1
|
Ha NNY, Huynh TKT, Phan NUP, Nguyen TH, Vong LB, Trinh NT. Synergistic effect of metformin and vitamin D 3 on osteogenic differentiation of human adipose tissue-derived mesenchymal stem cells under high d-glucose conditions. Regen Ther 2024; 25:147-156. [PMID: 38486821 PMCID: PMC10937201 DOI: 10.1016/j.reth.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/24/2023] [Accepted: 12/17/2023] [Indexed: 03/17/2024] Open
Abstract
Introduction Vitamin D3 plays a vital role in bone health, with low levels of vitamin D3 being related to skeletal fragility, fractures, and metabolic disorders such as diabetes. Metformin is known as an antihyperglycemic agent for regulating blood sugar. A correlation between diabetes mellitus and osteoporosis is attracting considerable interest, and research to find the prevention and treatment is gradually being studied. In this study, we investigated the effect of metformin and vitamin D3 on osteogenic differentiation of human adipose tissue-derived mesenchymal stem cells (AT-MSCs) under high d-glucose concentrations and optimized by combining vitamin D3 and metformin in the process. Methods ROS production of AT-MSCs under high d-glucose conditions was measured by DCFH-DA assay. The differentiated AT-MSCs were analyzed by Alizarin Red S staining and optical density measurement. The investigation involved the examination of osteogenic master genes' expressions using quantitative reverse transcription polymerase chain reaction (qRT-PCR) techniques. Results Interestingly, the results have shown that human AT-MSCs will exhibit high ROS accumulation and low osteogenic differentiation capabilities, indicated by low calcium deposition, as well as low expression of indicative genes such as ALP, Runx-2 under high d-glucose conditions. The combination of vitamin D3 and metformin remarkedly accelerated the osteogenic differentiation of AT-MSCs under high d-glucose concentrations more effectively than the administration of either agent. Conclusions This study partially explains an aspect of an in vitro model for pre-clinical drug screening for osteoporosis-related diabetic pathological mechanisms, which can be applied for further research on the prevention or treatment of osteoporosis in diabetic patients.
Collapse
Affiliation(s)
- Nhi Nguyen-Yen Ha
- School of Biomedical Engineering, International University, 700000 HCMC, Viet Nam
- Faculty of Biology and Biotechnology, University of Science, 700000 HCMC, Viet Nam
- Vietnam National University-Ho Chi Minh City (VNU-HCMC), 700000 HCMC, Viet Nam
| | - Thi Kim Tan Huynh
- Faculty of Biology and Biotechnology, University of Science, 700000 HCMC, Viet Nam
- Vietnam National University-Ho Chi Minh City (VNU-HCMC), 700000 HCMC, Viet Nam
| | | | - Thi-Hiep Nguyen
- School of Biomedical Engineering, International University, 700000 HCMC, Viet Nam
- Vietnam National University-Ho Chi Minh City (VNU-HCMC), 700000 HCMC, Viet Nam
| | - Long Binh Vong
- School of Biomedical Engineering, International University, 700000 HCMC, Viet Nam
- Vietnam National University-Ho Chi Minh City (VNU-HCMC), 700000 HCMC, Viet Nam
| | - Nhu-Thuy Trinh
- School of Biomedical Engineering, International University, 700000 HCMC, Viet Nam
- Vietnam National University-Ho Chi Minh City (VNU-HCMC), 700000 HCMC, Viet Nam
| |
Collapse
|
2
|
Tyagi S, Mani S. Combined Administration of Metformin and Vitamin D: A Futuristic Approach for Management of Hyperglycemia. Cardiovasc Hematol Agents Med Chem 2024; 22:258-275. [PMID: 37929731 DOI: 10.2174/0118715257261643231018102928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/28/2023] [Accepted: 09/26/2023] [Indexed: 11/07/2023]
Abstract
Diabetes is a series of metabolic disorders that can be categorized into three types depending on different aspects associated with age at onset, intensity of insulin resistance, and beta- cell dysfunction: Type 1 and 2 Diabetes, and Gestational Diabetes Mellitus. Type 2 Diabetes Mellitus (T2DM) has recently been found to account for more than 85% of diabetic cases. The current review intends to raise awareness among clinicians/researchers that combining vitamin D3 with metformin may pave the way for better T2DM treatment and management. An extensive literature survey was performed to analyze vitamin D's role in regulating insulin secretion, their action on the target cells and thus maintaining the normal glucose level. On the other side, the anti-hyperglycemic effect of metformin as well as its detailed mechanism of action was also studied. Interestingly both compounds are known to exhibit the antioxidant effect too. Literature supporting the correlation between diabetic phenotypes and deficiency of vitamin D was also explored further. To thoroughly understand the common/overlapping pathways responsible for the antidiabetic as well as antioxidant nature of metformin and vitamin D3, we compared their antihyperglycemic and antioxidant activities. With this background, we are proposing the hypothesis that it would be of great interest if these two compounds could work in synergy to better manage the condition of T2DM and associated disorders.
Collapse
Affiliation(s)
- Sakshi Tyagi
- Centre for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Shalini Mani
- Centre for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| |
Collapse
|
3
|
Marunaka Y. Molecular Mechanisms of Obesity-Induced Development of Insulin Resistance and Promotion of Amyloid-β Accumulation: Dietary Therapy Using Weak Organic Acids via Improvement of Lowered Interstitial Fluid pH. Biomolecules 2023; 13:biom13050779. [PMID: 37238649 DOI: 10.3390/biom13050779] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/31/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Insulin resistance is one of the etiologies of type 2 diabetes mellitus (T2DM) and has been suggested to contribute to the development of Alzheimer's disease by promoting amyloid-β accumulation. Various causes of insulin resistance have been suggested; however, mechanisms of insulin resistance development remain to be elucidated in many respects. Elucidating the mechanisms underlying the development of insulin resistance is one of the key factors in developing methods to prevent the onset of T2DM and Alzheimer's disease. It has been suggested that the body pH environment plays an important role in the control of cellular functions by regulating the action of hormones including insulin and the activity of enzymes and neurons, thereby maintaining homeostatic conditions of the body. This review introduces: (1) Mitochondrial dysfunction through oxidative stress caused by obesity-induced inflammation. (2) Decreased pH of interstitial fluid due to mitochondrial dysfunction. (3) Development of insulin resistance due to diminution of insulin affinity to its receptor caused by the lowered interstitial fluid pH. (4) Accelerated accumulation of amyloid-β due to elevated activities of β- and γ-secretases caused by the lowered interstitial fluid pH. (5) Diet therapies for improving insulin resistance with weak organic acids that act as bases in the body to raise the pH of lowered interstitial fluid and food factors that promote absorption of weak organic acids in the gut.
Collapse
Affiliation(s)
- Yoshinori Marunaka
- Medical Research Institute, Kyoto Industrial Health Association, Kyoto 604-8472, Japan
- Research Organization of Science and Technology, Ritsumeikan University, Kusatsu 525-8577, Japan
- Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| |
Collapse
|
4
|
de Alwis N, Binder NK, Mangwiro YTM, Pritchard N, Beard S, Kaitu'u-Lino TJ, Brownfoot F, Hannan NJ. The effect of metformin on cardiovascular markers in female mice consuming a high fat diet. Obes Res Clin Pract 2022; 16:524-532. [PMID: 36333189 DOI: 10.1016/j.orcp.2022.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 08/06/2022] [Accepted: 10/12/2022] [Indexed: 11/13/2022]
Abstract
BACKGROUND Metformin, widely used to treat diabetes, is now considered a candidate therapeutic for treatment of cardiovascular disease. This study aimed to assess whether metformin's non-glycaemic effects could mitigate cardiovascular disease indices in female mice consuming a high fat diet (HFD). METHODS Four-week old female Arc:Arc(S) mice were placed on a standard (std) chow diet or Western-style HFD (22% fat, 0.15% cholesterol). At ∼8 months, the mice were administered 150 mg/kg metformin or vehicle (control) via intraperitoneal injection for 11 days. Blood pressure was measured (tail cuff plethysmography) at Day 9 and 11 of treatment. On Day 11, mice were weighed and culled. The mesenteric arcade and kidneys were collected for assessment of vascular reactivity (wire myography), and assessment of expression of cardiometabolic markers (qPCR), respectively. RESULTS The HFD fed female mice were significantly heavier than those receiving the std diet at 1-12 weeks on diet, and at cull. Mice on a std diet with metformin treatment were significantly heavier at cull than the mice on a std diet administered the control treatment. Metformin treatment did not alter the weight of the mice receiving the HFD. Neither the HFD (compared to the std diet), nor metformin treatment (compared to control treatment) altered blood pressure, vascular reactivity, or expression of cardiometabolic markers in the kidney. CONCLUSION Consumption of a Western-style HFD (without high salt/sugar levels) did not alter the cardiovascular markers measured. Further studies are required to establish the non-glycaemic, cardio-protective effects of metformin in high-risk cohorts.
Collapse
Affiliation(s)
- Natasha de Alwis
- Therapeutics Discovery and Vascular Function in Pregnancy Group, Department of Obstetrics and Gynaecology, University of Melbourne, Victoria, Australia; Mercy Perinatal, Mercy Hospital for Women, Heidelberg 3084, Victoria, Australia
| | - Natalie K Binder
- Therapeutics Discovery and Vascular Function in Pregnancy Group, Department of Obstetrics and Gynaecology, University of Melbourne, Victoria, Australia; Mercy Perinatal, Mercy Hospital for Women, Heidelberg 3084, Victoria, Australia
| | - Yeukai T M Mangwiro
- Therapeutics Discovery and Vascular Function in Pregnancy Group, Department of Obstetrics and Gynaecology, University of Melbourne, Victoria, Australia; Mercy Perinatal, Mercy Hospital for Women, Heidelberg 3084, Victoria, Australia
| | - Natasha Pritchard
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg 3084, Victoria, Australia; Translational Obstetrics Group, Department of Obstetrics and Gynaecology, University of Melbourne, Victoria, Australia
| | - Sally Beard
- Therapeutics Discovery and Vascular Function in Pregnancy Group, Department of Obstetrics and Gynaecology, University of Melbourne, Victoria, Australia; Mercy Perinatal, Mercy Hospital for Women, Heidelberg 3084, Victoria, Australia
| | - Tu'uhevaha J Kaitu'u-Lino
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg 3084, Victoria, Australia; Translational Obstetrics Group, Department of Obstetrics and Gynaecology, University of Melbourne, Victoria, Australia
| | - Fiona Brownfoot
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg 3084, Victoria, Australia; Translational Obstetrics Group, Department of Obstetrics and Gynaecology, University of Melbourne, Victoria, Australia
| | - Natalie J Hannan
- Therapeutics Discovery and Vascular Function in Pregnancy Group, Department of Obstetrics and Gynaecology, University of Melbourne, Victoria, Australia; Mercy Perinatal, Mercy Hospital for Women, Heidelberg 3084, Victoria, Australia.
| |
Collapse
|
5
|
Erickson ML, Allen JM, Beavers DP, Collins LM, Davidson KW, Erickson KI, Esser KA, Hesselink MKC, Moreau KL, Laber EB, Peterson CA, Peterson CM, Reusch JE, Thyfault JP, Youngstedt SD, Zierath JR, Goodpaster BH, LeBrasseur NK, Buford TW, Sparks LM. Understanding heterogeneity of responses to, and optimizing clinical efficacy of, exercise training in older adults: NIH NIA Workshop summary. GeroScience 2022; 45:569-589. [PMID: 36242693 PMCID: PMC9886780 DOI: 10.1007/s11357-022-00668-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 02/03/2023] Open
Abstract
Exercise is a cornerstone of preventive medicine and a promising strategy to intervene on the biology of aging. Variation in the response to exercise is a widely accepted concept that dates back to the 1980s with classic genetic studies identifying sequence variations as modifiers of the VO2max response to training. Since that time, the literature of exercise response variance has been populated with retrospective analyses of existing datasets that are limited by a lack of statistical power from technical error of the measurements and small sample sizes, as well as diffuse outcomes, very few of which have included older adults. Prospective studies that are appropriately designed to interrogate exercise response variation in key outcomes identified a priori and inclusive of individuals over the age of 70 are long overdue. Understanding the underlying intrinsic (e.g., genetics and epigenetics) and extrinsic (e.g., medication use, diet, chronic disease) factors that determine robust versus poor responses to various exercise factors will be used to improve exercise prescription to target the pillars of aging and optimize the clinical efficacy of exercise training in older adults. This review summarizes the proceedings of the NIA-sponsored workshop entitled, "Understanding Heterogeneity of Responses to, and Optimizing Clinical Efficacy of, Exercise Training in Older Adults" and highlights the importance and current state of exercise response variation research, particularly in older adults, prevailing challenges, and future directions.
Collapse
Affiliation(s)
- Melissa L Erickson
- Translational Research Institute, AdventHealth, 301 E Princeton St, Orlando, FL, 32804, USA
| | - Jacob M Allen
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Daniel P Beavers
- Department of Statistical Sciences, Wake Forest University, Winston-Salem, NC, USA
| | - Linda M Collins
- Department of Social and Behavioral Sciences, New York University, New York, NY, USA
| | - Karina W Davidson
- Institute of Health System Science, Feinstein Institutes for Medical Research, Northwell Health, New York, NY, USA
| | - Kirk I Erickson
- Translational Research Institute, AdventHealth, 301 E Princeton St, Orlando, FL, 32804, USA
| | - Karyn A Esser
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL, USA
| | - Matthijs K C Hesselink
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Kerrie L Moreau
- Department of Medicine, Division of Geriatric Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Eric B Laber
- Department of Statistical Sciences, Duke University, Durham, NC, USA
| | - Charlotte A Peterson
- Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY, USA
| | - Courtney M Peterson
- Department of Nutritional Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jane E Reusch
- Department of Medicine, Division of Geriatric Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - John P Thyfault
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KN, USA
| | - Shawn D Youngstedt
- Edson College of Nursing and Health Innovation, Arizona State University, Phoenix, AZ, USA
| | - Juleen R Zierath
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Bret H Goodpaster
- Translational Research Institute, AdventHealth, 301 E Princeton St, Orlando, FL, 32804, USA
| | - Nathan K LeBrasseur
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN, USA
| | - Thomas W Buford
- Department of Medicine, University of Alabama at Birmingham, 1313 13th St. S., Birmingham, AL, 35244, USA.
- Birmingham/Atlanta VA GRECC, Birmingham VA Medical Center, Birmingham, AL, USA.
| | - Lauren M Sparks
- Translational Research Institute, AdventHealth, 301 E Princeton St, Orlando, FL, 32804, USA.
| |
Collapse
|
6
|
Yang W, Denger A, Diener C, Küppers F, Soriano-Baguet L, Schäfer G, Yanamandra AK, Zhao R, Knörck A, Schwarz EC, Hart M, Lammert F, Roma LP, Brenner D, Christidis G, Helms V, Meese E, Hoth M, Qu B. Unspecific CTL Killing Is Enhanced by High Glucose via TNF-Related Apoptosis-Inducing Ligand. Front Immunol 2022; 13:831680. [PMID: 35265081 PMCID: PMC8899024 DOI: 10.3389/fimmu.2022.831680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
TNF-related apoptosis inducing ligand (TRAIL) is expressed on cytotoxic T lymphocytes (CTLs) and TRAIL is linked to progression of diabetes. However, the impact of high glucose on TRAIL expression and its related killing function in CTLs still remains largely elusive. Here, we report that TRAIL is substantially up-regulated in CTLs in environments with high glucose (HG) both in vitro and in vivo. Non-mitochondrial reactive oxygen species, NFκB and PI3K/Akt are essential in HG-induced TRAIL upregulation in CTLs. TRAILhigh CTLs induce apoptosis of pancreatic beta cell line 1.4E7. Treatment with metformin and vitamin D reduces HG-enhanced expression of TRAIL in CTLs and coherently protects 1.4E7 cells from TRAIL-mediated apoptosis. Our work suggests that HG-induced TRAILhigh CTLs might contribute to the destruction of pancreatic beta cells in a hyperglycemia condition.
Collapse
Affiliation(s)
- Wenjuan Yang
- Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, Homburg, Germany
| | - Andreas Denger
- Center for Bioinformatics, Saarland University, Saarbrücken, Germany
| | - Caroline Diener
- Institute of Human Genetics, School of Medicine, Saarland University, Homburg, Germany
| | - Frederic Küppers
- Internal Medicine II, University Hospital Saarland, Homburg, Germany
| | - Leticia Soriano-Baguet
- Experimental and Molecular Immunology, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg.,Immunology and Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, Luxembourg.,Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Gertrud Schäfer
- Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, Homburg, Germany
| | - Archana K Yanamandra
- Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, Homburg, Germany.,INM-Leibniz Institute for New Materials, Saarbrücken, Germany
| | - Renping Zhao
- Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, Homburg, Germany
| | - Arne Knörck
- Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, Homburg, Germany
| | - Eva C Schwarz
- Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, Homburg, Germany
| | - Martin Hart
- Institute of Human Genetics, School of Medicine, Saarland University, Homburg, Germany
| | - Frank Lammert
- Internal Medicine II, University Hospital Saarland, Homburg, Germany.,Hannover Medical School (MHH), Hannover, Germany
| | - Leticia Prates Roma
- Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, Homburg, Germany
| | - Dirk Brenner
- Experimental and Molecular Immunology, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg.,Immunology and Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, Luxembourg.,Odense Research Center for Anaphylaxis, Department of Dermatology and Allergy Center, Odense University Hospital University of Southern Denmark, Odense, Denmark
| | | | - Volkhard Helms
- Center for Bioinformatics, Saarland University, Saarbrücken, Germany
| | - Eckart Meese
- Institute of Human Genetics, School of Medicine, Saarland University, Homburg, Germany
| | - Markus Hoth
- Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, Homburg, Germany
| | - Bin Qu
- Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, Homburg, Germany.,INM-Leibniz Institute for New Materials, Saarbrücken, Germany
| |
Collapse
|
7
|
Impaired metabolic effects of metformin in men with early-onset androgenic alopecia. Pharmacol Rep 2021; 74:216-228. [PMID: 34897595 PMCID: PMC8786753 DOI: 10.1007/s43440-021-00347-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 11/15/2021] [Accepted: 11/30/2021] [Indexed: 12/31/2022]
Abstract
Background Early-onset androgenic alopecia is considered the phenotypic equivalent of polycystic ovary syndrome in men. The purpose of the current study was to investigate whether the presence of early-onset male-pattern baldness modulates metabolic effects of metformin. Methods This prospective case–control study included 2 groups of men at high risk for type 2 diabetes: 72 individuals with androgenic alopecia (group A) and 75 subjects with normal hair growth (group B). Both groups were matched for age, blood pressure, body mass index, insulin sensitivity and plasma lipids. Glycated hemoglobin, glucose, plasma lipids, indices of insulin sensitivity/resistance, sex hormones, high-sensitivity C-reactive protein (hsCRP) and 25-hydroxyvitamin D were determined before and after metformin treatment (1.7 g daily). Results Twelve-month metformin treatment reduced fat content, waist circumference, glycated hemoglobin, glucose and triglycerides, as well as improved insulin sensitivity. Although observed in both study populations, these effects were more pronounced in group B. Moreover, metformin decreased hsCRP and bioavailable testosterone levels in group B, as well as reduced 25-hydroxyvitamin D concentration in group A. Treatment-induced changes in glucose homeostasis markers correlated with the impact of metformin on hsCRP and 25-hydroxyvitamin D levels. Conclusions Metabolic effects of metformin in males are attenuated if they have coexisting early-onset androgenic alopecia. This finding may be partially explained by differences in severity of low-grade systemic inflammation and vitamin D status. The obtained results, requiring confirmation in large prospective studies, suggest that men with early-onset male-pattern baldness benefit to a lesser degree from metformin treatment than other men at high risk for type 2 diabetes. Supplementary Information The online version contains supplementary material available at 10.1007/s43440-021-00347-8.
Collapse
|
8
|
Petrocelli JJ, Mahmassani ZS, Fix DK, Montgomery JA, Reidy PT, McKenzie AI, de Hart NM, Ferrara PJ, Kelley JJ, Eshima H, Funai K, Drummond MJ. Metformin and leucine increase satellite cells and collagen remodeling during disuse and recovery in aged muscle. FASEB J 2021; 35:e21862. [PMID: 34416035 DOI: 10.1096/fj.202100883r] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/28/2021] [Accepted: 08/04/2021] [Indexed: 11/11/2022]
Abstract
Loss of muscle mass and strength after disuse followed by impaired muscle recovery commonly occurs with aging. Metformin (MET) and leucine (LEU) individually have shown positive effects in skeletal muscle during atrophy conditions but have not been evaluated in combination nor tested as a remedy to enhance muscle recovery following disuse atrophy in aging. The purpose of this study was to determine if a dual treatment of metformin and leucine (MET + LEU) would prevent disuse-induced atrophy and/or promote muscle recovery in aged mice and if these muscle responses correspond to changes in satellite cells and collagen remodeling. Aged mice (22-24 months) underwent 14 days of hindlimb unloading (HU) followed by 7 or 14 days of reloading (7 or 14 days RL). MET, LEU, or MET + LEU was administered via drinking water and were compared to Vehicle (standard drinking water) and ambulatory baseline. We observed that during HU, MET + LEU resolved whole body grip strength and soleus muscle specific force decrements caused by HU. Gastrocnemius satellite cell abundance was increased with MET + LEU treatment but did not alter muscle size during disuse or recovery conditions. Moreover, MET + LEU treatment alleviated gastrocnemius collagen accumulation caused by HU and increased collagen turnover during 7 and 14 days RL driven by a decrease in collagen IV content. Transcriptional pathway analysis revealed that MET + LEU altered muscle hallmark pathways related to inflammation and myogenesis during HU. Together, the dual treatment of MET and LEU was able to increase muscle function, satellite cell content, and reduce collagen accumulation, thus improving muscle quality during disuse and recovery in aging.
Collapse
Affiliation(s)
- Jonathan J Petrocelli
- Department of Physical Therapy & Athletic Training, University of Utah, Salt Lake City, Utah, USA
| | - Ziad S Mahmassani
- Department of Physical Therapy & Athletic Training, University of Utah, Salt Lake City, Utah, USA
| | - Dennis K Fix
- Department of Physical Therapy & Athletic Training, University of Utah, Salt Lake City, Utah, USA
| | | | - Paul T Reidy
- Department of Kinesiology, Nutrition and Health, Miami University, Oxford, Ohio, USA
| | - Alec I McKenzie
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Naomi M de Hart
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, USA
| | - Patrick J Ferrara
- Molecular Medicine Program, University of Utah, Salt Lake City, Utah, USA
| | - Joshua J Kelley
- Department of Physical Therapy & Athletic Training, University of Utah, Salt Lake City, Utah, USA
| | - Hiroaki Eshima
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, USA
| | - Katsuhiko Funai
- Department of Physical Therapy & Athletic Training, University of Utah, Salt Lake City, Utah, USA.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, USA.,Molecular Medicine Program, University of Utah, Salt Lake City, Utah, USA
| | - Micah J Drummond
- Department of Physical Therapy & Athletic Training, University of Utah, Salt Lake City, Utah, USA.,Molecular Medicine Program, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
9
|
Krysiak R, Kowalcze K, Okopień B. Vitamin D status determines the impact of metformin on circulating prolactin levels in premenopausal women. J Clin Pharm Ther 2021; 46:1349-1356. [PMID: 34076286 DOI: 10.1111/jcpt.13447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/06/2021] [Accepted: 05/11/2021] [Indexed: 12/12/2022]
Abstract
WHAT IS KNOWN AND OBJECTIVE Metformin was found to normalize secretory function of overactive pituitary cells. Its effect on circulating thyrotropin levels was more pronounced in women receiving exogenous vitamin D. The aim of the current study was to investigate whether vitamin D status determines the impact of metformin on prolactin levels in premenopausal women with hyperprolactinaemia. METHODS The study population consisted of three groups of women with prediabetes and elevated prolactin levels: vitamin D-naïve women with vitamin D insufficiency (group 1; n = 19), women receiving vitamin D preparations because of vitamin D deficiency (group 2 n = 20), as well as vitamin D-naïve women with normal vitamin D status (group 3 n = 23). All participants were then treated with metformin (2.55-3 g daily). Circulating levels of glucose, insulin, prolactin, thyrotropin, free thyroid hormones, gonadotropins, estradiol, calcium and 25-hydroxyvitamin were determined at baseline and six months later. RESULTS AND DISCUSSION At baseline, prolactin levels were higher in group 1 than in the remaining groups of patients. Although metformin decreased glucose levels and improved insulin sensitivity in all treatment groups, this effect was more pronounced in groups 2 and 3. Only in subjects with 25-hydroxyvitamin D levels within the reference range, metformin reduced prolactin levels. The impact on prolactin levels correlated with 25-hydroxyvitamin D levels and with the improvement in insulin sensitivity. The drug produced a neutral effect on circulating levels of thyrotropin, free thyroid hormones, gonadotropins, estradiol, calcium and 25-hydroxyvitamin D. WHAT IS NEW AND THE CONCLUSION The results of the current study suggest that the impact of metformin on secretory function of overactive lactotropes depends on the vitamin D status of patients.
Collapse
Affiliation(s)
- Robert Krysiak
- Department of Internal Medicine and Clinical Pharmacology, Medical University of Silesia, Katowice, Poland
| | - Karolina Kowalcze
- Department of Pediatrics in Bytom, School of Health Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Bogusław Okopień
- Department of Internal Medicine and Clinical Pharmacology, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
10
|
Liu B, Hu L, Wang L, Xing D, Peng L, Chen P, Zeng F, Liu WV, Liu H, Zha Y. Evaluation of microvascular permeability of skeletal muscle and texture analysis based on DCE-MRI in alloxan-induced diabetic rabbits. Eur Radiol 2021; 31:5669-5679. [PMID: 33547478 DOI: 10.1007/s00330-021-07705-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 11/24/2020] [Accepted: 01/21/2021] [Indexed: 02/08/2023]
Abstract
OBJECTIVES To estimate the microvascular permeability and perfusion of skeletal muscle by using quantitative dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and explore the feasibility of using texture analysis (TA) to evaluate subtle structural changes of diabetic muscles. METHODS Twenty-four rabbits were randomly divided into diabetic (n = 14) and control (n = 10) groups, and underwent axial DCE-MRI of the multifidus muscle (0, 4, 8, 12, and 16 weeks after alloxan injection). The pharmacokinetic model was used to calculate the permeability parameters; texture parameters were extracted from volume transfer constant (Ktrans) map. The two-sample t test/Mann-Whitney U test, repeated measures analysis of variance/Friedman test, and Pearson correlations were used for data analysis. RESULTS In the diabetic group, Ktrans and rate constant (Kep) increased significantly at week 8 and then showed a decreasing trend. Extravascular extracellular space volume fraction (Ve) increased and plasma volume fraction (Vp) decreased significantly from the 8th week. Skewness began to decrease at the 4th week. Median Ktrans and entropy increased significantly, while inverse difference moment decreased from the 8th week. Energy decreased while contrast increased only at week 8. Muscle fibre cross-sectional area was negatively correlated with Ve. The capillary-to-fibre ratio was positively correlated with Vp (p < 0.05, all). CONCLUSIONS Quantitative DCE-MRI can be used to evaluate microvascular permeability and perfusion in diabetic skeletal muscle at an early stage; TA based on Ktrans map can identify microarchitectural modifications in diabetic muscles. KEY POINTS • Four quantitative parameters of DCE-MRI can be used to evaluate microvascular permeability and perfusion of skeletal muscle in diabetic models at early stages. • Texture analysis based on Ktrans map can identify subtle structural changes in diabetic muscles.
Collapse
Affiliation(s)
- Baiyu Liu
- Department of Radiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Lei Hu
- Department of Radiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Li Wang
- Department of Radiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Dong Xing
- Department of Radiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Lin Peng
- Department of Radiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Pianpian Chen
- Department of Radiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Feifei Zeng
- Department of Radiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | | | - Huan Liu
- GE Healthcare, Shanghai, 201203, China
| | - Yunfei Zha
- Department of Radiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
11
|
Zhang X, Xu D, Chen M, Wang Y, He L, Wang L, Wu J, Yin J. Impacts of Selected Dietary Nutrient Intakes on Skeletal Muscle Insulin Sensitivity and Applications to Early Prevention of Type 2 Diabetes. Adv Nutr 2021; 12:1305-1316. [PMID: 33418570 PMCID: PMC8321846 DOI: 10.1093/advances/nmaa161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/11/2020] [Accepted: 11/13/2020] [Indexed: 11/14/2022] Open
Abstract
As the largest tissue in the body, skeletal muscle not only plays key roles in movement and glucose uptake and utilization but also mediates insulin sensitivity in the body by myokines. Insulin resistance in the skeletal muscle is a major feature of type 2 diabetes (T2D). A weakened response to insulin could lead to muscle mass loss and dysfunction. Increasing evidence in skeletal muscle cells, rodents, nonhuman primates, and humans has shown that restriction of caloric or protein intake positively mediates insulin sensitivity. Restriction of essential or nonessential amino acids was reported to facilitate glucose utilization and regulate protein turnover in skeletal muscle under certain conditions. Furthermore, some minerals, such as zinc, chromium, vitamins, and some natural phytochemicals such as curcumin, resveratrol, berberine, astragalus polysaccharide, emodin, and genistein, have been shown recently to protect skeletal muscle cells, mice, or humans with or without diabetes from insulin resistance. In this review, we discuss the roles of nutritional interventions in the regulation of skeletal muscle insulin sensitivity. A comprehensive understanding of the nutritional regulation of insulin signaling would contribute to the development of tools and treatment programs for improving skeletal muscle health and for preventing T2D.
Collapse
Affiliation(s)
- Xin Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China,State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Doudou Xu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Meixia Chen
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yubo Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Linjuan He
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lu Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jiangwei Wu
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling, China
| | | |
Collapse
|
12
|
Petrocelli JJ, Drummond MJ. PGC-1α-Targeted Therapeutic Approaches to Enhance Muscle Recovery in Aging. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17228650. [PMID: 33233350 PMCID: PMC7700690 DOI: 10.3390/ijerph17228650] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 12/12/2022]
Abstract
Impaired muscle recovery (size and strength) following a disuse period commonly occurs in older adults. Many of these individuals are not able to adequately exercise due to pain and logistic barriers. Thus, nutritional and pharmacological therapeutics, that are translatable, are needed to promote muscle recovery following disuse in older individuals. Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) may be a suitable therapeutic target due to pleiotropic regulation of skeletal muscle. This review focuses on nutritional and pharmacological interventions that target PGC-1α and related Sirtuin 1 (SIRT1) and 5' AMP-activated protein kinase (AMPKα) signaling in muscle and thus may be rapidly translated to prevent muscle disuse atrophy and promote recovery. In this review, we present several therapeutics that target PGC-1α in skeletal muscle such as leucine, β-hydroxy-β-methylbuyrate (HMB), arginine, resveratrol, metformin and combination therapies that may have future application to conditions of disuse and recovery in humans.
Collapse
|
13
|
Mostafa-He G, Ewaiss Has M, Sabry D, Ibrahim Al R. Anti-diabetic Therapeutic Efficacy of Mesenchymal Stem Cells-derived Exosomes. INT J PHARMACOL 2020. [DOI: 10.3923/ijp.2020.437.446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
14
|
Hernández-Arciga U, Hernández-Álvarez D, López-Cervantes SP, López-Díazguerrero NE, Alarcón-Aguilar A, Luna-López A, Königsberg M. Effect of long-term moderate-exercise combined with metformin-treatment on antioxidant enzymes activity and expression in the gastrocnemius of old female Wistar rats. Biogerontology 2020; 21:787-805. [PMID: 32749628 DOI: 10.1007/s10522-020-09894-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/30/2020] [Indexed: 11/27/2022]
Abstract
Oxidative stress is known to be involved in the etiology of sarcopenia, a progressive loss of muscle mass and force related to elderly incapacity. A successful intervention to prevent this condition has been exercise-based therapy. Metformin (MTF), an anti-diabetic drug with pleiotropic effects, is known to retain redox homeostasis. However, the combined use of MTF with exercise has shown controversial experimental results. Our research group has shown that MTF-treatment does not limit the benefits provided by exercise, probably by inducing a hormetic response. Hence, our aim was to evaluate the effect of exercise in combination with MTF-treatment on the redox state of old female Wistar rats. Animals were divided into six groups; three groups preformed exercise on a treadmill for 5 days/week for 20 months and the other three were sedentary. Also, two groups of each, exercised and sedentary animals were treated with MTF for 6 or 12 months correspondingly, beside the untreated groups. Rats were euthanized at 24 months. Muscular functionality was analyzed as the relation between the lean mass free of bone with respect to the grip strength. Superoxide dismutase, catalase, and glutathione peroxidase content, enzymatic activity and redox state were determined in the gastrocnemius muscle. Our results showed that the exercised group treated with MTF for 12 months presented higher GSH/GSSG rate and high antioxidant scavenging power in contrast to the MTF-treatment for 6 months, where the beneficial effect was less noticeable.
Collapse
Affiliation(s)
- Ulalume Hernández-Arciga
- Lab. Bioenergética y Envejecimiento Celular, Depto de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, A.P. 55-535, C.P. 09340, Ciudad de México, Mexico
| | - David Hernández-Álvarez
- Lab. Bioenergética y Envejecimiento Celular, Depto de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, A.P. 55-535, C.P. 09340, Ciudad de México, Mexico
- Posgrado en Ciencias Biológicas, Universidad Autónoma Metropolitana, Ciudad de México, Mexico
| | - Stefanie Paola López-Cervantes
- Lab. Bioenergética y Envejecimiento Celular, Depto de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, A.P. 55-535, C.P. 09340, Ciudad de México, Mexico
- Posgrado en Biología Experimental, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de México, Mexico
| | - Norma Edith López-Díazguerrero
- Lab. Bioenergética y Envejecimiento Celular, Depto de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, A.P. 55-535, C.P. 09340, Ciudad de México, Mexico
| | - Adriana Alarcón-Aguilar
- Lab. Bioenergética y Envejecimiento Celular, Depto de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, A.P. 55-535, C.P. 09340, Ciudad de México, Mexico
| | | | - Mina Königsberg
- Lab. Bioenergética y Envejecimiento Celular, Depto de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, A.P. 55-535, C.P. 09340, Ciudad de México, Mexico.
| |
Collapse
|
15
|
Krysiak R, Kowalcze K, Okopień B. The impact of combination therapy with metformin and exogenous vitamin D on hypothalamic‐pituitary‐thyroid axis activity in women with autoimmune thyroiditis and high‐normal thyrotropin levels. J Clin Pharm Ther 2020; 45:1382-1389. [DOI: 10.1111/jcpt.13233] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/16/2020] [Accepted: 06/26/2020] [Indexed: 12/25/2022]
Affiliation(s)
- Robert Krysiak
- Department of Internal Medicine and Clinical Pharmacology Medical University of Silesia Katowice Poland
| | - Karolina Kowalcze
- Department of Pediatrics in Bytom School of Health Sciences in Katowice Medical University of Silesia Katowice Poland
| | - Bogusław Okopień
- Department of Internal Medicine and Clinical Pharmacology Medical University of Silesia Katowice Poland
| |
Collapse
|
16
|
Autophagy and mTOR Pathways Mediate the Potential Renoprotective Effects of Vitamin D on Diabetic Nephropathy. Int J Nephrol 2020; 2020:7941861. [PMID: 32455017 PMCID: PMC7243019 DOI: 10.1155/2020/7941861] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 04/24/2020] [Indexed: 02/06/2023] Open
Abstract
Introduction Not only is diabetic nephropathy (DN) the most common cause of end-stage renal disease worldwide, but it also increases the risk of mortality up to fourteen times compared to normoalbuminuric diabetic patients. Aim The aim of the current study was the evaluation of the renoprotective effects of vitamin D in DN and the possible interplay between autophagy and mTOR pathways. Materials and Methods Fifty male Wistar albino rats were divided (10/group) into control, DN group, insulin-treated DN group, vitamin D-treated DN group, and combined insulin and vitamin D-treated DN group. Assessments of systolic blood pressure, albuminuria, creatinine clearance, serum glucose, insulin, urea, creatinine, inflammatory cytokines, oxidative stress markers, and rat kidney gene expression of mTOR were performed. Histopathological and immunohistochemical assessments of autophagy marker LC3 in rat kidneys were also performed. Results DN was associated with significant increases in SBP, urinary albumin, serum glucose, urea, creatinine, inflammatory cytokines, MDA, and mTOR gene expression (P < 0.05). However, there was significant decrease in creatinine clearance, serum insulin, GSH, and H score value of LC3 when compared with control group (P < 0.05). The combination of insulin and vitamin D treatment significantly restored DN changes when compared with the other treated groups, except in oxidative stress markers where there was an insignificant difference between the combination-treated and insulin-treated groups (P > 0.05). Conclusion It has been concluded that vitamin D is a potent adjuvant therapy in treatment of DN via downregulation of mTOR gene expression, stimulation of autophagy, and antioxidant, anti-inflammatory, and hypotensive effects.
Collapse
|
17
|
Dalle S, Koppo K. Is inflammatory signaling involved in disease-related muscle wasting? Evidence from osteoarthritis, chronic obstructive pulmonary disease and type II diabetes. Exp Gerontol 2020; 137:110964. [PMID: 32407865 DOI: 10.1016/j.exger.2020.110964] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/15/2020] [Accepted: 04/23/2020] [Indexed: 12/12/2022]
Abstract
Muscle loss is an important feature that occurs in multiple pathologies including osteoarthritis (OA), chronic obstructive pulmonary disease (COPD) and type II diabetes (T2D). Despite differences in pathogenesis and disease-related complications, there are reasons to believe that some fundamental underlying mechanisms are inherent to the muscle wasting process, irrespective of the pathology. Recent evidence shows that inflammation, either local or systemic, contributes to the modulation of muscle mass and/or muscle strength, via an altered molecular profile in muscle tissue. However, it remains ambiguous to which extent and via which mechanisms inflammatory signaling affects muscle mass in disease. Therefore, the objective of the present review is to discuss the role of inflammation on skeletal muscle anabolism, catabolism and functionality in three pathologies that are characterized by an eventual loss in muscle mass (and muscle strength), i.e. OA, COPD and T2D. In OA and COPD, most rodent models confirmed that systemic (COPD) or muscle (OA) inflammation directly induces muscle loss or muscle dysfunctionality. However, in a patient population, the association between inflammation and muscular maladaptations are more ambiguous. For example, in T2D patients, systemic inflammation is associated with muscle loss whereas in OA patients this link has not consistently been established. T2D rodent models revealed that increased levels of advanced glycation end-products (AGEs) and a decreased mTORC1 activation play a key role in muscle atrophy, but it remains to be elucidated whether AGEs and mTORC1 are interconnected and contribute to muscle loss in T2D patients. Generally, if any, associations between inflammation and muscle are mainly based on observational and cross-sectional data. There is definitely a need for longitudinal evidence through well-powered randomized control trials that take into account confounders such as age, disease-phenotypes, comorbidities, physical (in) activity etc. This will allow to improve our understanding of the complex interaction between inflammatory signaling and muscle mass loss and hence contribute to the development of therapeutic strategies to combat muscle wasting in these diseases.
Collapse
Affiliation(s)
- Sebastiaan Dalle
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Tervuursevest 101, 3001 Leuven, Belgium
| | - Katrien Koppo
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Tervuursevest 101, 3001 Leuven, Belgium.
| |
Collapse
|
18
|
Effects of vitamin D on drugs: Response and disposal. Nutrition 2020; 74:110734. [PMID: 32179384 DOI: 10.1016/j.nut.2020.110734] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 12/29/2019] [Accepted: 01/01/2020] [Indexed: 12/11/2022]
Abstract
Vitamin D supplementation and vitamin D deficiency are common in clinical experience and in daily life. Vitamin D not only promotes calcium absorption and immune regulation, but also changes drug effects (pharmacodynamics and adverse reactions) and drug disposal in vivo when combined with various commonly used clinical drugs. The extensive physiological effects of vitamin D may cause synergism effects or alleviation of adverse reactions, and vitamin D's affect on drugs in vivo disposal through drug transporters or metabolic enzymes may also lead to changes in drug effects. Herein, the effects of vitamin D combined with commonly used drugs were reviewed from the perspective of drug efficacy and adverse reactions. The effects of vitamin D on drug transport and metabolism were summarized and analyzed. Hopefully, more attention will be paid to vitamin D supplementation and deficiency in clinical treatment and drug research and development.
Collapse
|
19
|
Walton RG, Dungan CM, Long DE, Tuggle SC, Kosmac K, Peck BD, Bush HM, Villasante Tezanos AG, McGwin G, Windham ST, Ovalle F, Bamman MM, Kern PA, Peterson CA. Metformin blunts muscle hypertrophy in response to progressive resistance exercise training in older adults: A randomized, double-blind, placebo-controlled, multicenter trial: The MASTERS trial. Aging Cell 2019; 18:e13039. [PMID: 31557380 PMCID: PMC6826125 DOI: 10.1111/acel.13039] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/14/2019] [Accepted: 08/25/2019] [Indexed: 12/25/2022] Open
Abstract
Progressive resistance exercise training (PRT) is the most effective known intervention for combating aging skeletal muscle atrophy. However, the hypertrophic response to PRT is variable, and this may be due to muscle inflammation susceptibility. Metformin reduces inflammation, so we hypothesized that metformin would augment the muscle response to PRT in healthy women and men aged 65 and older. In a randomized, double‐blind trial, participants received 1,700 mg/day metformin (N = 46) or placebo (N = 48) throughout the study, and all subjects performed 14 weeks of supervised PRT. Although responses to PRT varied, placebo gained more lean body mass (p = .003) and thigh muscle mass (p < .001) than metformin. CT scan showed that increases in thigh muscle area (p = .005) and density (p = .020) were greater in placebo versus metformin. There was a trend for blunted strength gains in metformin that did not reach statistical significance. Analyses of vastus lateralis muscle biopsies showed that metformin did not affect fiber hypertrophy, or increases in satellite cell or macrophage abundance with PRT. However, placebo had decreased type I fiber percentage while metformin did not (p = .007). Metformin led to an increase in AMPK signaling, and a trend for blunted increases in mTORC1 signaling in response to PRT. These results underscore the benefits of PRT in older adults, but metformin negatively impacts the hypertrophic response to resistance training in healthy older individuals. ClinicalTrials.gov Identifier: NCT02308228.
Collapse
Affiliation(s)
- R. Grace Walton
- Center for Muscle Biology College of Health Sciences University of Kentucky Lexington Kentucky
| | - Cory M. Dungan
- Center for Muscle Biology College of Health Sciences University of Kentucky Lexington Kentucky
| | - Douglas E. Long
- Center for Muscle Biology College of Health Sciences University of Kentucky Lexington Kentucky
| | - S. Craig Tuggle
- UAB Center for Exercise Medicine University of Alabama at Birmingham Birmingham Alabama
| | - Kate Kosmac
- Center for Muscle Biology College of Health Sciences University of Kentucky Lexington Kentucky
| | - Bailey D. Peck
- Center for Muscle Biology College of Health Sciences University of Kentucky Lexington Kentucky
| | - Heather M. Bush
- Department of Biostatistics College of Public Health University of Kentucky Lexington Kentucky
| | | | - Gerald McGwin
- UAB Center for Exercise Medicine University of Alabama at Birmingham Birmingham Alabama
- Department of Epidemiology School of Public Health University of Alabama at Birmingham Birmingham Alabama
| | - Samuel T. Windham
- UAB Center for Exercise Medicine University of Alabama at Birmingham Birmingham Alabama
- Department of Surgery School of Medicine University of Alabama at Birmingham Birmingham Alabama
| | - Fernando Ovalle
- Department of Medicine University of Alabama at Birmingham Birmingham Alabama
| | - Marcas M. Bamman
- UAB Center for Exercise Medicine University of Alabama at Birmingham Birmingham Alabama
- Department of Medicine University of Alabama at Birmingham Birmingham Alabama
- Department of Cell, Developmental & Integrative Biology School of Medicine University of Alabama at Birmingham Birmingham Alabama
| | - Philip A. Kern
- Division of Endocrinology Department of Medicine University of Kentucky Lexington Kentucky
| | - Charlotte A. Peterson
- Center for Muscle Biology College of Health Sciences University of Kentucky Lexington Kentucky
| |
Collapse
|
20
|
Wang Q, Zhou X, Jiang J, Zhang P, Xia S, Ding Y, Wang Q. Relationship between serum 25‐hydroxyvitamin D
3
levels and severity of chronic periodontitis in type 2 diabetic patients: A cross‐sectional study. J Periodontal Res 2019; 54:671-680. [PMID: 31215652 DOI: 10.1111/jre.12669] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 03/22/2019] [Accepted: 04/26/2019] [Indexed: 02/05/2023]
Affiliation(s)
- Qian Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology Sichuan University Chengdu China
- Department of Prosthodontics, West China Hospital of Stomatology Sichuan University Chengdu China
| | - Xinyi Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology Sichuan University Chengdu China
- Department of Prosthodontics, West China Hospital of Stomatology Sichuan University Chengdu China
| | - Jingjing Jiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology Sichuan University Chengdu China
- Department of Clinical Laboratory, West China Hospital of Stomatology Sichuan University Chengdu China
| | - Peng Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology Sichuan University Chengdu China
- Department of Prosthodontics, West China Hospital of Stomatology Sichuan University Chengdu China
| | - Sisi Xia
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology Sichuan University Chengdu China
- Department of Prosthodontics, West China Hospital of Stomatology Sichuan University Chengdu China
| | - Yi Ding
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology Sichuan University Chengdu China
- Department of Periodontology, West China Hospital of Stomatology Sichuan University Chengdu China
| | - Qi Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology Sichuan University Chengdu China
- Department of Prosthodontics, West China Hospital of Stomatology Sichuan University Chengdu China
| |
Collapse
|
21
|
Bellan M, Marzullo P. New Insights on Low Vitamin D Plasma Concentration as a Potential Cardiovascular Risk Factor. Open Rheumatol J 2018. [DOI: 10.2174/1874312901812010261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The role of Vitamin D hormone in human health and disease is still debated. Recently, growing attention has been paid to its putative role in cardiovascular system homeostasis with several studies that suggested a correlation between low vitamin D levels and increased cardiovascular risk. Several mechanisms are involved in the development of cardiovascular diseases: systemic inflammation, endothelial dysfunction, arterial hypertension and insulin resistance. In the present paper, we have revised the current literature supporting a role for vitamin D in the development of these pathogenetic processes. Finally, we have evaluated the current evidence linking vitamin D to atherosclerosis and its natural consequence, cardiovascular diseases.
Collapse
|
22
|
Marunaka Y. The Proposal of Molecular Mechanisms of Weak Organic Acids Intake-Induced Improvement of Insulin Resistance in Diabetes Mellitus via Elevation of Interstitial Fluid pH. Int J Mol Sci 2018; 19:ijms19103244. [PMID: 30347717 PMCID: PMC6214001 DOI: 10.3390/ijms19103244] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 09/30/2018] [Accepted: 10/17/2018] [Indexed: 02/07/2023] Open
Abstract
Blood contains powerful pH-buffering molecules such as hemoglobin (Hb) and albumin, while interstitial fluids have little pH-buffering molecules. Thus, even under metabolic disorder conditions except severe cases, arterial blood pH is kept constant within the normal range (7.35~7.45), but the interstitial fluid pH under metabolic disorder conditions becomes lower than the normal level. Insulin resistance is one of the most important key factors in pathogenesis of diabetes mellitus, nevertheless the molecular mechanism of insulin resistance occurrence is still unclear. Our studies indicate that lowered interstitial fluid pH occurs in diabetes mellitus, causing insulin resistance via reduction of the binding affinity of insulin to its receptor. Therefore, the key point for improvement of insulin resistance occurring in diabetes mellitus is development of methods or techniques elevating the lowered interstitial fluid pH. Intake of weak organic acids is found to improve the insulin resistance by elevating the lowered interstitial fluid pH in diabetes mellitus. One of the molecular mechanisms of the pH elevation is that: (1) the carboxyl group (R-COO−) but not H+ composing weak organic acids in foods is absorbed into the body, and (2) the absorbed the carboxyl group (R-COO−) behaves as a pH buffer material, elevating the interstitial fluid pH. On the other hand, high salt intake has been suggested to cause diabetes mellitus; however, the molecular mechanism is unclear. A possible mechanism of high salt intake-caused diabetes mellitus is proposed from a viewpoint of regulation of the interstitial fluid pH: high salt intake lowers the interstitial fluid pH via high production of H+ associated with ATP synthesis required for the Na+,K+-ATPase to extrude the high leveled intracellular Na+ caused by high salt intake. This review article introduces the molecular mechanism causing the lowered interstitial fluid pH and insulin resistance in diabetes mellitus, the improvement of insulin resistance via intake of weak organic acid-containing foods, and a proposal mechanism of high salt intake-caused diabetes mellitus.
Collapse
Affiliation(s)
- Yoshinori Marunaka
- Research Institute for Clinical Physiology, Kyoto Industrial Health Association, Kyoto 604-8472, Japan.
- Research Center for Drug Discovery and Pharmaceutical Development Science, Research Organization of Science and Technology, Ritsumeikan University, Kusatsu 525-8577, Japan.
- Department of Molecular Cell Physiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan.
- Japan Institute for Food Education and Health, St. Agnes' University, Kyoto 602-8013, Japan.
| |
Collapse
|
23
|
Out M, Top WMC, Lehert P, Schalkwijk CA, Stehouwer CDA, Kooy A. Long-term treatment with metformin in type 2 diabetes and vitamin D levels: A post-hoc analysis of a randomized placebo-controlled trial. Diabetes Obes Metab 2018; 20:1951-1956. [PMID: 29667290 DOI: 10.1111/dom.13327] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 04/03/2018] [Accepted: 04/13/2018] [Indexed: 01/02/2023]
Abstract
AIMS To study the effects of metformin, as compared to placebo, on serum levels of vitamin D (25-hydroxyvitamin D [25(OH)D]) in patients with advanced type 2 diabetes. MATERIALS AND METHODS In the HOME trial, a randomized placebo-controlled trial, 390 insulin-treated patients with type 2 diabetes were treated with 850 mg metformin or placebo thrice daily for 52 months. In a post-hoc analysis, we examined changes in the combined levels of 25(OH)D2 and 25(OH)D3 at 4 and 16 months during the study. RESULTS Mean combined 25(OH)D at baseline was 68.2 nmoL/L (95% confidence interval [CI]: 65.5-71.1). In mixed model analysis, metformin, as compared to placebo, had no effect on 25(OH)D levels during 16 months (coefficient: 1.002 per month, multiplicative model; 95% CI: 0.998-1.006, P = .30). Metformin was associated with a small increase of 25(OH)D2 (coefficient: 1.012 per month; 95% CI: 1.003-1.021, P = .008). However, 25(OH)D2 is only a very small fraction (3%) of 25(OH)D. Seasonal variation had the biggest impact on 25(OH)D levels. Vitamin B12 levels were not associated with the levels of 25(OH)D. CONCLUSION Metformin had no effect on serum 25(OH)D during 16 months in the setting of a clinical randomized controlled trial in patients with type 2 diabetes. Our results show that metformin doesn't lead to vitamin D deficiency.
Collapse
Affiliation(s)
- Mattijs Out
- Department of Internal Medicine, Bethesda Hospital Hoogeveen - Care Group Treant, Hoogeveen, The Netherlands
- Bethesda Diabetes Research Center Hoogeveen, Hoogeveen, The Netherlands
- Department of Internal Medicine, Medisch Spectrum Twente, Enschede, The Netherlands
| | - Wiebe M C Top
- Department of Internal Medicine, Bethesda Hospital Hoogeveen - Care Group Treant, Hoogeveen, The Netherlands
- Bethesda Diabetes Research Center Hoogeveen, Hoogeveen, The Netherlands
| | - Philippe Lehert
- Department of Statistics, Faculty of Economics, Facultés Universitaires Catholiques de Mons, Louvain Academy, Mons, Belgium
| | - Casper A Schalkwijk
- Department of Internal Medicine and Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Coen D A Stehouwer
- Department of Internal Medicine and Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Adriaan Kooy
- Department of Internal Medicine, Bethesda Hospital Hoogeveen - Care Group Treant, Hoogeveen, The Netherlands
- Bethesda Diabetes Research Center Hoogeveen, Hoogeveen, The Netherlands
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|