1
|
Liu Y, Zhang N, Wen Y, Wen J. Head and neck cancer: pathogenesis and targeted therapy. MedComm (Beijing) 2024; 5:e702. [PMID: 39170944 PMCID: PMC11338281 DOI: 10.1002/mco2.702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 08/23/2024] Open
Abstract
Head and neck cancer (HNC) is a highly aggressive type of tumor characterized by delayed diagnosis, recurrence, metastasis, relapse, and drug resistance. The occurrence of HNC were associated with smoking, alcohol abuse (or both), human papillomavirus infection, and complex genetic and epigenetic predisposition. Currently, surgery and radiotherapy are the standard treatments for most patients with early-stage HNC. For recurrent or metastatic (R/M) HNC, the first-line treatment is platinum-based chemotherapy combined with the antiepidermal growth factor receptor drug cetuximab, when resurgery and radiation therapy are not an option. However, curing HNC remains challenging, especially in cases with metastasis. In this review, we summarize the pathogenesis of HNC, including genetic and epigenetic changes, abnormal signaling pathways, and immune regulation mechanisms, along with all potential therapeutic strategies such as molecular targeted therapy, immunotherapy, gene therapy, epigenetic modifications, and combination therapies. Recent preclinical and clinical studies that may offer therapeutic strategies for future research on HNC are also discussed. Additionally, new targets and treatment methods, including antibody-drug conjugates, photodynamic therapy, radionuclide therapy, and mRNA vaccines, have shown promising results in clinical trials, offering new prospects for the treatment of HNC.
Collapse
Affiliation(s)
- Yan Liu
- Frontiers Medical CenterTianfu Jincheng LaboratoryChengduChina
- National Facility for Translational Medicine (Sichuan)West China Hospital of Sichuan UniversityChengduChina
| | - Nannan Zhang
- National Center for Birth Defect MonitoringKey Laboratory of Birth Defects and Related Diseases of Women and ChildrenMinistry of EducationWest China Second University HospitalSichuan UniversityChengduChina
| | - Yi Wen
- State Key Laboratory of BiotherapyWest China Hospital of Sichuan UniversityChengduChina
| | - Jiaolin Wen
- Frontiers Medical CenterTianfu Jincheng LaboratoryChengduChina
| |
Collapse
|
2
|
Lu X, Mei Y, Fan C, Chen P, Li X, Zeng Z, Li G, Xiong W, Xiang B, Yi M. Silencing AHNAK promotes nasopharyngeal carcinoma progression by upregulating the ANXA2 protein. Cell Oncol (Dordr) 2024; 47:833-850. [PMID: 37962808 DOI: 10.1007/s13402-023-00898-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
PURPOSE Nasopharyngeal carcinoma (NPC) is an aggressive head and neck disease with a high incidence of distant metastases. Enlargeosomes are cytoplasmic organelles marked by, desmoyokin/AHNAK. This study aimed to evaluate the expression of AHNAK in NPC and its effect on enlargeosomes and to investigate the correlation between AHNAK expression levels and clinical NPC patient characteristics. METHODS Primary nasopharyngeal carcinoma (NPC) and NPC specimens were evaluated by analyzing public data, and immunohistochemistry. Systematic in vitro and in vivo experiments were performed using different NPC-derived cell lines and mouse models. RESULTS In this study, we detected AHNAK and Annexin A2(ANXA2), a protein coating the surface of enlargeosomes, in NPC samples. We found that AHNAK was down-regulated. Down-regulation of AHNAK was associated with poor overall survival in NPC patients. Moreover, transcription factor FOSL1-mediated transcriptional repression was responsible for the low expression of AHNAK by recruiting EZH2. Whereas Annexin A2 was upregulated in human NPC tissues. Upregulation of Annexin A2 was associated with lymph node metastasis and distant metastasis in NPC patients. Functional studies confirmed that silencing of AHNAK enhanced the growth, invasion, and metastatic properties of NPC cells both in vitro and in vivo. In terms of mechanism, loss of AHNAK led to an increase of annexin A2 protein level in NPC cells. Silencing ANXA2 restored NPC cells' migrative and invasive ability upon loss of AHNAK. CONCLUSION Here, we report AHNAK as a tumor suppressor in NPC, which may act through annexin A2 oncogenic signaling in enlargeosome, with potential implications for novel approaches to NPC treatment.
Collapse
Affiliation(s)
- Xingxing Lu
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China
- FuRong Laboratory, Changsha, 410078, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Yan Mei
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China
- FuRong Laboratory, Changsha, 410078, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Chunmei Fan
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China
- FuRong Laboratory, Changsha, 410078, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Pan Chen
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China
| | - Xiayu Li
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China
- FuRong Laboratory, Changsha, 410078, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Guiyuan Li
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China
- FuRong Laboratory, Changsha, 410078, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China
- FuRong Laboratory, Changsha, 410078, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Bo Xiang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China.
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China.
- FuRong Laboratory, Changsha, 410078, Hunan, China.
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
| | - Mei Yi
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
3
|
Liu H, Tang L, Li Y, Xie W, Zhang L, Tang H, Xiao T, Yang H, Gu W, Wang H, Chen P. Nasopharyngeal carcinoma: current views on the tumor microenvironment's impact on drug resistance and clinical outcomes. Mol Cancer 2024; 23:20. [PMID: 38254110 PMCID: PMC10802008 DOI: 10.1186/s12943-023-01928-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024] Open
Abstract
The incidence of nasopharyngeal carcinoma (NPC) exhibits significant variations across different ethnic groups and geographical regions, with Southeast Asia and North Africa being endemic areas. Of note, Epstein-Barr virus (EBV) infection is closely associated with almost all of the undifferentiated NPC cases. Over the past three decades, radiation therapy and chemotherapy have formed the cornerstone of NPC treatment. However, recent advancements in immunotherapy have introduced a range of promising approaches for managing NPC. In light of these developments, it has become evident that a deeper understanding of the tumor microenvironment (TME) is crucial. The TME serves a dual function, acting as a promoter of tumorigenesis while also orchestrating immunosuppression, thereby facilitating cancer progression and enabling immune evasion. Consequently, a comprehensive comprehension of the TME and its intricate involvement in the initiation, progression, and metastasis of NPC is imperative for the development of effective anticancer drugs. Moreover, given the complexity of TME and the inter-patient heterogeneity, personalized treatment should be designed to maximize therapeutic efficacy and circumvent drug resistance. This review aims to provide an in-depth exploration of the TME within the context of EBV-induced NPC, with a particular emphasis on its pivotal role in regulating intercellular communication and shaping treatment responses. Additionally, the review offers a concise summary of drug resistance mechanisms and potential strategies for their reversal, specifically in relation to chemoradiation therapy, targeted therapy, and immunotherapy. Furthermore, recent advances in clinical trials pertaining to NPC are also discussed.
Collapse
Affiliation(s)
- Huai Liu
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Ling Tang
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Yanxian Li
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Wenji Xie
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Ling Zhang
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Hailin Tang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Tengfei Xiao
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Hongmin Yang
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Wangning Gu
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Hui Wang
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.
| | - Pan Chen
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.
| |
Collapse
|
4
|
Huang X, Zhang M, Zhang Z. The Role of LMP1 in Epstein-Barr Virus-associated Gastric Cancer. Curr Cancer Drug Targets 2024; 24:127-141. [PMID: 37183458 DOI: 10.2174/1568009623666230512153741] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 03/29/2023] [Accepted: 04/06/2023] [Indexed: 05/16/2023]
Abstract
EBV promotes many cancers such as lymphoma, nasopharyngeal carcinoma, and gastric; Latent Membrane Protein 1 (LMP1) is considered to be a major oncogenic protein encoded by Epstein- Barr virus (EBV). LMP1 functions as a carcinogen in lymphoma and nasopharyngeal carcinoma, and LMP1 may also promote gastric cancer. The expression level of LMP1 in host cells is a key determinant in tumorigenesis and maintenance of virus specificity. By promoting cell immortalization and cell transformation, promoting cell proliferation, affecting immunity, and regulating cell apoptosis, LMP1 plays a crucial tumorigenic role in epithelial cancers. However, very little is currently known about LMP1 in Epstein-Barr virus-associated gastric cancer (EBVaGC); the main reason is that the expression level of LMP1 in EBVaGC is comparatively lower than other EBV-encoded proteins, such as The Latent Membrane Protein 2A (LMP2A), Epstein-Barr nuclear antigen 1 (EBNA1) and BamHI-A rightward frame 1 (BARF1), to date, there are few studies related to LMP1 in EBVaGC. Recent studies have demonstrated that LMP1 promotes EBVaGC by affecting The phosphatidylinositol 3-kinase- Akt (PI3K-Akt), Nuclear factor-kappa B (NF-κB), and other signaling pathways to regulate many downstream targets such as Forkhead box class O (FOXO), C-X-C-motif chemokine receptor (CXCR), COX-2 (Cyclooxygenase-2); moreover, the gene methylation induced by LMP1 in EBVaGC has become one of the characteristics that distinguish this gastric cancer (GC) from other types of gastric cancer and LMP1 also promotes the formation of the tumor microenvironment (TME) of EBVaGC in several ways. This review synthesizes previous relevant literature, aiming to highlight the latest findings on the mechanism of action of LMP1 in EBVaGC, summarize the function of LMP1 in EBVaGC, lay the theoretical foundation for subsequent new research on LMP1 in EBVaGC, and contribute to the development of novel LMP1-targeted drugs.
Collapse
Affiliation(s)
- Xinqi Huang
- Department of Clinical Medicine, Grade 20, Hengyang Medical College, University of South China, Hengyang, Hunan, 421001, China
| | - Meilan Zhang
- Cancer Research Institute of Hengyang Medical College, University of South China, Hengyang, Hunan, 421001, China
| | - Zhiwei Zhang
- Cancer Research Institute of Hengyang Medical College, University of South China, Hengyang, Hunan, 421001, China
| |
Collapse
|
5
|
Zhou Z, Zheng K, Zhou S, Yang Y, Chen J, Jin X. E3 ubiquitin ligases in nasopharyngeal carcinoma and implications for therapies. J Mol Med (Berl) 2023; 101:1543-1565. [PMID: 37796337 DOI: 10.1007/s00109-023-02376-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 09/05/2023] [Accepted: 09/14/2023] [Indexed: 10/06/2023]
Abstract
Nasopharyngeal carcinoma (NPC) is one of the most common squamous cell carcinomas of the head and neck, and Epstein-Barr virus (EBV) infection is one of the pathogenic factors involved in the oncogenetic development and progression of NPC. E3 ligases, which are key members of the ubiquitin proteasome system (UPS), specifically recognize various oncogenic factors and tumor suppressors and contribute to determining their fate through ubiquitination. Several studies have demonstrated that E3 ligases are aberrantly expressed and mutated in NPC and that these changes are closely associated with the occurrence and progression of NPC. Herein, we aim to thoroughly review the specific action mechanisms by which E3 ligases participate in NPC signaling pathways and discuss their functional relationship with EBV. Moreover, we describe the current progress in and limitations for targeted therapies against E3 ligases in NPC. KEY MESSAGES: • E3 ubiquitin ligases, as members of the UPS system, determine the fate of their substrates and may act either as oncogenic or anti-tumorigenic factors in NPC. • Mutations or dysregulated expression of E3 ubiquitin ligases is closely related to the occurrence, development, and therapeutic sensitivity of NPC, as they play important roles in several signaling pathways affected by EBV infection. • As promising therapeutic targets, E3 ligases may open new avenues for treatment and for improving the prognosis of NPC patients.
Collapse
Affiliation(s)
- Zijian Zhou
- Department of Chemoradiotherapy, The Affiliated People's Hospital of Ningbo University, Ningbo, 315040, China
| | - Kaifeng Zheng
- Department of Chemoradiotherapy, The Affiliated People's Hospital of Ningbo University, Ningbo, 315040, China
| | - Shao Zhou
- Department of Otolaryngology-Head and Neck Surgery, The Affiliated People's Hospital of Ningbo University, Ningbo, 315040, China
| | - Youxiong Yang
- Department of Otolaryngology-Head and Neck Surgery, Ningbo Yinzhou Second Hospital, Ningbo, 315199, China.
| | - Jun Chen
- Department of Chemoradiotherapy, The Affiliated People's Hospital of Ningbo University, Ningbo, 315040, China.
| | - Xiaofeng Jin
- Department of Chemoradiotherapy, The Affiliated People's Hospital of Ningbo University, Ningbo, 315040, China.
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center of Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
6
|
Siak PY, Heng WS, Teoh SSH, Lwin YY, Cheah SC. Precision medicine in nasopharyngeal carcinoma: comprehensive review of past, present, and future prospect. J Transl Med 2023; 21:786. [PMID: 37932756 PMCID: PMC10629096 DOI: 10.1186/s12967-023-04673-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 10/29/2023] [Indexed: 11/08/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is an aggressive malignancy with high propensity for lymphatic spread and distant metastasis. It is prominent as an endemic malignancy in Southern China and Southeast Asia regions. Studies on NPC pathogenesis mechanism in the past decades such as through Epstein Barr Virus (EBV) infection and oncogenic molecular aberrations have explored several potential targets for therapy and diagnosis. The EBV infection introduces oncoviral proteins that consequently hyperactivate many promitotic pathways and block cell-death inducers. EBV infection is so prevalent in NPC patients such that EBV serological tests were used to diagnose and screen NPC patients. On the other hand, as the downstream effectors of oncogenic mechanisms, the promitotic pathways can potentially be exploited therapeutically. With the apparent heterogeneity and distinct molecular aberrations of NPC tumor, the focus has turned into a more personalized treatment in NPC. Herein in this comprehensive review, we depict the current status of screening, diagnosis, treatment, and prevention in NPC. Subsequently, based on the limitations on those aspects, we look at their potential improvements in moving towards the path of precision medicine. The importance of recent advances on the key molecular aberration involved in pathogenesis of NPC for precision medicine progression has also been reported in the present review. Besides, the challenge and future outlook of NPC management will also be highlighted.
Collapse
Affiliation(s)
- Pui Yan Siak
- Faculty of Medicine and Health Sciences, UCSI University, Bandar Springhill, 71010, Port Dickson, Negeri Sembilan, Malaysia
| | - Win Sen Heng
- Faculty of Medicine and Health Sciences, UCSI University, Bandar Springhill, 71010, Port Dickson, Negeri Sembilan, Malaysia
| | - Sharon Siew Hoon Teoh
- Faculty of Medicine and Health Sciences, UCSI University, Bandar Springhill, 71010, Port Dickson, Negeri Sembilan, Malaysia
| | - Yu Yu Lwin
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Medicine, Mandalay, Myanmar
| | - Shiau-Chuen Cheah
- Faculty of Medicine and Health Sciences, UCSI University, Bandar Springhill, 71010, Port Dickson, Negeri Sembilan, Malaysia.
| |
Collapse
|
7
|
Low YH, Loh CJL, Peh DYY, Chu AJM, Han S, Toh HC. Pathogenesis and therapeutic implications of EBV-associated epithelial cancers. Front Oncol 2023; 13:1202117. [PMID: 37901329 PMCID: PMC10600384 DOI: 10.3389/fonc.2023.1202117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 09/07/2023] [Indexed: 10/31/2023] Open
Abstract
Epstein-Barr virus (EBV), one of the most common human viruses, has been associated with both lymphoid and epithelial cancers. Undifferentiated nasopharyngeal carcinoma (NPC), EBV associated gastric cancer (EBVaGC) and lymphoepithelioma-like carcinoma (LELC) are amongst the few common epithelial cancers that EBV has been associated with. The pathogenesis of EBV-associated NPC has been well described, however, the same cannot be said for primary pulmonary LELC (PPLELC) owing to the rarity of the cancer. In this review, we outline the pathogenesis of EBV-associated NPC and EBVaGCs and their recent advances. By drawing on similarities between NPC and PPLELC, we then also postulated the pathogenesis of PPLELC. A deeper understanding about the pathogenesis of EBV enables us to postulate the pathogenesis of other EBV associated cancers such as PPLELC.
Collapse
Affiliation(s)
- Yi Hua Low
- Duke-NUS Medical School, Singapore, Singapore
| | | | - Daniel Yang Yao Peh
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Axel Jun Ming Chu
- Singapore Health Services Internal Medicine Residency Programme, Singapore, Singapore
| | - Shuting Han
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Han Chong Toh
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| |
Collapse
|
8
|
Mahajan S, Bongaerts M, Hardillo J, Tsang A, Lo KW, Kortleve D, Ma B, Debets R. Transcriptomics of Epstein-Barr virus aids to the classification of T-cell evasion in nasopharyngeal carcinoma. Curr Opin Immunol 2023; 83:102335. [PMID: 37235920 DOI: 10.1016/j.coi.2023.102335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 04/16/2023] [Indexed: 05/28/2023]
Abstract
Epstein-Barr virus (EBV) contributes to oncogenesis and immune evasion in nasopharyngeal carcinoma (NPC). At present, an aggregated, higher-level view on the impact of EBV genes toward the immune microenvironment of NPC is lacking. To this end, we have interrogated tumor-derived RNA sequences of 106 treatment-naive NPC patients for 98 EBV transcripts, and captured the presence of 10 different immune cell populations as well as 23 different modes of T-cell evasion. We discovered 3 clusters of EBV genes that each associate with distinct immunophenotypes of NPC. Cluster 1 associated with gene sets related to immune cell recruitment, such as those encoding for chemoattractants and their receptors. Cluster 2 associated with antigen processing and presentation, such as interferon-related genes, whereas cluster 3 associated with presence of M1-like macrophages, absence of CD4+ T cells, and oncogenic pathways, such as the nuclear factor kappa light-chain enhancer of activated B-cell pathway. We discuss these 3 EBV clusters regarding their potential for stratification for T-cell immunity in NPC together with the next steps needed to validate such therapeutic value.
Collapse
Affiliation(s)
- Shweta Mahajan
- Departments of Medical Oncology, Erasmus MC and Erasmus MC Cancer Institute, Rotterdam, The Netherlands.
| | - Michiel Bongaerts
- Departments of Clinical Genetics, Erasmus MC and Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Jose Hardillo
- Departments of Otorhinolaryngology, Erasmus MC and Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Anna Tsang
- Departments of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Kwok W Lo
- Departments of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Dian Kortleve
- Departments of Medical Oncology, Erasmus MC and Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Brigette Ma
- Departments of Clinical Oncology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Reno Debets
- Departments of Medical Oncology, Erasmus MC and Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| |
Collapse
|
9
|
Li Q, Tie Y, Alu A, Ma X, Shi H. Targeted therapy for head and neck cancer: signaling pathways and clinical studies. Signal Transduct Target Ther 2023; 8:31. [PMID: 36646686 PMCID: PMC9842704 DOI: 10.1038/s41392-022-01297-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/27/2022] [Accepted: 12/13/2022] [Indexed: 01/17/2023] Open
Abstract
Head and neck cancer (HNC) is malignant, genetically complex and difficult to treat and is the sixth most frequent cancer, with tobacco, alcohol and human papillomavirus being major risk factors. Based on epigenetic data, HNC is remarkably heterogeneous, and treatment remains challenging. There is a lack of significant improvement in survival and quality of life in patients with HNC. Over half of HNC patients experience locoregional recurrence or distal metastasis despite the current multiple traditional therapeutic strategies and immunotherapy. In addition, resistance to chemotherapy, radiotherapy and some targeted therapies is common. Therefore, it is urgent to explore more effective and tolerable targeted therapies to improve the clinical outcomes of HNC patients. Recent targeted therapy studies have focused on identifying promising biomarkers and developing more effective targeted therapies. A well understanding of the pathogenesis of HNC contributes to learning more about its inner association, which provides novel insight into the development of small molecule inhibitors. In this review, we summarized the vital signaling pathways and discussed the current potential therapeutic targets against critical molecules in HNC, as well as presenting preclinical animal models and ongoing or completed clinical studies about targeted therapy, which may contribute to a more favorable prognosis of HNC. Targeted therapy in combination with other therapies and its limitations were also discussed.
Collapse
Affiliation(s)
- Qingfang Li
- grid.13291.380000 0001 0807 1581Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yan Tie
- grid.13291.380000 0001 0807 1581Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Aqu Alu
- grid.13291.380000 0001 0807 1581Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xuelei Ma
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Huashan Shi
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
10
|
Chen L, Deng J. Role of non-coding RNA in immune microenvironment and anticancer therapy of gastric cancer. J Mol Med (Berl) 2022; 100:1703-1719. [PMID: 36329206 DOI: 10.1007/s00109-022-02264-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022]
Abstract
Gastric cancer remains one of the cancers with the highest mortality in the world; therefore, it is very important to investigate its pathogenesis to improve the prognosis of gastric cancer patients. Recently, noncoding RNAs have become a research hotspot in the field of oncology. These RNA molecules play complex roles in the regulation of tumor cells, immune cells, and the tumor microenvironment. Therefore, studying their ability to regulate the gastric cancer immune microenvironment will provide us with a better perspective to understand their potential role in anticancer therapy. In this review, we discuss the regulatory effects of several common noncoding RNAs on the immune microenvironment of gastric cancer and their prospects in anticancer therapy to provide some novel insight into the identification of valuable diagnostic markers and improving the prognosis of gastric cancer patients.
Collapse
Affiliation(s)
- Liqiao Chen
- Department of Gastric Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, People's Republic of China
| | - Jingyu Deng
- Department of Gastric Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, People's Republic of China.
| |
Collapse
|
11
|
Xin S, Liu L, Li Y, Yang J, Zuo L, Cao P, Yan Q, Li S, Yang L, Cui T, Lu J. Cyclophilin A binds to AKT1 and facilitates the tumorigenicity of Epstein-Barr virus by mediating the activation of AKT/mTOR/NF-κB positive feedback loop. Virol Sin 2022; 37:913-921. [PMID: 36075565 PMCID: PMC9797372 DOI: 10.1016/j.virs.2022.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 08/31/2022] [Indexed: 01/19/2023] Open
Abstract
The AKT/mTOR and NF-κB signalings are crucial pathways activated in cancers including nasopharyngeal carcinoma (NPC), which is prevalent in southern China and closely related to Epstein-Barr virus (EBV) infection. How these master pathways are persistently activated in EBV-associated NPC remains to be investigated. Here we demonstrated that EBV-encoded latent membrane protein 1 (LMP1) promoted cyclophilin A (CYPA) expression through the activation of NF-κB. The depletion of CYPA suppressed cell proliferation and facilitated apoptosis. CYPA was able to bind to AKT1, thus activating AKT/mTOR/NF-κB signaling cascade. Moreover, the use of mTOR inhibitor, rapamycin, subverted the activation of the positive feedback loop, NF-κB/CYPA/AKT/mTOR. It is reasonable that LMP1 expression derived from initial viral infection is enough to assure the constant potentiation of AKT/mTOR and NF-κB signalings. This may partly explain the fact that EBV serves as a tumor-promoting factor with minimal expression of the viral oncoprotein LMP1 in malignancies. Our findings provide new insight into the understanding of causative role of EBV in tumorigenicity during latent infection.
Collapse
Affiliation(s)
- Shuyu Xin
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410078, China,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, Central South University, Changsha, 410078, China,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410013, China,Department of Hematology, National Clinical Research Center for Geriatric Disorders, Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410080, China
| | - Lingzhi Liu
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410078, China,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, Central South University, Changsha, 410078, China,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410013, China,Department of Hematology, National Clinical Research Center for Geriatric Disorders, Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410080, China
| | - Yanling Li
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410078, China,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, Central South University, Changsha, 410078, China
| | - Jing Yang
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, Central South University, Changsha, 410078, China
| | - Lielian Zuo
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, Central South University, Changsha, 410078, China
| | - Pengfei Cao
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, Central South University, Changsha, 410078, China,Department of Hematology, National Clinical Research Center for Geriatric Disorders, Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410080, China
| | - Qijia Yan
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410080, China
| | - Shen Li
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410078, China,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, Central South University, Changsha, 410078, China
| | - Li Yang
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410078, China,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, Central South University, Changsha, 410078, China
| | - Taimei Cui
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410078, China
| | - Jianhong Lu
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410078, China,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, Central South University, Changsha, 410078, China,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410013, China,Department of Hematology, National Clinical Research Center for Geriatric Disorders, Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410080, China,Corresponding author.
| |
Collapse
|
12
|
Fan C, Xiong F, Tang Y, Li P, Zhu K, Mo Y, Wang Y, Zhang S, Gong Z, Liao Q, Li G, Zeng Z, Guo C, Xiong W, Huang H. Construction of a lncRNA–mRNA Co-Expression Network for Nasopharyngeal Carcinoma. Front Oncol 2022; 12:809760. [PMID: 35875165 PMCID: PMC9302896 DOI: 10.3389/fonc.2022.809760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 06/06/2022] [Indexed: 11/24/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) widely regulate gene expression and play important roles in the pathogenesis of human diseases, including malignant tumors. However, the functions of most lncRNAs remain to be elucidated. In order to study and screen novel lncRNAs with important functions in the carcinogenesis of nasopharyngeal carcinoma (NPC), we constructed a lncRNA expression profile of 10 NPC tissues and 6 controls through a gene microarray. We identified 1,276 lncRNAs, of which most are unknown, with different expression levels in the healthy and NPC tissues. In order to shed light on the functions of these unknown lncRNAs, we first constructed a co-expression network of lncRNAs and mRNAs using bioinformatics and systematic biological approach. Moreover, mRNAs were clustered and enriched by their biological functions, and those lncRNAs have similar expression trends with mRNAs were defined as functional molecules with potential biological significance. The module may help identify key lncRNAs in the carcinogenesis of NPC and provide clues for in-depth study of their functions and associated signaling pathways. We suggest the newly identified lncRNAs may have clinic value as biomarkers and therapeutic targets for NPC diagnosis and treatment.
Collapse
Affiliation(s)
- Chunmei Fan
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha, China
- Department of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Fang Xiong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha, China
- Department of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Yanyan Tang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Panchun Li
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Kunjie Zhu
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Yongzhen Mo
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Yumin Wang
- Department of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Shanshan Zhang
- Department of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhaojiang Gong
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qianjin Liao
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Guiyuan Li
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Can Guo
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
- *Correspondence: Wei Xiong, ; He Huang,
| | - He Huang
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha, China
- *Correspondence: Wei Xiong, ; He Huang,
| |
Collapse
|
13
|
Osorio JC, Blanco R, Corvalán AH, Muñoz JP, Calaf GM, Aguayo F. Epstein-Barr Virus Infection in Lung Cancer: Insights and Perspectives. Pathogens 2022; 11:132. [PMID: 35215076 PMCID: PMC8878590 DOI: 10.3390/pathogens11020132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/17/2022] [Accepted: 01/17/2022] [Indexed: 11/30/2022] Open
Abstract
Lung cancer (LC) is the leading cause of cancer death worldwide. Tobacco smoke is the most frequent risk factor etiologically associated with LC, although exposures to other environmental factors such as arsenic, radon or asbestos are also involved. Additionally, the involvement of some viral infections such as high-risk human papillomaviruses (HR-HPVs), Merkel cell polyomavirus (MCPyV), Jaagsiekte Sheep Retrovirus (JSRV), John Cunningham Virus (JCV), and Epstein-Barr virus (EBV) has been suggested in LC, though an etiological relationship has not yet been established. EBV is a ubiquitous gamma herpesvirus causing persistent infections and some lymphoid and epithelial tumors. Since EBV is heterogeneously detected in LCs from different parts of the world, in this review we address the epidemiological and experimental evidence of a potential role of EBV. Considering this evidence, we propose mechanisms potentially involved in EBV-associated lung carcinogenesis. Additional studies are warranted to dissect the role of EBV in this very frequent malignancy.
Collapse
Affiliation(s)
- Julio C. Osorio
- Population Registry of Cali, Department of Pathology, Universidad del Valle, Cali 760042, Colombia;
| | - Rancés Blanco
- Laboratorio de Oncovirología, Programa de Virología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 8380000, Chile;
| | - Alejandro H. Corvalán
- Advanced Center for Chronic Diseases (ACCDiS), Pontificia Universidad Católica de Chile, Santiago 8320000, Chile;
| | - Juan P. Muñoz
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile; (J.P.M.); (G.M.C.)
| | - Gloria M. Calaf
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile; (J.P.M.); (G.M.C.)
- Center for Radiological Research, Columbia University Medical Center, New York, NY 10032, USA
| | | |
Collapse
|
14
|
Chen Y, Gong S, Liu Y, Cao X, Zhao M, Xiao J, Feng C. Geraniin inhibits cell growth and promoted autophagy-mediated cell death in the nasopharyngeal cancer C666-1 cells. Saudi J Biol Sci 2022; 29:168-174. [PMID: 35002405 PMCID: PMC8716868 DOI: 10.1016/j.sjbs.2021.08.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/09/2021] [Accepted: 08/22/2021] [Indexed: 12/08/2022] Open
Abstract
Background Nasopharyngeal carcinoma (NPC) is a rare malignant tumor developing from epithelial linings of nasopharynx, and 10–50 out of 100,000 NPC cases were recorded globally particularly in the Asian countries. Methodology The cytotoxicity of geraniin against the NPC C666-1 cells were analyzed using MTT assay. The influences of geraniin on the C666-1 cell viability with the presence of ROS and apoptosis inhibitors were also studied. The expressions of PI3K, Akt, mTOR, and autophagic markers LC3, ATG7, P62/SQSTM1 expressions in the C666-1 cells were studied by western blotting analysis. The ROS production was assayed using DCFH-DA staining. The immunofluorescence assay was performed to detect the NF-κB and β-catenin expressions in the C666-1 cells. Results The cell viability of C666-1 cells were appreciably prevented by the geraniin. The geraniin treatment also inhibited the C666-1 cell growth with the presence of apoptotic inhibitor Z-VAD-FMK. The geraniin-treatment effectively improved the ROS production and inhibited the NF-κB and β-catenin expressions in the C666-1 cells. Geraniin appreciably modulated the PI3K/Akt/mTOR signaling axis and improved the autophagy-mediated cell death via improving the autophagic markers LC3 and ATG7 expressions in the C666-1 cells. Conclusion In conclusion, our results proved that geraniin inhibits C666-1 cell growth and initiated autophagy-mediated cell death via modulating PI3K/Akt/mTOR cascade and improving LC3 and ATG7 expressions in the C666-1. Geraniin and it could be a hopeful and efficient candidate to treat the human NPC in the future.
Collapse
Affiliation(s)
- Yulian Chen
- Department of Otolaryngology Head and Neck Surgery, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan 650032, China
| | - Shunmin Gong
- Department of Otolaryngology Head and Neck Surgery, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan 650032, China
| | - Yongjun Liu
- Department of Otolaryngology Head and Neck Surgery, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan 650032, China
| | - Xianbao Cao
- Department of Otolaryngology Head and Neck Surgery, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan 650032, China
| | - Ming Zhao
- Department of Otolaryngology Head and Neck Surgery, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan 650032, China
| | - Jing Xiao
- Department of Otolaryngology Head and Neck Surgery, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan 650032, China
| | - Chun Feng
- Department of Otolaryngology Head and Neck Surgery, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan 650032, China
| |
Collapse
|
15
|
Han S, Tay JK, Loh CJL, Chu AJM, Yeong JPS, Lim CM, Toh HC. Epstein–Barr Virus Epithelial Cancers—A Comprehensive Understanding to Drive Novel Therapies. Front Immunol 2021; 12:734293. [PMID: 34956172 PMCID: PMC8702733 DOI: 10.3389/fimmu.2021.734293] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 11/12/2021] [Indexed: 12/19/2022] Open
Abstract
Epstein–Barr virus (EBV) is a ubiquitous oncovirus associated with specific epithelial and lymphoid cancers. Among the epithelial cancers, nasopharyngeal carcinoma (NPC), lymphoepithelioma-like carcinoma (LELC), and EBV-associated gastric cancers (EBVaGC) are the most common. The role of EBV in the pathogenesis of NPC and in the modulation of its tumour immune microenvironment (TIME) has been increasingly well described. Much less is known about the pathogenesis and tumour–microenvironment interactions in other EBV-associated epithelial cancers. Despite the expression of EBV-related viral oncoproteins and a generally immune-inflamed cancer subtype, EBV-associated epithelial cancers have limited systemic therapeutic options beyond conventional chemotherapy. Immune checkpoint inhibitors are effective only in a minority of these patients and even less efficacious with molecular targeting drugs. Here, we examine the key similarities and differences of NPC, LELC, and EBVaGC and comprehensively describe the clinical, pathological, and molecular characteristics of these cancers. A deeper comparative understanding of these EBV-driven cancers can potentially uncover targets in the tumour, TIME, and stroma, which may guide future drug development and cast light on resistance to immunotherapy.
Collapse
Affiliation(s)
- Shuting Han
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Joshua K. Tay
- Department of Otolaryngology—Head & Neck Surgery, National University of Singapore, Singapore, Singapore
| | | | | | - Joe Poh Sheng Yeong
- Department of Anatomical Pathology, Singapore General Hospital, Singapore, Singapore
| | - Chwee Ming Lim
- Department of Anatomical Pathology, Singapore General Hospital, Singapore, Singapore
| | - Han Chong Toh
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
- *Correspondence: Han Chong Toh,
| |
Collapse
|
16
|
Zhu QY, Zhao GX, Li Y, Talakatta G, Mai HQ, Le QT, Young LS, Zeng MS. Advances in pathogenesis and precision medicine for nasopharyngeal carcinoma. MedComm (Beijing) 2021; 2:175-206. [PMID: 34766141 PMCID: PMC8491203 DOI: 10.1002/mco2.32] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 12/13/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a squamous carcinoma with apparent geographical and racial distribution, mostly prevalent in East and Southeast Asia, particularly concentrated in southern China. The epidemiological trend over the past decades has suggested a substantial reduction in the incidence rate and mortality rate due to NPC. These results may reflect changes in lifestyle and environment, and more importantly, a deeper comprehension of the pathogenic mechanism of NPC, leading to much progress in the preventing, screening, and treating for this cancer. Herein, we present the recent advances on the key signal pathways involved in pathogenesis of NPC, the mechanism of Epstein‐Barr virus (EBV) entry into the cell, and the progress of EBV vaccine and screening biomarkers. We will also discuss in depth the development of various therapeutic approaches including radiotherapy, chemotherapy, surgery, targeted therapy, and immunotherapy. These research advancements have led to a new era of precision medicine in NPC.
Collapse
Affiliation(s)
- Qian-Ying Zhu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy Sun Yat-sen University Cancer Center (SYSUCC) Guangzhou China
| | - Ge-Xin Zhao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy Sun Yat-sen University Cancer Center (SYSUCC) Guangzhou China
| | - Yan Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy Sun Yat-sen University Cancer Center (SYSUCC) Guangzhou China
| | - Girish Talakatta
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy Sun Yat-sen University Cancer Center (SYSUCC) Guangzhou China
| | - Hai-Qiang Mai
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy Sun Yat-sen University Cancer Center (SYSUCC) Guangzhou China
| | - Quynh-Thu Le
- Department of Radiation Oncology Stanford California
| | - Lawrence S Young
- Warwick Medical School University of Warwick Coventry United Kingdom
| | - Mu-Sheng Zeng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy Sun Yat-sen University Cancer Center (SYSUCC) Guangzhou China
| |
Collapse
|
17
|
Abstract
Viral infection is an indisputable causal factor for nearly 17% of all human cancers. However, the diversity and complexity of oncogenic mechanisms raises new questions as to the mechanistic role of viruses in cancer. Classical viral oncogenes have been identified for all tumor-associated viruses. These oncogenes can have multiple oncogenic activities that may or may not be utilized in a particular tumor cell. In addition, stochastic events, like viral mutation and integration, as well as heritable host susceptibilities and immune deficiencies are also implicated in tumorigenesis. A more contemporary view of tumor biology highlights the importance of evolutionary forces that select for phenotypes better adapted to a complex and changing environment. Given the challenges of prioritizing singular mechanistic causes, it may be necessary to integrate concepts from evolutionary theory and systems biology to better understand viral cancer-driving forces. Here, we propose that viral infection provides a biological “entropy” that increases genetic variation and phenotypic plasticity, accelerating the main driving forces of cancer cell evolution. Viruses can also influence the evolutionary selection criteria by altering the tumor microenvironment and immune signaling. Utilizing concepts from cancer cell evolution, population genetics, thermodynamics, and systems biology may provide new perspectives on viral oncogenesis and identify novel therapeutic strategies for treating viruses and cancer.
Collapse
Affiliation(s)
- Italo Tempera
- Program in Gene Expression and Regulation, The Wistar Institute, Philadelphia, PA, United States
| | - Paul M Lieberman
- Program in Gene Expression and Regulation, The Wistar Institute, Philadelphia, PA, United States
| |
Collapse
|
18
|
Huang H, Li S, Tang Q, Zhu G. Metabolic Reprogramming and Immune Evasion in Nasopharyngeal Carcinoma. Front Immunol 2021; 12:680955. [PMID: 34566954 PMCID: PMC8458828 DOI: 10.3389/fimmu.2021.680955] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 08/25/2021] [Indexed: 01/31/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a malignant tumor of the nasopharynx mainly characterized by geographic distribution and EBV infection. Metabolic reprogramming, one of the cancer hallmarks, has been frequently reported in NPCs to adapt to internal energy demands and external environmental pressures. Inevitably, the metabolic reprogramming within the tumor cell will lead to a decreased pH value and diverse nutritional supplements in the tumor-infiltrating micro-environment incorporating immune cells, fibroblasts, and endothelial cells. Accumulated evidence indicates that metabolic reprogramming derived from NPC cells may facilitate cancer progression and immunosuppression by cell-cell communications with their surrounding immune cells. This review presents the dysregulated metabolism processes, including glucose, fatty acid, amino acid, nucleotide metabolism, and their mutual interactions in NPC. Moreover, the potential connections between reprogrammed metabolism, tumor immunity, and associated therapy would be discussed in this review. Accordingly, the development of targets on the interactions between metabolic reprogramming and immune cells may provide assistances to overcome the current treatment resistance in NPC patients.
Collapse
Affiliation(s)
- Huimei Huang
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Shisheng Li
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qinglai Tang
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Gangcai Zhu
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
19
|
Wang C, Zou SP, Chen DG, Wang JS, Zheng YB, Chen XR, Yang Y. Latent Epstein-Barr virus infection status and prognosis in patients with newly diagnosed Hodgkin lymphoma in Southeast China: a single-center retrospective study. ACTA ACUST UNITED AC 2021; 26:675-683. [PMID: 34493172 DOI: 10.1080/16078454.2021.1971864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE This study aimed to investigate the latent Epstein-Barr virus (EBV) infection status of patients with newly diagnosed Hodgkin lymphoma (HL) and to discuss the relationship between tumor cell EBV status and the prognosis of HL patients. PATIENTS AND METHODS A total of 134 previously untreated HL patients were analyzed in the study. Epstein-Barr virus encoded RNAs (EBERs) in situ hybridization was performed to detect the EBV status of tumor cells. RESULTS EBV positive status correlated with sex (p=0.046) and the proportion of extranodal lesions(p=0.037). There was no obvious correlation between EBV status and overall survival (OS) or failure-free survival (FFS) in all cases, but in cases over 50 years old, EBV positive group had an inferior 5-year FFS compared with EBV negative group (38.5%±13.5% vs 90.9%±8.7%, p=0.012). In FFS multivariate analysis of this age subgroup, EBV positive status was associated with significantly inferior survival (HR, 10.10; 95% CI, 1.26-81.08; p=0.030). CONCLUSION This study demonstrates positive tumor cell EBV status is an unfavorable prognostic factor in elder HL patients.
Collapse
Affiliation(s)
- Chang Wang
- Department of Lymphoma & head and neck tumors, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, People's Republic of China
| | - Si-Ping Zou
- Department of Lymphoma & head and neck tumors, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, People's Republic of China.,Department of Pathology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, People's Republic of China
| | - Dao-Guang Chen
- Department of Lymphoma & head and neck tumors, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, People's Republic of China
| | - Jie-Song Wang
- Department of Lymphoma & head and neck tumors, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, People's Republic of China
| | - Yan-Bin Zheng
- Department of Lymphoma & head and neck tumors, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, People's Republic of China
| | - Xiu-Rong Chen
- Department of Lymphoma & head and neck tumors, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, People's Republic of China
| | - Yu Yang
- Department of Lymphoma & head and neck tumors, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, People's Republic of China
| |
Collapse
|
20
|
Ramos A, Sadeghi S, Tabatabaeian H. Battling Chemoresistance in Cancer: Root Causes and Strategies to Uproot Them. Int J Mol Sci 2021; 22:9451. [PMID: 34502361 PMCID: PMC8430957 DOI: 10.3390/ijms22179451] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/28/2021] [Accepted: 08/30/2021] [Indexed: 02/07/2023] Open
Abstract
With nearly 10 million deaths, cancer is the leading cause of mortality worldwide. Along with major key parameters that control cancer treatment management, such as diagnosis, resistance to the classical and new chemotherapeutic reagents continues to be a significant problem. Intrinsic or acquired chemoresistance leads to cancer recurrence in many cases that eventually causes failure in the successful treatment and death of cancer patients. Various determinants, including tumor heterogeneity and tumor microenvironment, could cause chemoresistance through a diverse range of mechanisms. In this review, we summarize the key determinants and the underlying mechanisms by which chemoresistance appears. We then describe which strategies have been implemented and studied to combat such a lethal phenomenon in the management of cancer treatment, with emphasis on the need to improve the early diagnosis of cancer complemented by combination therapy.
Collapse
Affiliation(s)
- Alisha Ramos
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore;
| | - Samira Sadeghi
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore 138672, Singapore
| | - Hossein Tabatabaeian
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| |
Collapse
|
21
|
Cai J, Chen S, Yi M, Tan Y, Peng Q, Ban Y, Yang J, Li X, Zeng Z, Xiong W, McCarthy JB, Li G, Li X, Xiang B. ΔNp63α is a super enhancer-enriched master factor controlling the basal-to-luminal differentiation transcriptional program and gene regulatory networks in nasopharyngeal carcinoma. Carcinogenesis 2021; 41:1282-1293. [PMID: 31826234 DOI: 10.1093/carcin/bgz203] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 11/21/2019] [Accepted: 12/10/2019] [Indexed: 02/07/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) originates via malignant transformation of the pseudostratified nasopharyngeal epithelium, composed of basal and luminal cells. Super enhancers (SEs) are large clusters of cis-elements involved in the regulation of gene expression through epigenetic regulatory mechanisms. In this study, we demonstrated that basal cell-specific proteins are highly expressed, whereas luminal cell proteins are downregulated in NPC, implying a perturbation of basal-to-luminal differentiation during NPC development. We characterized NPC cell models according to different molecular signatures associated with their differentiation status and found that distinct SE landscapes are tightly associated with basal or luminal-like molecular signatures in NPC cells. Furthermore, the transcription of ΔNP63α, a prominent isoform of TP63, was found to be driven by SEs in NPC cells. Data from chromatin immunoprecipitation (ChIP)-sequencing showed that ΔNP63α largely occupied regions of SEs associated with basal cell-specific genes. Silencing of ΔNP63α led to a loss of H3K27ac occupancy at basal-type SEs and triggered a basal-to-luminal gene expression signature switch, suggesting that ΔNP63α is a master factor contributing to the perturbation of luminal differentiation. Integrative transcriptomics analysis also revealed that ΔNP63α acts as a core factor involved in the dysregulation of gene expression in NPC. Furthermore, ΔNP63α enhanced EGF-stimulated NF-κB activation in NPC cells by activating SE-mediated EGFR transcription. Finally, depletion of ΔNP63α in NPC cells induced robust growth inhibition of NPC cells in vitro and in vivo. Our data revealed that ΔNP63α-dependent SE reprogramming contributes to the blockade of luminal differentiation and uncontrolled proliferation in NPC.
Collapse
Affiliation(s)
- Jing Cai
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Tongzipo Road, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Shengnan Chen
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Tongzipo Road, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Mei Yi
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yixin Tan
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenetics, Changsha, Hunan, China
| | - Qian Peng
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Tongzipo Road, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Yuanyuan Ban
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Tongzipo Road, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Jianbo Yang
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Xiaoling Li
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Tongzipo Road, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Zhaoyang Zeng
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Tongzipo Road, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Wei Xiong
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Tongzipo Road, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - James B McCarthy
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Guiyuan Li
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Tongzipo Road, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Xiayu Li
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Tongzipo Road, Changsha, Hunan, China
| | - Bo Xiang
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Tongzipo Road, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| |
Collapse
|
22
|
Ban Y, Tan Y, Li X, Li X, Zeng Z, Xiong W, Li G, Xiang B, Yi M. RNA-binding protein YBX1 promotes cell proliferation and invasiveness of nasopharyngeal carcinoma cells via binding to AURKA mRNA. J Cancer 2021; 12:3315-3324. [PMID: 33976741 PMCID: PMC8100805 DOI: 10.7150/jca.56262] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 03/27/2021] [Indexed: 01/02/2023] Open
Abstract
Background: RNA-binding proteins (RBPs) play essential roles in post-transcriptional control of gene expression. Dysregulation of RBPs is intensively implicated in development and progression of human diseases, including cancers. However, the roles of RBPs in nasopharyngeal carcinoma (NPC), which is a distinct subtype of head and neck cancer, remain elusive. Methods: NPC-related RBPs were explored by analyzing GEO database and high-throughput proteomic data obtained from crosslinking immunoprecipitation. The expression levels of Y box binding protein 1 (YBX1) protein in NPC samples were measured by immunohistochemistry (IHC) staining. The association of YBX1 protein levels with prognosis of NPC patients was analyzed by Kaplan-Meier Plotter. The expression levels of YBX1 in NPC cells were inhibited by RNA interference. Cell growth was measured by CCK-8 assay. Cell mobility and invasiveness were measured by transwell assays. Tumorigenicity was measured by using a xenograft tumor assay. The expression levels of mRNAs or proteins were determined by qPCR or western blot assays, respectively. The mRNAs binding to YBX1 were determined by RNA immunoprecipitation (RIP) and qPCR. The effect of YBX1 on mRNA translation was measured by luciferase reporter assay. Results: In the present study, we demonstrated a differentially expressed RBPs profile between NPC and its normal counterpart. Among these aberrantly expressed RBPs, YBX1 was overexpressed in NPC. We found that YBX1 is mainly localized in the cytoplasm of NPC cells. Loss of YBX1 led to reduced cell proliferation, migration and invasiveness in vitro, and reduced tumorigenicity in vivo. Overexpression of YBX1 associates with high expression of cell cycle G2/M checkpoint modulators. In addition, YBX1 promotes AURKA protein expression by directly binding to its mRNA. Loss of YBX1 leads to reduction of AURKA protein level. Forced expression of AURKA rescues cell proliferation and invasiveness in YBX1-silenced NPC cell. Conclusions: The current study indicated that YBX1 promotes NPC cell proliferation and invasiveness through enhancing protein synthesis of AURKA.
Collapse
Affiliation(s)
- Yuanyuan Ban
- Hunan Key Laboratory of Cancer Metabolism, Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, Central South University, Changsha 410013, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410078, Hunan, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| | - Yixin Tan
- Department of Dermatology, The Second Xiangya Hospital, The Central South University, Changsha 410011, Hunan, China
| | - Xiaoling Li
- Hunan Key Laboratory of Cancer Metabolism, Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, Central South University, Changsha 410013, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410078, Hunan, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| | - Xiayu Li
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| | - Zhaoyang Zeng
- Hunan Key Laboratory of Cancer Metabolism, Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, Central South University, Changsha 410013, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410078, Hunan, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| | - Wei Xiong
- Hunan Key Laboratory of Cancer Metabolism, Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, Central South University, Changsha 410013, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410078, Hunan, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| | - Guiyuan Li
- Hunan Key Laboratory of Cancer Metabolism, Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, Central South University, Changsha 410013, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410078, Hunan, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| | - Bo Xiang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, Central South University, Changsha 410013, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410078, Hunan, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| | - Mei Yi
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.,Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| |
Collapse
|
23
|
Zhang SQ, Pan SM, Liang SX, Han YS, Chen HB, Li JC. Research status and prospects of biomarkers for nasopharyngeal carcinoma in the era of high‑throughput omics (Review). Int J Oncol 2021; 58:9. [PMID: 33649830 PMCID: PMC7910009 DOI: 10.3892/ijo.2021.5188] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 01/21/2021] [Indexed: 02/07/2023] Open
Abstract
As a malignant tumor type, nasopharyngeal carcinoma (NPC) is characterized by distinct geographical, ethnic and genetic differences; presenting a major threat to human health in many countries, especially in Southern China. At present, no accurate and effective methods are available for the early diagnosis, efficacious evaluation or prognosis prediction for NPC. As such, a large number of patients have locoregionally advanced NPC at the time of initial diagnosis. Many patients show toxic reactions to overtreatment and have risks of cancer recurrence and distant metastasis owing to insufficient treatment. To solve these clinical problems, high‑throughput '‑omics' technologies are being used to screen and identify specific molecular biomarkers for NPC. Because of the lack of comprehensive descriptions regarding NPC biomarkers, the present study summarized the research progress that has been made in recent years to discover NPC biomarkers, highlighting the existing problems that require exploration. In view of the lack of authoritative reports at present, study design factors that affect the screening of biomarkers are also discussed here and prospects for future research are proposed to provide references for follow‑up studies of NPC biomarkers.
Collapse
Affiliation(s)
- Shan-Qiang Zhang
- Medical Research Center, Yue Bei People's Hospital, Shantou University Medical College, Wujiang, Shaoguan, Guangdong 512025, P.R. China
| | - Su-Ming Pan
- Department of Radiotherapy, Yue Bei People's Hospital, Shantou University Medical College, Wujiang, Shaoguan, Guangdong 512025, P.R. China
| | - Si-Xian Liang
- Department of Radiotherapy, Yue Bei People's Hospital, Shantou University Medical College, Wujiang, Shaoguan, Guangdong 512025, P.R. China
| | - Yu-Shuai Han
- Institute of Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, P.R. China
| | - Hai-Bin Chen
- Department of Histology and Embryology, Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Ji-Cheng Li
- Medical Research Center, Yue Bei People's Hospital, Shantou University Medical College, Wujiang, Shaoguan, Guangdong 512025, P.R. China
- Institute of Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, P.R. China
- Correspondence to: Professor Ji-Cheng Li, Medical Research Center, Yue Bei People's Hospital, Shantou University Medical College, 133 Huimin South Road, Wujiang, Shaoguan, Guangdong 512025, P.R. China, E-mail:
| |
Collapse
|
24
|
Guo W, Zheng X, Hua L, Zheng X, Zhang Y, Sun B, Tao Z, Gao J. Screening and bioinformatical analysis of differentially expressed genes in nasopharyngeal carcinoma. J Cancer 2021; 12:1867-1883. [PMID: 33753985 PMCID: PMC7974527 DOI: 10.7150/jca.48979] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 12/31/2020] [Indexed: 12/17/2022] Open
Abstract
Objective: To identify differentially expressed genes via bioinformatical analysis for nasopharyngeal carcinoma (NPC) and explore potential biomarkers for NPC. Methods: We downloaded the NPC gene expression datasets (GSE40290, GSE53819) and obtained differentially expressed genes (DEGs) via GEO2R. Functional analysis of DEGs was performed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. In order to explore the interaction of DEGs and screen the core genes, we established protein-protein interaction (PPI) network. Then the expression level, prognostic and diagnostic analysis of the core genes in NPC were performed to reveal their potential effects on NPC. Furthermore, we obtained the transcription factors (TF) and microRNAs of core genes to construct the coregulatory network. Results: We obtained 124 up-regulated genes and 190 down-regulated genes in total. These genes were found to be related to signal transduction, extracellular matrix organization and cell adhesion based on GO analysis. KEGG analysis revealed that the NF-kappa B (NF-κB) signaling pathway, pathways in cancer were mainly enriched signaling pathways. 25 core genes were obtained by constructing PPI network. Then the high expression of 10 core genes in NPC were verified via GEPIA, Oncomine databases and laboratory experiments. The TF-microRNA coregulatory network of the 10 core genes was built. Survival and diagnostic analysis indicated that SPP1 had negative influence on the prognosis of NPC patients based on two datasets and nine up-regulated core genes (FN1, MMP1, MMP3, PLAU, PLAUR, SERPINE1, SPP1, COL8A1, COL10A1) might be diagnostic markers for NPC. Conclusions: Core genes of NPC were screened out by bioinformatical analysis in the present study and these genes may serve as prognostic and diagnostic biomarkers for NPC.
Collapse
Affiliation(s)
- Weiqian Guo
- Department of Radiation Oncology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei 230001, China
| | - Xiaomin Zheng
- Department of Radiation Oncology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei 230001, China
| | - Lei Hua
- Department of Radiation Oncology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei 230001, China
| | | | - Yangyang Zhang
- Department of Radiation Oncology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230031, China
| | - Bin Sun
- Department of Radiation Oncology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230031, China
| | - Zhenchao Tao
- Department of Radiation Oncology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230031, China
| | - Jin Gao
- Department of Radiation Oncology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei 230001, China.,Department of Radiation Oncology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230031, China
| |
Collapse
|
25
|
Fang M, Zhang M, Wang Y, Wei F, Wu J, Mou X, Zhang Y, Liang X, Tang J. Long Noncoding RNA AFAP1-AS1 Is a Critical Regulator of Nasopharyngeal Carcinoma Tumorigenicity. Front Oncol 2020; 10:601055. [PMID: 33330099 PMCID: PMC7719841 DOI: 10.3389/fonc.2020.601055] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/19/2020] [Indexed: 12/13/2022] Open
Abstract
Background The long noncoding RNA actin filament associated protein 1 antisense RNA1 (AFAP1-AS1) is a critical player in various cancers. However, the clinical value and functional mechanisms of AFAP1-AS1 during the tumorigenicity of nasopharyngeal carcinoma (NPC) remain unclear. Here, we investigated the clinical application and potential molecular mechanisms of AFAP1-AS1 in NPC tumorigenesis and progression. Methods The expression level of AFAP1-AS1 was determined by qRT-PCR in 10 paired fresh human NPC tissues and adjacent normal tissues. RNAscope was performed on 100 paired paraffin-embedded NPC and adjacent nontumor specimens. The biological functions of AFAP1-AS1 were assessed by in vitro and in vivo functional experiments. RNA-protein pull-down assays were performed to detect and identify the AFAP1-AS1-interacting protein KAT2B. Protein-RNA immunoprecipitation (RIP) assays were conducted to examine the interaction of AFAP1-AS1 and KAT2B. Chromatin immunoprecipitation (ChIP) and luciferase analyses were utilized to identify the binding site of transcription intermediary factor 1 alpha (TIF1α) and H3K14ac on the RBM3 promoter. Results AFAP1-AS1 is upregulated in NPC and is a poor prognostic indicator for survival in NPC patients. AFAP1-AS1 was required for NPC proliferation in vitro and tumorigenicity in vivo. Mechanistic investigations suggested that AFAP1-AS1 binds to KAT2B and promotes acetyltransferase activation at two residues (E570/D610). KAT2B further promotes H3K14 acetylation and protein binding to the bromo domain of TIF1α. Consequently, TIF1α acts as a nuclear transcriptional coactivator of RBM3 transcription, leading to YAP mRNA stabilization and enhanced NPC tumorigenicity. Conclusions Our findings suggest that AFAP1-AS1 functions as an oncogenic biomarker and promotes NPC tumorigenicity through enhanced KAT2B acetyltransferase activation and YAP mRNA stabilization.
Collapse
Affiliation(s)
- Min Fang
- Department of Radiation Oncology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Minjun Zhang
- Department of Radiation Oncology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China.,Graduate Department, Bengbu Medical College, Bengbu, China
| | - Yiqing Wang
- The Reproductive Medicine Special Hospital of the First Hospital of Lanzhou University, Key Laboratory for Reproductive Medicine and Embryo, Lanzhou, China
| | - Fangqiang Wei
- Department of Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Jianhui Wu
- Department of the Otolaryngology, Zhongshan City People's Hospital, Zhongshan Affiliated Hospital of Sun Yan-sen University, Zhongshan, China
| | - Xiaozhou Mou
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China.,Clinical Research Institute, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Yigan Zhang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Xiaodong Liang
- Department of Radiation Oncology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China.,Graduate Department, Bengbu Medical College, Bengbu, China
| | - Jianming Tang
- Department of Radiation Oncology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
26
|
Yi M, Tan Y, Wang L, Cai J, Li X, Zeng Z, Xiong W, Li G, Li X, Tan P, Xiang B. TP63 links chromatin remodeling and enhancer reprogramming to epidermal differentiation and squamous cell carcinoma development. Cell Mol Life Sci 2020; 77:4325-4346. [PMID: 32447427 PMCID: PMC7588389 DOI: 10.1007/s00018-020-03539-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 02/21/2020] [Accepted: 04/24/2020] [Indexed: 12/19/2022]
Abstract
Squamous cell carcinoma (SCC) is an aggressive malignancy that can originate from various organs. TP63 is a master regulator that plays an essential role in epidermal differentiation. It is also a lineage-dependent oncogene in SCC. ΔNp63α is the prominent isoform of TP63 expressed in epidermal cells and SCC, and overexpression promotes SCC development through a variety of mechanisms. Recently, ΔNp63α was highlighted to act as an epidermal-specific pioneer factor that binds closed chromatin and enhances chromatin accessibility at epidermal enhancers. ΔNp63α coordinates chromatin-remodeling enzymes to orchestrate the tissue-specific enhancer landscape and three-dimensional high-order architecture of chromatin. Moreover, ΔNp63α establishes squamous-like enhancer landscapes to drive oncogenic target expression during SCC development. Importantly, ΔNp63α acts as an upstream regulator of super enhancers to activate a number of oncogenic transcripts linked to poor prognosis in SCC. Mechanistically, ΔNp63α activates genes transcription through physically interacting with a number of epigenetic modulators to establish enhancers and enhance chromatin accessibility. In contrast, ΔNp63α also represses gene transcription via interacting with repressive epigenetic regulators. ΔNp63α expression is regulated at multiple levels, including transcriptional, post-transcriptional, and post-translational levels. In this review, we summarize recent advances of p63 in epigenomic and transcriptional control, as well as the mechanistic regulation of p63.
Collapse
Affiliation(s)
- Mei Yi
- NHC Key Laboratory of Carcinogenesis, Hunan Provincial Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Yixin Tan
- Department of Dermatology, The Second Xiangya Hospital, The Central South University, Changsha, 410011, Hunan, China
| | - Li Wang
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Jing Cai
- NHC Key Laboratory of Carcinogenesis, Hunan Provincial Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Xiaoling Li
- NHC Key Laboratory of Carcinogenesis, Hunan Provincial Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis, Hunan Provincial Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis, Hunan Provincial Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Guiyuan Li
- NHC Key Laboratory of Carcinogenesis, Hunan Provincial Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Xiayu Li
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
| | - Pingqing Tan
- NHC Key Laboratory of Carcinogenesis, Hunan Provincial Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.
- Department of Head and Neck Surgery, Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, Central South University, Changsha, 410013, Hunan, China.
| | - Bo Xiang
- NHC Key Laboratory of Carcinogenesis, Hunan Provincial Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China.
| |
Collapse
|
27
|
Kang Y, He W, Ren C, Qiao J, Guo Q, Hu J, Xu H, Jiang X, Wang L. Advances in targeted therapy mainly based on signal pathways for nasopharyngeal carcinoma. Signal Transduct Target Ther 2020; 5:245. [PMID: 33093441 PMCID: PMC7582884 DOI: 10.1038/s41392-020-00340-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 09/12/2020] [Accepted: 09/16/2020] [Indexed: 02/07/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a malignant epithelial carcinoma of the head and neck region which mainly distributes in southern China and Southeast Asia and has a crucial association with the Epstein-Barr virus. Based on epidemiological data, both incidence and mortality of NPC have significantly declined in recent decades grounded on the improvement of living standard and medical level in an endemic region, in particular, with the clinical use of individualized chemotherapy and intensity-modulated radiotherapy (IMRT) which profoundly contributes to the cure rate of NPC patients. To tackle the challenges including local recurrence and distant metastasis in the current NPC treatment, we discussed the implication of using targeted therapy against critical molecules in various signal pathways, and how they synergize with chemoradiotherapy in the NPC treatment. Combination treatment including targeted therapy and IMRT or concurrent chemoradiotherapy is presumably to be future options, which may reduce radiation or chemotherapy toxicities and open new avenues for the improvement of the expected functional outcome for patients with advanced NPC.
Collapse
Affiliation(s)
- Yuanbo Kang
- Department of Neurosurgery, Cancer Research Institute, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South University, 410008, Changsha, Hunan, China
- The NHC Key Laboratory of Carcinogenesis and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Weihan He
- Department of Neurosurgery, Cancer Research Institute, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South University, 410008, Changsha, Hunan, China
- The NHC Key Laboratory of Carcinogenesis and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Caiping Ren
- Department of Neurosurgery, Cancer Research Institute, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China.
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South University, 410008, Changsha, Hunan, China.
- The NHC Key Laboratory of Carcinogenesis and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China.
| | - Jincheng Qiao
- Department of Neurosurgery, Cancer Research Institute, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South University, 410008, Changsha, Hunan, China
- The NHC Key Laboratory of Carcinogenesis and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Qiuyong Guo
- Department of Neurosurgery, Cancer Research Institute, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South University, 410008, Changsha, Hunan, China
- The NHC Key Laboratory of Carcinogenesis and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Jingyu Hu
- Department of Neurosurgery, Cancer Research Institute, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South University, 410008, Changsha, Hunan, China
- The NHC Key Laboratory of Carcinogenesis and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Hongjuan Xu
- Department of Neurosurgery, Cancer Research Institute, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South University, 410008, Changsha, Hunan, China
- The NHC Key Laboratory of Carcinogenesis and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Xingjun Jiang
- Department of Neurosurgery, Cancer Research Institute, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Lei Wang
- Department of Neurosurgery, Cancer Research Institute, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China.
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South University, 410008, Changsha, Hunan, China.
- The NHC Key Laboratory of Carcinogenesis and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China.
| |
Collapse
|
28
|
Chen S, Youhong T, Tan Y, He Y, Ban Y, Cai J, Li X, Xiong W, Zeng Z, Li G, Yi M, Liu W, Xiang B. EGFR-PKM2 signaling promotes the metastatic potential of nasopharyngeal carcinoma through induction of FOSL1 and ANTXR2. Carcinogenesis 2020; 41:723-733. [PMID: 31665243 PMCID: PMC7351130 DOI: 10.1093/carcin/bgz180] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 10/13/2019] [Accepted: 10/24/2019] [Indexed: 12/13/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is notorious for its aggressiveness and high metastatic potential. NPC patients with distant metastasis have a particularly poor prognosis; however, evaluating metastatic potential by expression profiles of primary tumors is challenging. This study aimed to investigate the association between activation of epidermal growth factor receptor (EGFR) signaling and NPC metastasis and the underlying mechanisms. We found an association between EGFR protein overexpression and intense EGFR immunostaining in NPC samples with advanced tumor node metastasis stage, clinical stage, and distant metastasis in NPC patients. Exogenous EGF stimulates NPC mobility and invasiveness in vitro. Activation of EGFR signaling prompted PKM2 translocation to the nucleus. Silencing either EGFR or PKM2 attenuates NPC cell aggressiveness in vitro and in vivo. Blocking EGFR signaling with cetuximab suppressed NPC cell invasiveness in vitro and metastatic potential in vivo. Comprehensive analyses of transcriptome profiles indicated that the EGFR-PKM2 axis activates a number of novel metastasis promoters, including F3, FOSL1, EPHA2, ANTXR2, and AKR1C2. Finally, we found that the metastasis-promoting function of the EGFR-PKM2 axis is dependent on nuclear PKM2 regulation of the transcription of metastasis-related genes, including FOSL1 and ANTXR2. Our study indicates that EGFR-PKM2 signaling promotes NPC cell invasion and metastasis through induction of FOSL1 and ANTXR2 and identifies EGFR as a promising biomarker for predicting the risk of distant metastasis.
Collapse
Affiliation(s)
- Shengnan Chen
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, Central South University, Changsha, Hunan
- NHC Key Laboratory of Carcinogenesis (Central South University) and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan
| | - Tang Youhong
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan
| | - Yixin Tan
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenetics, Changsha, Hunan
| | - Yuxiang He
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan
| | - Yuanyuan Ban
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, Central South University, Changsha, Hunan
- NHC Key Laboratory of Carcinogenesis (Central South University) and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan
| | - Jing Cai
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, Central South University, Changsha, Hunan
- NHC Key Laboratory of Carcinogenesis (Central South University) and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan
| | - Xiaoling Li
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, Central South University, Changsha, Hunan
- NHC Key Laboratory of Carcinogenesis (Central South University) and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan
| | - Wei Xiong
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, Central South University, Changsha, Hunan
- NHC Key Laboratory of Carcinogenesis (Central South University) and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan
| | - Zhaoyang Zeng
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, Central South University, Changsha, Hunan
- NHC Key Laboratory of Carcinogenesis (Central South University) and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan
| | - Guiyuan Li
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, Central South University, Changsha, Hunan
- NHC Key Laboratory of Carcinogenesis (Central South University) and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan
| | - Mei Yi
- NHC Key Laboratory of Carcinogenesis (Central South University) and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan
| | - Wei Liu
- NHC Key Laboratory of Carcinogenesis (Central South University) and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan
- Department of Endocrinology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Bo Xiang
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, Central South University, Changsha, Hunan
- NHC Key Laboratory of Carcinogenesis (Central South University) and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan
| |
Collapse
|
29
|
FOXA1 Expression in Nasopharyngeal Carcinoma: Association with Clinicopathological Characteristics and EMT Markers. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4234632. [PMID: 32685483 PMCID: PMC7330629 DOI: 10.1155/2020/4234632] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 05/07/2020] [Accepted: 05/28/2020] [Indexed: 12/14/2022]
Abstract
The forkhead box (FOXA) family of transcription factors regulates gene expression and chromatin structure during tumorigenesis and embryonic development. Until now, the relationship between FOXA1 and the nasopharyngeal carcinoma (NPC) has not yet been reported. Therefore, our purpose is to analyze the expression of FOXA1 in 56 NPC patients compared to 10 normal nasopharyngeal mucosae and to correlate the expression with the clinicopathological features. Besides, we investigated the association between FOXA1 and LMP1 gene expression, as well as the EMT markers namely the E-cadherin and Twist1. Among 56 NPC tissues, 34 (60.7%) cases were positive for FOXA1. Furthermore, we noticed that FOXA1 expression correlated with TNM (p = 0.037), and age at diagnosis (p = 0.05). Moreover, positive expression of FOXA1 is likely to be associated with prolonged disease-free survival and overall survival rates. On the other hand, we observed a positive association between the expression of E-cadherin and FOXA1 (p = 0.0051) whereas Twist1 correlated negatively with FOXA1 (p = 0.004). Furthermore, knowing that LMP1 plays a key role in the pathogenesis of NPC, we explored the association of FOXA1 with the LMP1 gene expression in both NPC cell lines and tissues. We found that, in the C666-1 which displays low levels of LMP1, the expression of FOXA1 is high, and inversely in the C15 cell line that expresses a high level of LMP1, the level of FOXA1 is low. Besides, in accordance to our results, we found that in NPC tissues there is a negative association between LMP1 and FOXA1. In conclusion, our results suggest that the overexpression of FOXA1 is associated with a nonaggressive behavior and favorable prognosis in NPC patients. FOXA1 could contribute in the EMT process through key factors as E-cadherin, Twist1, and LMP1.
Collapse
|
30
|
S100A14 suppresses metastasis of nasopharyngeal carcinoma by inhibition of NF-kB signaling through degradation of IRAK1. Oncogene 2020; 39:5307-5322. [PMID: 32555330 DOI: 10.1038/s41388-020-1363-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 05/19/2020] [Accepted: 06/08/2020] [Indexed: 12/13/2022]
Abstract
Nasopharyngeal carcinoma (NPC) is a unique head and neck cancer with highly aggressive and metastatic potential in which distant metastasis is the main reason for treatment failure. Till present, the underlying molecular mechanisms of NPC metastasis remains poorly understood. Here, we identified S100 calcium-binding protein A14 (S100A14) as a functional regulator suppressing NPC metastasis by inhibiting the NF-kB signaling pathway and reversing the epithelial-mesenchymal transition (EMT). S100A14 was found to be downregulated in highly metastatic NPC cells and tissues. Immunohistochemical staining of 202 NPC samples revealed that lower S100A14 expression was significantly correlated with shorter patient overall survival (OS) and distant metastasis-free survival (DMFS). S100A14 was also found as an independent prognostic factor for favorable survival. Gain- and loss-of-function studies confirmed that S100A14 suppressed the in vitro and in vivo motility of NPC cells. Mechanistically, S100A14 promoted the ubiquitin-proteasome-mediated degradation of interleukin-1 receptor-associated kinase 1 (IRAK1) to suppress NPC cellular migration. Moreover, S100A14 and IRAK1 established a feedback loop that could be disrupted by the IRAK1 inhibitor T2457. Overall, our findings showed that the S100A14-IRAK1 feedback loop could be a promising therapeutic target for NPC metastasis.
Collapse
|
31
|
Xu W, Sun X, Zang C, Jiang Y. lncRNA SNHG7 promotes tumorigenesis of nasopharyngeal carcinoma via epithelial-to-mesenchymal transition. Oncol Lett 2020; 19:2721-2726. [PMID: 32218823 PMCID: PMC7068656 DOI: 10.3892/ol.2020.11397] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/04/2019] [Indexed: 12/22/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is one of the most common malignant tumors. Studies have indicated that long noncoding RNAs (lncRNAs) function as important regulators in progression of tumorigenesis. In this study, lncRNA small nucleolar RNA host gene 7 (SNHG7) was selected to identify how it functioned in the development of NPC. Real-time quantitative polymerase chain reaction (RT-qPCR) was performed to detect SNHG7 expression in paired NPC patient tissue samples and cell lines. The role of SNHG7 in the metastasis of NPC was detected through scratch wound assay and Transwell assay. RT-qPCR and western blot assay were used to discover the function of SNHG7 in epithelial-to-mesenchymal transition (EMT) process. Tumor metastasis assay was also performed in vivo. In this study, RT-qPCR results showed that SNHG7 expression in NPC samples was remarkably higher when compared with that in adjacent ones. Cell invasion and cell migration of NPC were inhibited due to silence of SNHG7 and were promoted due to overexpression of SNHG7. Moreover, results of further experiments revealed that the EMT-related proteins were regulated via knockdown or overexpression of SNHG7 in NPC. Furthermore, tumor metastasis of NPC was inhibited via knockdown of SNHG7 and was enhanced via overexpression of SNHG7 in nude mice. These results indicate that SNHG7 enhances NPC cell invasion and cell migration by eliciting the EMT process.
Collapse
Affiliation(s)
- Wenrui Xu
- Department of Otolaryngology-Head and Neck Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Xiaohan Sun
- Department of Otolaryngology-Head and Neck Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Chuanshan Zang
- Department of Otolaryngology-Head and Neck Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Yan Jiang
- Department of Otolaryngology-Head and Neck Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| |
Collapse
|
32
|
Peng Q, Zhang L, Li J, Wang W, Cai J, Ban Y, Zhou Y, Hu M, Mei Y, Zeng Z, Li X, Xiong W, Li G, Tan Y, Xiang B, Yi M. FOXA1 Suppresses the Growth, Migration, and Invasion of Nasopharyngeal Carcinoma Cells through Repressing miR-100-5p and miR-125b-5p. J Cancer 2020; 11:2485-2495. [PMID: 32201519 PMCID: PMC7066028 DOI: 10.7150/jca.40709] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 01/19/2020] [Indexed: 02/06/2023] Open
Abstract
Background: Nasopharyngeal carcinoma (NPC) is a unique subtype of head and neck cancer, within highest incidence in South China and southeastern Asia but rare in other regions worldwide. FOXA1 is a pioneer factor implicated in various human malignancies. Downregulation of FOXA1 promotes NPC cells proliferation, invasiveness in vitro and tumorigenicity in vivo. However, it is remain elusive to determine whether microRNAs (miRNAs) regulated by FOXA1 contribute to NPC progression. Methods: In this study, differentially expressed miRNAs and mRNAs induced by FOXA1 expression were determined by microarray. Integrative miRNA-mRNA regulatory networks mediated by FOXA1 in NPC were established. The expressions of differentially expressed miRNAs in NPC cells were measured by quantitative reverse-transcription PCR. Cell viability was determined by CCK-8 assays. Cell migration and invasiveness were measured by Transwell assays. The correlation between miRNAs and its target mRNAs was analyzed. Results: FOXA1 suppressed the expression of miR-100-5p and miR-125b-5p in NPC cells. Silencing either miR-100-5p or miR-125b-5p inhibited the malignant behaviors of NPC cells, whereas re-expression of miR-100-5p or miR-125b-5p restored the malignancy of NPC cells repressed by FOXA1. Mechanistically, miR-100-5p or miR-125b-5p suppressed RASGRP3 or FOXN3 expression respectively via direct binding to its 3'-UTR. Furthermore, we demonstrated that FOXA1 induced RASGRP3 or FOXN3 expression via inhibiting miR-100-5p or miR-125b-5p. Upregulation of RASGRP3 or FOXN3 contributed to inhibition of NPC by FOXA1. We also demonstrated that the mRNA levels of RASGRP3 and FOXN3 are positively correlated with FOXA1. Conclusion: Our study provided evidence the first time that FOXA1 suppresses NPC cells via downregulation of miR-100-5p or miR-125b-5p.
Collapse
Affiliation(s)
- Qian Peng
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, Central South University, Changsha 410013, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China.,The Key Laboratory of Carcinogenesis of the National Health Commission, Xiangya Hospital, Central South University, Changsha 410078, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Liyang Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Junjun Li
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, Central South University, Changsha 410013, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China.,The Key Laboratory of Carcinogenesis of the National Health Commission, Xiangya Hospital, Central South University, Changsha 410078, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wei Wang
- Department of Pathology, Affiliated Hospital of Jining Medical University, Jining, 272029, Shandong, China
| | - Jing Cai
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, Central South University, Changsha 410013, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China.,The Key Laboratory of Carcinogenesis of the National Health Commission, Xiangya Hospital, Central South University, Changsha 410078, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuanyuan Ban
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, Central South University, Changsha 410013, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China.,The Key Laboratory of Carcinogenesis of the National Health Commission, Xiangya Hospital, Central South University, Changsha 410078, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ying Zhou
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, Central South University, Changsha 410013, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China.,The Key Laboratory of Carcinogenesis of the National Health Commission, Xiangya Hospital, Central South University, Changsha 410078, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Meng Hu
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, Central South University, Changsha 410013, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China.,The Key Laboratory of Carcinogenesis of the National Health Commission, Xiangya Hospital, Central South University, Changsha 410078, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yan Mei
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, Central South University, Changsha 410013, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China.,The Key Laboratory of Carcinogenesis of the National Health Commission, Xiangya Hospital, Central South University, Changsha 410078, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhaoyang Zeng
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, Central South University, Changsha 410013, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China.,The Key Laboratory of Carcinogenesis of the National Health Commission, Xiangya Hospital, Central South University, Changsha 410078, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaoling Li
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, Central South University, Changsha 410013, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China.,The Key Laboratory of Carcinogenesis of the National Health Commission, Xiangya Hospital, Central South University, Changsha 410078, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wei Xiong
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, Central South University, Changsha 410013, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China.,The Key Laboratory of Carcinogenesis of the National Health Commission, Xiangya Hospital, Central South University, Changsha 410078, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Guiyuan Li
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, Central South University, Changsha 410013, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China.,The Key Laboratory of Carcinogenesis of the National Health Commission, Xiangya Hospital, Central South University, Changsha 410078, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yixin Tan
- Department of Dermatology, Second Xiangya Hospital, The Central South University, Hunan Key Laboratory of Medical Epigenetics, Changsha, 410011, Hunan, China
| | - Bo Xiang
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, Central South University, Changsha 410013, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China.,The Key Laboratory of Carcinogenesis of the National Health Commission, Xiangya Hospital, Central South University, Changsha 410078, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Mei Yi
- The Key Laboratory of Carcinogenesis of the National Health Commission, Xiangya Hospital, Central South University, Changsha 410078, Hunan, China.,Department of Dermatology, Xiangya Hospital of Central South University, Changsha, 410008, China
| |
Collapse
|
33
|
Ma Z, Shuai Y, Gao X, Wen X, Ji J. Circular RNAs in the tumour microenvironment. Mol Cancer 2020; 19:8. [PMID: 31937318 PMCID: PMC6958568 DOI: 10.1186/s12943-019-1113-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 12/02/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) are a new class of endogenous non-coding RNAs (ncRNAs) widely expressed in eukaryotic cells. Mounting evidence has highlighted circRNAs as critical regulators of various tumours. More importantly, circRNAs have been revealed to recruit and reprogram key components involved in the tumour microenvironment (TME), and mediate various signaling pathways, thus affecting tumourigenesis, angiogenesis, immune response, and metastatic progression. In this review, we briefly introduce the biogenesis, characteristics and classification of circRNAs, and describe various mechanistic models of circRNAs. Further, we provide the first systematic overview of the interplay between circRNAs and cellular/non-cellular counterparts of the TME and highlight the potential of circRNAs as prospective biomarkers or targets in cancer clinics. Finally, we discuss the biological mechanisms through which the circRNAs drive development of resistance, revealing the mystery of circRNAs in drug resistance of tumours. SHORT CONCLUSION Deep understanding the emerging role of circRNAs and their involvements in the TME may provide potential biomarkers and therapeutic targets for cancer patients. The combined targeting of circRNAs and co-activated components in the TME may achieve higher therapeutic efficiency and become a new mode of tumour therapy in the future.
Collapse
Affiliation(s)
- Zhonghua Ma
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital & Institute, Beijing, People's Republic of China.,Department of Gastrointestinal Surgery, Peking University Cancer Hospital, Beijing, People's Republic of China
| | - You Shuai
- Department of Medical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Xiangyu Gao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital & Institute, Beijing, People's Republic of China.,Department of Gastrointestinal Surgery, Peking University Cancer Hospital, Beijing, People's Republic of China
| | - Xianzi Wen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital & Institute, Beijing, People's Republic of China
| | - Jiafu Ji
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital & Institute, Beijing, People's Republic of China. .,Department of Gastrointestinal Surgery, Peking University Cancer Hospital, Beijing, People's Republic of China.
| |
Collapse
|
34
|
Fan C, Tang Y, Wang J, Wang Y, Xiong F, Zhang S, Li X, Xiang B, Wu X, Guo C, Ma J, Zhou M, Li X, Xiong W, Li Y, Li G, Zeng Z. Long non-coding RNA LOC284454 promotes migration and invasion of nasopharyngeal carcinoma via modulating the Rho/Rac signaling pathway. Carcinogenesis 2019; 40:380-391. [PMID: 30380023 DOI: 10.1093/carcin/bgy143] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/29/2018] [Accepted: 10/29/2018] [Indexed: 12/13/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a unique malignant cancer with high metastasis. Because the early symptoms of NPC patients are not obvious, most patients have distant metastases when diagnosed, which makes treatment difficult. Long non-coding RNAs (lncRNAs) are emerging as important regulators in human carcinogenesis. LncRNAs have been increasingly identified but remain largely unknown in NPC. Therefore, we performed gene expression profiling to screen for altered expression of lncRNAs in NPC tissues and adjacent samples. One lncRNA, LOC284454, was upregulated and associated with poor prognosis in NPC. In in vivo and in vitro assays, LOC284454 promoted the migration and invasion capacity of NPC cells. Mass spectrometry combined with bioinformatics suggested that LOC284454 affected the cytoskeletal and adhesion-related Rho/Rac signaling pathways. LOC284454 may be a potential novel treatment target and is expected to be a new diagnostic and prognostic marker in patients with NPC.
Collapse
Affiliation(s)
- Chunmei Fan
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science.,Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine
| | - Yanyan Tang
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science.,Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine
| | - Jinpeng Wang
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science
| | - Yian Wang
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science
| | - Fang Xiong
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital
| | - Shanshan Zhang
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital
| | - Xiayu Li
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bo Xiang
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science.,Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine
| | - Xu Wu
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science.,Department of Chemistry, University of North Dakota, Grand Forks, ND, USA
| | - Can Guo
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science
| | - Jian Ma
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science.,Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine
| | - Ming Zhou
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science.,Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine
| | - Xiaoling Li
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science.,Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine
| | - Wei Xiong
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science.,Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine
| | - Yong Li
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science.,Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Guiyuan Li
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science.,Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine
| | - Zhaoyang Zeng
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science.,Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine
| |
Collapse
|
35
|
Sun X, Xu W, Zang C, Li N. miRNA-520c-3p accelerates progression of nasopharyngeal carcinoma via targeting RAB22A. Oncol Lett 2019; 19:771-776. [PMID: 31897193 PMCID: PMC6924133 DOI: 10.3892/ol.2019.11144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 11/13/2019] [Indexed: 12/29/2022] Open
Abstract
Biological function of microRNA-20c-3p (miRNA-520c-3p) in the progression of nasopharyngeal carcinoma (NPC) and the potential mechanism were investigated. Relative level of miRNA-520c-3p in NPC tissues and adjacent normal tissues was determined by quantitative real-time polymerase chain reaction (qRT-PCR). Particularly, miRNA-520c-3p level in NPC with different tumor stages and tumor sizes was examined. Subsequently, miRNA-520c-3p level in nasopharyngeal epithelial cells and NPC cells was detected. The potential influence of miRNA-520c-3p on the proliferative ability and cell cycle progression of NPC cells were evaluated through cell counting kit-8 (CCK-8) and flow cytometry. The target gene of miRNA-520c-3p was verified by dual-luciferase reporter gene assay. Regulatory role of miRNA-520c-3p/RAB22A in the malignant progression of NPC was identified. miRNA-520c-3p was downregulated in NPC tissues and cell lines. Its level was lower in NPC with worse tumor grade and larger tumor size. Overexpression of miRNA-520c-3p suppressed the proliferative ability and arrested cell cycle in G0/G1 phase. RAB22A was confirmed to be the downstream target of miRNA-520c-3p. In NPC tissues and cell lines, RAB22A remained in higher abundance relative to controls. Overexpression of RAB22A reversed the inhibitory effects of overexpressed miRNA-520c-3p on proliferative ability and cell cycle progression of NPC cells. miRNA-520c-3p is downregulated in NPC, which accelerates the malignant progression of NPC by targeting RAB22A.
Collapse
Affiliation(s)
- Xiaohan Sun
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Wenrui Xu
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Chuanshan Zang
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Na Li
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| |
Collapse
|
36
|
Mai S, Xiao R, Shi L, Zhou X, Yang T, Zhang M, Weng N, Zhao X, Wang R, Liu J, Sun R, Qin H, Wang H. MicroRNA-18a promotes cancer progression through SMG1 suppression and mTOR pathway activation in nasopharyngeal carcinoma. Cell Death Dis 2019; 10:819. [PMID: 31659158 PMCID: PMC6817863 DOI: 10.1038/s41419-019-2060-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 09/17/2019] [Accepted: 10/14/2019] [Indexed: 02/06/2023]
Abstract
miR-18a has been reported to be upregulated in nasopharyngeal carcinoma (NPC) tissues by microarray assays. However, the roles and the underlying mechanisms of miR-18a in NPC remain poorly understood. Here we demonstrated by real-time RT-PCR that miR-18a expression is upregulated in NPC tissues, and positively correlated with tumor size and TNM stage. Moreover, miR-18a expression could be upregulated by NF-κB activation or Epstein-Barr virus encoded latent membrane protein 1 expression. The ectopic expression of miR-18a promoted NPC cell proliferation, migration and invasion, while the repression of miR-18a had opposite effects. Candidate genes under regulation by miR-18a were screened out through a whole-genome microarray assay, further identified by a reporter assay and verified in clinical samples. SMG1, a member of the phosphoinositide 3-kinase-related kinases family and an mTOR antagonist, was identified as functional target of miR-18a. Our results confirmed that miR-18a exerts its oncogenic role through suppression of SMG1 and activation of mTOR pathway in NPC cells. Importantly, in vivo xenograft tumor growth in nude mice was effectively inhibited by intratumor injection of miR-18a antagomir. Our data support an oncogenic role of miR-18a through a novel miR-18a/SMG1/mTOR axis and suggest that the antitumor effects of antagomir-18a may make it suitable for NPC therapy.
Collapse
Affiliation(s)
- ShiJuan Mai
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - RuoWen Xiao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Lu Shi
- Department of thoracic oncology, the cancer center of the fifth affiliated hospital of Sun Yat-sen University, Zhuhai, 519000, China
| | - XiaoMin Zhou
- ZhouKou Hospital of Traditional Chinese Medicine, Zhoukou, 466000, China
| | - Te Yang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - MeiYin Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - NuoQing Weng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - XinGe Zhao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - RuiQi Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Ji Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Rui Sun
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| | - HaiDe Qin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
| | - HuiYun Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
37
|
Tsang CM, Lui VWY, Bruce JP, Pugh TJ, Lo KW. Translational genomics of nasopharyngeal cancer. Semin Cancer Biol 2019; 61:84-100. [PMID: 31521748 DOI: 10.1016/j.semcancer.2019.09.006] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/11/2019] [Accepted: 09/11/2019] [Indexed: 12/26/2022]
Abstract
Nasopharyngeal carcinoma (NPC), also named the Cantonese cancer, is a unique cancer with strong etiological association with infection of the Epstein-Barr virus (EBV). With particularly high prevalence in Southeast Asia, the involvement of EBV and genetic aberrations contributive to NPC tumorigenesis have remained unclear for decades. Recently, genomic analysis of NPC has defined it as a genetically homogeneous cancer, driven largely by NF-κB signaling caused by either somatic aberrations of NF-κB negative regulators or by overexpression of the latent membrane protein 1 (LMP1), an EBV viral oncoprotein. This represents a landmark finding of the NPC genome. Exome and RNA sequencing data from new EBV-positive NPC models also highlight the importance of PI3K pathway aberrations in NPC. We also realize for the first time that NPC mutational burden, mutational signatures, MAPK/PI3K aberrations, and MHC Class I gene aberrations, are prognostic for patient outcome. Together, these multiple genomic discoveries begin to shape the focus of NPC therapy development. Given the challenge of NF-κB targeting in human cancers, more innovative drug discovery approaches should be explored to target the unique atypical NF-κB activation feature of NPC. Our next decade of NPC research should focus on further identification of the -omic landscapes of recurrent and metastatic NPC, development of gene-based precision medicines, as well as large-scale drug screening with the newly developed and well-characterized EBV-positive NPC models. Focused preclinical and clinical investigations on these major directions may identify new and effective targeting strategies to further improve survival of NPC patients.
Collapse
Affiliation(s)
- Chi Man Tsang
- Department of Anatomical and cellular Pathology and State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Vivian Wai Yan Lui
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Jeffrey P Bruce
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 1L7, Canada
| | - Trevor J Pugh
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 1L7, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, M5G 1L7, Canada; Ontario Institute for Cancer Research, Toronto, ON, M5G 1L7, Canada
| | - Kwok Wai Lo
- Department of Anatomical and cellular Pathology and State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region.
| |
Collapse
|
38
|
Lin J, Xia L, Liang J, Han Y, Wang H, Oyang L, Tan S, Tian Y, Rao S, Chen X, Tang Y, Su M, Luo X, Wang Y, Wang H, Zhou Y, Liao Q. The roles of glucose metabolic reprogramming in chemo- and radio-resistance. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:218. [PMID: 31122265 PMCID: PMC6533757 DOI: 10.1186/s13046-019-1214-z] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 05/07/2019] [Indexed: 12/15/2022]
Abstract
Reprogramming of cancer metabolism is a newly recognized hallmark of malignancy. The aberrant glucose metabolism is associated with dramatically increased bioenergetics, biosynthetic, and redox demands, which is vital to maintain rapid cell proliferation, tumor progression, and resistance to chemotherapy and radiation. When the glucose metabolism of cancer is rewiring, the characters of cancer will also occur corresponding changes to regulate the chemo- and radio-resistance of cancer. The procedure is involved in the alteration of many activities, such as the aberrant DNA repairing, enhanced autophagy, oxygen-deficient environment, and increasing exosomes secretions, etc. Targeting altered metabolic pathways related with the glucose metabolism has become a promising anti-cancer strategy. This review summarizes recent progress in our understanding of glucose metabolism in chemo- and radio-resistance malignancy, and highlights potential molecular targets and their inhibitors for cancer treatment.
Collapse
Affiliation(s)
- Jinguan Lin
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Key Laboratory of Translational Radiation Oncology, Hunan Province, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Longzheng Xia
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Key Laboratory of Translational Radiation Oncology, Hunan Province, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Jiaxin Liang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Key Laboratory of Translational Radiation Oncology, Hunan Province, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Yaqian Han
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Key Laboratory of Translational Radiation Oncology, Hunan Province, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Heran Wang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Key Laboratory of Translational Radiation Oncology, Hunan Province, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Linda Oyang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Key Laboratory of Translational Radiation Oncology, Hunan Province, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Shiming Tan
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Key Laboratory of Translational Radiation Oncology, Hunan Province, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Yutong Tian
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Key Laboratory of Translational Radiation Oncology, Hunan Province, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Shan Rao
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Key Laboratory of Translational Radiation Oncology, Hunan Province, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Xiaoyan Chen
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Key Laboratory of Translational Radiation Oncology, Hunan Province, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Yanyan Tang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Key Laboratory of Translational Radiation Oncology, Hunan Province, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Min Su
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Key Laboratory of Translational Radiation Oncology, Hunan Province, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Xia Luo
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Key Laboratory of Translational Radiation Oncology, Hunan Province, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Ying Wang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Key Laboratory of Translational Radiation Oncology, Hunan Province, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Hui Wang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Key Laboratory of Translational Radiation Oncology, Hunan Province, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Yujuan Zhou
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Key Laboratory of Translational Radiation Oncology, Hunan Province, 283 Tongzipo Road, Changsha, 410013, Hunan, China.
| | - Qianjin Liao
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Key Laboratory of Translational Radiation Oncology, Hunan Province, 283 Tongzipo Road, Changsha, 410013, Hunan, China.
| |
Collapse
|
39
|
Zou Z, Gan S, Liu S, Li R, Huang J. Investigation of differentially expressed genes in nasopharyngeal carcinoma by integrated bioinformatics analysis. Oncol Lett 2019; 18:916-926. [PMID: 31289570 DOI: 10.3892/ol.2019.10382] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 04/10/2019] [Indexed: 12/20/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a common malignancy of the head and neck. The aim of the present study was to conduct an integrated bioinformatics analysis of differentially expressed genes (DEGs) and to explore the molecular mechanisms of NPC. Two profiling datasets, GSE12452 and GSE34573, were downloaded from the Gene Expression Omnibus database and included 44 NPC specimens and 13 normal nasopharyngeal tissues. R software was used to identify the DEGs between NPC and normal nasopharyngeal tissues. Distributions of DEGs in chromosomes were explored based on the annotation file and the CYTOBAND database of DAVID. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were applied. Additionally, a protein-protein interaction (PPI) network, constructed using the STRING database and visualized by Cytoscape, was used to identify hub genes, key modules and important transcription factors (TFs). A total of 906 DEGs were identified; 434 (47.90%) DEGs were upregulated and 472 (52.10%) were downregulated. The DEGs were demonstrated to be enriched in chromosome 7p15-p14, 2q31, 1q21-q22, 1q21, 4q21 and 1p31-p22. DEGs were mainly enriched for the following GO terms: 'Cilium movement', 'microtubule bundle formation' and 'axoneme assembly'. KEGG pathway enrichment analysis revealed that pathways for 'cell cycle', 'DNA replication', 'interleukin-17 signaling', 'amoebiasis' and 'glutathione metabolism' were enriched. In addition, a PPI network comprising 867 nodes and 1,241 edges was constructed. Finally, five hub genes (aurora kinase A, cell division cycle 6, mitotic arrest deficient 2-like 1, DNA topoisomerase 2α and TPX2 microtubule nucleation factor), 8 modules, and 14 TFs were identified. Modules analysis revealed that cyclin-dependent kinase 1 and exportin 1 were involved in the pathway of Epstein-Barr virus infection. In summary, the hub genes, key modules and TFs identified in this study may promote our understanding of the pathogenesis of NPC and require further in-depth investigation.
Collapse
Affiliation(s)
- Zhenning Zou
- Department of Pathology, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| | - Siyuan Gan
- Department of Pathology, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| | - Shuguang Liu
- Department of Pathology, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong 518033, P.R. China
| | - Rujia Li
- Department of Pathology, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| | - Jian Huang
- Department of Pathology, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| |
Collapse
|
40
|
Jiang X, Wang J, Deng X, Xiong F, Ge J, Xiang B, Wu X, Ma J, Zhou M, Li X, Li Y, Li G, Xiong W, Guo C, Zeng Z. Role of the tumor microenvironment in PD-L1/PD-1-mediated tumor immune escape. Mol Cancer 2019; 18:10. [PMID: 30646912 PMCID: PMC6332843 DOI: 10.1186/s12943-018-0928-4] [Citation(s) in RCA: 869] [Impact Index Per Article: 173.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 12/26/2018] [Indexed: 12/14/2022] Open
Abstract
Tumor immune escape is an important strategy of tumor survival. There are many mechanisms of tumor immune escape, including immunosuppression, which has become a research hotspot in recent years. The programmed death ligand-1/programmed death-1 (PD-L1/PD-1) signaling pathway is an important component of tumor immunosuppression, which can inhibit the activation of T lymphocytes and enhance the immune tolerance of tumor cells, thereby achieving tumor immune escape. Therefore, targeting the PD-L1/PD-1 pathway is an attractive strategy for cancer treatment; however, the therapeutic effectiveness of PD-L1/PD-1 remains poor. This situation requires gaining a deeper understanding of the complex and varied molecular mechanisms and factors driving the expression and activation of the PD-L1/PD-1 signaling pathway. In this review, we summarize the regulation mechanisms of the PD-L1/PD-1 signaling pathway in the tumor microenvironment and their roles in mediating tumor escape. Overall, the evidence accumulated to date suggests that induction of PD-L1 by inflammatory factors in the tumor microenvironment may be one of the most important factors affecting the therapeutic efficiency of PD-L1/PD-1 blocking.
Collapse
Affiliation(s)
- Xianjie Jiang
- NHC Key Laboratory of Carcinogenesis (Central South University) and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, 410078, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Jie Wang
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, 410078, China
| | - Xiangying Deng
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, 410078, China
| | - Fang Xiong
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, 410078, China
| | - Junshang Ge
- NHC Key Laboratory of Carcinogenesis (Central South University) and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, 410078, China
| | - Bo Xiang
- NHC Key Laboratory of Carcinogenesis (Central South University) and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, 410078, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Xu Wu
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, 410078, China.,Department of Chemistry, University of North Dakota, Grand Forks, North Dakota, 58202, USA
| | - Jian Ma
- NHC Key Laboratory of Carcinogenesis (Central South University) and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, 410078, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Ming Zhou
- NHC Key Laboratory of Carcinogenesis (Central South University) and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, 410078, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Xiaoling Li
- NHC Key Laboratory of Carcinogenesis (Central South University) and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, 410078, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Yong Li
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, 410078, China.,Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Guiyuan Li
- NHC Key Laboratory of Carcinogenesis (Central South University) and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, 410078, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis (Central South University) and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, 410078, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Can Guo
- NHC Key Laboratory of Carcinogenesis (Central South University) and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China. .,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, 410078, China. .,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis (Central South University) and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China. .,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, 410078, China. .,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
| |
Collapse
|
41
|
Wang YA, Li XL, Mo YZ, Fan CM, Tang L, Xiong F, Guo C, Xiang B, Zhou M, Ma J, Huang X, Wu X, Li Y, Li GY, Zeng ZY, Xiong W. Effects of tumor metabolic microenvironment on regulatory T cells. Mol Cancer 2018; 17:168. [PMID: 30477520 PMCID: PMC6260778 DOI: 10.1186/s12943-018-0913-y] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 11/06/2018] [Indexed: 12/15/2022] Open
Abstract
Recent studies have shown that on one hand, tumors need to obtain a sufficient energy supply, and on the other hand they must evade the body’s immune surveillance. Because of their metabolic reprogramming characteristics, tumors can modify the physicochemical properties of the microenvironment, which in turn affects the biological characteristics of the cells infiltrating them. Regulatory T cells (Tregs) are a subset of T cells that regulate immune responses in the body. They exist in large quantities in the tumor microenvironment and exert immunosuppressive effects. The main effect of tumor microenvironment on Tregs is to promote their differentiation, proliferation, secretion of immunosuppressive factors, and chemotactic recruitment to play a role in immunosuppression in tumor tissues. This review focuses on cell metabolism reprogramming and the most significant features of the tumor microenvironment relative to the functional effects on Tregs, highlighting our understanding of the mechanisms of tumor immune evasion and providing new directions for tumor immunotherapy.
Collapse
Affiliation(s)
- Yi-An Wang
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, 410078, China
| | - Xiao-Ling Li
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, 410078, China
| | - Yong-Zhen Mo
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, 410078, China
| | - Chun-Mei Fan
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, 410078, China
| | - Le Tang
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, 410078, China
| | - Fang Xiong
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, 410078, China
| | - Can Guo
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, 410078, China
| | - Bo Xiang
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, 410078, China
| | - Ming Zhou
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, 410078, China
| | - Jian Ma
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, 410078, China
| | - Xi Huang
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, 410078, China.,Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Xu Wu
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, 410078, China.,Department of Chemistry, University of North Dakota, Grand Forks, North Dakota, 58202, USA
| | - Yong Li
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, 410078, China.,Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Gui-Yuan Li
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, 410078, China
| | - Zhao-Yang Zeng
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China. .,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, 410078, China.
| | - Wei Xiong
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China. .,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, 410078, China. .,Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
42
|
FOXA1 reprograms the TGF-β-stimulated transcriptional program from a metastasis promoter to a tumor suppressor in nasopharyngeal carcinoma. Cancer Lett 2018; 442:1-14. [PMID: 30392786 DOI: 10.1016/j.canlet.2018.10.036] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 10/18/2018] [Accepted: 10/24/2018] [Indexed: 12/12/2022]
Abstract
Nasopharyngeal carcinoma (NPC) is a unique subtype of head and neck squamous carcinoma that is notorious for its high metastatic potential. In this study, we reported that FOXA1 protein was decreased in NPC cells. Loss of FOXA1 is associated with lymph node metastasis and poor prognosis. Silencing FOXA1 in NP69 and C666-1 NPC cells accelerated cell proliferation and migration, while re-expression of FOXA1 has opposite effects. Microarray and RNA-seq analysis revealed that re-expression of FOXA1 in NPC cells reprogrammed the TGF-β-stimulated transcription program, which is characterized by promotion of TGF-β-inducible tumor-suppressive targets but repression of TGF-β-inducible oncogenes expression in NPC cells, leading to restoration of NPC cell sensitivity to TGF-β's growth-inhibitory effect. BAMBI, a TGF-β responsive tumor suppressor, was induced by FOXA1 in NPC cells. FOXA1 binding on the BAMBI gene facilitated SMAD2/3 binding to the BAMBI promoter via increasing BAMBI associated H3K4me1 and H3K27ac modification. Enforced expression of BAMBI in NPC cells suppressed cell proliferation and invasiveness. Our data suggested that FOXA1 is a master factor in controlling the TGF-β-stimulated transcriptome and a regulator of TGF-β biological functions in NPC oncogenesis.
Collapse
|
43
|
Lian Y, Xiong F, Yang L, Bo H, Gong Z, Wang Y, Wei F, Tang Y, Li X, Liao Q, Wang H, Zhou M, Xiang B, Wu X, Li Y, Li X, Chen X, Li G, Guo C, Zeng Z, Xiong W. Long noncoding RNA AFAP1-AS1 acts as a competing endogenous RNA of miR-423-5p to facilitate nasopharyngeal carcinoma metastasis through regulating the Rho/Rac pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:253. [PMID: 30326930 PMCID: PMC6191894 DOI: 10.1186/s13046-018-0918-9] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 09/26/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND Actin filament-associated protein 1 antisense RNA 1 (AFAP1-AS1), a long noncoding RNA, is significantly highly expressed and associated with metastasis and poor prognosis in many cancers, including nasopharyngeal carcinoma (NPC). In this study, we aim to identify the role of AFAP1-AS1 acting as an oncogenic lncRNA to promote NPC metastasis. METHODS The role of AFAP1-AS1, miR-423-5p, and FOSL2 in NPC metastasis was investigated in vitro and in vivo. Bioinformatics analysis and luciferase activity assays were used to identify the interaction between AFAP1-AS1, miR-423-5p, and FOSL2. Additionally, real-time PCR and western blotting were used to assess the function of AFAP1-AS1 acting as an oncogenic lncRNA to promote NPC progression by regulating miR-423-5p and the downstream Rho/Rac pathway. RESULTS In this study, we determined that AFAP1-AS1 functions as a competing endogenous RNA in NPC to regulate the Rho/Rac pathway through miR-423-5p. These interactions can mediate the expression of RAB11B, LASP1, and FOSL2 and accelerate cell migration and invasion via the Rho/Rac signaling pathway or FOSL2. AFAP1-AS1 and FOSL2 could competitively bind with miR-423-5p to regulate several molecules, including RAB11B and LASP1 of the Rho/Rac signaling pathway. AFAP1-AS1 can also regulate the expression of LASP1, which was transcriptionally regulated by FOSL2, resulting in increased migration and invasion of NPC cells via the Rho/Rac signaling pathway. CONCLUSIONS The observations in this study identify an important role for AFAP1-AS1 as a competing endogenous RNA (ceRNA) in NPC pathogenesis and indicate that it may serve as a potential target for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Yu Lian
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Department of Reproductive medicine, Ganzhou Hospital Affiliated to Nanchang University, NanChang, Jiangxi, China.,The Key Laboratory of Carcinogenesis and OCancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Fang Xiong
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and OCancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Liting Yang
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and OCancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Hao Bo
- The Key Laboratory of Carcinogenesis and OCancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Zhaojian Gong
- The Key Laboratory of Carcinogenesis and OCancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Yumin Wang
- The Key Laboratory of Carcinogenesis and OCancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Fang Wei
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and OCancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Yanyan Tang
- Department of Reproductive medicine, Ganzhou Hospital Affiliated to Nanchang University, NanChang, Jiangxi, China.,Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Xiayu Li
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qianjin Liao
- Department of Reproductive medicine, Ganzhou Hospital Affiliated to Nanchang University, NanChang, Jiangxi, China.,Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Hui Wang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Ming Zhou
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and OCancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Bo Xiang
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and OCancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Xu Wu
- Department of Reproductive medicine, Ganzhou Hospital Affiliated to Nanchang University, NanChang, Jiangxi, China.,Department of Chemistry, University of North Dakota, Grand Forks, North Dakota, USA
| | - Yong Li
- Department of Reproductive medicine, Ganzhou Hospital Affiliated to Nanchang University, NanChang, Jiangxi, China.,Department of Cancer Biology, Cleveland Clinic, Lerner Research Institute, Cleveland, OH, USA
| | - Xiaoling Li
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and OCancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Xiang Chen
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Guiyuan Li
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and OCancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Can Guo
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and OCancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Zhaoyang Zeng
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China. .,The Key Laboratory of Carcinogenesis and OCancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan, China.
| | - Wei Xiong
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China. .,The Key Laboratory of Carcinogenesis and OCancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan, China.
| |
Collapse
|
44
|
Yi M, Wang W, Chen S, Peng Y, Li J, Cai J, Zhou Y, Peng Q, Ban Y, Zeng Z, Li X, Xiong W, Li G, Xiang B. Dual-functionality of RASSF1A overexpression in A375 cells is mediated by activation of IL-6/STAT3 regulatory loop. Mol Biol Rep 2018; 45:1277-1287. [DOI: 10.1007/s11033-018-4288-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 07/25/2018] [Indexed: 12/11/2022]
|
45
|
Yi M, Li J, Chen S, Cai J, Ban Y, Peng Q, Zhou Y, Zeng Z, Peng S, Li X, Xiong W, Li G, Xiang B. Emerging role of lipid metabolism alterations in Cancer stem cells. J Exp Clin Cancer Res 2018; 37:118. [PMID: 29907133 PMCID: PMC6003041 DOI: 10.1186/s13046-018-0784-5] [Citation(s) in RCA: 158] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/28/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Cancer stem cells (CSCs) or tumor-initiating cells (TICs) represent a small population of cancer cells with self-renewal and tumor-initiating properties. Unlike the bulk of tumor cells, CSCs or TICs are refractory to traditional therapy and are responsible for relapse or disease recurrence in cancer patients. Stem cells have distinct metabolic properties compared to differentiated cells, and metabolic rewiring contributes to self-renewal and stemness maintenance in CSCs. MAIN BODY Recent advances in metabolomic detection, particularly in hyperspectral-stimulated raman scattering microscopy, have expanded our knowledge of the contribution of lipid metabolism to the generation and maintenance of CSCs. Alterations in lipid uptake, de novo lipogenesis, lipid droplets, lipid desaturation, and fatty acid oxidation are all clearly implicated in CSCs regulation. Alterations on lipid metabolism not only satisfies the energy demands and biomass production of CSCs, but also contributes to the activation of several important oncogenic signaling pathways, including Wnt/β-catenin and Hippo/YAP signaling. In this review, we summarize the current progress in this attractive field and describe some recent therapeutic agents specifically targeting CSCs based on their modulation of lipid metabolism. CONCLUSION Increased reliance on lipid metabolism makes it a promising therapeutic strategy to eliminate CSCs. Targeting key players of fatty acids metabolism shows promising to anti-CSCs and tumor prevention effects.
Collapse
Affiliation(s)
- Mei Yi
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, 410013 Hunan China
- Department of Dermatology, Xiangya hospital of Central South University, Changsha, 410008 China
| | - Junjun Li
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, 410013 Hunan China
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, 410078 China
| | - Shengnan Chen
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, 410013 Hunan China
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, 410078 China
| | - Jing Cai
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, 410013 Hunan China
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, 410078 China
| | - Yuanyuan Ban
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, 410013 Hunan China
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, 410078 China
| | - Qian Peng
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, 410013 Hunan China
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, 410078 China
| | - Ying Zhou
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, 410013 Hunan China
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, 410078 China
| | - Zhaoyang Zeng
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, 410013 Hunan China
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, 410078 China
| | - Shuping Peng
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, 410013 Hunan China
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, 410078 China
| | - Xiaoling Li
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, 410013 Hunan China
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, 410078 China
| | - Wei Xiong
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, 410013 Hunan China
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, 410078 China
| | - Guiyuan Li
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, 410013 Hunan China
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, 410078 China
| | - Bo Xiang
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, 410013 Hunan China
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, 410078 China
| |
Collapse
|