1
|
Abdi SMY, Al-Bakri SSM, Nordin N. Insights on the Characteristics and Therapeutic Potential of Mesenchymal Stem Cell-derived Exosomes for Mitigation of Alzheimer's Disease's Pathogenicity: A Systematic Review. Cell Biochem Biophys 2024:10.1007/s12013-024-01598-x. [PMID: 39436580 DOI: 10.1007/s12013-024-01598-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2024] [Indexed: 10/23/2024]
Abstract
Alzheimer's disease (AD) remains a progressive neurodegenerative disease with no cure. Treatment of AD relies on administering drugs that only subside the symptoms. In recent studies, mesenchymal stem cell (MSC)-exosomes have been marked to possess therapeutic potential for treating AD. This study aims to systematically review and analyse findings that focus on the isolation, characterisation, and sources of MSC-derived exosomes used to unravel the therapeutic potential of these exosomes targeting AD using in vitro and in vivo models. It is hypothesised that MSC-exosomes exhibit high therapeutic potential for AD treatment by exerting various modes of action. PubMed, Scopus, and Medline were used to find relevant published works from January 2016 until December 2020, using assigned keywords including "Alzheimer's disease", "secretome", and "exosomes". Only research articles meeting the predefined inclusion/exclusion criteria were selected and analysed. The risk of bias was assessed using the Office of Health Assessment and Translation tool (OHAT). A total of 17 eligible in vivo and in vitro studies were included in this review. Bone marrow-derived stem cells (BMSCs) were the most used source for exosome isolation, even though studies on exosomes from adipose-derived stem cells (ADSCs) and human umbilical cord stem cells (HUCSCs) provide more information on the characteristics. When the risk of bias was assessed, the studies presented various levels of biases. Notably, the in vitro and in vivo studies revealed neuroprotective properties of MSC-exosomes through different modes of action to alleviate AD pathology. Our review discovered that most MSC exosomes could degrade Aβ plaques, enhance neurogenesis, extenuate neuroinflammatory response through microglial activation, regulate apoptosis and reduce oxidative stress. Delivery of exosomal micro-RNAs was also found to reduce neuroinflammation. Findings from this review provided convincing systematic evidence highlighting the therapeutic properties of MSC-derived exosomes as a prospective source for cell-free (acellular) therapy in treating AD.
Collapse
Affiliation(s)
- Sarah Mohammed Yousuf Abdi
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia
| | - Siti Sarah Mustaffa Al-Bakri
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia
| | - Norshariza Nordin
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia.
- Malaysian Research Institute on Ageing (MyAgeing™), Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
- Genetics & Regenerative Medicine (ReGEN) Research Group, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia.
| |
Collapse
|
2
|
Chaurasia R, Kaur BP, Pandian N, Pahari S, Das S, Bhattacharya U, Majood M, Mukherjee M. Leveraging the Physicochemical Attributes of Biomimetic Hydrogel Nanocomposites in Stem Cell Differentiation. Biomacromolecules 2024. [PMID: 39277809 DOI: 10.1021/acs.biomac.4c00779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
The field of tissue engineering has witnessed significant advancements with the advent of hydrogel nanocomposites (HNC), emerging as a highly promising platform for regenerative medicine. HNCs provide a versatile platform that significantly enhances the differentiation of stem cells into specific cell lineages, making them highly suitable for tissue engineering applications. By incorporating nanoparticles, the mechanical properties of hydrogels, such as elasticity, porosity, and stiffness, are improved, addressing common challenges such as short-term stability, cytotoxicity, and scalability. These nanocomposites also exhibit enhanced biocompatibility and bioavailability, which are crucial to their effectiveness in clinical applications. Furthermore, HNCs are responsive to various triggers, allowing for precise control over their chemical properties, which is beneficial in creating 3D microenvironments, promoting wound healing, and enabling controlled drug delivery systems. This review provides a comprehensive overview of the production methods of HNCs and the factors influencing their physicochemical and biological properties, particularly in relation to stem cell differentiation and tissue repair. Additionally, it discusses the challenges in developing HNCs and highlights their potential to transform the field of regenerative medicine through improved mechanotransduction and controlled release systems.
Collapse
Affiliation(s)
- Radhika Chaurasia
- Amity Institute of Click Chemistry Research and Studies, Amity University, Sector-125, Noida, Uttar Pradesh 201313, India
| | - Bani Preet Kaur
- Amity Institute of Click Chemistry Research and Studies, Amity University, Sector-125, Noida, Uttar Pradesh 201313, India
| | - Nikhita Pandian
- Amity Institute of Click Chemistry Research and Studies, Amity University, Sector-125, Noida, Uttar Pradesh 201313, India
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh 201301, India
| | - Siddhartha Pahari
- Department of Chemical Engineering & Applied Chemistry, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - Susmita Das
- Amity Institute of Click Chemistry Research and Studies, Amity University, Sector-125, Noida, Uttar Pradesh 201313, India
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh 201301, India
| | - Uddipta Bhattacharya
- Amity Institute of Click Chemistry Research and Studies, Amity University, Sector-125, Noida, Uttar Pradesh 201313, India
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh 201301, India
| | - Misba Majood
- Amity Institute of Click Chemistry Research and Studies, Amity University, Sector-125, Noida, Uttar Pradesh 201313, India
- The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Monalisa Mukherjee
- Amity Institute of Click Chemistry Research and Studies, Amity University, Sector-125, Noida, Uttar Pradesh 201313, India
| |
Collapse
|
3
|
Li J, Liu Y, Zhang R, Yang Q, Xiong W, He Y, Ye Q. Insights into the role of mesenchymal stem cells in cutaneous medical aesthetics: from basics to clinics. Stem Cell Res Ther 2024; 15:169. [PMID: 38886773 PMCID: PMC11184751 DOI: 10.1186/s13287-024-03774-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/27/2024] [Indexed: 06/20/2024] Open
Abstract
With the development of the economy and the increasing prevalence of skin problems, cutaneous medical aesthetics are gaining more and more attention. Skin disorders like poor wound healing, aging, and pigmentation have an impact not only on appearance but also on patients with physical and psychological issues, and even impose a significant financial burden on families and society. However, due to the complexities of its occurrence, present treatment options cannot produce optimal outcomes, indicating a dire need for new and effective treatments. Mesenchymal stem cells (MSCs) and their secretomics treatment is a new regenerative medicine therapy that promotes and regulates endogenous stem cell populations and/or replenishes cell pools to achieve tissue homeostasis and regeneration. It has demonstrated remarkable advantages in several skin-related in vivo and in vitro investigations, aiding in the improvement of skin conditions and the promotion of skin aesthetics. As a result, this review gives a complete description of recent scientific breakthroughs in MSCs for skin aesthetics and the limitations of their clinical applications, aiming to provide new ideas for future research and clinical transformation.
Collapse
Affiliation(s)
- Junyi Li
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ye Liu
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Rui Zhang
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Qianyu Yang
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Wei Xiong
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Yan He
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, 430030, China.
| | - Qingsong Ye
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
4
|
Bingnan W, Jiao T, Ghorbani A, Baghei S. Enhancing regenerative potential: A comprehensive review of stem cell transplantation for sports-related neuronal injuries, with a focus on spinal cord injuries and peripheral nervous system damage. Tissue Cell 2024; 88:102429. [PMID: 38833939 DOI: 10.1016/j.tice.2024.102429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/06/2024]
Abstract
Neuronal injuries, as one of the consequences of sports-related incidents, exert a profound influence on the athletes' future, potentially leading to complete immobility and impeding their athletic pursuits. In cases of severe damage inflicted upon the spinal cord (SC) and peripheral nervous systems (PNS), the regenerative process is notably compromised, rendering it essentially inefficient. Among the pivotal therapeutic approaches for the enhancement and prevention of secondary SC injuries (SCI), stem cell transplantation (SCT) stands out prominently. Stem cells, whether directly involved in replacement and reconstruction or indirectly through modification and secretion of crucial bioenvironmental factors, engage in the intricate process of tissue regeneration. Stem cells, through the secretion of neurotrophic factors (NTFs) (aiming to modulate the immune system), reduction of inflammation, axonal growth stimulation, and myelin formation, endeavor to facilitate the regeneration of damaged SC tissue. The fundamental challenges of this approach encompass the proper selection of suitable stem cell candidates for transplantation and the establishment of an appropriate microenvironment conducive to SC repair. In this article, an attempt has been made to explore sports-related injuries, particularly SCI, to comprehensively review innovative methods for treating SCI, and to address the existing challenges. Additionally, some of the stem cells used in neural injuries and the process of their utilization have been discussed.
Collapse
Affiliation(s)
- Wang Bingnan
- Department of P.E, Central South University, Changsha 410083, China
| | - Tong Jiao
- The High School Attached to Hunan Normal University Bocai Experimental Middle School,Changsha 410208, China.
| | - A Ghorbani
- Biotechnology Department, Islamic Azad University, Isfahan, Iran
| | - Sh Baghei
- Biotechnology Department, Islamic Azad University, Isfahan, Iran.
| |
Collapse
|
5
|
Shikarkhane V, Dodwad V, Bhosale N, Patankar SA, Patankar A, Nair VS. Comparative Evaluation of the Differentiation and Proliferation Potential of Dental Pulp Stem Cells on Hydroxyapatite/Beta-Tricalcium Bone Graft and Bovine Bone Graft: An In Vitro Study. Cureus 2024; 16:e62351. [PMID: 39006559 PMCID: PMC11246762 DOI: 10.7759/cureus.62351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2024] [Indexed: 07/16/2024] Open
Abstract
BACKGROUND Stem cells of mesenchymal origin have good proliferative capacity when compared to other stem cell types. Dental pulp stem cells (DPSCs) are a variety of mesenchymal cells obtained from the pulpal tissue of teeth and are abundantly available and easy to obtain. DPSCs facilitate and improve the formation of new bone using different bone graft scaffolds. This present study aims to evaluate and compare the osteogenic potential of DPSCs on alloplastic and xenogeneic bone grafts. MATERIALS AND METHODS Hydroxyapatite and beta-tricalcium bone graft and bovine bone graft were used in a triplicate manner in the laboratory. DPSCs were obtained from the pulpal tissue of extracted third molars in the laboratory. The cytotoxicity, osteogenic potential, and difference in the rate of proliferation of mesenchymal cells on the biomaterials were assessed. RESULTS Darker purple staining was seen in the case of hydroxyapatite/beta-tricalcium bone graft on MTT colorimetric assay stating that there was an increase in cell viability in hydroxyapatite/beta-tricalcium bone graft as compared to the bovine bone graft. Hydroxyapatite/beta-tricalcium bone graft showed more osteogenic potential as compared to the bovine bone graft as a higher degree of red staining was seen in Alizarin staining. CONCLUSION Higher cell viability and higher osteogenic proliferation and differentiation were seen on the hydroxyapatite/beta-tricalcium bone graft compared to the bovine bone scaffold.
Collapse
Affiliation(s)
| | - Vidya Dodwad
- Periodontology, Bharati Vidyapeeth Dental College & Hospital, Pune, IND
| | - Nishita Bhosale
- Periodontology, Bharati Vidyapeeth Dental College & Hospital, Pune, IND
| | - Swapna A Patankar
- Oral Pathology and Microbiology, Bharati Vidyapeeth Dental College & Hospital, Pune, IND
| | - Amod Patankar
- Oral and Maxillofacial Surgery, Bharati Vidyapeeth Dental College & Hospital, Pune, IND
| | - Vivek S Nair
- Oral and Maxillofacial Surgery, Bharati Vidyapeeth Dental College & Hospital, Pune, IND
| |
Collapse
|
6
|
Gao Y, Wang Y, Wu Y, Liu S. Biomaterials targeting the microenvironment for spinal cord injury repair: progression and perspectives. Front Cell Neurosci 2024; 18:1362494. [PMID: 38784712 PMCID: PMC11111957 DOI: 10.3389/fncel.2024.1362494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/17/2024] [Indexed: 05/25/2024] Open
Abstract
Spinal cord injury (SCI) disrupts nerve pathways and affects sensory, motor, and autonomic function. There is currently no effective treatment for SCI. SCI occurs within three temporal periods: acute, subacute, and chronic. In each period there are different alterations in the cells, inflammatory factors, and signaling pathways within the spinal cord. Many biomaterials have been investigated in the treatment of SCI, including hydrogels and fiber scaffolds, and some progress has been made in the treatment of SCI using multiple materials. However, there are limitations when using individual biomaterials in SCI treatment, and these limitations can be significantly improved by combining treatments with stem cells. In order to better understand SCI and to investigate new strategies for its treatment, several combination therapies that include materials combined with cells, drugs, cytokines, etc. are summarized in the current review.
Collapse
Affiliation(s)
- Yating Gao
- Department of Neurosurgery, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Yu Wang
- Department of Neurosurgery, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yaqi Wu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shengwen Liu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
7
|
Bakinowska E, Kiełbowski K, Boboryko D, Bratborska AW, Olejnik-Wojciechowska J, Rusiński M, Pawlik A. The Role of Stem Cells in the Treatment of Cardiovascular Diseases. Int J Mol Sci 2024; 25:3901. [PMID: 38612710 PMCID: PMC11011548 DOI: 10.3390/ijms25073901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death and include several vascular and cardiac disorders, such as atherosclerosis, coronary artery disease, cardiomyopathies, and heart failure. Multiple treatment strategies exist for CVDs, but there is a need for regenerative treatment of damaged heart. Stem cells are a broad variety of cells with a great differentiation potential that have regenerative and immunomodulatory properties. Multiple studies have evaluated the efficacy of stem cells in CVDs, such as mesenchymal stem cells and induced pluripotent stem cell-derived cardiomyocytes. These studies have demonstrated that stem cells can improve the left ventricle ejection fraction, reduce fibrosis, and decrease infarct size. Other studies have investigated potential methods to improve the survival, engraftment, and functionality of stem cells in the treatment of CVDs. The aim of the present review is to summarize the current evidence on the role of stem cells in the treatment of CVDs, and how to improve their efficacy.
Collapse
Affiliation(s)
- Estera Bakinowska
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (E.B.); (K.K.); (D.B.); (J.O.-W.); (M.R.)
| | - Kajetan Kiełbowski
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (E.B.); (K.K.); (D.B.); (J.O.-W.); (M.R.)
| | - Dominika Boboryko
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (E.B.); (K.K.); (D.B.); (J.O.-W.); (M.R.)
| | | | - Joanna Olejnik-Wojciechowska
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (E.B.); (K.K.); (D.B.); (J.O.-W.); (M.R.)
| | - Marcin Rusiński
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (E.B.); (K.K.); (D.B.); (J.O.-W.); (M.R.)
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (E.B.); (K.K.); (D.B.); (J.O.-W.); (M.R.)
| |
Collapse
|
8
|
Diwan R, Bhatt HN, Beaven E, Nurunnabi M. Emerging delivery approaches for targeted pulmonary fibrosis treatment. Adv Drug Deliv Rev 2024; 204:115147. [PMID: 38065244 PMCID: PMC10787600 DOI: 10.1016/j.addr.2023.115147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/02/2023] [Accepted: 11/29/2023] [Indexed: 01/01/2024]
Abstract
Pulmonary fibrosis (PF) is a progressive, and life-threatening interstitial lung disease which causes scarring in the lung parenchyma and thereby affects architecture and functioning of lung. It is an irreversible damage to lung functioning which is related to epithelial cell injury, immense accumulation of immune cells and inflammatory cytokines, and irregular recruitment of extracellular matrix. The inflammatory cytokines trigger the differentiation of fibroblasts into activated fibroblasts, also known as myofibroblasts, which further increase the production and deposition of collagen at the injury sites in the lung. Despite the significant morbidity and mortality associated with PF, there is no available treatment that efficiently and effectively treats the disease by reversing their underlying pathologies. In recent years, many therapeutic regimens, for instance, rho kinase inhibitors, Smad signaling pathway inhibitors, p38, BCL-xL/ BCL-2 and JNK pathway inhibitors, have been found to be potent and effective in treating PF, in preclinical stages. However, due to non-selectivity and non-specificity, the therapeutic molecules also result in toxicity mediated severe side effects. Hence, this review demonstrates recent advances on PF pathology, mechanism and targets related to PF, development of various drug delivery systems based on small molecules, RNAs, oligonucleotides, peptides, antibodies, exosomes, and stem cells for the treatment of PF and the progress of various therapeutic treatments in clinical trials to advance PF treatment.
Collapse
Affiliation(s)
- Rimpy Diwan
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, TX 79902, United States; Department of Biomedical Engineering, College of Engineering, The University of Texas El Paso, El Paso, TX 79968, United States
| | - Himanshu N Bhatt
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, TX 79902, United States; Department of Biomedical Engineering, College of Engineering, The University of Texas El Paso, El Paso, TX 79968, United States
| | - Elfa Beaven
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, TX 79902, United States; Department of Biomedical Engineering, College of Engineering, The University of Texas El Paso, El Paso, TX 79968, United States
| | - Md Nurunnabi
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, TX 79902, United States; Department of Biomedical Engineering, College of Engineering, The University of Texas El Paso, El Paso, TX 79968, United States; The Border Biomedical Research Center, The University of Texas El Paso, El Paso, TX 79968, United States.
| |
Collapse
|
9
|
Taeb S, Rostamzadeh D, Mafi S, Mofatteh M, Zarrabi A, Hushmandi K, Safari A, Khodamoradi E, Najafi M. Update on Mesenchymal Stem Cells: A Crucial Player in Cancer Immunotherapy. Curr Mol Med 2024; 24:98-113. [PMID: 36573062 DOI: 10.2174/1566524023666221226143814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 10/17/2022] [Accepted: 10/17/2022] [Indexed: 12/28/2022]
Abstract
The idea of cancer immunotherapy has spread, and it has made tremendous progress with the advancement of new technology. Immunotherapy, which serves to assist the natural defenses of the body in eradicating cancerous cells, is a remarkable achievement that has revolutionized both cancer research and cancer treatments. Currently, the use of stem cells in immunotherapy is widespread and shares a special characteristic, including cancer cell migration, bioactive component release, and immunosuppressive activity. In the context of cancer, mesenchymal stem cells (MSCs) are rapidly being identified as vital stromal regulators of tumor progression. MSCs therapy has been implicated in treating a wide range of diseases, including bone damage, autoimmune diseases, and particularly hematopoietic abnormalities, providing stem cell-based therapy with an extra dimension. Moreover, the implication of MSCs does not have ethical concerns, and the complications known in pluripotent and totipotent stem cells are less common in MSCs. MSCs have a lot of distinctive characteristics that, when coupled, make them excellent for cellular-based immunotherapy and as vehicles for gene and drug delivery in a variety of inflammations and malignancies. MSCs can migrate to the inflammatory site and exert immunomodulatory responses via cell-to-cell contacts with lymphocytes by generating soluble substances. In the current review, we discuss the most recent research on the immunological characteristics of MSCs, their use as immunomodulatory carriers, techniques for approving MSCs to adjust their immunological contour, and their usages as vehicles for delivering therapeutic as well as drugs and genes engineered to destroy tumor cells.
Collapse
Affiliation(s)
- Shahram Taeb
- Department of Radiology, School of Paramedical Sciences, Guilan University of Medical Sciences, Rasht, Iran
| | - Davoud Rostamzadeh
- Department of Clinical Biochemistry, Yasuj University of Medical Sciences, Yasuj, Iran
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Sahar Mafi
- Department of Clinical Biochemistry, Yasuj University of Medical Sciences, Yasuj, Iran
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Mohammad Mofatteh
- Sir William Dunn School of Pathology, Medical Sciences Division, University of Oxford, South Parks Road, Oxford OX1 3RE, United Kingdom
- Lincoln College, University of Oxford, Turl Street, Oxford OX1 3DR, United Kingdom
| | - Ali Zarrabi
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, Istanbul, Turkey
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul, Turkey
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Arash Safari
- Department of Radiology, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ehsan Khodamoradi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
10
|
Huang RL, Li Q, Ma JX, Atala A, Zhang Y. Body fluid-derived stem cells - an untapped stem cell source in genitourinary regeneration. Nat Rev Urol 2023; 20:739-761. [PMID: 37414959 DOI: 10.1038/s41585-023-00787-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2023] [Indexed: 07/08/2023]
Abstract
Somatic stem cells have been obtained from solid organs and tissues, including the bone marrow, placenta, corneal stroma, periosteum, adipose tissue, dental pulp and skeletal muscle. These solid tissue-derived stem cells are often used for tissue repair, disease modelling and new drug development. In the past two decades, stem cells have also been identified in various body fluids, including urine, peripheral blood, umbilical cord blood, amniotic fluid, synovial fluid, breastmilk and menstrual blood. These body fluid-derived stem cells (BFSCs) have stemness properties comparable to those of other adult stem cells and, similarly to tissue-derived stem cells, show cell surface markers, multi-differentiation potential and immunomodulatory effects. However, BFSCs are more easily accessible through non-invasive or minimally invasive approaches than solid tissue-derived stem cells and can be isolated without enzymatic tissue digestion. Additionally, BFSCs have shown good versatility in repairing genitourinary abnormalities in preclinical models through direct differentiation or paracrine mechanisms such as pro-angiogenic, anti-apoptotic, antifibrotic, anti-oxidant and anti-inflammatory effects. However, optimization of protocols is needed to improve the efficacy and safety of BFSC therapy before therapeutic translation.
Collapse
Affiliation(s)
- Ru-Lin Huang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian-Xing Ma
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Anthony Atala
- Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Yuanyuan Zhang
- Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
11
|
Li Y, Shi G, Liang W, Shang H, Li H, Han Y, Zhao W, Bai L, Qin C. Allogeneic Adipose-Derived Mesenchymal Stem Cell Transplantation Alleviates Atherosclerotic Plaque by Inhibiting Ox-LDL Uptake, Inflammatory Reaction and Endothelial Damage in Rabbits. Cells 2023; 12:1936. [PMID: 37566014 PMCID: PMC10417209 DOI: 10.3390/cells12151936] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 07/15/2023] [Accepted: 07/19/2023] [Indexed: 08/12/2023] Open
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease of arteries fueled by lipids. It is a major cause of cardiovascular morbidity and mortality. Mesenchymal stem cells have been used for the treatment of atherosclerotic lesions. Adipose-derived stem cells (ADSCs) have been shown to regulate the activation state of macrophages and exhibit anti-inflammatory capabilities. However, the effect of allogeneic ADSCs in the treatment of AS have not been investigated. In this study, the early treatment effect and preliminary mechanism analysis of allogeneic rabbit ADSCs intravenous transplantation were investigated in a high-fat diet rabbit model. The polarization mechanism of rabbit ADSCs on the macrophage was further analyzed in vitro. Compared with the model group, blood lipid levels declined, the plaque area, oxidized low-density lipoprotein (ox-LDL) uptake, scavenger receptor A1 and cluster of differentiation (CD) 36 levels were all significantly reduced, and the accumulation of inflammatory M1 macrophages, apoptosis, interleukin (IL)-6 and tumor necrosis factor (TNF)-α expression were decreased. The endothelial cells (CD31), M2 macrophages, IL-10 and the transforming growth factor (TGF)-β levels increased. In vitro, ADSCs can promote the M1 macrophage phenotypic switch toward the M2 macrophage through their secreted exosomes, and the main mechanism includes increasing arginase 1 expression and IL-10 secretion, declining inducible nitric oxide synthase (iNOS) expression and TNF-α secretion, and activating the STAT6 pathway. Therefore, allogeneic rabbit ADSC transplantation can transmigrate to the aortic atherosclerotic plaques and show a good effect in lowering blood lipids and alleviating atherosclerotic plaque in the early stage of AS by inhibiting ox-LDL uptake, inflammatory response, and endothelial damage.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Chuan Qin
- NHC Key Laboratory of Human Diseases Comparative Medicine, National Human Diseases Animal Model Resource Center, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Medical Laboratory Animal Science, Chinese Academy of Medical Science (CAMS) & Comparative Medicine Centre, Peking Union Medical College (PUMC), Beijing 100021, China
| |
Collapse
|
12
|
A Simplified and Effective Approach for the Isolation of Small Pluripotent Stem Cells Derived from Human Peripheral Blood. Biomedicines 2023; 11:biomedicines11030787. [PMID: 36979766 PMCID: PMC10045871 DOI: 10.3390/biomedicines11030787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/24/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
Pluripotent stem cells are key players in regenerative medicine. Embryonic pluripotent stem cells, despite their significant advantages, are associated with limitations such as their inadequate availability and the ethical dilemmas in their isolation and clinical use. The discovery of very small embryonic-like (VSEL) stem cells addressed the aforementioned limitations, but their isolation technique remains a challenge due to their small cell size and their efficiency in isolation. Here, we report a simplified and effective approach for the isolation of small pluripotent stem cells derived from human peripheral blood. Our approach results in a high yield of small blood stem cell (SBSC) population, which expresses pluripotent embryonic markers (e.g., Nanog, SSEA-3) and the Yamanaka factors. Further, a fraction of SBSCs also co-express hematopoietic markers (e.g., CD45 and CD90) and/or mesenchymal markers (e.g., CD29, CD105 and PTH1R), suggesting a mixed stem cell population. Finally, quantitative proteomic profiling reveals that SBSCs contain various stem cell markers (CD9, ITGA6, MAPK1, MTHFD1, STAT3, HSPB1, HSPA4), and Transcription reg complex factors (e.g., STAT5B, PDLIM1, ANXA2, ATF6, CAMK1). In conclusion, we present a novel, simplified and effective isolating process that yields an abundant population of small-sized cells with characteristics of pluripotency from human peripheral blood.
Collapse
|
13
|
Nguyen T, Purcell E, Smith MJ, Penny TR, Paton MCB, Zhou L, Jenkin G, Miller SL, McDonald CA, Malhotra A. Umbilical Cord Blood-Derived Cell Therapy for Perinatal Brain Injury: A Systematic Review & Meta-Analysis of Preclinical Studies. Int J Mol Sci 2023; 24:ijms24054351. [PMID: 36901781 PMCID: PMC10001969 DOI: 10.3390/ijms24054351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/12/2023] [Accepted: 02/16/2023] [Indexed: 02/24/2023] Open
Abstract
Perinatal brain injury is a major contributor to long-term adverse neurodevelopment. There is mounting preclinical evidence for use of umbilical cord blood (UCB)-derived cell therapy as potential treatment. To systematically review and analyse effects of UCB-derived cell therapy on brain outcomes in preclinical models of perinatal brain injury. MEDLINE and Embase databases were searched for relevant studies. Brain injury outcomes were extracted for meta-analysis to calculate standard mean difference (SMD) with 95% confidence interval (CI), using an inverse variance, random effects model. Outcomes were separated based on grey matter (GM) and white matter (WM) regions where applicable. Risk of bias was assessed using SYRCLE, and GRADE was used to summarise certainty of evidence. Fifty-five eligible studies were included (7 large, 48 small animal models). UCB-derived cell therapy significantly improved outcomes across multiple domains, including decreased infarct size (SMD 0.53; 95% CI (0.32, 0.74), p < 0.00001), apoptosis (WM, SMD 1.59; 95%CI (0.86, 2.32), p < 0.0001), astrogliosis (GM, SMD 0.56; 95% CI (0.12, 1.01), p = 0.01), microglial activation (WM, SMD 1.03; 95% CI (0.40, 1.66), p = 0.001), neuroinflammation (TNF-α, SMD 0.84; 95%CI (0.44, 1.25), p < 0.0001); as well as improved neuron number (SMD 0.86; 95% CI (0.39, 1.33), p = 0.0003), oligodendrocyte number (GM, SMD 3.35; 95 %CI (1.00, 5.69), p = 0.005) and motor function (cylinder test, SMD 0.49; 95 %CI (0.23, 0.76), p = 0.0003). Risk of bias was determined as serious, and overall certainty of evidence was low. UCB-derived cell therapy is an efficacious treatment in pre-clinical models of perinatal brain injury, however findings are limited by low certainty of evidence.
Collapse
Affiliation(s)
- Timothy Nguyen
- Department of Paediatrics, Monash University, Melbourne, VIC 3168, Australia
| | - Elisha Purcell
- Department of Paediatrics, Monash University, Melbourne, VIC 3168, Australia
| | - Madeleine J. Smith
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC 3168, Australia
| | - Tayla R. Penny
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC 3168, Australia
| | - Madison C. B. Paton
- Cerebral Palsy Alliance Research Institute & Specialty of Child and Adolescent Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Lindsay Zhou
- Department of Paediatrics, Monash University, Melbourne, VIC 3168, Australia
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia
- Monash Newborn, Monash Children’s Hospital, Melbourne, VIC 3168, Australia
| | - Graham Jenkin
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC 3168, Australia
| | - Suzanne L. Miller
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC 3168, Australia
| | - Courtney A. McDonald
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC 3168, Australia
| | - Atul Malhotra
- Department of Paediatrics, Monash University, Melbourne, VIC 3168, Australia
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia
- Monash Newborn, Monash Children’s Hospital, Melbourne, VIC 3168, Australia
- Correspondence:
| |
Collapse
|
14
|
Heitzer M, Modabber A, Zhang X, Winnand P, Zhao Q, Bläsius FM, Buhl EM, Wolf M, Neuss S, Hölzle F, Hildebrand F, Greven J. In vitro comparison of the osteogenic capability of human pulp stem cells on alloplastic, allogeneic, and xenogeneic bone scaffolds. BMC Oral Health 2023; 23:56. [PMID: 36721114 PMCID: PMC9890824 DOI: 10.1186/s12903-023-02726-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 01/10/2023] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND A rigorous search for alternatives to autogenous bone grafts to avoid invasiveness at the donor site in the treatment of maxillomandibular bone defects. Researchers have used alloplastic, allogeneic, and xenogeneic bone graft substitutes in clinical studies with varying degrees of success, although their in vitro effects on stem cells remain unclear. Dental pulp stem cells (DPSCs) can potentially enhance the bone regeneration of bone graft substitutes. The present in vitro study investigates the osteogenic capability of DPSCs on alloplastic (biphasic calcium phosphate [BCP]), allogeneic (freeze-dried bone allografts [FDBAs]), and xenogeneic (deproteinized bovine bone mineral [DBBM]) bone grafts. METHODS Human DPSCs were seeded on 0.5 mg/ml, 1 mg/ml, and 2 mg/ml of BCP, FDBA, and DBBM to evaluate the optimal cell growth and cytotoxicity. Scaffolds and cell morphologies were analyzed by scanning electron microscopy (SEM). Calcein AM and cytoskeleton staining were performed to determine cell attachment and proliferation. Alkaline phosphatase (ALP) and osteogenesis-related genes expressions was used to investigate initial osteogenic differentiation. RESULTS Cytotoxicity assays showed that most viable DPSCs were present at a scaffold concentration of 0.5 mg/ml. The DPSCs on the DBBM scaffold demonstrated a significantly higher proliferation rate of 214.25 ± 16.17 (p < 0.001) cells, enhancing ALP activity level and upregulating of osteogenesis-related genes compared with other two scaffolds. CONCLUSION DBBP scaffold led to extremely high cell viability, but also promoted proliferation, attachment, and enhanced the osteogenic differentiation capacity of DPSCs, which hold great potential for bone regeneration treatment; however, further studies are necessary.
Collapse
Affiliation(s)
- Marius Heitzer
- grid.412301.50000 0000 8653 1507Department of Oral and Maxillofacial Surgery, University Hospital of RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Ali Modabber
- grid.412301.50000 0000 8653 1507Department of Oral and Maxillofacial Surgery, University Hospital of RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Xing Zhang
- Department of Orthopedics, Trauma and Reconstructive Surgery, University Hospital of RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany.
| | - Philipp Winnand
- grid.412301.50000 0000 8653 1507Department of Oral and Maxillofacial Surgery, University Hospital of RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Qun Zhao
- grid.412301.50000 0000 8653 1507Department of Orthopedics, Trauma and Reconstructive Surgery, University Hospital of RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Felix Marius Bläsius
- grid.412301.50000 0000 8653 1507Department of Orthopedics, Trauma and Reconstructive Surgery, University Hospital of RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Eva Miriam Buhl
- grid.412301.50000 0000 8653 1507Institute of Pathology, University Hospital of RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Michael Wolf
- grid.412301.50000 0000 8653 1507Department of Orthodontics, University Hospital of RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Sabine Neuss
- grid.412301.50000 0000 8653 1507Institute of Pathology, University Hospital of RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany ,grid.1957.a0000 0001 0728 696XHelmholtz Institute for Biomedical Engineering, BioInterface Group, RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen, Germany
| | - Frank Hölzle
- grid.412301.50000 0000 8653 1507Department of Oral and Maxillofacial Surgery, University Hospital of RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Frank Hildebrand
- grid.412301.50000 0000 8653 1507Department of Orthopedics, Trauma and Reconstructive Surgery, University Hospital of RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Johannes Greven
- grid.412301.50000 0000 8653 1507Department of Orthopedics, Trauma and Reconstructive Surgery, University Hospital of RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
| |
Collapse
|
15
|
Szymoniuk M, Litak J, Sakwa L, Dryla A, Zezuliński W, Czyżewski W, Kamieniak P, Blicharski T. Molecular Mechanisms and Clinical Application of Multipotent Stem Cells for Spinal Cord Injury. Cells 2022; 12:120. [PMID: 36611914 PMCID: PMC9818156 DOI: 10.3390/cells12010120] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/22/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022] Open
Abstract
Spinal Cord Injury (SCI) is a common neurological disorder with devastating psychical and psychosocial sequelae. The majority of patients after SCI suffer from permanent disability caused by motor dysfunction, impaired sensation, neuropathic pain, spasticity as well as urinary complications, and a small number of patients experience a complete recovery. Current standard treatment modalities of the SCI aim to prevent secondary injury and provide limited recovery of lost neurological functions. Stem Cell Therapy (SCT) represents an emerging treatment approach using the differentiation, paracrine, and self-renewal capabilities of stem cells to regenerate the injured spinal cord. To date, multipotent stem cells including mesenchymal stem cells (MSCs), neural stem cells (NSCs), and hematopoietic stem cells (HSCs) represent the most investigated types of stem cells for the treatment of SCI in preclinical and clinical studies. The microenvironment of SCI has a significant impact on the survival, proliferation, and differentiation of transplanted stem cells. Therefore, a deep understanding of the pathophysiology of SCI and molecular mechanisms through which stem cells act may help improve the treatment efficacy of SCT and find new therapeutic approaches such as stem-cell-derived exosomes, gene-modified stem cells, scaffolds, and nanomaterials. In this literature review, the pathogenesis of SCI and molecular mechanisms of action of multipotent stem cells including MSCs, NSCs, and HSCs are comprehensively described. Moreover, the clinical efficacy of multipotent stem cells in SCI treatment, an optimal protocol of stem cell administration, and recent therapeutic approaches based on or combined with SCT are also discussed.
Collapse
Affiliation(s)
- Michał Szymoniuk
- Student Scientific Association at the Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland
| | - Jakub Litak
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland
- Department of Clinical Immunology, Medical University of Lublin, Chodźki 4A, 20-093 Lublin, Poland
| | - Leon Sakwa
- Student Scientific Society, Kazimierz Pulaski University of Technologies and Humanities in Radom, Chrobrego 27, 26-600 Radom, Poland
| | - Aleksandra Dryla
- Student Scientific Association at the Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland
| | - Wojciech Zezuliński
- Student Scientific Association at the Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland
| | - Wojciech Czyżewski
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland
- Department of Didactics and Medical Simulation, Medical University of Lublin, Chodźki 4, 20-093 Lublin, Poland
| | - Piotr Kamieniak
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland
| | - Tomasz Blicharski
- Department of Rehabilitation and Orthopaedics, Medical University in Lublin, Jaczewskiego 8, 20-954 Lublin, Poland
| |
Collapse
|
16
|
Naeem P, Baumgartner A, Ghaderi N, Sefat F, Alhawamdeh M, Heidari S, Shahzad F, Swaminathan K, Akhbari P, Isreb M, Anderson D, Wright A, Najafzadeh M. Anticarcinogenic impact of extracellular vesicles (exosomes) from cord blood stem cells in malignant melanoma: A potential biological treatment. J Cell Mol Med 2022; 27:222-231. [PMID: 36545841 PMCID: PMC9843520 DOI: 10.1111/jcmm.17639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 09/19/2022] [Accepted: 10/28/2022] [Indexed: 12/24/2022] Open
Abstract
Incidence of Malignant Melanoma has become the 5th in the UK. To date, the major anticancer therapeutics include cell therapy, immunotherapy, gene therapy and nanotechnology-based strategies. Recently, extracellular vesicles, especially exosomes, have been highlighted for their therapeutic benefits in numerous chronic diseases. Exosomes display multifunctional properties, including inhibition of cancer cell proliferation and initiation of apoptosis. In the present in vitro study, the antitumour effect of cord blood stem cell (CBSC)-derived exosomes was confirmed by the CCK-8 assay (p < 0.05) on CHL-1 melanoma cells and improve the repair mechanism on lymphocytes from melanoma patients. Importantly, no significant effect was observed in healthy lymphocytes when treated with the exosome concentrations at 24, 48 and 72 h. Comet assay results (OTM and %Tail DNA) demonstrated that the optimal exosome concentration showed a significant impact (p < 0.05) in lymphocytes from melanoma patients whilst causing no significant DNA damage in lymphocytes of healthy volunteers was 300 μg/ml. Similarly, the Comet assay results depicted significant DNA damage in a melanoma cell line (CHL-1 cells) treated with CBSC-derived exosomes, both the cytotoxicity of CHL-1 cells treated with CBSC-derived exosomes exhibited a significant time-dependent decrease in cell survival. Sequencing analysis of CBSC exosomes showed the presence of the let-7 family of miRNAs, including let-7a-5p, let-7b-5p, let-7c-5p, let-7d-3p, let-7d-5p and two novel miRNAs. The potency of CBSC exosomes in inhibiting cancer progression in lymphocytes from melanoma patients and CHL-1 cells whilst causing no harm to the healthy lymphocytes makes it a potential candidate as an anticancer therapy.
Collapse
Affiliation(s)
- Parisa Naeem
- School of Life SciencesUniversity of BradfordBradfordUK
| | - Adi Baumgartner
- School of Science, Technology and Health, BiosciencesYork St John UniversityYorkUK
| | - Nader Ghaderi
- Bradford Teaching Hospitals NHS Foundation TrustSt Luke's HospitalBradfordUK
| | - Farshid Sefat
- Department of Biomedical and Electronics Engineering, Faculty of Engineering and InformaticsUniversity of BradfordBradfordUK
| | - Maysa Alhawamdeh
- Department of Medical Laboratory Sciences, Faculty of Allied Medical SciencesMutah UniversityAlkarakJordan
| | - Saeed Heidari
- Cell Therapy and Tissue engineering Department, Faculty of Medical SciencesShahid Beheshti UniversityTehranIran
| | | | | | - Pouria Akhbari
- Institute of Biomedical and Clinical Science, College of Medicine and HealthUniversity of ExeterExeterUK
| | - Mohammad Isreb
- School of Pharmacy and Medical SciencesUniversity of BradfordBradfordUK
| | | | - Andrew Wright
- Bradford Teaching Hospitals NHS Foundation TrustSt Luke's HospitalBradfordUK
| | | |
Collapse
|
17
|
Abstract
Pulmonary fibrosis (PF) is a chronic and relentlessly progressive interstitial lung disease in which the accumulation of fibroblasts and extracellular matrix (ECM) induces the destruction of normal alveolar structures, ultimately leading to respiratory failure. Patients with advanced PF are unable to perform physical labor and often have concomitant cough and dyspnea, which markedly impair their quality of life. However, there is a paucity of available pharmacological therapies, and to date, lung transplantation remains the only possible treatment for patients suffering from end-stage PF; moreover, the complexity of transplantation surgery and the paucity of donors greatly restrict the application of this treatment. Therefore, there is a pressing need for alternative therapeutic strategies for this complex disease. Due to their capacity for pluripotency and paracrine actions, stem cells are promising therapeutic agents for the treatment of interstitial lung disease, and an extensive body of literature supports the therapeutic efficacy of stem cells in lung fibrosis. Although stem cell transplantation may play an important role in the treatment of PF, some key issues, such as safety and therapeutic efficacy, remain to be resolved. In this review, we summarize recent preclinical and clinical studies on the stem cell-mediated regeneration of fibrotic lungs and present an analysis of concerning issues related to stem cell therapy to guide therapeutic development for this complex disease.
Collapse
|
18
|
Sugiaman VK, Djuanda R, Pranata N, Naliani S, Demolsky WL. Tissue Engineering with Stem Cell from Human Exfoliated Deciduous Teeth (SHED) and Collagen Matrix, Regulated by Growth Factor in Regenerating the Dental Pulp. Polymers (Basel) 2022; 14:polym14183712. [PMID: 36145860 PMCID: PMC9503223 DOI: 10.3390/polym14183712] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 08/25/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
Maintaining dental pulp vitality and preventing tooth loss are two challenges in endodontic treatment. A tooth lacking a viable pulp loses its defense mechanism and regenerative ability, making it more vulnerable to severe damage and eventually necessitating extraction. The tissue engineering approach has drawn attention as an alternative therapy as it can regenerate dentin-pulp complex structures and functions. Stem cells or progenitor cells, extracellular matrix, and signaling molecules are triad components of this approach. Stem cells from human exfoliated deciduous teeth (SHED) are a promising, noninvasive source of stem cells for tissue regeneration. Not only can SHEDs regenerate dentin-pulp tissues (comprised of fibroblasts, odontoblasts, endothelial cells, and nerve cells), but SHEDs also possess immunomodulatory and immunosuppressive properties. The collagen matrix is a material of choice to provide structural and microenvironmental support for SHED-to-dentin pulp tissue differentiation. Growth factors regulate cell proliferation, migration, and differentiation into specific phenotypes via signal-transduction pathways. This review provides current concepts and applications of the tissue engineering approach, especially SHEDs, in endodontic treatment.
Collapse
Affiliation(s)
- Vinna K Sugiaman
- Department of Oral Biology, Faculty of Dentistry, Maranatha Christian University, Bandung 40164, Indonesia
| | - Rudy Djuanda
- Department of Conservative Dentistry and Endodontic, Faculty of Dentistry, Maranatha Christian University, Bandung 40164, Indonesia
| | - Natallia Pranata
- Department of Oral Biology, Faculty of Dentistry, Maranatha Christian University, Bandung 40164, Indonesia
| | - Silvia Naliani
- Department of Prosthodontics, Faculty of Dentistry, Maranatha Christian University, Bandung 40164, Indonesia
| | - Wayan L Demolsky
- Department of Oral Biology, Faculty of Dentistry, Maranatha Christian University, Bandung 40164, Indonesia
| |
Collapse
|
19
|
Tudureanu R, Handrea-Dragan IM, Boca S, Botiz I. Insight and Recent Advances into the Role of Topography on the Cell Differentiation and Proliferation on Biopolymeric Surfaces. Int J Mol Sci 2022; 23:7731. [PMID: 35887079 PMCID: PMC9315624 DOI: 10.3390/ijms23147731] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/11/2022] [Accepted: 07/11/2022] [Indexed: 01/27/2023] Open
Abstract
It is well known that surface topography plays an important role in cell behavior, including adhesion, migration, orientation, elongation, proliferation and differentiation. Studying these cell functions is essential in order to better understand and control specific characteristics of the cells and thus to enhance their potential in various biomedical applications. This review proposes to investigate the extent to which various surface relief patterns, imprinted in biopolymer films or in polymeric films coated with biopolymers, by utilizing specific lithographic techniques, influence cell behavior and development. We aim to understand how characteristics such as shape, dimension or chemical functionality of surface relief patterns alter the orientation and elongation of cells, and thus, finally make their mark on the cell proliferation and differentiation. We infer that such an insight is a prerequisite for pushing forward the comprehension of the methodologies and technologies used in tissue engineering applications and products, including skin or bone implants and wound or fracture healing.
Collapse
Affiliation(s)
- Raluca Tudureanu
- Interdisciplinary Research Institute in Bio-Nano-Sciences, Babeș-Bolyai University, 400271 Cluj-Napoca, Romania; (R.T.); (I.M.H.-D.); (S.B.)
- Faculty of Physics, Babeș-Bolyai University, 400084 Cluj-Napoca, Romania
| | - Iuliana M. Handrea-Dragan
- Interdisciplinary Research Institute in Bio-Nano-Sciences, Babeș-Bolyai University, 400271 Cluj-Napoca, Romania; (R.T.); (I.M.H.-D.); (S.B.)
- Faculty of Physics, Babeș-Bolyai University, 400084 Cluj-Napoca, Romania
| | - Sanda Boca
- Interdisciplinary Research Institute in Bio-Nano-Sciences, Babeș-Bolyai University, 400271 Cluj-Napoca, Romania; (R.T.); (I.M.H.-D.); (S.B.)
| | - Ioan Botiz
- Interdisciplinary Research Institute in Bio-Nano-Sciences, Babeș-Bolyai University, 400271 Cluj-Napoca, Romania; (R.T.); (I.M.H.-D.); (S.B.)
| |
Collapse
|
20
|
Zhou HS, Cui Z, Wang H, Gao TT, Wang L, Wu J, Xiong ZY, Hao J, Zhao MH. The therapeutic effects of human embryonic stem cells-derived immunity-and-matrix regulatory cells on membranous nephropathy. Stem Cell Res Ther 2022; 13:240. [PMID: 35672767 PMCID: PMC9172125 DOI: 10.1186/s13287-022-02917-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/13/2022] [Indexed: 11/16/2022] Open
Abstract
Background Primary membranous nephropathy (MN) is a kidney-specific autoimmune disease. Human embryonic stem cells-derived immunity-and-matrix regulatory cells (hESC-IMRCs) have immunoregulatory functions. We hypothesized that hESC-IMRCs might have therapeutic effects on MN and be a potential treatment in clinical practice. Methods Rats of Heymann nephritis were injected with sheep anti-rat Fx1A serum. hESC-IMRCs were intravenously administrated upon the detection of proteinuria, with 6 × 106 cells (high-dose) or 3 × 106 cells (low-dose) in 1 ml every other day. Splenocytes and IMRCs were co-cultured at different times and ratios. Cell types and cytokines were detected by flow cytometry and enzyme-linked immunosorbent assay. Results The urinary protein of rats with Heymann nephritis was reduced remarkably to a level comparable to negative controls, in both low-dose (45.6 vs. 282.3 mg/d, P < 0.001) and high-dose (35.2 vs. 282.3 mg/d, P < 0.001) hESC-IMRC treatment groups. IgG and C3 deposit, glomerular basement membrane thickness and foot process effacement were alleviated and the reduced podocin was recovered in the kidneys. The proportions of CD4 + CD25 + T cells in circulation and spleen were increased, and the circulating level of IL-10 was increased, after IMRC interventions. IL-17 and TNF-α were reduced after IMRCs treatments. IL-10 increased remarkably in the co-culture supernatant of lymphocytes and IMRCs at 48 h with ratio 10:1. Conclusions The intravenously delivered hESC-IMRCs alleviated proteinuria and kidney injuries of Heymann nephritis, by their immunosuppressive functions through regulatory T cells and IL-10. These pre-clinical results indicate that IMRCs worth careful consideration for human trials in the treatment of MN. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02917-w.
Collapse
Affiliation(s)
- Hui-Song Zhou
- Renal Division, Peking University First Hospital; Institute of Nephrology, Peking University; Key Laboratory of Renal Disease, Ministry of Health of China; Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing, 100034, China.,Renal Division, Peking University Shenzhen Hospital, Shenzhen, 518000, China
| | - Zhao Cui
- Renal Division, Peking University First Hospital; Institute of Nephrology, Peking University; Key Laboratory of Renal Disease, Ministry of Health of China; Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing, 100034, China
| | - Hui Wang
- Department of Electron Microscopy, Peking University First Hospital, Beijing, 100034, China
| | - Ting-Ting Gao
- National Stem Cell Resource Center, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Liu Wang
- National Stem Cell Resource Center, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Jun Wu
- National Stem Cell Resource Center, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Zu-Ying Xiong
- Renal Division, Peking University Shenzhen Hospital, Shenzhen, 518000, China.
| | - Jie Hao
- National Stem Cell Resource Center, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China. .,State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China. .,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China. .,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100101, China.
| | - Ming-Hui Zhao
- Renal Division, Peking University First Hospital; Institute of Nephrology, Peking University; Key Laboratory of Renal Disease, Ministry of Health of China; Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing, 100034, China.,Peking-Tsinghua Center for Life Sciences, Beijing, 100080, China
| |
Collapse
|
21
|
Wang B, Liu W, Li JJ, Chai S, Xing D, Yu H, Zhang Y, Yan W, Xu Z, Zhao B, Du Y, Jiang Q. A low dose cell therapy system for treating osteoarthritis: In vivo study and in vitro mechanistic investigations. Bioact Mater 2022; 7:478-490. [PMID: 34466747 PMCID: PMC8379370 DOI: 10.1016/j.bioactmat.2021.05.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/28/2021] [Accepted: 05/17/2021] [Indexed: 12/17/2022] Open
Abstract
Mesenchymal stem cells (MSCs) can be effective in alleviating the progression of osteoarthritis (OA). However, low MSC retention and survival at the injection site frequently require high doses of cells and/or repeated injections, which are not economically viable and create additional risks of complications. In this study, we produced MSC-laden microcarriers in spinner flask culture as cell delivery vehicles. These microcarriers containing a low initial dose of MSCs administered through a single injection in a rat anterior cruciate ligament (ACL) transection model of OA achieved similar reparative effects as repeated high doses of MSCs, as evaluated through imaging and histological analyses. Mechanistic investigations were conducted using a co-culture model involving human primary chondrocytes grown in monolayer, together with MSCs grown either within 3D constructs or as a monolayer. Co-culture supernatants subjected to secretome analysis showed significant decrease of inflammatory factors in the 3D group. RNA-seq of co-cultured MSCs and chondrocytes using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed processes relating to early chondrogenesis and increased extracellular matrix interactions in MSCs of the 3D group, as well as phenotypic maintenance in the co-cultured chondrocytes. The cell delivery platform we investigated may be effective in reducing the cell dose and injection frequency required for therapeutic applications.
Collapse
Affiliation(s)
- Bin Wang
- Department of Sports Medicine and Adult Reconstruction Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 201180, China
- Department of Orthopaedics, Shanxi Medical University Second Affiliated Hospital, Taiyuan, 030001, China
| | - Wei Liu
- Beijing CytoNiche Biotechnology Co. Ltd, Beijing, 10081, China
| | - Jiao Jiao Li
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Senlin Chai
- Department of Sports Medicine and Adult Reconstruction Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 201180, China
- Laboratory for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing, 210093, China
| | - Dan Xing
- Arthritis Clinic & Research Center, Peking University People's Hospital, Peking University, Beijing, 100044, China
| | - Hongsheng Yu
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yuanyuan Zhang
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Wenjin Yan
- Department of Sports Medicine and Adult Reconstruction Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 201180, China
- Laboratory for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing, 210093, China
| | - Zhihong Xu
- Department of Sports Medicine and Adult Reconstruction Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 201180, China
- Laboratory for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing, 210093, China
| | - Bin Zhao
- Department of Orthopaedics, Shanxi Medical University Second Affiliated Hospital, Taiyuan, 030001, China
| | - Yanan Du
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Qing Jiang
- Department of Sports Medicine and Adult Reconstruction Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 201180, China
- Laboratory for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing, 210093, China
| |
Collapse
|
22
|
Ye Y, Zhao X, Xu Y, Yu J. Hypoxia-Inducible Non-coding RNAs in Mesenchymal Stem Cell Fate and Regeneration. FRONTIERS IN DENTAL MEDICINE 2021. [DOI: 10.3389/fdmed.2021.799716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Mesenchymal stem cells (MSCs) can differentiate into multiple cell lines, which makes them an important source of cells for tissue engineering applications. They are defined by the capability to renew themselves and maintain pluripotency. This ability is modulated by the balance between complex cues from cellular microenvironment. Self-renewal and differentiation abilities are regulated by particular microenvironmental signals. Oxygen is considered to be an important part of cell microenvironment, which not only acts as a metabolic substrate but also a signal molecule. It has been proved that MSCs are hypoxic in the physiological environment. Signals from MSCs' microenvironment or niche which means the anatomical location of the MSCs, maintain the final properties of MSCs. Physiological conditions like oxygen tension are deemed to be a significant part of the mesenchymal stem cell niche, and have been proved to be involved in modulating embryonic and adult MSCs. Non-coding RNAs (ncRNAs), which play a key role in cell signal transduction, transcription and translation of genes, have been widely concerned as epigenetic regulators in a great deal of tissues. With the rapid development of bioinformatics analysis tools and high-throughput RNA sequencing technology, more and more evidences show that ncRNAs play a key role in tissue regeneration. It shows potential as a biomarker of MSC differentiation. In this paper, we reviewed the physiological correlation of hypoxia as a unique environmental parameter which is conducive to MSC expansion and maintenance, discussed the correlation of tissue engineering, and summarized the influence of hypoxia related ncRNAs on MSCs' fate and regeneration. This review will provide reference for future research of MSCs' regeneration.
Collapse
|
23
|
MicroRNAs and exosomes: Cardiac stem cells in heart diseases. Pathol Res Pract 2021; 229:153701. [PMID: 34872024 DOI: 10.1016/j.prp.2021.153701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 11/09/2021] [Accepted: 11/18/2021] [Indexed: 12/20/2022]
Abstract
Treating cardiovascular diseases with cardiac stem cells (CSCs) is a valid treatment among various stem cell-based therapies. With supplying the physiological need for cardiovascular cells as their main function, under pathological circumstances, CSCs can also reproduce the myocardial cells. Although studies have identified many of CSCs' functions, our knowledge of molecular pathways that regulate these functions is not complete enough. Either physiological or pathological studies have shown, stem cells proliferation and differentiation could be regulated by microRNAs (miRNAs). How miRNAs regulate CSC behavior is an interesting area of research that can help us study and control the function of these cells in vitro; an achievement that may be beneficial for patients with cardiovascular diseases. The secretome of stem and progenitor cells has been studied and it has been determined that exosomes are the main source of their secretion which are very small vesicles at the nanoscale and originate from endosomes, which are secreted into the extracellular space and act as key signaling organelles in intercellular communication. Mesenchymal stem cells, cardiac-derived progenitor cells, embryonic stem cells, induced pluripotent stem cells (iPSCs), and iPSC-derived cardiomyocytes release exosomes that have been shown to have cardioprotective, immunomodulatory, and reparative effects. Herein, we summarize the regulation roles of miRNAs and exosomes in cardiac stem cells.
Collapse
|
24
|
do Prado-Lima PAS, Costa-Ferro ZSM, Souza BSDF, da Cruz IBM, Lab B. Is there a place for cellular therapy in depression? World J Psychiatry 2021; 11:553-567. [PMID: 34631460 PMCID: PMC8474995 DOI: 10.5498/wjp.v11.i9.553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/05/2021] [Accepted: 08/13/2021] [Indexed: 02/06/2023] Open
Abstract
Although efforts have been made to improve the pharmacological treatment of depression, approximately one-third of patients with depression do not respond to conventional therapy using antidepressants. Other potential non-pharmacological therapies have been studied in the last years, including the use of mesenchymal stem cell therapies to treat depression. These therapies are reviewed here since it is clinically relevant to develop innovative therapeutics to treat psychiatric patients. Experimental data corroborate that mesenchymal stem cell therapy could be considered a potential treatment for depression based on its anti-inflammatory and neurotrophic properties. However, some clinical trials involving treatment of depression with stem cells are in progress, but with no published results. These studies and other future clinical investigations will be crucial to define how much mesenchymal stem cells can effectively be used in psychiatric clinics as a strategy for supporting depression treatment.
Collapse
Affiliation(s)
- Pedro Antônio Schmidt do Prado-Lima
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre 90610-000, Rio Grande do Sul, Brazil
| | - Zaquer Suzana Munhoz Costa-Ferro
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre 90610-000, Rio Grande do Sul, Brazil
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Salvador 41253-190, Bahia, Brazil
- D’Or Institute for Research and Education (IDOR), Salvador 41253-190, Bahia, Brazil
| | - Bruno Solano de Freitas Souza
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Salvador 41253-190, Bahia, Brazil
- D’Or Institute for Research and Education (IDOR), Salvador 41253-190, Bahia, Brazil
- Laboratory of Tissue Engineering and Immunopharmacology, Gonçalo Moniz Institute, Fiocruz, Salvador 40296-710, Bahia, Brazil
| | | | - Biogenomics Lab
- Health Sciences Center, Federal University of Santa Maria, Santa Maria 97105900, RS, Brazil
| |
Collapse
|
25
|
Maleki Dana P, Jahanshahi M, Badehnoosh B, Shafabakhsh R, Asemi Z, Hallajzadeh J. Inhibitory effects of berberine on ovarian cancer: Beyond apoptosis. Med Chem Res 2021. [DOI: 10.1007/s00044-021-02763-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
26
|
Abstract
Mesenchymal stem cells (MSCs), a kind of multipotent stem cells with self-renewal ability and multi-differentiation ability, have become the “practical stem cells” for the treatment of diseases. MSCs have immunomodulatory properties and can be used to treat autoimmune diseases, such as systemic lupus erythematosus (SLE) and Crohn’s disease. MSCs also can be used in cancer and aging. At present, many clinical experiments are using MSCs. MSCs can reduce the occurrence of inflammation and apoptosis of tissue cells, and promote the proliferation of endogenous tissue and organ cells, so as to achieve the effect of repairing tissue and organs. MSCs presumably also play an important role in Corona Virus Disease 2019 (COVID-19) infection.
Collapse
|
27
|
Abstract
According to the recent patent filing trends, it has been observed that certain pharmaceutical technologies are more popular than others and are commonly referred to as emerging technologies. The emerging technologies in the pharmaceutical sector include artificial intelligence, big data and certain advanced biological therapies such as personalized medicine and stem cell therapy. These trends have various applications in the medicine and healthcare industry. Since these technologies are relatively new and each of them is very unique in its own way, current patent laws are inadequate to deal with the complex challenges associated with them. A brief analysis of the challenges associated with these emerging technologies and their applications is discussed in this paper.
Collapse
|
28
|
Sfakianoudis K, Rapani A, Grigoriadis S, Retsina D, Maziotis E, Tsioulou P, Giannelou P, Pantos K, Koutsilieris M, Vlahos N, Mastorakos G, Simopoulou M. Novel Approaches in Addressing Ovarian Insufficiency in 2019: Are We There Yet? Cell Transplant 2021; 29:963689720926154. [PMID: 32686983 PMCID: PMC7563844 DOI: 10.1177/0963689720926154] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Ovarian insufficiency is described as a multifaceted issue typically encountered in the field of assisted reproduction. The three main identified diagnoses of ovarian insufficiency include premature ovarian failure (POF), poor ovarian response (POR), and advanced maternal age (AMA). Patient heterogeneity in the era of individualized medicine drives research forward leading to the emergence of novel approaches. This plethora of innovative treatments in the service of adequately managing ovarian insufficiency is called to undertake the challenge of addressing infertile patients exploring their reproductive options. This review provides an all-inclusive presentation and critical analysis on novel treatments that have not achieved routine clinical practice status yet, but have recently emerged as promising. In light of the lack of randomized controlled trials conveying safety and efficiency, clinicians are left puzzled in addressing the "how" and "for whom" these approaches may be beneficial. From ovarian injection employing platelet-rich plasma (PRP) or stem cells to artificial gametes and ovaries, ovarian transplantation, and mitochondrial replacement therapy, this descriptive review provides insight toward assisting the practitioner in decision making regarding these cutting-edge treatments. Biological mechanisms, invasiveness levels, efficiency, as well as possible complications, the current status along with bioethical concerns are discussed in the context of identifying future optimal treatment.
Collapse
Affiliation(s)
| | - Anna Rapani
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece.,Assisted Reproduction Unit, 2nd Department of Obstetrics and Gynecology, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Sokratis Grigoriadis
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece.,Assisted Reproduction Unit, 2nd Department of Obstetrics and Gynecology, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitra Retsina
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece.,Unit of Endocrinology, Diabetes Mellitus and Metabolism, 2nd Department of Obstetrics and Gynecology, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Evangelos Maziotis
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece.,Assisted Reproduction Unit, 2nd Department of Obstetrics and Gynecology, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Petroula Tsioulou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece.,Assisted Reproduction Unit, 2nd Department of Obstetrics and Gynecology, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Polina Giannelou
- Centre for Human Reproduction, Genesis Athens Clinic, Athens, Greece.,Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Michael Koutsilieris
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos Vlahos
- Assisted Reproduction Unit, 2nd Department of Obstetrics and Gynecology, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - George Mastorakos
- Unit of Endocrinology, Diabetes Mellitus and Metabolism, 2nd Department of Obstetrics and Gynecology, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Mara Simopoulou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece.,Assisted Reproduction Unit, 2nd Department of Obstetrics and Gynecology, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
29
|
Naeli P, Yousefi F, Ghasemi Y, Savardashtaki A, Mirzaei H. The Role of MicroRNAs in Lung Cancer: Implications for Diagnosis and Therapy. Curr Mol Med 2021; 20:90-101. [PMID: 31573883 DOI: 10.2174/1566524019666191001113511] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 09/17/2019] [Accepted: 09/19/2019] [Indexed: 12/15/2022]
Abstract
Lung cancer is the first cause of cancer death in the world due to its high prevalence, aggressiveness, late diagnosis, lack of effective treatment and poor prognosis. It also shows high rate of recurrence, metastasis and drug resistance. All these problems highlight the urgent needs for developing new strategies using noninvasive biomarkers for early detection, metastasis and recurrence of disease. MicroRNAs (miRNAs) are a class of small noncoding RNAs that regulate gene expression post-transcriptionally. These molecules found to be abnormally expressed in increasing number of human disease conditions including cancer. miRNAs could be detected in body fluids such as blood, serum, urine and sputum, which leads us towards the idea of using them as non-invasive biomarker for cancer detection and monitoring cancer treatment and recurrence. miRNAs are found to be deregulated in lung cancer initiation and progression and could regulate lung cancer cell proliferation and invasion. In this review, we summarized recent progress and discoveries in microRNAs regulatory role in lung cancer initiation and progression. In addition, the role of microRNAs in EGFR signaling pathway regulation is discussed briefly.
Collapse
Affiliation(s)
- Parisa Naeli
- Department of Biological Sciences, Faculty of Genetics, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Yousefi
- Department of Biological Sciences, Faculty of Genetics, Tarbiat Modares University, Tehran, Iran
| | - Younes Ghasemi
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences Shiraz, Iran.,Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences Shiraz, Iran.,Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
30
|
Tavakoli F, Khatami SS, Momeni F, Azadbakht J, Ghasemi F. Cervical Cancer Diagnosis: Insights into Biochemical Biomarkers and Imaging Techniques. Comb Chem High Throughput Screen 2021; 24:605-623. [PMID: 32875976 DOI: 10.2174/1386207323666200901101955] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/14/2020] [Accepted: 08/06/2020] [Indexed: 11/22/2022]
Abstract
Cervical malignancy is known as one of the important cancers which is originated from cervix. This malignancy has been observed in women infected with papillomavirus who had regular oral contraceptives, multiple pregnancies, and sexual relations. Early and fast cervical cancer diagnosis is known as two important aspects of cervical cancer therapy. Several investigations indicated that early and fast detection of cervical cancer could be associated with better treatment process and increasing survival rate of patients with this malignancy. Imaging techniques are very important diagnosis tools that could be employed for diagnosis and following responses to therapy in various cervical cancer stages. Multiple lines of evidence indicated that utilization of imaging techniques is related to some limitations (i.e. high cost, and invasive effects). Hence, it seems that along with using imaging techniques, finding and developing new biomarkers could be useful in the diagnosis and treatment of subjects with cervical cancer. Taken together, many studies showed that a variety of biomarkers including, several proteins, mRNAs, microRNAs, exosomes and polymorphisms might be introduced as prognostic, diagnostic and therapeutic biomarkers in cervical cancer therapy. In this review article, we highlighted imaging techniques as well as novel biomarkers for the diagnosis of cervical cancer.
Collapse
Affiliation(s)
- Fatemeh Tavakoli
- Department of Biotechnology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sara Sadat Khatami
- Department of Biotechnology, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Fatemeh Momeni
- Isfahan Research Committee of Multiple Sclerosis, Alzahra Research Institute, Alzahra Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Javid Azadbakht
- Department of Radiology and Imaging, Kashan University of Medical Science, Kashan, Iran
| | - Faezeh Ghasemi
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| |
Collapse
|
31
|
Lee J, Lee S, Kim SM, Shin H. Size-controlled human adipose-derived stem cell spheroids hybridized with single-segmented nanofibers and their effect on viability and stem cell differentiation. Biomater Res 2021; 25:14. [PMID: 33902733 PMCID: PMC8074457 DOI: 10.1186/s40824-021-00215-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 04/13/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Fabrication of three-dimensional stem cell spheroids have been studied to improve stem cell function, but the hypoxic core and limited penetration of nutrients and signaling cues to the interior of the spheroid were challenges. The incorporation of polymers such as silica and gelatin in spheroids resulted in relatively relaxed assembly of composite spheroids, and enhancing transport of nutrient and biological gas. However, because of the low surface area between cells and since the polymers were heterogeneously distributed throughout the spheroid, these polymers cannot increase the cell to extracellular matrix interactions needed to support differentiation. METHODS We developed the stem cell spheroids that incorporate poly(ι-lactic acid) single-segmented fibers synthesized by electrospinning and physical and chemical fragmentation. The proper mixing ratio was 2000 cells/μg fibers (average length of the fibers was 50 μm - 100 μm). The SFs were coated with polydopamine to increase cell binding affinity and to synthesize various-sized spheroids. The function of spheroids was investigated by in vitro analysis depending on their sizes. For statistical analysis, Graphpad Prism 5 software (San Diego, CA, USA) was used to perform one-way analysis of variance ANOVA with Tukey's honest significant difference test and a Student's t-test (for two variables) (P < 0.05). RESULTS Spheroids of different sizes were created by modulating the amount of cells and fibers (0.063 mm2-0.322 mm2). The fibers in the spheroid were homogenously distributed and increased cell viability, while cell-only spheroids showed a loss of DNA contents, internal degradation, and many apoptotic signals. Furthermore, we investigated stemness and various functions of various-sized fiber-incorporated spheroids. In conclusion, the spheroid with the largest size showed the greatest release of angiogenic factors (released VEGF: 0.111 ± 0.004 pg/ng DNA), while the smallest size showed greater effects of osteogenic differentiation (mineralized calcium: 18.099 ± 0.271 ng/ng DNA). CONCLUSION The spheroids incorporating polydopamine coated single-segmented fibers showed enhanced viability regardless of sizes and increased their functionality by regulating the size of spheroids which may be used for various tissue reconstruction and therapeutic applications.
Collapse
Affiliation(s)
- Jinkyu Lee
- Department of Bioengineering, Hanyang University, Seoul, 04763, Republic of Korea
- BK21 FOUR, Human-Tech Convergence Program, Hanyang University, Seoul, 04763, Republic of Korea
| | - Sangmin Lee
- Department of Bioengineering, Hanyang University, Seoul, 04763, Republic of Korea
- BK21 FOUR, Education and Research Group for Biopharmaceutical Innovation Leader, Hanyang University, Seoul, 04763, Republic of Korea
| | - Sung Min Kim
- BK21 FOUR, Human-Tech Convergence Program, Hanyang University, Seoul, 04763, Republic of Korea.
- Department of Physical Education and Active Aging Industry, Hanyang University, Seoul, 04763, Republic of Korea.
- Center for Artificial Intelligence Muscle, Hanyang University, Seoul, 04763, Republic of Korea.
| | - Heungsoo Shin
- Department of Bioengineering, Hanyang University, Seoul, 04763, Republic of Korea.
- BK21 FOUR, Education and Research Group for Biopharmaceutical Innovation Leader, Hanyang University, Seoul, 04763, Republic of Korea.
- Institute of Nano Science and Technology, Hanyang University, Seoul, 04763, Republic of Korea.
| |
Collapse
|
32
|
Fathizadeh H, Saffari M, Esmaeili D, Moniri R, Kafil HS. Bacteriocins: New Potential Therapeutic Candidates in Cancer Therapy. Curr Mol Med 2021; 21:211-220. [PMID: 33109060 DOI: 10.2174/1566524020999200817113730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/23/2020] [Accepted: 07/27/2020] [Indexed: 11/22/2022]
Abstract
Cancer is one of the most important disorders which is associated with high mortality and high costs of treatment for patients. Despite several efforts, finding, designing and developing, new therapeutic platforms in the treatment of cancer patients are still required. Utilization of microorganisms, particularly bacteria has emerged as new therapeutic approaches in the treatment of various cancers. Increasing data indicated that bacteria could be used in the production of a wide range of anti-cancer agents, including bacteriocins, antibiotics, peptides, enzymes, and toxins. Among these anti-cancer agents, bacteriocins have attractive properties, which make them powerful anti-cancer drugs. Multiple lines evidence indicated that several bacteriocins (i.e., colcins, nisins, pediocins, pyocins, and bovocins) via activation/inhibition different cellular and molecular signaling pathways are able to suppress tumor growth in various stages. Hence, identification and using various bacteriocins could lead to improve and introduce them to clinical practices. Here, we summarized various bacteriocins which could be employed as anti-cancer agents in the treatment of many cancers.
Collapse
Affiliation(s)
- Hadis Fathizadeh
- Department of Microbiology and immunology, Kashan University of Medical Sciences, Kashan, Iran
| | - Mahmood Saffari
- Department of Microbiology and immunology, Kashan University of Medical Sciences, Kashan, Iran
| | - Davoud Esmaeili
- Department of Microbiology and Applied Microbiology Research Center, Systems biology and poisonings institute, Baqiyatallah University of Medical sciences, Tehran, Iran
| | - Rezvan Moniri
- Department of Microbiology and immunology, Kashan University of Medical Sciences, Kashan, Iran
| | - Hossein Samadi Kafil
- Department of Bacteriology and Virology, School of Medicine, Tabriz University of Medical Sciences, Iran
| |
Collapse
|
33
|
Shahrzad MK, Gharehgozlou R, Fadaei S, Hajian P, Mirzaei HR. Vitamin D and Non-coding RNAs: New Insights into the Regulation of Breast Cancer. Curr Mol Med 2021; 21:194-210. [PMID: 32652908 DOI: 10.2174/1566524020666200712182137] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 06/09/2020] [Accepted: 06/11/2020] [Indexed: 11/22/2022]
Abstract
Breast cancer, a life-threatening serious disease with a high incident rate among women, is responsible for thousands of cancer-associated death worldwide. Numerous investigations have evaluated the possible mechanisms related to this malignancy. Among them, non-coding RNAs (ncRNAs), i.e., microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs have recently attracted attention of researchers. In addition to recent studies for evaluating the role of ncRNAs in breast cancer etiology, some investigations have revealed that vitamin D has regulatory and therapeutic roles in breast cancer. Moreover, an important link between vitamin D and ncRNAs in cancer therapy has been highlighted. Herein, the aim of this study was to discuss the available data on the mentioned link in breast cancer.
Collapse
Affiliation(s)
- Mohammad Karim Shahrzad
- Department of Internal Medicine and endocrinology, Shohadae Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reyhaneh Gharehgozlou
- Cancer Research Center, Shohada Tajrish Hospital, Department of Radiation Oncology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Fadaei
- Department of Internal Medicine and endocrinology, Beheshti University of Medical Sciences, Tehran, Iran
| | - Parastoo Hajian
- Cancer Research Center, Shohada Tajrish Hospital, Department of Radiation Oncology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Mirzaei
- Cancer Research Center, Shohada Tajrish Hospital, Department of Radiation Oncology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
34
|
Stem Cell Therapy for Neonatal Hypoxic-Ischemic Encephalopathy: A Systematic Review of Preclinical Studies. Int J Mol Sci 2021; 22:ijms22063142. [PMID: 33808671 PMCID: PMC8003344 DOI: 10.3390/ijms22063142] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/12/2021] [Accepted: 03/17/2021] [Indexed: 12/15/2022] Open
Abstract
Neonatal hypoxic-ischemic encephalopathy (HIE) is an important cause of mortality and morbidity in the perinatal period. This condition results from a period of ischemia and hypoxia to the brain of neonates, leading to several disorders that profoundly affect the daily life of patients and their families. Currently, therapeutic hypothermia (TH) is the standard of care in developing countries; however, TH is not always effective, especially in severe cases of HIE. Addressing this concern, several preclinical studies assessed the potential of stem cell therapy (SCT) for HIE. With this systematic review, we gathered information included in 58 preclinical studies from the last decade, focusing on the ones using stem cells isolated from the umbilical cord blood, umbilical cord tissue, placenta, and bone marrow. Outstandingly, about 80% of these studies reported a significant improvement of cognitive and/or sensorimotor function, as well as decreased brain damage. These results show the potential of SCT for HIE and the possibility of this therapy, in combination with TH, becoming the next therapeutic approach for HIE. Nonetheless, few preclinical studies assessed the combination of TH and SCT for HIE, and the existent studies show some contradictory results, revealing the need to further explore this line of research.
Collapse
|
35
|
Sha Z, Yang S, Fu L, Geng M, Gu J, Liu X, Li S, Zhou X, He C. Manganese-doped gold core mesoporous silica particles as a nanoplatform for dual-modality imaging and chemo-chemodynamic combination osteosarcoma therapy. NANOSCALE 2021; 13:5077-5093. [PMID: 33650614 DOI: 10.1039/d0nr09220g] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this study, an effective and facile strategy is reported to construct a multifunctional nanoplatform by in situ doping metal manganese on gold core mesoporous silica nanoparticles (Au@MMSN). After further modification of alendronate (Ald) on Au@MMSN, the obtained Au@MMSN-Ald efficiently integrates bone targeted chemo-chemodynamic combination therapy and dual-modality computed tomography/magnetic resonance (CT/MR) imaging into a single platform. In particular, Au@MMSN-Ald exhibits excellent tumor microenvironment responsive drug release efficiency. The doxorubicin hydrochloride (DOX) loaded Au@MMSN-Ald (DOX@Au@MMSN-Ald) is demonstrated with excellent targeted ability toward osteosarcoma. Accordingly, in a specific tumor microenvironment, DOX@Au@MMSN-Ald also displays outstanding combined efficiency for killing cancer cells in vitro and suppressing the osteosarcoma growth in vivo. Benefiting from the Au nanoparticles confined in the core and manganese ions released from the shell, CT and MR dual-modality imaging were performed to verify the effective accumulation of Au@MMSN-Ald at the tumor site. Overall, the constructed DOX@Au@MMSN-Ald nanoparticles integrated imaging guide, responsive drug release and combination therapy, which may provide some insight for further biomedical applications in efficient osteosarcoma therapy.
Collapse
Affiliation(s)
- Zhou Sha
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China.
| | - Shuguang Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China.
| | - Liwen Fu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China.
| | - Mengru Geng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China.
| | - Jiani Gu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China.
| | - Xuying Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China.
| | - Shikai Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China.
| | - Xiaojun Zhou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China.
| | - Chuanglong He
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China.
| |
Collapse
|
36
|
Bayarsaikhan D, Bayarsaikhan G, Lee B. Recent advances in stem cells and gene editing: Drug discovery and therapeutics. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 181:231-269. [PMID: 34127195 DOI: 10.1016/bs.pmbts.2021.01.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The recently introduced genome editing technology has had a remarkable impact on genetic medicine. Zinc finger nucleases, transcription activator-like effector nucleases, and clustered regularly interspaced short palindromic repeat (CRISPR)/Cas nucleases are the three major platforms used for priming of stem cells or correction of mutated genes. Among these nucleases, CRISPR/Cas is the most easily applicable. Various CRISPR/Cas variants such as base editors, prime editors, mad7 nucleases, RESCUE, REPAIR, digenome sequencing, and SHERLOCK are being developed and considered as a promising tool for gene therapy and drug discovery. These advances in the CRISPR/Cas platform have enabled the correction of gene mutations from DNA to RNA level and validation of the safety of genome editing performance at a very precise level by allowing the detection of one base-pair mismatch. These promising alternatives of the CRISPR/Cas system can benefit millions of patients with intractable diseases. Although the therapeutic effects of stem cells have been confirmed in a wide range of disease models, their safety still remains an issue. Hence, scientists are concentrating on generating functionally improved stem cells by using programmable nucleases such as CRISPR. Therefore, in this chapter, we have summarized the applicable options of the CRISPR/Cas platforms by weighing their advantages and limitations in drug discovery and gene therapy.
Collapse
Affiliation(s)
- Delger Bayarsaikhan
- Lee Gil Ya Cancer and Diabetes Institute, School of Medicine, Gachon University, Incheon City, Republic of Korea
| | - Govigerel Bayarsaikhan
- Lee Gil Ya Cancer and Diabetes Institute, School of Medicine, Gachon University, Incheon City, Republic of Korea
| | - Bonghee Lee
- Lee Gil Ya Cancer and Diabetes Institute, School of Medicine, Gachon University, Incheon City, Republic of Korea.
| |
Collapse
|
37
|
Zhang Y, Wang Z, Shi B, Li Y, Wang R, Sun J, Hu Y, Yuan C, Xu Q. Effect of gingival mesenchymal stem cell-derived exosomes on inflammatory macrophages in a high-lipid microenvironment. Int Immunopharmacol 2021; 94:107455. [PMID: 33582592 DOI: 10.1016/j.intimp.2021.107455] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 02/09/2023]
Abstract
OBJECTIVE The aim of this study was to examine the effect of gingival mesenchymal stem cells derived exosomes (GMSC-Exos) on lipopolysaccharide/interferon-gamma (LPS/INF-γ)-induced inflammatory macrophages in a high-lipid microenvironment. MATERIALS AND METHODS Exosomes were obtained by culturing gingival mesenchymal stem cells (GMSCs) in alpha-MEM with exosome-free fetal bovine serum for 48 h. The control group was produced in vitro by inducing human acute monocytic leukemia cells (THP-1 cells) into naïve macrophages (M0). Inflammatory macrophages (M1) were made by activating M0 macrophages with LPS/IFN-γ. These M1 macrophages were treated with oxidized low-density lipoprotein (ox-LDL) to create the high-lipid group, of which some macrophages were further treated with GMSC-Exos for 24 h to form the GMSC-Exos group. Supernatants were collected, and total RNA were extracted for downstream analysis. The expression of surface markers in macrophages were analyzed by flow cytometry. The lipid accumulation level was assessed by oil red O staining. RESULTS Exosomes were successfully isolated from GMSC medium. The GMSC-Exos group showed lower Tumor Necrosis Factor-α (TNF-α), Interleukin-6 (IL-6), Interleukin-1β (IL-1β), and cluster of differentiation 86 (CD86) expression levels than the high-lipid group, and the highest levels of Interleukin-10 (IL-10) among all groups. The GMSC-Exos group showed significant reductions in TNF-α levels than the high-lipid group, and significant escalations in IL-10 levels than the other two groups. Oil red o Staining showed that lipid accumulation in macrophages was inhibited in the GMSC-Exos group. CONCLUSIONS GMSC-Exos reduce the release level and expression of inflammatory factors, inhibit lipid accumulation, and promote the polarization of pro-inflammatory macrophages into anti-inflammatory phenotype in a high-lipid microenvironment.
Collapse
Affiliation(s)
- Yalong Zhang
- Department of Stomatology, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao 266003, Shandong, China; School of Stomatology of Qingdao University, Qingdao 266003, China
| | - Zhiguo Wang
- Department of Burn and Plastic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Bohong Shi
- Department of Stomatology, People's Hospital of Rizhao, 126 Taian Road, Rizhao 276826, Shandong, China
| | - Yan Li
- Department of Stomatology, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao 266003, Shandong, China; School of Stomatology of Qingdao University, Qingdao 266003, China
| | - Ru Wang
- Department of Stomatology, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao 266003, Shandong, China; School of Stomatology of Qingdao University, Qingdao 266003, China
| | - Jiayao Sun
- Department of Stomatology, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao 266003, Shandong, China; School of Stomatology of Qingdao University, Qingdao 266003, China
| | - Yingzhe Hu
- Department of Stomatology, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao 266003, Shandong, China; School of Stomatology of Qingdao University, Qingdao 266003, China
| | - Changqing Yuan
- Department of Stomatology, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao 266003, Shandong, China.
| | - Quanchen Xu
- Department of Stomatology, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao 266003, Shandong, China.
| |
Collapse
|
38
|
Amiri A, Mahjoubin-Tehran M, Asemi Z, Shafiee A, Hajighadimi S, Moradizarmehri S, Mirzaei HR, Mirzaei H. Role of Resveratrol in Modulating microRNAs in Human Diseases: From Cancer to Inflammatory Disorder. Curr Med Chem 2021; 28:360-376. [PMID: 31830882 DOI: 10.2174/0929867326666191212102407] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 10/18/2019] [Accepted: 10/18/2019] [Indexed: 12/09/2022]
Abstract
Cancer and inflammatory disorders are two important public health issues worldwide with significant socio.economic impacts. Despite several efforts, the current therapeutic platforms are associated with severe limitations. Therefore, developing new therapeutic strategies for the treatment of these diseases is a top priority. Besides current therapies, the utilization of natural compounds has emerged as a new horizon for the treatment of cancer and inflammatory disorders as well. Such natural compounds could be used either alone or in combination with the standard cancer therapeutic modalities such as chemotherapy, radiotherapy, and immunotherapy. Resveratrol is a polyphenolic compound that is found in grapes as well as other foods. It has been found that this medicinal agent displays a wide pharmacological spectrum, including anti-cancer, anti-inflammatory, anti-microbial, and antioxidant activities. Recently, clinical and pre-clinical studies have highlighted the anti-cancer and anti-inflammatory effects of resveratrol. Increasing evidence revealed that resveratrol exerts its therapeutic effects by targeting various cellular and molecular mechanisms. Among cellular and molecular targets that are modulated by resveratrol, microRNAs (miRNAs) have appeared as key targets. MiRNAs are short non-coding RNAs that act as epigenetic regulators. These molecules are involved in many processes that are involved in the initiation and progression of cancer and inflammatory disorders. Herein, we summarized various miRNAs that are directly/indirectly influenced by resveratrol in cancer and inflammatory disorders.
Collapse
Affiliation(s)
- Atefeh Amiri
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Mahjoubin-Tehran
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Alimohammad Shafiee
- Division of General Internal Medicine, Toronto General Hospital, Toronto, Canada
| | - Sarah Hajighadimi
- Division of General Internal Medicine, Toronto General Hospital, Toronto, Canada
| | - Sanaz Moradizarmehri
- Division of General Internal Medicine, Toronto General Hospital, Toronto, Canada
| | - Hamid Reza Mirzaei
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Canada
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
39
|
Alsawaftah N, Farooq A, Dhou S, Majdalawieh AF. Bioluminescence Imaging Applications in Cancer: A Comprehensive Review. IEEE Rev Biomed Eng 2021; 14:307-326. [PMID: 32746363 DOI: 10.1109/rbme.2020.2995124] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Bioluminescence imaging (BLI), an optical preclinical imaging modality, is an invaluable imaging modality due to its low-cost, high throughput, fast acquisition times, and functional imaging capabilities. BLI is being extensively used in the field of cancer imaging, especially with the recent developments in genetic-engineering, stem cell, and gene therapy treatments. The purpose of this paper is to provide a comprehensive review of the principles, developments, and current status of BLI in cancer research. This paper covers the fundamental BLI concepts including BLI reporters and enzyme-substrate systems, data acquisition, and image characteristics. It reviews the studies discussing the use of BLI in cancer research such as imaging tumor-characteristic phenomena including tumorigenesis, metastasis, cancer metabolism, apoptosis, hypoxia, and angiogenesis, and response to cancer therapy treatments including chemotherapy, radiotherapy, immunotherapy, gene therapy, and stem cell therapy. The key advantages and disadvantages of BLI compared to other common imaging modalities are also discussed.
Collapse
|
40
|
Wang R, Xu B. TGF-β1-modified MSC-derived exosomal miR-135b attenuates cartilage injury via promoting M2 synovial macrophage polarization by targeting MAPK6. Cell Tissue Res 2021; 384:113-127. [PMID: 33404840 DOI: 10.1007/s00441-020-03319-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/06/2020] [Indexed: 12/24/2022]
Abstract
Osteoarthritis (OA) is the most common joint disease with an unsatisfactory therapy outcome and characterized by the degradation of articular cartilage and synovial inflammation. Here, we isolated bone marrow mesenchymal stem cells (BMSCs) from rat's bone marrow and BMSC-derived exosome (BMSCs-Exo) from BMSCs successfully. MiR-135b was proved to be highly expressed in TGF-β1-stimulated BMSC-derived exosomes (BMSCs-ExoTGF-β1). Then, our results demonstrated that BMSCs-ExoTGF-β1 reduced OA-induced upregulation of pro-inflammatory factors in rat's serum and damage in cartilage tissues, which was then reversed by miR-135b decreasing. Subsequently, we found that the OA-resulted M1 polarization of synovial macrophages (SMs) was repressed by BMSCs-ExoTGF-β1, this effect of BMSCs-ExoTGF-β1 was limited by miR-135b decreasing. We also proved that M2 polarization of SMs can be induced by miR-135b mimics. Furthermore, we found that the promotory effect of miR-135b and BMSCs-ExoTGF-β1 on M2 SMs polarization was reversed by increasing of MAPK6. Overall, our data showed that BMSCs-ExoTGF-β1 attenuated cartilage damage in OA rats through carrying highly expressed miR-135b. Mechanistically, miR-135b promoted M2 polarization of SMs through targeting MAPK6, thus improving cartilage damage. Our study provided a novel regulatory mechanism of BMSCs-Exo in OA development and revealed a new potential treatment target of OA.
Collapse
Affiliation(s)
- Rui Wang
- Department of Sports Trauma & Arthroscopy, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, Anhui, 230022, People's Republic of China
| | - Bin Xu
- Department of Sports Trauma & Arthroscopy, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, Anhui, 230022, People's Republic of China.
| |
Collapse
|
41
|
Mao J, Cao M, Zhang F, Zhang J, Duan X, Lu L, Yang Z, Zhang X, Zhu W, Zhang Q, Wang Z, Shen J. Peritumoral administration of IFNβ upregulated mesenchymal stem cells inhibits tumor growth in an orthotopic, immunocompetent rat glioma model. J Immunother Cancer 2020; 8:jitc-2019-000164. [PMID: 32169868 PMCID: PMC7069318 DOI: 10.1136/jitc-2019-000164] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2020] [Indexed: 12/16/2022] Open
Abstract
Background Immunotherapy with IFNβ is a promising strategy for treating malignant glioma. However, systemic administration of IFNβ is inadequate because of low intratumoral concentration and major adverse effects. This study aimed to determine whether mesenchymal stem cells (MSCs) can be used as cellular vehicles to locally deliver IFNβ for glioma therapy by using in vivo MRI tracking. Methods A recombinant lentiviral vector encoding IFNβ and ferritin heavy chain (FTH) reporter genes was constructed to transduce MSCs. The effectiveness and safety of transduction were assessed. After the IFNβ and FTH overexpressed MSCs (IFNβ-FTH-MSCs) were transplanted into intracranial orthotopic rat F98 gliomas via peritumoral, intracerebral, intratumoral or intra-arterial injection, MRI was performed to track IFNβ-FTH-MSCs and to evaluate their therapeutic effect on glioma in vivo, as validated by histologic analysis, quantitative PCR and ELISA assays. Results MSCs were efficiently and safely transduced to upregulate their IFNβ secretion and FTH expression by the constructed lentivirus. After peritumoral injection, IFNβ-FTH-MSCs appeared as hypointense signals on MRI, which gradually diminished but remained visible until 11 days. Compared with other administration routes, only peritumoral injection of IFNβ-FTH-MSCs showed a remarkable inhibition on the glioma growth. Nearly 30% of IFNβ-FTH-MSCs survived up to 11 days after peritumoral injection, while most of IFNβ-FTH-MSCs injected via other routes died within 11 days. IFNβ-FTH-MSCs grafted peritumorally secreted IFNβ persistently, leading to pronounced Batf3+ dendritic cells and CD8+ T lymphocyte infiltration within the glioma. Conclusions MSCs can be used as cellular vehicles of IFNβ to treat malignant glioma effectively via peritumoral injection.
Collapse
Affiliation(s)
- Jiaji Mao
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Minghui Cao
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Fang Zhang
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jingzhong Zhang
- The Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Xiaohui Duan
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Liejing Lu
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Zehong Yang
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Xiang Zhang
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Wangshu Zhu
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Qinyuan Zhang
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Zhe Wang
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jun Shen
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China .,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| |
Collapse
|
42
|
Wang K, Li F, Yuan Y, Shan L, Cui Y, Qu J, Lian F. Synovial Mesenchymal Stem Cell-Derived EV-Packaged miR-31 Downregulates Histone Demethylase KDM2A to Prevent Knee Osteoarthritis. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 22:1078-1091. [PMID: 33294294 PMCID: PMC7691165 DOI: 10.1016/j.omtn.2020.09.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 09/11/2020] [Indexed: 12/26/2022]
Abstract
Extracellular vesicles (EVs) derived from mesenchymal stem cells (MSCs) have emerged as important mediators of intercellular communication in response to cartilage damage. In this study, we sought to characterize the inhibitory role of microRNA (miR)-31 encapsulated in synovial MSC (SMSC)-derived EVs in knee osteoarthritis (OA). The expression of miR-31, lysine demethylase 2A (KDM2A), E2F transcription factor 1 (E2F1), and pituitary tumor transforming gene 1 (PTTG1) was validated in cartilage tissues of knee OA patients. Following SMSC-EV extraction and identification, chondrocytes with the miR-31 inhibitor were added with SMSC-EVs, whereupon the effects of miR-31 on proliferation and migration of chondrocytes were assessed. The interaction among miR-31, KDM2A, E2F1, and PTTG1 in chondrocyte activities was probed in vitro, along with an in vivo mouse knee OA model. We identified downregulated miR-31, E2F1, and PTTG1 and upregulated KDM2A in cartilage tissues of knee OA patients. SMSC-EV-packaged miR-31 potentiated chondrocyte proliferation and migration as well as cartilage formation by targeting KDM2A. Mechanistically, KDM2A bound to the transcription factor E2F1 and inhibited its transcriptional activity. Enrichment of E2F1 in the PTTG1 promoter region activated PTTG1 transcription, accelerating chondrocyte proliferation and migration. SMSC-EVs and EVs from miR-31-overexpressed SMSCs alleviated cartilage damage and inflammation in knee joints in vivo. SMSC-EV-encapsulated miR-31 ameliorates knee OA via the KDM2A/E2F1/PTTG1 axis.
Collapse
Affiliation(s)
- Kunpeng Wang
- Department of Orthopaedics, The Fourth Hospital of Harbin Medical University, Harbin 150001, P.R. China
| | - Feng Li
- Department of Orthopaedics, the Second Hospital of Harbin Medical University, Harbin 150001, P.R. P. China
| | - Yuan Yuan
- Department of Obstetrics, The Fourth Hospital of Harbin Medical University, Harbin 150001, P.R. China
| | - Liang Shan
- Department of Outpatient, The Fourth Hospital of Harbin Medical University, Harbin 150001, P.R. China
| | - Yong Cui
- Department of Orthopaedics, The Fourth Hospital of Harbin Medical University, Harbin 150001, P.R. China
| | - Jing Qu
- Department of Orthopaedics, The Fourth Hospital of Harbin Medical University, Harbin 150001, P.R. China
| | - Feng Lian
- Department of Orthopaedics, The Fourth Hospital of Harbin Medical University, Harbin 150001, P.R. China
| |
Collapse
|
43
|
Asgarpour K, Shojaei Z, Amiri F, Ai J, Mahjoubin-Tehran M, Ghasemi F, ArefNezhad R, Hamblin MR, Mirzaei H. Exosomal microRNAs derived from mesenchymal stem cells: cell-to-cell messages. Cell Commun Signal 2020; 18:149. [PMID: 32917227 PMCID: PMC7488404 DOI: 10.1186/s12964-020-00650-6] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 08/24/2020] [Indexed: 12/18/2022] Open
Abstract
Exosomes are extracellular vesicles characterized by their size, source, release mechanism and contents. MicroRNAs (miRNAs) are single stranded non-coding RNAs transcribed from DNA. Exosomes and miRNAs are widespread in eukaryotic cells, especially in mesenchymal stem cells (MSCs). MSCs are used for tissue regeneration, and also exert paracrine, anti-inflammatory and immunomodulatory effects. However, the use of MSCs is controversial, especially in the presence or after the remission of a tumor, due to their secretion of growth factors and their migration ability. Instead of intact MSCs, MSC-derived compartments or substances could be used as practical tools for diagnosis, follow up, management and monitoring of diseases. Herein, we discuss some aspects of exosomal miRNAs derived from MSCs in the progression, diagnosis and treatment of various diseases. Video Abstract.
Collapse
Affiliation(s)
- Kasra Asgarpour
- Department of Medicine, University of Western Ontario, London, Ontario, Canada
| | - Zahra Shojaei
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Amiri
- School of Allied Medical Sciences, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Jafar Ai
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine (SATM), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Maryam Mahjoubin-Tehran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Faezeh Ghasemi
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Reza ArefNezhad
- Department of Anatomy, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, 40 Blossom Street, Boston, MA, 02114, USA.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, IR, Iran.
| |
Collapse
|
44
|
Qiu B, Xu X, Yi P, Hao Y. Curcumin reinforces MSC-derived exosomes in attenuating osteoarthritis via modulating the miR-124/NF-kB and miR-143/ROCK1/TLR9 signalling pathways. J Cell Mol Med 2020; 24:10855-10865. [PMID: 32776418 PMCID: PMC7521270 DOI: 10.1111/jcmm.15714] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/23/2020] [Accepted: 05/03/2020] [Indexed: 12/14/2022] Open
Abstract
Curcumin treatment was reported to delay the progression of OA, but its underlying mechanism remains unclear. In this study, we aimed to investigate the molecular mechanism underlying the role of curcumin in OA treatment. Accordingly, by conducting MTT and flow cytometry assays, we found that the exosomes derived from curcumin‐treated MSCs helped to maintain the viability while inhibiting the apoptosis of model OA cells. Additionally, quantitative real‐time PCR and Western blot assays showed that the exosomes derived from curcumin‐treated MSCs significantly restored the down‐regulated miR‐143 and miR‐124 expression as well as up‐regulated NF‐kB and ROCK1 expression in OA cells. Mechanistically, curcumin treatment decreased the DNA methylation of miR‐143 and miR‐124 promoters. In addition, the 3’ UTRs of NF‐kB and ROCK1 were proven to contain the binding sites for miR‐143 and miR‐124, respectively. Therefore, the up‐regulation of miR‐143 and miR‐124 in cellular and mouse OA models treated with exosomes remarkably restored the normal expression of NF‐kB and ROCK1. Consequently, the progression of OA was attenuated by the exosomes. Our results clarified the molecular mechanism underlying the therapeutic role of MSC‐derived exosomes in OA treatment.
Collapse
Affiliation(s)
- Bo Qiu
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiongfeng Xu
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Peng Yi
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yarong Hao
- Department of Geriatrics, Renmin hospital of Wuhan University, Wuhan, China
| |
Collapse
|
45
|
Duz MB, Karatas OF. Expression profile of stem cell markers and ABC transporters in 5-fluorouracil resistant Hep-2 cells. Mol Biol Rep 2020; 47:5431-5438. [PMID: 32627138 DOI: 10.1007/s11033-020-05633-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/26/2020] [Indexed: 02/06/2023]
Abstract
Resistance of laryngeal squamous cell carcinoma cells to traditional therapeutic regimens still remains to be a major reason for therapeutic failure in patients. In this study, we aimed at investigating the expression profiles of ATP-binding cassette (ABC) transporters and stem cell markers in 5-fluorouracil (5-FU) resistant laryngeal Hep-2 cells. We treated parental Hep-2 cells, with stepwise increased doses of 5-FU for almost 1 year to develop 5-FU resistant sub-lines with resistance against varying levels of 5-FU concentrations (4 sub-lines resistant to 1, 2, 4, and eightfold of 5-FU). Then, we measured the expression levels of 10 genes from ABC transporters family and 4 stem cell associated markers using quantitative reverse transcription polymerase chain reaction (qRT-PCR) to find out a potential relationship between these markers and chemoresistance. We found that stemness-associated markers had elevated expressions from the beginning of 5-FU resistance acquisition. Their expressions elevated stepwise while parental Hep-2 cells got resistance to higher doses of 5-FU. Expressions of tested ABC transporters (ABCA5, ABCB1, ABCB6, ABCC1, ABCC2, ABCC3, ABCC5, ABCC10 and ABCF2, and ABCG2) were also deregulated in 5-FU resistant Hep-2 cells. Although their expressions remained unaltered at the beginning of acquisition of resistance, expressions of ABC transporters except from ABCB6 increased significantly when cells became resistant to higher doses of 5-FU. Our results suggest that enrichment of cells with stemness characteristics and upregulation of ABC transporters might be amongst the crucial contributors of chemoresistance in laryngeal cancer cells.
Collapse
Affiliation(s)
- Mehmet Bugrahan Duz
- Department of Medical Genetics, Haseki Training and Research Hospital, Health Science University, Istanbul, Turkey
| | - Omer Faruk Karatas
- Department of Molecular Biology and Genetics, Erzurum Technical University, Omer Nasuhi Bilmen Mah. Havaalani Yolu Cad. No: 53 Yakutiye, Erzurum, Turkey. .,High Technology Application and Research Center, Erzurum Technical University, Erzurum, Turkey.
| |
Collapse
|
46
|
Burns in the Elderly: Potential Role of Stem Cells. Int J Mol Sci 2020; 21:ijms21134604. [PMID: 32610474 PMCID: PMC7369885 DOI: 10.3390/ijms21134604] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 12/12/2022] Open
Abstract
Burns in the elderly continue to be a challenge despite advances in burn wound care management. Elderly burn patients continue to have poor outcomes compared to the younger population. This is secondary to changes in the quality of the aged skin, leading to impaired wound healing, aggravated immunologic and inflammatory responses, and age-related comorbidities. Considering the fast-growing elderly population, it is imperative to understand the anatomic, physiologic, and molecular changes of the aging skin and the mechanisms involved in their wound healing process to prevent complications associated with burn wounds. Various studies have shown that stem cell-based therapies improve the rate and quality of wound healing and skin regeneration; however, the focus is on the younger population. In this paper, we start with an anatomical, physiological and molecular dissection of the elderly skin to understand why wound healing is delayed. We then review the potential use of stem cells in elderly burn wounds, as well as the mechanisms by which mesenchymal stem cell (MSCs)-based therapies may impact burn wound healing in the elderly. MSCs improve burn wound healing by stimulating and augmenting growth factor secretion and cell proliferation, and by modulating the impaired elderly immune response. MSCs can be used to expedite healing in superficial partial thickness burns and donor site wounds, improve graft take and prevent graft breakdown.
Collapse
|
47
|
Wang WH, Shen CY, Chien YC, Chang WS, Tsai CW, Lin YH, Hwang JJ. Validation of Enhancing Effects of Curcumin on Radiotherapy with F98/ FGT Glioblastoma-Bearing Rat Model. Int J Mol Sci 2020; 21:ijms21124385. [PMID: 32575632 PMCID: PMC7352749 DOI: 10.3390/ijms21124385] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 12/17/2022] Open
Abstract
Glioblastoma, the most common and aggressive brain tumor with low survival rate, is difficult to be cured by neurosurgery or radiotherapy. Mounting evidence has reported the anti-inflammatory and anticancer effects of curcumin on several types of cancer in preclinical studies and clinical trials. To our knowledge, there is no platform or system that could be used to effectively and real-timely evaluate the therapeutic efficacy of curcumin for glioblastoma multiforme (GBM). In this study, we constructed a lentivirus vector with triple-reporter genes (Fluc/GFP/tk) and transduced into rat F98 glioblastoma cells to establish an orthotopic F98/FGT glioma-bearing rat model. In the model, the therapeutic efficacies for curcumin alone, radiation alone, and their combination were evaluated via noninvasive bioluminescent imaging and overall survival measurements. At the cell level, curcumin is capable of causing a G2/M cell cycle arrest and sensitizing the F98 cells to radiation. In animal model, curcumin synergistically enhances the effects of radiotherapy on suppressing the growth of both transplanted glioma cells and in situ brain tumors, and extending the overall survival periods longer than those of curcumin alone and radiation alone treatments. In conclusion, we have demonstrated that curcumin may serve as a novel radiosensitizer to combine with radiotherapy using the triple-reporter F98/FGT animal model for effective and simultaneous evaluation of therapeutic efficacy.
Collapse
Affiliation(s)
- Wei-Hsun Wang
- Department of Orthopedic Surgery, Changhua Christian Hospital, Changhua 500, Taiwan;
- Department of Medical Imaging and Radiology, Shu-Zen Junior College of Medicine and Management, Kaohsiung 821, Taiwan
| | - Chao-Yu Shen
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; or
- Department of Medical Imaging, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Yi-Chun Chien
- Department of Medical Imaging and Radiological Sciences, I-Shou University, Jiaosu Village, Kaohsiung 824, Taiwan;
- School of Medicine, I-Shou University, Jiaosu Village, Kaohsiung 824, Taiwan
| | - Wen-Shin Chang
- Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung 402, Taiwan; (W.-S.C.); (C.-W.T.)
| | - Chia-Wen Tsai
- Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung 402, Taiwan; (W.-S.C.); (C.-W.T.)
| | - Yi-Hsien Lin
- Division of Radiotherapy, Cheng Hsin General Hospital, No. 45, Cheng Hsin St, Beitou, Taipei 112, Taiwan
- School of Medicine, National Yang-Ming University, Taipei 112, Taiwan
- Correspondence: (Y.-H.L.); (J.-J.H.); Tel.: +88-622-826-4400 (ext. 5750) (Y.-H.L.); +88-642-473-9595 (ext. 32138) (J.-J.H.); Fax: +88-622-826-4524 (Y.-H.L.); +88-642-324-8186 (J.-J.H.)
| | - Jeng-Jong Hwang
- Department of Medical Imaging, Chung Shan Medical University Hospital, No. 110, Sec. 1, Jianguo North Road, Taichung 402, Taiwan
- Department of Medical Imaging and Radiological Sciences, Chung Shan Medical University, Taichung 112, Taiwan
- Correspondence: (Y.-H.L.); (J.-J.H.); Tel.: +88-622-826-4400 (ext. 5750) (Y.-H.L.); +88-642-473-9595 (ext. 32138) (J.-J.H.); Fax: +88-622-826-4524 (Y.-H.L.); +88-642-324-8186 (J.-J.H.)
| |
Collapse
|
48
|
Asgari V, Landarani-Isfahani A, Salehi H, Amirpour N, Hashemibeni B, Kazemi M, Bahramian H. Direct Conjugation of Retinoic Acid with Gold Nanoparticles to Improve Neural Differentiation of Human Adipose Stem Cells. J Mol Neurosci 2020; 70:1836-1850. [PMID: 32514739 DOI: 10.1007/s12031-020-01577-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 04/30/2020] [Indexed: 12/13/2022]
Abstract
Gold nanoparticles (AuNPs) have been proposed as useful medical carriers in the field of regenerative medicine. This study aimed to assess the direct conjugation ability of retinoic acid (RA) with AuNPs and to develop a strategy to differentiate the human adipose-derived stromal/stem cells (hADSCs) into neurons using AuNPs-RA. The physical properties of this nanocarrier were characterized using FT-IR, TEM, and FE-SEM. Moreover, the efficiency of RA conjugation on AuNPs was determined at 99% using UV-Vis spectroscopy. According to the MTT assay, an RA concentration of 66 μM caused a 50% inhibition of cell viability and AuNPs were not cytotoxic in concentrations below 5 μg/ml. Real-time PCR and immunocytochemistry proved that AuNPs-RA is able to increase the expression of neuronal marker genes and the number of neuronal protein (GFAP and MAP2)-positive cells, 14 days post-induction of hADSCs. Taken together, these results confirmed that the AuNPs-RA promote the neuronal differentiation of hADSCs.
Collapse
Affiliation(s)
- Vajihe Asgari
- Department of Anatomical Sciences, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Hossein Salehi
- Department of Anatomical Sciences, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Noushin Amirpour
- Department of Anatomical Sciences, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Batool Hashemibeni
- Department of Anatomical Sciences, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Kazemi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hamid Bahramian
- Department of Anatomical Sciences, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
49
|
Hallajzadeh J, Amirani E, Mirzaei H, Shafabakhsh R, Mirhashemi SM, Sharifi M, Yousefi B, Mansournia MA, Asemi Z. Circular RNAs: new genetic tools in melanoma. Biomark Med 2020; 14:563-571. [PMID: 32462914 DOI: 10.2217/bmm-2019-0567] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Melanoma is the most lethal form of skin cancer. New technologies have resulted in major advances in the diagnosis and treatment of melanoma and other cancer types. Recently, some studies have investigated the role of circular RNAs (circRNAs) in different cancers. CircRNAs are a member of long noncoding RNA family mainly formed through back-splicing and have a closed-loop structure. These molecules affect several biological and oncogenic cascades in diverse ways via acting as microRNA sponge, interacting with RNA-binding proteins and acting as a transcription regulator. In this review, we made an insight into the impact of circRNA dysregulation in the melanoma tumorigenesis based on the presented evidences.
Collapse
Affiliation(s)
- Jamal Hallajzadeh
- Department of Biochemistry & Nutrition, Research Center for Evidence-Based Health Management, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Elaheh Amirani
- Research Center for Biochemistry & Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry & Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Rana Shafabakhsh
- Research Center for Biochemistry & Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyyed M Mirhashemi
- Metabolic Diseases Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Mehran Sharifi
- Department of Hematology & Oncology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Bahman Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad A Mansournia
- Department of Epidemiology & Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry & Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
50
|
Xu GP, Zhang XF, Sun L, Chen EM. Current and future uses of skeletal stem cells for bone regeneration. World J Stem Cells 2020; 12:339-350. [PMID: 32547682 PMCID: PMC7280866 DOI: 10.4252/wjsc.v12.i5.339] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 04/07/2020] [Accepted: 04/18/2020] [Indexed: 02/06/2023] Open
Abstract
The postnatal skeleton undergoes growth, modeling, and remodeling. The human skeleton is a composite of diverse tissue types, including bone, cartilage, fat, fibroblasts, nerves, blood vessels, and hematopoietic cells. Fracture nonunion and bone defects are among the most challenging clinical problems in orthopedic trauma. The incidence of nonunion or bone defects following fractures is increasing. Stem and progenitor cells mediate homeostasis and regeneration in postnatal tissue, including bone tissue. As multipotent stem cells, skeletal stem cells (SSCs) have a strong effect on the growth, differentiation, and repair of bone regeneration. In recent years, a number of important studies have characterized the hierarchy, differential potential, and bone formation of SSCs. Here, we describe studies on and applications of SSCs and/or mesenchymal stem cells for bone regeneration.
Collapse
Affiliation(s)
- Guo-Ping Xu
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang Province, China
| | - Xiang-Feng Zhang
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang Province, China
| | - Lu Sun
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Harvard University, Boston, MA 02115, United States
| | - Er-Man Chen
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang Province, China
| |
Collapse
|