1
|
Souza ATP, Freitas GP, Lopes HB, Weffort D, Adolpho LF, Gomes MPO, Oliveira FS, Almeida ALG, Beloti MM, Rosa AL. Efficacy of mesenchymal stem cell-based therapy on the bone repair of hypertensive rats. Oral Dis 2024. [PMID: 38764359 DOI: 10.1111/odi.15004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/14/2024] [Accepted: 05/07/2024] [Indexed: 05/21/2024]
Abstract
OBJECTIVE Hypertension disrupts the bone integrity and its repair ability. This study explores the efficiency of a therapy based on the application of mesenchymal stem cells (MSCs) to repair bone defects of spontaneously hypertensive rats (SHR). METHODS First, we evaluated SHR in terms of bone morphometry and differentiation of MSCs into osteoblasts. Then, the effects of the interactions between MSCs from normotensive rats (NTR-MSCs) cocultured with SHR (SHR-MSCs) on the osteoblast differentiation of both cell populations were evaluated. Also, bone formation into calvarial defects of SHR treated with NTR-MSCs was analyzed. RESULTS Hypertension induced bone loss evidenced by reduced bone morphometric parameters of femurs of SHR compared with NTR as well as decreased osteoblast differentiation of SHR-MSCs compared with NTR-MSCs. NTR-MSCs partially restored the capacity of SHR-MSCs to differentiate into osteoblasts, while SHR-MSCs exhibited a slight negative effect on NTR-MSCs. An enhanced bone repair was observed in defects treated with NTR-MSCs compared with control, stressing this cell therapy efficacy even in bones damaged by hypertension. CONCLUSION The use of MSCs derived from a heathy environment can be in the near future a smart approach to treat bone loss in the context of regenerative dentistry for oral rehabilitation of hypertensive patients.
Collapse
Affiliation(s)
- Alann Thaffarell Portilho Souza
- Bone Research Lab, Ribeirão Preto School of Dentistry, University of São Paulo, Ribeirão Preto, Brazil
- School of Dentistry, Metropolitan University Center of the Amazon (UNIFAMAZ), Belém, Brazil
| | - Gileade Pereira Freitas
- Bone Research Lab, Ribeirão Preto School of Dentistry, University of São Paulo, Ribeirão Preto, Brazil
- School of Dentistry, Federal University of Goiás, Goiânia, Brazil
| | - Helena Bacha Lopes
- Bone Research Lab, Ribeirão Preto School of Dentistry, University of São Paulo, Ribeirão Preto, Brazil
| | - Denise Weffort
- Bone Research Lab, Ribeirão Preto School of Dentistry, University of São Paulo, Ribeirão Preto, Brazil
| | - Leticia Faustino Adolpho
- Bone Research Lab, Ribeirão Preto School of Dentistry, University of São Paulo, Ribeirão Preto, Brazil
| | | | | | | | - Marcio Mateus Beloti
- Bone Research Lab, Ribeirão Preto School of Dentistry, University of São Paulo, Ribeirão Preto, Brazil
| | - Adalberto Luiz Rosa
- Bone Research Lab, Ribeirão Preto School of Dentistry, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
2
|
de Oliveira ACF, Brito VGB, Ramos GHADS, Werlang MLC, Fiais GA, Dornelles RCM, Antoniali C, Nakamune ACMS, Fakhouri WD, Chaves-Neto AH. Analysis of salivary flow rate, biochemical composition, and redox status in orchiectomized spontaneously hypertensive rats. Arch Oral Biol 2023; 152:105732. [PMID: 37257259 DOI: 10.1016/j.archoralbio.2023.105732] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 06/02/2023]
Abstract
OBJECTIVE This study aimed to analyze the salivary flow rate, biochemical composition, and redox status in orchiectomized spontaneously hypertensive rats (SHR) compared to normotensive Wistar rats. DESIGN Thirty-two young adult male SHR and Wistar (3-months-old) rats were randomly distributed into four groups; either castrated bilaterally (ORX) or underwent fictitious surgery (SHAM) as Wistar-SHAM, Wistar-ORX, SHR-SHAM, and SHR-ORX. Two months beyond castration, pilocarpine-induced salivary secretion was collected from 5-month-old rats to analyze salivary flow rate, pH, buffer capacity, total protein, amylase, calcium, phosphate, sodium, potassium, chloride, thiobarbituric acid reactive substances (TBARs), carbonyl protein, nitrite, and total antioxidant capacity. RESULTS The salivary flow rate was higher in the Wistar-ORX compared to the Wistar-SHAM group, while remaining similar between the SHR-SHAM and SHR-ORX groups. ORX did not affect pH and salivary buffer capacity in both strains. However, salivary total protein and amylase were significantly reduced in the Wistar-ORX and SHR-ORX compared to the respective SHAM groups. In both ORX groups, salivary total antioxidant capacity and carbonylated protein were increased, while lipid oxidative damage (TBARs) and nitrite concentration were higher only in the Wistar-ORX than in the Wistar-SHAM group. In the Wistar-ORX and SHR-ORX, the salivary calcium, phosphate, and chloride were increased while no change was detected in the SHAM groups. Only salivary buffering capacity, calcium, and chloride in the SHR-ORX adjusted to values similar to Wistar-SHAM group. CONCLUSION Hypertensive phenotype mitigated the orchiectomy-induced salivary dysfunction, since the disturbances were restricted to alterations in the salivary biochemical composition and redox state.
Collapse
Affiliation(s)
| | - Victor Gustavo Balera Brito
- Department of Basic Sciences, São Paulo State University (Unesp), School of Dentistry, Araçatuba, São Paulo, Brazil; Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas - SBFis, São Paulo State University (Unesp), School of Dentistry, Araçatuba, São Paulo, Brazil
| | | | - Matheus Lima Cypriano Werlang
- Department of Basic Sciences, São Paulo State University (Unesp), School of Dentistry, Araçatuba, São Paulo, Brazil; Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas - SBFis, São Paulo State University (Unesp), School of Dentistry, Araçatuba, São Paulo, Brazil
| | - Gabriela Alice Fiais
- Department of Basic Sciences, São Paulo State University (Unesp), School of Dentistry, Araçatuba, São Paulo, Brazil; Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas - SBFis, São Paulo State University (Unesp), School of Dentistry, Araçatuba, São Paulo, Brazil
| | - Rita Cássia Menegati Dornelles
- Department of Basic Sciences, São Paulo State University (Unesp), School of Dentistry, Araçatuba, São Paulo, Brazil; Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas - SBFis, São Paulo State University (Unesp), School of Dentistry, Araçatuba, São Paulo, Brazil
| | - Cristina Antoniali
- Department of Basic Sciences, São Paulo State University (Unesp), School of Dentistry, Araçatuba, São Paulo, Brazil; Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas - SBFis, São Paulo State University (Unesp), School of Dentistry, Araçatuba, São Paulo, Brazil; Programa de Pós-Graduação em Ciência Odontológica, School of Dentistry, Araçatuba, São Paulo, Brazil
| | | | - Walid D Fakhouri
- Center for Craniofacial Research, Department of Diagnostic and Biomedical Sciences, School of Dentistry, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Antonio Hernandes Chaves-Neto
- Department of Basic Sciences, São Paulo State University (Unesp), School of Dentistry, Araçatuba, São Paulo, Brazil; Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas - SBFis, São Paulo State University (Unesp), School of Dentistry, Araçatuba, São Paulo, Brazil; Programa de Pós-Graduação em Ciência Odontológica, School of Dentistry, Araçatuba, São Paulo, Brazil.
| |
Collapse
|
3
|
Bao K, Jiao Y, Xing L, Zhang F, Tian F. The role of wnt signaling in diabetes-induced osteoporosis. Diabetol Metab Syndr 2023; 15:84. [PMID: 37106471 PMCID: PMC10141960 DOI: 10.1186/s13098-023-01067-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 04/24/2023] [Indexed: 04/29/2023] Open
Abstract
Osteoporosis, a chronic complication of diabetes mellitus, is characterized by a reduction in bone mass, destruction of bone microarchitecture, decreased bone strength, and increased bone fragility. Because of its insidious onset, osteoporosis renders patients highly susceptible to pathological fractures, leading to increased disability and mortality rates. However, the specific pathogenesis of osteoporosis induced by chronic hyperglycemia has not yet been fully elucidated. But it is currently known that the disruption of Wnt signaling triggered by chronic hyperglycemia is involved in the pathogenesis of diabetic osteoporosis. There are two main types of Wnt signaling pathways, the canonical Wnt signaling pathway (β-catenin-dependent) and the non-canonical Wnt signaling pathway (non-β-catenin-dependent), both of which play an important role in regulating the balance between bone formation and bone resorption. Therefore, this review systematically describes the effects of abnormal Wnt pathway signaling on bone homeostasis under hyperglycemia, hoping to reveal the relationship between Wnt signaling and diabetic osteoporosis to further improve understanding of this disease.
Collapse
Affiliation(s)
- Kairan Bao
- Department of Integrated Traditional & Western Medicine, Affiliated hospital of North, China University of Science and Technology, Jianshe South Road 73, Tangshan, 063000, Hebei, People's Republic of China.
| | - Yinghua Jiao
- Department of Integrated Traditional & Western Medicine, Affiliated hospital of North, China University of Science and Technology, Jianshe South Road 73, Tangshan, 063000, Hebei, People's Republic of China
- North China University of Science and Technology, Bohai Road 21, Caofeidian Dis, Tangshan, 063210, Hebei, People's Republic of China
| | - Lei Xing
- Department of Integrated Traditional & Western Medicine, Affiliated hospital of North, China University of Science and Technology, Jianshe South Road 73, Tangshan, 063000, Hebei, People's Republic of China
| | - Fang Zhang
- Department of Integrated Traditional & Western Medicine, Affiliated hospital of North, China University of Science and Technology, Jianshe South Road 73, Tangshan, 063000, Hebei, People's Republic of China
| | - Faming Tian
- Department of Integrated Traditional & Western Medicine, Affiliated hospital of North, China University of Science and Technology, Jianshe South Road 73, Tangshan, 063000, Hebei, People's Republic of China
- North China University of Science and Technology, Bohai Road 21, Caofeidian Dis, Tangshan, 063210, Hebei, People's Republic of China
| |
Collapse
|
4
|
Entz L, Falgayrac G, Chauveau C, Pasquier G, Lucas S. The extracellular matrix of human bone marrow adipocytes and glucose concentration differentially alter mineralization quality without impairing osteoblastogenesis. Bone Rep 2022; 17:101622. [PMID: 36187598 PMCID: PMC9519944 DOI: 10.1016/j.bonr.2022.101622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/09/2022] [Accepted: 09/19/2022] [Indexed: 11/18/2022] Open
Abstract
Bone marrow adipocytes (BMAds) accrue in various states of osteoporosis and interfere with bone remodeling through the secretion of various factors. However, involvement of the extracellular matrix (ECM) produced by BMAds in the impairment of bone marrow mesenchymal stromal cell (BM-MSC) osteoblastogenesis has received little attention. In type 2 diabetes (T2D), skeletal fragility is associated with several changes in bone quality that are incompletely understood, and BMAd quantity increases in relationship to poor glycemic control. Considering their altered phenotype in this pathophysiological context, we aimed to determine the contribution of the ECM of mature BMAds to osteoblastogenesis and mineralization quality in the context of chronic hyperglycemia. Human BM-MSCs were differentiated for 21 days in adipogenic medium containing either a normoglycemic (LG, 5.5 mM) or a high glucose concentration (HG, 25 mM). The ECM laid down by BMAds were devitalized through cell removal to examine their impact on the proliferation and differentiation of BM-MSCs toward osteoblastogenesis in LG and HG conditions. Compared to control plates, both adipocyte ECMs promoted cell adhesion and proliferation. As shown by the unmodified RUNX2 and osteocalcin mRNA levels, BM-MSC commitment in osteoblastogenesis was hampered by neither the hyperglycemic condition nor the adipocyte matrices. However, adipocyte ECMs or HG condition altered the mineralization phase with perturbed expression levels of type 1 collagen, MGP and osteopontin. Despite higher ALP activity, mineralization levels per cell were decreased for osteoblasts grown on adipocyte ECMs compared to controls. Raman spectrometry revealed that culturing on adipocyte matrices specifically prevents type-B carbonate substitution and favors collagen crosslinking, in contrast to exposure to HG concentration alone. Moreover, the mineral to organic ratio was disrupted according to the presence of adipocyte ECM and the glucose concentration used for adipocyte or osteoblast culture. HG concentration and adipocyte ECM lead to different defects in mineralization quality, recapitulating contradictory changes reported in T2D osteoporosis. Our study shows that ECMs from BMAds do not impair osteoblastogenesis but alter both the quantity and quality of mineralization partly in a glucose concentration-dependent manner. This finding sheds light on the involvement of BMAds, which should be considered in the compromised bone quality of T2D and osteoporosis patients more generally. Glucose level alters the Extracellular Matrix composition of Bone Marrow adipocytes. Osteoblastogenesis on adipocyte ECMs is unaltered but produced less mineral amount. The quality of the mineral is altered differently by adipocyte ECMs or glucose levels. The presence of BM adipocytes should be valued in damaged osteoporosis bone quality.
Collapse
Key Words
- AGEs, Advanced glycation end-products
- BM-MSC, Bone marrow mesenchymal stromal cell
- BMAd, Bone marrow adipocyte
- ECM, Extracellular matrix
- ECMBMAd HG, Extracellular matrix obtained from BMAds cultured in HG concentration
- ECMBMAd LG, Extracellular matrix obtained from BMAds cultured in LG concentration
- ECMBMAd, Extracellular matrix obtained from BMAds
- Extracellular matrix
- GAG, glycosaminoglycan
- HA, hydroxyapatite
- HG, High glucose
- Hyperglycemia
- LG, Low glucose
- LGM, Low glucose and mannitol
- Marrow adipocytes
- Osteoblast
- Osteoporosis
- Skeletal mesenchymal stromal cells
- T2D, Type 2 diabetes
Collapse
|
5
|
Balera Brito VG, Patrocinio MS, Alves Barreto AE, Tfaile Frasnelli SC, Lara VS, Santos CF, Penha Oliveira SH. Telmisartan impairs the in vitro osteogenic differentiation of mesenchymal stromal cells from spontaneously hypertensive male rats. Eur J Pharmacol 2021; 912:174609. [PMID: 34743978 DOI: 10.1016/j.ejphar.2021.174609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 10/20/2021] [Accepted: 10/26/2021] [Indexed: 11/19/2022]
Abstract
Telmisartan (TELM) is an angiotensin II (Ang II) type 1 receptor (Agtr1) antagonist, with partial agonism for Pparg, and has been shown to affect bone metabolism. Therefore, the aim of this study was to investigate the effects of TELM in the in vitro osteogenic differentiation of bone marrow-derived mesenchymal stromal cells (BMSC) from spontaneously hypertensive rats (SHRs). BMSC were obtained from male SHR, and the osteogenic medium (OM) was added to the cells concomitantly with TELM (0.005, 0.05, and 0.5 μM). Undifferentiated BMSC, in control medium (CM), showed an increased viability, while the addition of OM reduced this parameter, and TELM did not show cytotoxicity in the concentrations used. BMSC in OM had an alkaline phosphatase (ALP) activity peak at d10, which decreased at d14 and d21, and TELM reduced ALP at d10 in a dose-dependent manner. Mineralization was observed in the OM at d14, which intensified at d21, but was inhibited by TELM. Agtr1b was increased in the OM, and TELM inhibited its expression. TELM reduced Opn, Ocn, and Bsp and increased Pparg expression, and at the higher concentration TELM also increased the expression of adipogenic markers, Fabp4 and Adipoq. In addition, TELM 0.5 μM increased Irs1 and Glut4, insulin and glucose metabolism markers, known to be regulated by Pparg and to be related to adipogenic phenotype. Our data shows that TELM inhibited the osteogenic differentiation and mineralization of SHR BMSC, by favoring an adipogenic prone phenotype due to Pparg upregulation.
Collapse
Affiliation(s)
- Victor Gustavo Balera Brito
- Department of Basic Sciences, São Paulo State University (UNESP), School of Dentistry, Araçatuba, SP, Brazil; Multicenter Postgraduate Program in Physiological Sciences, Brazilian Society of Physiology, São Paulo State University (UNESP), School of Dentistry, Araçatuba, SP, Brazil
| | - Mariana Sousa Patrocinio
- Department of Basic Sciences, São Paulo State University (UNESP), School of Dentistry, Araçatuba, SP, Brazil
| | - Ayná Emanuelli Alves Barreto
- Department of Basic Sciences, São Paulo State University (UNESP), School of Dentistry, Araçatuba, SP, Brazil; Multicenter Postgraduate Program in Physiological Sciences, Brazilian Society of Physiology, São Paulo State University (UNESP), School of Dentistry, Araçatuba, SP, Brazil
| | | | - Vanessa Soares Lara
- Department of Stomatology, Bauru School of Dentistry, University of São Paulo (USP), SP, Brazil
| | - Carlos Ferreira Santos
- Department of Biological Science, Bauru School of Dentistry, University of São Paulo (USP), SP, Brazil
| | - Sandra Helena Penha Oliveira
- Department of Basic Sciences, São Paulo State University (UNESP), School of Dentistry, Araçatuba, SP, Brazil; Multicenter Postgraduate Program in Physiological Sciences, Brazilian Society of Physiology, São Paulo State University (UNESP), School of Dentistry, Araçatuba, SP, Brazil.
| |
Collapse
|
6
|
Alves Barreto AE, Balera Brito VG, Patrocinio MS, Ballassoni BB, Tfaile Frasnelli SC, Penha Oliveira SH. β1-adrenergic receptor but not β2 mediates osteogenic differentiation of bone marrow mesenchymal stem cells in normotensive and hypertensive rats. Eur J Pharmacol 2021; 911:174515. [PMID: 34555397 DOI: 10.1016/j.ejphar.2021.174515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/10/2021] [Accepted: 09/17/2021] [Indexed: 10/20/2022]
Abstract
The sympathetic nervous system regulates bone remodeling via adrenergic receptors on the surface of bone cells. Herein, we evaluated the role of beta-adrenergic receptors (ADRBs) in osteoblastic differentiation of bone marrow mesenchymal stem cells (BMSCs) derived from normotensive (Wistar) and spontaneously hypertensive rats (SHRs). BMSCs were cultured in a proliferation medium or osteogenic medium (OM). Cells cultured in OM were treated with carvedilol (Cv) or nebivolol (Nb).In OM, cell proliferation was decreased in both strains. In Wistar rats, Cv increased BMSC proliferation and increased alkaline phosphatase (ALP) activity in OM. Both Cv and Nb decreased ALP activity. In addition, Cv and Nb reduced mineral deposition in Wistar rats. Moreover, NB decreased mineralization in SHRs, exhibiting superior efficacy. In OM, cells from Wistar rats and SHRs showed Adrb1 and Adrb2 expression. On day 7, Nb, but not Cv, reduced Adrb1 levels in BMSCs from Wistar rats. Nb inhibited Adrb2 in both strains, and Cv demonstrated superior efficacy. In BMSCs from Wistar rats, both antagonists inhibited Runx2, osterix, and β-catenin; in SHRs, Cv and Nb inhibited only osterix. Cv decreased osteopontin (Opn), osteocalcin (Ocn), and bone morphogenetic protein (Bmp2) in BMSCs from Wistar rats, inhibiting only Opn in SHRs. Nb effectively inhibited Ocn, bone sialoprotein, and Bmp2, but not Ocn, in BMSCs from Wistar rats, while suppressing Opn in BMSCs from SHRs. In addition, Nb inhibited p-p38 in BMSCs from Wistar rats; Cv inhibited p-p38 in BMSCs from SHRs. In Wistar rats, both antagonists inhibited p-ERK and reduced p-JNK; Cv reduced these expressions only in SHRs. In conclusion, ADRB1, but not ADRB2, could be involved in the osteogenic differentiation of BMSCs from Wistar rats and SHRs. The high ADRB1 expression might suppress the effect of ADRB2 on BMSCs.
Collapse
Affiliation(s)
- Ayná Emanuelli Alves Barreto
- Department of Basic Sciences, School of Dentistry of Araçatuba, São Paulo State University (UNESP), São Paulo, Brazil; Programa Multicêntrico de Pós-Graduação em Ciências Fisiológicas - SBFis/UNESP, Brazil; Department of Basic Sciences, São Paulo State University (UNESP), School of Dentistry of Araçatuba, São Paulo, Brazil
| | - Victor Gustavo Balera Brito
- Department of Basic Sciences, School of Dentistry of Araçatuba, São Paulo State University (UNESP), São Paulo, Brazil; Programa Multicêntrico de Pós-Graduação em Ciências Fisiológicas - SBFis/UNESP, Brazil; Department of Basic Sciences, São Paulo State University (UNESP), School of Dentistry of Araçatuba, São Paulo, Brazil
| | - Mariana Sousa Patrocinio
- Department of Basic Sciences, School of Dentistry of Araçatuba, São Paulo State University (UNESP), São Paulo, Brazil
| | - Beatriz Babeto Ballassoni
- Department of Basic Sciences, School of Dentistry of Araçatuba, São Paulo State University (UNESP), São Paulo, Brazil
| | - Sabrina Cruz Tfaile Frasnelli
- Department of Basic Sciences, School of Dentistry of Araçatuba, São Paulo State University (UNESP), São Paulo, Brazil
| | - Sandra Helena Penha Oliveira
- Department of Basic Sciences, School of Dentistry of Araçatuba, São Paulo State University (UNESP), São Paulo, Brazil; Programa Multicêntrico de Pós-Graduação em Ciências Fisiológicas - SBFis/UNESP, Brazil; Department of Basic Sciences, São Paulo State University (UNESP), School of Dentistry of Araçatuba, São Paulo, Brazil.
| |
Collapse
|
7
|
Brito VGB, Patrocinio MS, de Sousa MCL, Barreto AEA, Frasnelli SCT, Lara VS, Santos CF, Oliveira SHP. Telmisartan Prevents Alveolar Bone Loss by Decreasing the Expression of Osteoclasts Markers in Hypertensive Rats With Periodontal Disease. Front Pharmacol 2020; 11:579926. [PMID: 33364953 PMCID: PMC7751694 DOI: 10.3389/fphar.2020.579926] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/05/2020] [Indexed: 12/28/2022] Open
Abstract
Periodontal disease (PD) is a prevalent inflammatory disease with the most severe consequence being the loss of the alveolar bone and teeth. We therefore aimed to evaluate the effects of telmisartan (TELM), an angiotensin II type 1 receptor (Agtr1) antagonist, on the PD-induced alveolar bone loss, in Wistar (W) and Spontaneous Hypertensive Rats (SHRs). PD was induced by ligating the lower first molars with silk, and 10 mg/kg TELM was concomitantly administered for 15 days. The hemimandibles were subjected to microtomography, ELISA was used for detecting tumor necrosis factor (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6), CXCL3, and CCL2, while qRT-PCR was used for analyzing expression of components of renin-angiotensin system (RAS) (Agt, Ace, Agt1r, Agt2r, Ace2, and Masr), and bone markers (Runx2, Osx, Catnb, Alp, Col1a1, Opn, Ocn, Bsp, Bmp2, Trap, Rank, Rankl, CtsK, Mmp-2, Mmp-9, and osteoclast-associated receptor (Oscar)). The SHR + PD group showed greater alveolar bone loss than the W + PD group, what was significantly inhibited by treatment with TELM, especially in the SHR group. Additionally, TELM reduced the production of TNF-α, IL-1β, and CXCL3 in the SHR group. The expression of Agt increased in the groups with PD, while Agtr2 reduced, and TELM reduced the expression of Agtr1 and increased the expression of Agtr2, in W and SHRs. PD did not induce major changes in the expression of bone formation markers, except for the expression of Alp, which decreased in the PD groups. The bone resorption markers expression, Mmp9, Ctsk, and Vtn, was higher in the SHR + PD group, compared to the respective control and W + PD group. However, TELM attenuated these changes and increased the expression of Runx2 and Alp. Our study suggested that TELM has a protective effect on the progression of PD, especially in hypertensive animals, as evaluated by the resorption of the lower alveolar bone. This can be partly explained by the modulation in the expression of Angiotensin II receptors (AT1R and AT2R), reduced production of inflammatory mediators, the reduced expression of resorption markers, and the increased expression of the bone formation markers.
Collapse
Affiliation(s)
- Victor Gustavo Balera Brito
- Department of Basic Sciences, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil.,Multicenter Postgraduate Program in Physiological Sciences, Brazilian Society of Physiology, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil
| | - Mariana Sousa Patrocinio
- Department of Basic Sciences, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil.,Multicenter Postgraduate Program in Physiological Sciences, Brazilian Society of Physiology, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil
| | - Maria Carolina Linjardi de Sousa
- Department of Basic Sciences, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil.,Multicenter Postgraduate Program in Physiological Sciences, Brazilian Society of Physiology, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil
| | - Ayná Emanuelli Alves Barreto
- Department of Basic Sciences, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil.,Multicenter Postgraduate Program in Physiological Sciences, Brazilian Society of Physiology, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil
| | - Sabrina Cruz Tfaile Frasnelli
- Department of Basic Sciences, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil.,Multicenter Postgraduate Program in Physiological Sciences, Brazilian Society of Physiology, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil
| | - Vanessa Soares Lara
- Department of Stomatology, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | - Carlos Ferreira Santos
- Department of Biological Science, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | - Sandra Helena Penha Oliveira
- Department of Basic Sciences, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil.,Multicenter Postgraduate Program in Physiological Sciences, Brazilian Society of Physiology, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil
| |
Collapse
|
8
|
Zhao R, Tao L, Qiu S, Shen L, Tian Y, Gong Z, Tao ZB, Zhu Y. Melatonin rescues glucocorticoid-induced inhibition of osteoblast differentiation in MC3T3-E1 cells via the PI3K/AKT and BMP/Smad signalling pathways. Life Sci 2020; 257:118044. [DOI: 10.1016/j.lfs.2020.118044] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/20/2020] [Accepted: 06/29/2020] [Indexed: 12/20/2022]
|
9
|
Nehlin JO, Jafari A, Tencerova M, Kassem M. Aging and lineage allocation changes of bone marrow skeletal (stromal) stem cells. Bone 2019; 123:265-273. [PMID: 30946971 DOI: 10.1016/j.bone.2019.03.041] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/30/2019] [Accepted: 03/31/2019] [Indexed: 01/02/2023]
Abstract
Aging is associated with decreased bone mass and accumulation of bone marrow adipocytes. Both bone forming osteoblastic cells and bone marrow adipocytes are derived from a stem cell population within the bone marrow stroma called bone marrow stromal (skeletal or mesenchymal) stem cells (BMSC). In the present review, we provide an overview, based on the current literature, regarding the physiological aging processes that cause changes in BMSC lineage allocation, enhancement of adipocyte and defective osteoblast differentiation, leading to gradual exhaustion of stem cell regenerative potential and defects in bone tissue homeostasis and metabolism. We discuss strategies to preserve the "youthful" state of BMSC, to reduce bone marrow age-associated adiposity, and to counteract the overall negative effects of aging on bone tissues with the aim of decreasing bone fragility and risk of fractures.
Collapse
Affiliation(s)
- Jan O Nehlin
- The Molecular Endocrinology & Stem Cell Research Unit (KMEB), Department of Endocrinology, Odense University Hospital & University of Southern Denmark, Odense, Denmark; Clinical Research Center, Copenhagen University Hospital, Hvidovre, Denmark.
| | - Abbas Jafari
- The Molecular Endocrinology & Stem Cell Research Unit (KMEB), Department of Endocrinology, Odense University Hospital & University of Southern Denmark, Odense, Denmark; Department of Cellular and Molecular Medicine, The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Michaela Tencerova
- The Molecular Endocrinology & Stem Cell Research Unit (KMEB), Department of Endocrinology, Odense University Hospital & University of Southern Denmark, Odense, Denmark; Danish Diabetes Academy, Novo Nordisk Foundation, Odense, Denmark
| | - Moustapha Kassem
- The Molecular Endocrinology & Stem Cell Research Unit (KMEB), Department of Endocrinology, Odense University Hospital & University of Southern Denmark, Odense, Denmark; Department of Cellular and Molecular Medicine, The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), Panum Institute, University of Copenhagen, Copenhagen, Denmark; Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|