptosis. Thus, the present study investigated if CBDCA is cytotoxic in LSCC cells due to the oxidative stress caused by ROS. Therefore, an MTT assay was performed to determine the cell viability of HN-3 LSCC cells following treatment with different doses of CBDCA. Subsequently, the expression levels of ROS and the rate of apoptosis/necrosis were evaluated in the cells. Following this, the HN-3 cells were co-treated with CBDCA and glutathione (GSH) or H2O2, followed by an MTT assay, a cell migration assay and western blot analysis. The results demonstrated that CBDCA reduced the viability of HN-3 cells in a time- and dose-dependent manner and promoted the production of ROS and apoptosis at certain doses. Additionally, the combination treatment of CBDCA and H2O2 enhanced the inhibitory effects of CBDCA on cell viability and migration ability, and promoted apoptosis in HN-3 cells; whereas the combined treatment of CBDCA and GSH exerted opposite effects. The results of the present study demonstrated that CBDCA promotes the apoptosis of HN-3 cells through accumulation of ROS, which may provide a novel treatment strategy for treating LSCC.
Collapse
Affiliation(s)
- Pei-Jie He
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Key Clinical Disciplines of Otorhinolaryngology, Eye and ENT Hospital of Fudan University, Shanghai 200031, P.R. China.,Department of Otolaryngology, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, P.R. China
| | - Rui-Feng Ge
- Department of Otolaryngology-Head and Neck Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Wen-Jing Mao
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Key Clinical Disciplines of Otorhinolaryngology, Eye and ENT Hospital of Fudan University, Shanghai 200031, P.R. China
| | - Phil-Sang Chung
- Department of Otolaryngology-Head and Neck Surgery, Beckman Laser Institute Korea, Dankook University, Cheonan, South Chungcheong 330-715, Republic of Korea
| | - Jin-Chul Ahn
- Department of Otolaryngology-Head and Neck Surgery, Beckman Laser Institute Korea, Dankook University, Cheonan, South Chungcheong 330-715, Republic of Korea
| | - Hai-Tao Wu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Key Clinical Disciplines of Otorhinolaryngology, Eye and ENT Hospital of Fudan University, Shanghai 200031, P.R. China
| |
Collapse
|
19
|
Halliwell B. Artefacts with ascorbate and other redox-active compounds in cell culture: epigenetic modifications, and cell killing due to hydrogen peroxide generation in cell culture media. Free Radic Res 2018; 52:907-909. [DOI: 10.1080/10715762.2018.1512749] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Barry Halliwell
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore
| |
Collapse
|
20
|
Zhang J, Wang G, Zhou Y, Chen Y, Ouyang L, Liu B. Mechanisms of autophagy and relevant small-molecule compounds for targeted cancer therapy. Cell Mol Life Sci 2018; 75:1803-1826. [PMID: 29417176 PMCID: PMC11105210 DOI: 10.1007/s00018-018-2759-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 01/15/2018] [Accepted: 01/23/2018] [Indexed: 02/05/2023]
Abstract
Autophagy is an evolutionarily conserved, multi-step lysosomal degradation process for the clearance of damaged or superfluous proteins and organelles. Accumulating studies have recently revealed that autophagy is closely related to a variety of types of cancer; however, elucidation of its Janus role of either tumor-suppressive or tumor-promoting still remains to be discovered. In this review, we focus on summarizing the context-dependent role of autophagy and its complicated molecular mechanisms in different types of cancer. Moreover, we discuss a series of small-molecule compounds targeting autophagy-related proteins or the autophagic process for potential cancer therapy. Taken together, these findings would shed new light on exploiting the intricate mechanisms of autophagy and relevant small-molecule compounds as potential anti-cancer drugs to improve targeted cancer therapy.
Collapse
Affiliation(s)
- Jin Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Guan Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Yuxin Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
- College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yi Chen
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Liang Ouyang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Bo Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China.
| |
Collapse
|
21
|
Domith I, Socodato R, Portugal CC, Munis AF, Duarte-Silva AT, Paes-de-Carvalho R. Vitamin C modulates glutamate transport and NMDA receptor function in the retina. J Neurochem 2017; 144:408-420. [PMID: 29164598 DOI: 10.1111/jnc.14260] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 11/09/2017] [Accepted: 11/11/2017] [Indexed: 12/27/2022]
Abstract
Vitamin C (in the reduced form ascorbate or in the oxidized form dehydroascorbate) is implicated in signaling events throughout the central nervous system (CNS). In the retina, a high-affinity transport system for ascorbate has been described and glutamatergic signaling has been reported to control ascorbate release. Here, we investigated the modulatory role played by vitamin C upon glutamate uptake and N-methyl-d-aspartate (NMDA) receptor activation in cultured retinal cells or in intact retinal tissue using biochemical and imaging techniques. We show that both forms of vitamin C, ascorbate or dehydroascorbate, promote an accumulation of extracellular glutamate by a mechanism involving the inhibition of glutamate uptake. This inhibition correlates with the finding that ascorbate promotes a decrease in cell surface levels of the neuronal glutamate transporter excitatory amino acid transporter 3 in retinal neuronal cultures. Interestingly, vitamin C is prone to increase the activity of NMDA receptors but also promotes a decrease in glutamate-stimulated [3 H] MK801 binding and decreases cell membrane content of NMDA receptor glutamate ionotropic receptor subunit 1 (GluN1) subunits. Both compounds were also able to increase cAMP response element-binding protein phosphorylation in neuronal nuclei in a glutamate receptor and calcium/calmodulin kinase-dependent manner. Moreover, the effect of ascorbate is not blocked by sulfinpyrazone and then does not depend on its uptake by retinal cells. Overall, these data indicate a novel molecular and functional target for vitamin C impacting on glutamate signaling in retinal neurons.
Collapse
Affiliation(s)
- Ivan Domith
- Program of Neurosciences, Institute of Biology, Fluminense Federal University, Niterói, RJ, Brazil
| | - Renato Socodato
- Instituto de Investigação e Inovação em Saúde and Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Camila C Portugal
- Instituto de Investigação e Inovação em Saúde and Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Andressa F Munis
- Program of Neurosciences, Institute of Biology, Fluminense Federal University, Niterói, RJ, Brazil
| | - Aline T Duarte-Silva
- Program of Neurosciences, Institute of Biology, Fluminense Federal University, Niterói, RJ, Brazil
| | - Roberto Paes-de-Carvalho
- Program of Neurosciences, Institute of Biology, Fluminense Federal University, Niterói, RJ, Brazil.,Department of Neurobiology, Institute of Biology, Fluminense Federal University, Niterói, RJ, Brazil
| |
Collapse
|
22
|
Li X, Jiang Z, Feng J, Zhang X, Wu J, Chen W. 2-Acetylamino-3-[4-(2-acetylamino-2-carboxyethylsulfanylcarbonylamino) phenyl carbamoylsulfanyl] propionic acid, a glutathione reductase inhibitor, induces G 2/M cell cycle arrest through generation of thiol oxidative stress in human esophageal cancer cells. Oncotarget 2017; 8:61846-61860. [PMID: 28977909 PMCID: PMC5617469 DOI: 10.18632/oncotarget.18705] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 05/22/2017] [Indexed: 02/07/2023] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is a highly malignant cancer with poor response to both of chemotherapy and radiotherapy. 2-Acetylamino-3-[4-(2-acetylamino-2-carboxyethylsulfanylcarbonylamino) phenyl carbamoylsulfanyl] propionic acid (2-AAPA), an irreversible inhibitor of glutathione reductase (GR), is able to induce intracellular oxidative stress, and has shown anticancer activity in many cancer cell lines. In this study, we investigated the effects of 2-AAPA on the cell proliferation, cell cycle and apoptosis and aimed to explore its mechanism of action in human esophageal cancer TE-13 cells. It was found that 2-AAPA inhibited growth of ESCC cells in a dose-dependent manner and it did not deplete reduced glutathione (GSH), but significantly increased the oxidized form glutathione (GSSG), resulting in decreased GSH/GSSG ratio. In consequence, significant reactive oxygen species (ROS) production was observed. The flow cytometric analysis revealed that 2-AAPA inhibited growth of esophageal cancer cells through arresting cell cycle in G2/M phase, but apoptosis-independent mechanism. The G2/M arrest was partially contributed by down-regulation of protein expression of Cdc-25c and up-regulation of phosphorylated Cdc-2 (Tyr15), Cyclin B1 (Ser147) and p53. Meanwhile, 2-AAPA-induced thiol oxidative stress led to increased protein S-glutathionylation, which resulted in α-tubulin S-glutathionylation-dependent depolymerization of microtubule in the TE-13 cells. In conclusion, we identified that 2-AAPA as an effective thiol oxidative stress inducer and proliferation of TE-13 cells were suppressed by G2/M phase cell cycle arrest, mainly, through α-tubulin S-glutathionylation-mediated microtubule depolymerization. Our results may introduce new target and approach for esophageal cancer therapy through generation of GR-mediated thiol oxidative stress.
Collapse
Affiliation(s)
- Xia Li
- Zhejiang Cancer Research Institute, Zhejiang Cancer Hospital, Zhejiang Cancer Center, Hangzhou, Zhejiang 310022, China.,Zhejiang Key Laboratory of Diagnosis and Treatment Technology on Thoracic Oncology (Lung and Esophagus), Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China
| | - Zhiming Jiang
- Zhejiang Cancer Research Institute, Zhejiang Cancer Hospital, Zhejiang Cancer Center, Hangzhou, Zhejiang 310022, China.,Zhejiang Key Laboratory of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China
| | - Jianguo Feng
- Zhejiang Cancer Research Institute, Zhejiang Cancer Hospital, Zhejiang Cancer Center, Hangzhou, Zhejiang 310022, China.,Zhejiang Key Laboratory of Diagnosis and Treatment Technology on Thoracic Oncology (Lung and Esophagus), Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China
| | | | - Junzhou Wu
- Zhejiang Cancer Research Institute, Zhejiang Cancer Hospital, Zhejiang Cancer Center, Hangzhou, Zhejiang 310022, China.,Zhejiang Key Laboratory of Diagnosis and Treatment Technology on Thoracic Oncology (Lung and Esophagus), Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China
| | - Wei Chen
- Zhejiang Cancer Research Institute, Zhejiang Cancer Hospital, Zhejiang Cancer Center, Hangzhou, Zhejiang 310022, China.,Zhejiang Key Laboratory of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China
| |
Collapse
|
23
|
Yang Y, Lu X, Liu Q, Dai Y, Zhu X, Wen Y, Xu J, Lu Y, Zhao D, Chen X, Li N. Palmitoyl ascorbate and doxorubicin co-encapsulated liposome for synergistic anticancer therapy. Eur J Pharm Sci 2017; 105:219-229. [PMID: 28526602 DOI: 10.1016/j.ejps.2017.05.038] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 04/22/2017] [Accepted: 05/16/2017] [Indexed: 01/12/2023]
Abstract
Combination therapy with two drugs and nanoparticle-based drug delivery systems are widely applied to reduce the adverse effects of traditional treatment by chemotherapeutic drugs. Palmitoyl ascorbate (PA) as a lipophilic derivative of ascorbic acid shows the advantages in cancer treatment. The aim of the study was to prepare a doxorubicin (DOX) and PA co-loaded liposome to synergistically treat tumor and effectively alleviate the toxicity caused by DOX. The effects were evaluated by in vitro and in vivo studies. The liposomes (weight ratio of DOX to PA=1:20, DOX1/PA20-LPs) exhibited the strongest synergistic effects, combination index was 0.38, 0.56, and 0.05 in MCF-7, HepG2, and A549 cells, respectively. In vitro cellular uptake study, the intercellular concentration of DOX in DOX1/PA20-LPs was 2.5-fold greater than DOX loaded liposome, and DOX1/PA20-LPs was taken in not only by macropinocytosis, but also by clathrin-mediated endocytosis. Intracellular distribution experiment showed that DOX1/PA20-LPs efficiently concentrated in the nucleus. In vivo studies indicated that co-encapsulated liposome not only showed the strongest antitumor ability by tumor growth suppression, but also significantly enhanced the safety by the change of body weight and reduced damages to other tissues (evidenced by histopathology study). These results indicated that DOX and PA co-delivery liposome successfully enhanced the anticancer efficacy and mitigated the toxicities of DOX, which displayed potential for clinical application with enhanced safety and efficacy.
Collapse
Affiliation(s)
- Yue Yang
- Clinical Pharmacokinetics Laboratory, China Pharmaceutical University, Nanjing, Jiangsu Province 211198, China
| | - Xiaoyu Lu
- Clinical Pharmacokinetics Laboratory, China Pharmaceutical University, Nanjing, Jiangsu Province 211198, China
| | - Qi Liu
- Clinical Pharmacokinetics Laboratory, China Pharmaceutical University, Nanjing, Jiangsu Province 211198, China
| | - Yu Dai
- Clinical Pharmacokinetics Laboratory, China Pharmaceutical University, Nanjing, Jiangsu Province 211198, China
| | - Xiaojie Zhu
- Clinical Pharmacokinetics Laboratory, China Pharmaceutical University, Nanjing, Jiangsu Province 211198, China
| | - Yanli Wen
- Department of Pharmacy, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, China
| | - Jiaqiu Xu
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, Jiangsu Province 210009, China
| | - Yang Lu
- Clinical Pharmacokinetics Laboratory, China Pharmaceutical University, Nanjing, Jiangsu Province 211198, China
| | - Di Zhao
- Clinical Pharmacokinetics Laboratory, China Pharmaceutical University, Nanjing, Jiangsu Province 211198, China
| | - Xijing Chen
- Clinical Pharmacokinetics Laboratory, China Pharmaceutical University, Nanjing, Jiangsu Province 211198, China.
| | - Ning Li
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, Jiangsu Province 210009, China.
| |
Collapse
|