1
|
Fan X, Wang Y, Zhang J, Lin H, Bai Z, Li S. Bisphenol A Regulates the TNFR1 Pathway and Excessive ROS Mediated by miR-26a-5p/ADAM17 Axis to Aggravate Selenium Deficiency-Induced Necroptosis in Broiler Veins. Biol Trace Elem Res 2024; 202:1722-1740. [PMID: 37422542 DOI: 10.1007/s12011-023-03756-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 06/28/2023] [Indexed: 07/10/2023]
Abstract
Selenium (Se) deficiency can affect the expression of microRNA (miRNA) and induce necroptosis, apoptosis, etc., resulting in damage to various tissues and organs. Bisphenol A (BPA) exposure can cause adverse consequences such as oxidative stress, endothelial dysfunction, and atherosclerosis. The toxic effects of combined treatment with Se-deficiency and BPA exposure may have a synergistic effect. We replicated the BPA exposure and Se-deficiency model in broiler to investigate whether the combined treatment of Se-deficiency and BPA exposure induced necroptosis and inflammation of chicken vascular tissue via the miR-26A-5p/ADAM17 axis. We found that Se deficiency and BPA exposure significantly inhibited the expression of miR-26a-5p and increased the expression of ADAM17, thereby increasing reactive oxygen species (ROS) production. Subsequently, we discovered that the tumor necrosis factor receptor (TNFR1), which was highly expressed, activated the necroptosis pathway through receptor-interacting protein kinase 1 (RIPK1), receptor-interacting protein kinase 3 (RIPK3), and mixed-lineage kinase domain-like (MLKL), and regulated the heat shock proteins-related genes expressions and inflammation-related genes expressions after exposure to BPA and selenium deficiency. In vitro, we found that miR-26a-5p knockdown and increased ADAM17 can induce necroptosis by activating the TNFR1 pathway. Similarly, both N-Acetyl-L-cysteine (NAC), Necrostatin-1 (Nec-1), and miR-26a-5p mimic prevented necroptosis and inflammation caused by BPA exposure and Se deficiency. These results suggest that BPA exposure activates the miR-26a-5p/ADAM17 axis and exacerbates Se deficient-induced necroptosis and inflammation through the TNFR1 pathway and excess ROS. This study lays a data foundation for future ecological and health risk assessments of nutrient deficiencies and environmental toxic pollution.
Collapse
Affiliation(s)
- Xue Fan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Yixuan Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Jintao Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Hongjin Lin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Zhikun Bai
- School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise, 533000, China.
| | - Shu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
2
|
Li Z, Xu T, Fan X, Chen K, Wan C, Li X, Yin H, Li S. Bisphenol A aggravate selenium deficiency-induced apoptosis via miR-215-3p/Dio1 to activate ROS/PI3K/AKT pathway in chicken arterial. J Cell Physiol 2023; 238:1256-1274. [PMID: 37012668 DOI: 10.1002/jcp.31007] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/13/2023] [Accepted: 03/08/2023] [Indexed: 04/05/2023]
Abstract
Both bisphenol A (BPA) and selenium (Se) deficiency can affect the expression of microRNAs (miRNAs), which can specifically regulate its target mRNA and induce apoptosis, and play a significant role in cardiovascular injury diseases. To explore the mechanism of apoptosis induced by BPA and Se deficiency in chicken arterial endothelial tissue and the role of miRNAs in this process, the model of BPA exposure/Se deficiency in chicken and PAEC cells have been employed. The targeting relationship between miR-215-3p and iodothyronine deiodinase 1 (Dio1) in PAEC was verified by double luciferase gene report. The level of miR-215-3p was detected by qRT-PCR. The oxidative stress level of arterial endothelial cells was detected by oxidative stress kit and DCFH-DA probe method. The PI3K/AKT pathway, mitochondrial dynamics, and apoptosis-related genes were detected by qRT-PCR and western blot. The mitochondrial ATP level and nitric oxide synthases (NOSs) level were detected with the kit. TUNEL, acridine orange/ethidium bromide, and flow cytometry were used to detect the level of apoptosis. The results showed that BPA exposure and Se deficiency led to overexpression of miR-215-3p, aggravated oxidative stress, inhibited activation of PI3K/AKT pathway, promoted mitochondrial division, increased expression of apoptosis related genes, and finally led to apoptosis of chicken arterial endothelial cells. We also established knockdown/overexpression models of miR-215-3p and Dio1 in vitro, and found that overexpression of miR-215-3p and knockout of Dio1 can induce apoptosis. Interestingly, miR-215-3p-Inhibitor and N-acetyl- l-cysteine (NAC) partially prevented apoptosis caused by BPA exposure and Se deficiency, and LY294002 aggravated apoptosis. These results suggest that BPA exposure aggravates the apoptosis of Se deficient arterial endothelial cells in chickens by regulating the ROS/PI3K/AKT pathway activated by miR-215-3p/Dio1. The miR-215-3p/Dio1 axis provides a new way to understand the toxic mechanism of BPA exposure and Se deficiency, and reveals a new regulatory model of apoptosis damage in vascular diseases.
Collapse
Affiliation(s)
- Zhe Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| | - Tong Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| | - Xue Fan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| | - Kai Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| | - Chunyan Wan
- National Selenium-rich Product Quality Supervision and Inspection Center, Enshi, People's Republic of China
| | - Xiang Li
- National Selenium-rich Product Quality Supervision and Inspection Center, Enshi, People's Republic of China
| | - Hang Yin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| | - Shu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| |
Collapse
|
3
|
Zheng Y, Zhao Y, He W, Wang Y, Cao Z, Yang H, Wang W, Li S. Novel organic selenium source hydroxy-selenomethionine counteracts the blood-milk barrier disruption and inflammatory response of mice under heat stress. Front Immunol 2022; 13:1054128. [PMID: 36532046 PMCID: PMC9757697 DOI: 10.3389/fimmu.2022.1054128] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/03/2022] [Indexed: 12/05/2022] Open
Abstract
Heat stress (HS) in summer has caused huge economic losses to animal husbandry production recently. When mammary gland is exposed to high temperatures, it will cause blood-milk barrier damage. Hydroxy-selenomethionine (HMSeBA) is a new selenium source with better guarantee of animals' production performance under stress, but whether it has protective effect on heat stress-induced blood-milk damage is still unclear. We established mammary epithelial cells and mice heat stress injury models to fill this research gap, and hope to provide theoretical basis for using HMSeBA to alleviate heat stress damage mammary gland. The results showed that (1) Heat stress significantly decreases in vitro transepithelial electrical resistance (TEER) and cell viability (P < 0.01), and significantly decreases clinical score, histological score, and total alveoli area of mice mammary gland tissue (P < 0.01). (2) HMSeBA significantly increases TEER and fluorescein sodium leakage of HS-induced monolayer BMECs (P < 0.01), significantly improves the milk production and total area of alveoli (P < 0.01), and reduces clinical score, histological score, mRNA expression of heat stress-related proteins, and inflammatory cytokines release of heat-stressed mice (P < 0.01). (3) HMSeBA significantly improves tight junction structure damage, and significantly up-regulated the expression of tight junction proteins (ZO-1, claudin 1, and occludin) as well as signal molecules PI3K, AKT, and mTOR (P < 0.01) in heat-stressed mammary tissue. (4) HMSeBA significantly increases glutathione peroxidase (GSH-Px), total antioxidant capacity (T-AOC), and superoxide dismutase release (SOD) (P < 0.01) and significantly reduce malondialdehyde (MDA) expression (P < 0.01) in heat-stressed mammary tissue. In conclusion, this study implemented heat-stressed cell and mice model and showed that HMSeBA significantly regulate antioxidant capacity, inhibited inflammation, and regulate tight junction proteins expression in blood-milk barrier via PI3K/AKT/mTOR signaling pathway, so as to alleviate mammary gland damage and ensure its structure and function integrity.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Wei Wang
- *Correspondence: Wei Wang, ; Shengli Li,
| | - Shengli Li
- *Correspondence: Wei Wang, ; Shengli Li,
| |
Collapse
|
4
|
Liu J, Liang Y, Qiao L, Xia D, Pan Y, Liu W. MiR-128-1-5p regulates differentiation of ovine stromal vascular fraction by targeting the KLF11 5'-UTR. Domest Anim Endocrinol 2022; 80:106711. [PMID: 35338828 DOI: 10.1016/j.domaniend.2022.106711] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/25/2022] [Accepted: 02/01/2022] [Indexed: 11/22/2022]
Abstract
Fat content is an important index to evaluate the individual performance of livestock animals such as sheep for meat production purposes. Reducing the subcutaneous and visceral fat while increasing the intramuscular fat is a valuable goal to achieve for the meat production industry. Here, we investigated the effect of miR-128-1-5p on adipogenesis of subcutaneous fat by targeting 5'-UTR in KLF11, a rare mechanism where most miRNAs bind the 3'-UTR of mRNAs. A dual fluorescence reporter assay was conducted to validate the binding sites of miR-128-1-5p on 5'-UTR of KLF11 mRNA. Roles of miR-128-1-5p in KLF11 expression were measured through co-transfecting miRNA mimics with KLF11-expressing vectors (CDSs together with or without the 5'-UTR) into ovine stromal vascular fractions (SVF). Additionally, functional roles of miR-128-1-5p, and KLF11 in adipogenesis of ovine subcutaneous fat were investigated. Results showed that miR-128-1-5p targeted KLF11 5'-UTR, reduced the fluorescence activity of the dual fluorescent reporter vector, as well as KLF11 mRNA, and protein expression levels. During the differentiation of SVF, disturbing the expression of miR-128-1-5p and KLF11 changed the adipogenic differentiation of SVF as observed in the lipid formation, and adipogenic marker genes. This study indicates that miR-128-1-5p promotes the expression of lipogenic marker genes and the formation of lipid droplets by targeting KLF11 5'-UTR. Furthermore, overexpression, and inhibition of KLF11 indicate that KLF11 inhibited SVF differentiation. In summary, the 5'-UTR binding mechanism discovered in this study extends the understanding of miRNA functions. Key roles of miR-128-1-5p and KLF11 in the adipogenesis of sheep subcutaneous fat have potential values for improving the meat and/or fat ratio of domestic animals.
Collapse
Affiliation(s)
- Jianhua Liu
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, China
| | - Yu Liang
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, China
| | - Liying Qiao
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, China
| | - Dong Xia
- Royal Veterinary College, University of London, London NW1 0TU, UK
| | - Yangyang Pan
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, China
| | - Wenzhong Liu
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, China.
| |
Collapse
|
5
|
Chen H, Zhang Y, Zou M, Qi X, Xu S. Bisphenol A aggravates renal apoptosis and necroptosis in selenium-deficient chickens via oxidative stress and PI3K/AKT pathway. J Cell Physiol 2022; 237:3292-3304. [PMID: 35616291 DOI: 10.1002/jcp.30781] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/17/2022] [Accepted: 05/05/2022] [Indexed: 12/22/2022]
Abstract
Bisphenol A (BPA) in the environment can have deleterious effects on humans and animals. BPA can exert nephrotoxicity by inducing oxidative stress. Selenium (Se) deficiency can specifically impair kidney tissues and additionally show a synergistic effect on the toxicity of several environmental chemicals. However, the toxic effects of BPA on the chicken kidney and whether Se deficiency produces synergistic effects on the toxicity of BPA remain poorly understood. Herein, we established BPA exposure models and Se deficiency model in vivo and in vitro, and described the discovery path of BPA aggravation on apoptosis and necroptosis in Se-deficient chicken kidneys via regulation of oxidative stress and phosphatidylinositol 3-kinase/threonine kinase (PI3K/AKT) signaling pathway. We found that BPA exposure increased reactive oxygen species and malondialdehyde levels, reduced activities of catalase, GPx, and superoxide dismutase, downregulated PI3K and AKT expressions, activated Bcl/Bax-Caspase 9-Caspase 3, and receptor-interacting protein kinase 1/mixed lineage kinase domain-like protein signaling pathways, resulting in apoptosis and necroptosis in the chicken kidney. In addition, Se deficiency significantly promoted the expression of renal apoptosis and necroptosis in BPA-exposed chicken kidneys. Altogether, our results showed that BPA aggravates apoptosis and necroptosis in Se-deficient chicken kidneys via regulation of oxidative stress and PI3K/AKT signaling pathway. Our findings elucidate the mechanism of BPA nephrotoxicity and Se deficiency exacerbation toxicity in chickens and will provide great significance for the protection of the ecological environment and animal health.
Collapse
Affiliation(s)
- Huijie Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,College of Biological and Pharmaceutical Engineering, Jilin Agricultural Science and Technology University, Jilin, China
| | - Yue Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Mengmeng Zou
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xue Qi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| |
Collapse
|
6
|
Liu S, Yu H, Li P, Wang C, Liu G, Zhang X, Zhang C, Qi M, Ji H. Dietary nano-selenium alleviated intestinal damage of juvenile grass carp ( Ctenopharyngodon idella) induced by high-fat diet: Insight from intestinal morphology, tight junction, inflammation, anti-oxidization and intestinal microbiota. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2022; 8:235-248. [PMID: 34988305 PMCID: PMC8688880 DOI: 10.1016/j.aninu.2021.07.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/24/2021] [Accepted: 07/11/2021] [Indexed: 01/30/2023]
Abstract
In recent years, high-fat diet (HFD) has been widely applied in aquaculture, which reduces the intestinal health of cultured fish. The current study evaluated the protective effects of nano-selenium (nano-Se) on intestinal health of juvenile grass carp (Ctenopharyngodon idella) fed with HFD. A total of 135 experimental fish were fed with a regular diet (Con), a HFD (HFD) and a HFD containing nano-Se at 0.6 mg/kg (HSe) for 10 weeks. The results showed that dietary nano-Se significantly improved the survival rate and feed efficiency which were reduced by HFD in juvenile grass carp (P < 0.05). Also, nano-Se (0.6 mg/kg) supplement alleviated intestinal damage caused by the HFD, thus maintaining the integrity of the intestine. Moreover, it significantly up-regulated the expression of genes related to tight junction (ZO-1, c laudin-3 and o ccludin), anti-oxidization (GPx4a andGPx4b), and the protein of ZO-1 in the intestine of juvenile grass carp, which were depressed by the HFD (P < 0.05). Furthermore, nano-Se supplementation significantly suppressed the expressions of genes related to the inflammation, including inflammatory cytokines (IL-8, IL-1β, IFN-γ, TNF-α and IL-6), signaling molecules (TLR4, p38 MAPK and NF-κB p65), and protein expression of NF-κB p65 and TNF-α in the intestine of juvenile grass carp which were induced by the HFD (P < 0.05). Besides, dietary nano-Se normalized the intestinal microbiota imbalance of juvenile grass carp caused by the HFD through increasing the abundance of the beneficial bacteria, e.g., Fusobacteria. Finally, dietary nano-Se increased the production of short chain fatty acids (SCFA) in the intestine, especially for butyric acid and caproic acid, which were negatively related to the increase of intestinal permeability and inflammation. In summary, supply of nano-Se (0.6 mg/kg) in HFD could effectively alleviate intestinal injury of juvenile grass carp by improving intestinal barrier function and reducing intestinal inflammation and oxidative stress. These positive effects may be due to the regulation of nano-Se on intestinal microbiota and the subsequently increased beneficial SCFA levels.
Collapse
Affiliation(s)
- Sha Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Haibo Yu
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Pengju Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Chi Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Guohao Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Xiaotian Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Cheng Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Meng Qi
- Key Laboratory of Se-enriched Products Development and Quality Control, Ministry of Agriculture and Rural Affairs, Ankang, 725000, China
| | - Hong Ji
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| |
Collapse
|
7
|
Barreda-Manso MA, Nieto-Díaz M, Soto A, Muñoz-Galdeano T, Reigada D, Maza RM. In Silico and In Vitro Analyses Validate Human MicroRNAs Targeting the SARS-CoV-2 3'-UTR. Int J Mol Sci 2021; 22:6094. [PMID: 34198800 PMCID: PMC8201247 DOI: 10.3390/ijms22116094] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/24/2021] [Accepted: 05/29/2021] [Indexed: 02/06/2023] Open
Abstract
COVID-19 pandemic is caused by betacoronavirus SARS-CoV-2. The genome of this virus is composed of a single strand of RNA with 5' and 3'-UTR flanking a region of protein-coding ORFs closely resembling cells' mRNAs. MicroRNAs are endogenous post-transcriptional regulators that target mRNA to modulate protein expression and mediate cellular functions, including antiviral defense. In the present study, we carried out a bioinformatics screening to search for endogenous human microRNAs targeting the 3'-UTR of SARS-CoV-2. Results from the computational techniques allowed us to identify 10 potential candidates. The capacity of 3 of them, together with hsa-miR-138-5p, to target the SARS-CoV-2 3'-UTR was validated in vitro by gene reporter assays. Available information indicates that two of these microRNAs, namely, hsa-miR-3941 and hsa-miR-138-5p, combine effective targeting of SARS-CoV-2 genome with complementary antiviral or protective effects in the host cells that make them potential candidates for therapeutic treatment of most, if not all, COVID-19 variants known to date. All information obtained while conducting the present analysis is available at Open Science Framework repository.
Collapse
Affiliation(s)
| | - Manuel Nieto-Díaz
- Molecular Neuroprotection Group, Research Unit, National Hospital for Paraplegics (SESCAM), 45071 Toledo, Spain; (M.A.B.-M.); (A.S.); (T.M.-G.); (D.R.)
| | | | | | | | - Rodrigo M. Maza
- Molecular Neuroprotection Group, Research Unit, National Hospital for Paraplegics (SESCAM), 45071 Toledo, Spain; (M.A.B.-M.); (A.S.); (T.M.-G.); (D.R.)
| |
Collapse
|
8
|
Huang X, Dong YL, Li T, Xiong W, Zhang X, Wang PJ, Huang JQ. Dietary Selenium Regulates microRNAs in Metabolic Disease: Recent Progress. Nutrients 2021; 13:1527. [PMID: 34062793 PMCID: PMC8147315 DOI: 10.3390/nu13051527] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/24/2021] [Accepted: 04/27/2021] [Indexed: 02/01/2023] Open
Abstract
Selenium (Se) is an essential element for the maintenance of a healthy physiological state. However, due to environmental and dietary factors and the narrow safety range of Se, diseases caused by Se deficiency or excess have gained considerable traction in recent years. In particular, links have been identified between low Se status, cognitive decline, immune disorders, and increased mortality, whereas excess Se increases metabolic risk. Considerable evidence has suggested microRNAs (miRNAs) regulate interactions between the environment (including the diet) and genes, and play important roles in several diseases, including cancer. MiRNAs target messenger RNAs to induce changes in proteins including selenoprotein expression, ultimately generating disease. While a plethora of data exists on the epigenetic regulation of other dietary factors, nutrient Se epigenetics and especially miRNA regulated mechanisms remain unclear. Thus, this review mainly focuses on Se metabolism, pathogenic mechanisms, and miRNAs as key regulatory factors in Se-related diseases. Finally, we attempt to clarify the regulatory mechanisms underpinning Se, miRNAs, selenoproteins, and Se-related diseases.
Collapse
Affiliation(s)
- Xin Huang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (X.H.); (Y.-L.D.); (T.L.); (W.X.); (X.Z.); (P.-J.W.)
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Yu-Lan Dong
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (X.H.); (Y.-L.D.); (T.L.); (W.X.); (X.Z.); (P.-J.W.)
- College of Veterinary Medicine, China Agricultural University, Beijing 100083, China
| | - Tong Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (X.H.); (Y.-L.D.); (T.L.); (W.X.); (X.Z.); (P.-J.W.)
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Wei Xiong
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (X.H.); (Y.-L.D.); (T.L.); (W.X.); (X.Z.); (P.-J.W.)
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Xu Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (X.H.); (Y.-L.D.); (T.L.); (W.X.); (X.Z.); (P.-J.W.)
| | - Peng-Jie Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (X.H.); (Y.-L.D.); (T.L.); (W.X.); (X.Z.); (P.-J.W.)
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Jia-Qiang Huang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (X.H.); (Y.-L.D.); (T.L.); (W.X.); (X.Z.); (P.-J.W.)
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, Ministry of Education, China Agricultural University, Beijing 100083, China
| |
Collapse
|
9
|
Qing Z, Kaixin Z, Yanfei H, Yiming Z, Hua X, Ling Z, Guangliang S, Shu L. MicroRNA-223 triggers inflammation in porcine aorta by activating NLRP3 inflammasome under selenium deficiency. J Cell Physiol 2020; 236:4555-4564. [PMID: 33241567 DOI: 10.1002/jcp.30178] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/11/2020] [Accepted: 11/13/2020] [Indexed: 12/17/2022]
Abstract
Selenium (Se) is an essential trace element in organism. Se deficiency can cause many diseases, including vascular disease. Studies have shown that inflammation is the main inducement of vascular disease, microRNA (miRNA) can influence inflammation in various ways, and Se deficiency can affect miRNAs expression. To study the mechanism of aorta damage caused by Se deficiency, we constructed a Se deficiency porcine aorta model and found that Se deficiency can significantly inhibit miR-223, which downregulates the expression of nucleotide-binding oligomerization domain-like receptor family 3 (NLRP3). Subsequently, we found that in Se deficiency group, NLRP3, and its downstream (caspase-1, apoptosis-related spot-like protein [ASC], IL-18, IL-1β) expression was significantly increased. In vitro, we cultured pig iliac endothelium cell lines, and constructed miR-223 knockdown and overexpression models. NLRP3 messenger RNA and protein levels were significant increased in the knockdown group, and decreased in the overexpression group. The results of this study show that Se deficiency in porcine arteries can induce inflammation through miR-223/NLRP3.
Collapse
Affiliation(s)
- Zhang Qing
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| | - Zhang Kaixin
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| | - Han Yanfei
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| | - Zhang Yiming
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| | - Xue Hua
- National Selenium-Rich Product Quality Supervision and Inspection Center, Enshi, People's Republic of China
| | - Zhou Ling
- National Selenium-Rich Product Quality Supervision and Inspection Center, Enshi, People's Republic of China
| | - Shi Guangliang
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| | - Li Shu
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| |
Collapse
|
10
|
Zhirong Z, Qiaojian Z, Chunjing X, Shengchen W, Jiahe L, Zhaoyi L, Shu L. Methionine selenium antagonizes LPS-induced necroptosis in the chicken liver via the miR-155/TRAF3/MAPK axis. J Cell Physiol 2020; 236:4024-4035. [PMID: 33151563 DOI: 10.1002/jcp.30145] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 10/05/2020] [Accepted: 10/26/2020] [Indexed: 12/15/2022]
Abstract
Organic selenium has antioxidation and disease treatment effects. To explore the mechanisms of how methionine selenium alleviates necroptosis in the liver and whether this process is related to microRNA (miRNA) and the mitogen-activated protein kinase (MAPK) pathway, an animal model of methionine selenium and the lipopolysaccharide (LPS) interaction was established. The morphology, inflammatory factor (tumor necrosis factor-α [TNF-α]), necroptosis-related genes (RIP1, RIP3, MLKL, and caspase 8), MAPK pathway-related genes (JNK, ERK, and p38, p-JNK, p-ERK, and p-p38), gga-miR-155, TRAF3 (predicted target of gga-miR-155), and oxidative stress-related indicators (SOD, MDA, CAT, GSH, and GSH-Px) were analyzed from the perspective of the miR-155/TRAF3/MAPK axis to elucidate the mechanism of methionine selenium on the LPS-induced necroptosis mechanism in the chicken liver. The current results suggested that methionine selenium antagonizes oxidative stress, inflammation, and the MAPK pathway, thereby antagonizing the occurrence of necroptosis through multiple mechanisms. At the same time, methionine selenium affects miR-155/TRAF3/MAPK signaling, reduces miR-155 expression, and upregulates TRAF3 expression to inhibit necroptosis. This information provided new ideas and a theoretical basis for the practical application of methionine selenium, and it also enriched the study of miRNAs in birds and provided a reference for comparative medicine.
Collapse
Affiliation(s)
- Zhao Zhirong
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| | - Zhang Qiaojian
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| | - Xu Chunjing
- National Selenium-Rich Product Quality Supervision and Inspection Center, Enshi, People's Republic of China
| | - Wang Shengchen
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| | - Li Jiahe
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| | - Liu Zhaoyi
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| | - Li Shu
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| |
Collapse
|
11
|
Lowly expressed lncRNA PVT1 suppresses proliferation and advances apoptosis of glioma cells through up-regulating microRNA-128-1-5p and inhibiting PTBP1. Brain Res Bull 2020; 163:1-13. [PMID: 32562719 DOI: 10.1016/j.brainresbull.2020.06.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/07/2020] [Accepted: 06/10/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND Glioma is a primary intracranial malignancy with poor prognosis, of which the pathogenesis remains to be elucidated. Therein, the aim of this study is to discuss the impacts of lncRNA plasmacytoma variant translocation 1 (PVT1)/microRNA-128-1-5p (miR-128-1-5p)/polypyrimidine tract-binding protein 1 (PTBP1) axis on the biological characteristics of glioma cells. METHODS Glioma tissue samples (72 cases) and normal brain tissue samples (35 cases) were harvested. The expression of PVT1, miR-128-1-5p and PTBP1 in glioma tissues and cells was detected. Glioma cells were transfected with sh-PVT1, miR-128-1-5p mimics or miR-128-1-5p inhibitors to verify the impacts of PVT1 and miR-128-1-5p on DNA damage, cell colony formation, invasion, proliferation, migration and apoptosis of glioma U87 and U251 cells. The growth of transplanted tumor was tested by tumor xenograft in nude mice. The combination of PVT1 and miR-128-1-5p and the targeting relationship between miR-128-1-5p and PTBP1 were verified. RESULTS PVT1 and PTBP1 expression was enhanced and miR-128-1-5p expression was degraded in glioma tissues and cells. Overexpressed miR-128-1-5p and lowly-expressed PVT1 promoted DNA damage, suppressed colony formation, invasion, proliferation and migration as well as boosted apoptosis of U251 and U87 cells. Up-regulating miR-128-1-5p and down-regulating PVT1 reduced transplanted tumor volume and weight of glioma in mice. Low expression miR-128-1-5p reversed the effect of low expression PVT1 on the biological characteristics of glioma cells. PVT1 specifically bound to miR-128-1-5p and PTBP1 was the target gene of miR-128-1-5p. CONCLUSION This study suggests that down-regulated PVT1 or up-regulated miR-128-1-5p boosts apoptosis and attenuates proliferation of glioma cells by inhibiting PTBP1 expression. This study is essential for finding new therapeutic targets for glioma.
Collapse
|
12
|
Chen Y, Zhao YF, Yang J, Jing HY, Liang W, Chen MY, Yang M, Wang Y, Guo MY. Selenium alleviates lipopolysaccharide-induced endometritisviaregulating the recruitment of TLR4 into lipid rafts in mice. Food Funct 2020; 11:200-210. [DOI: 10.1039/c9fo02415h] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Selenium (Se) is an essential trace element for living organisms and plays diverse biological roles.
Collapse
Affiliation(s)
- Yu Chen
- Department of Clinical Veterinary Medicine
- College of Veterinary Medicine
- Huazhong Agricultural University
- Wuhan 430070
- People's Republic of China
| | - Yi-fan Zhao
- Department of Clinical Veterinary Medicine
- College of Veterinary Medicine
- Huazhong Agricultural University
- Wuhan 430070
- People's Republic of China
| | - Jing Yang
- Department of Clinical Veterinary Medicine
- College of Veterinary Medicine
- Huazhong Agricultural University
- Wuhan 430070
- People's Republic of China
| | - Hong-yuan Jing
- Department of Clinical Veterinary Medicine
- College of Veterinary Medicine
- Huazhong Agricultural University
- Wuhan 430070
- People's Republic of China
| | - Wan Liang
- Department of Clinical Veterinary Medicine
- College of Veterinary Medicine
- Huazhong Agricultural University
- Wuhan 430070
- People's Republic of China
| | - Miao-yu Chen
- Department of Clinical Veterinary Medicine
- College of Veterinary Medicine
- Huazhong Agricultural University
- Wuhan 430070
- People's Republic of China
| | - Mei Yang
- Department of Clinical Veterinary Medicine
- College of Veterinary Medicine
- Huazhong Agricultural University
- Wuhan 430070
- People's Republic of China
| | - Ying Wang
- Department of Clinical Veterinary Medicine
- College of Veterinary Medicine
- Huazhong Agricultural University
- Wuhan 430070
- People's Republic of China
| | - Meng-yao Guo
- Department of Clinical Veterinary Medicine
- College of Veterinary Medicine
- Huazhong Agricultural University
- Wuhan 430070
- People's Republic of China
| |
Collapse
|
13
|
Zheng S, Zhao J, Xing H, Xu S. Oxidative stress, inflammation, and glycometabolism disorder-induced erythrocyte hemolysis in selenium-deficient exudative diathesis broilers. J Cell Physiol 2019; 234:16328-16337. [PMID: 30741419 DOI: 10.1002/jcp.28298] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/04/2018] [Accepted: 12/10/2018] [Indexed: 01/24/2023]
Abstract
Selenium (Se) deficiency causes injury of diversified tissues and cells, including livers, hearts, skeletal muscles, and erythrocytes. The aim of the present study is to explore the molecular mechanism of erythrocyte hemolysis due to Se deficiency in broilers. One hundred and eighty broilers (male/female, 1 day old) were randomly divided into two groups and fed with either a normal Se content diet (C group, 0.2 mg Se/kg) or a Se-deficient diet (ED group, 0.008 mg Se/kg) for 45 days. During the trial period of 15-30 days, biological properties such as osmotic fragility, fluidity, phospholipid components of cell membrane, adenosine triphosphatase activities, and antioxidant function of erythrocytes in broilers were examined. Moreover, the messenger RNA (mRNA) expressions of genes associated with inflammation, glycometabolism, and avian uncoupling protein (avUCP) were detected. We found that compared with the C group, hemolysis rate, degree of polarization, and microviscosity of erythrocytes were increased in broilers of the ED group. The composition of erythrocyte membrane lipids was changed. Meanwhile, the antioxidant function of erythrocytes was weakened and mRNA levels of inflammatory genes were stimulated by Se deficiency (p < 0.05). In addition, mRNA expressions of rate-limiting enzymes in glycometabolism were effected and avUCP mRNA level was downregulated (p < 0.05) in the ED group. It has been concluded from the results that oxidative stress, inflammatory response, and glycometabolism disorder lead to erythrocyte hemolysis by changing the structure and function of erythrocyte membrane in ED broilers suffered from Se deficiency.
Collapse
Affiliation(s)
- Shufang Zheng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China.,Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| | - Jinxin Zhao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| | - Houjuan Xing
- Department of Animal Production, College of Animal Science and Technology, Northeast Agricultural University, Harbin, People's Republic of China
| | - Shiwen Xu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China.,Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| |
Collapse
|
14
|
MicroRNA-33-3p Regulates Vein Endothelial Cell Apoptosis in Selenium-Deficient Broilers by Targeting E4F1. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:6274010. [PMID: 31249647 PMCID: PMC6556262 DOI: 10.1155/2019/6274010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/22/2019] [Accepted: 05/05/2019] [Indexed: 12/11/2022]
Abstract
Selenium (Se) is a type of nutrient element. The tissues of organisms can have pathological damage, including apoptosis, due to Se deficiency. Apoptosis is an important cell process and plays a key role in vascular disease and Se-deficient symptoms. In this study, the Se-deficient broiler model was duplicated, miR-33-3p in the vein was overexpressed in response to Se-deficiency, and miR-33-3p target gene E4F transcription factor 1 (E4F1) expression was also confirmed. We utilized ectopic miR-33-3p expression to validate its function for apoptosis. The results showed that miR-33-3p-targeted E4F1 are involved in the glucose-regulated protein 78- (GRP78-) induced endoplasmic reticulum stress (ERS) apoptosis pathway. We presumed that Se deficiency might trigger apoptosis via downregulating miR-33-3p. Interestingly, the miR-33-3p inhibitor and VER-155008 (GRP78 inhibitor) partly hindered the apoptosis caused by Se deficiency. Thus, the above information provides a new avenue toward understanding the mechanism of Se deficiency and reveals a novel apoptotic injury regulation model in vascular disease.
Collapse
|
15
|
Toyama K, Spin JM, Mogi M, Tsao PS. Therapeutic perspective on vascular cognitive impairment. Pharmacol Res 2019; 146:104266. [PMID: 31108183 DOI: 10.1016/j.phrs.2019.104266] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/06/2019] [Accepted: 05/07/2019] [Indexed: 02/06/2023]
Abstract
Dementia is one of the greatest public health concerns for the modern aging world. Over the last decade, most researchers developing new therapeutic strategies for dementia have focused on amyloid-β. In contrast, numerous recent studies have indicated that vascular risk factors are associated with various forms of dementia, and that in fact most forms of dementia can be considered an extension of vascular disease. Accordingly, it is sensible to pursue treatment approaches that focus on the blood vessels. Blood-brain barrier (BBB) disruptions in the white matter of patients with vascular cognitive impairment (VCI) have been observed using imaging analysis, and might be potential targets for novel VCI treatment. Tight junctions between cerebral endothelial cells play an important role in the function of the BBB, and recent studies have demonstrated the essential role of microRNAs in regulating tight junctions. Further elucidation of the mechanisms of tight junction-disruption in dementia are likely to lead to promising novel treatments. In this article, we summarize current knowledge regarding microRNAs and vascular cognitive impairment and the possibility of utilizing microRNAs as biomarkers for BBB dysfunction, and seek to envision future therapeutic strategies.
Collapse
Affiliation(s)
- Kensuke Toyama
- Department of Pharmacology, Ehime University Graduate School of Medicine, Ehime, Japan.
| | - Joshua M Spin
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, United States; VA Palo Alto Health Care System, Palo Alto, CA, United States
| | - Masaki Mogi
- Department of Pharmacology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Philip S Tsao
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, United States; VA Palo Alto Health Care System, Palo Alto, CA, United States
| |
Collapse
|
16
|
Shao Y, Zhao H, Wang Y, Liu J, Zong H, Xing M. Copper-Mediated Mitochondrial Fission/Fusion Is Associated with Intrinsic Apoptosis and Autophagy in the Testis Tissues of Chicken. Biol Trace Elem Res 2019; 188:468-477. [PMID: 29974384 DOI: 10.1007/s12011-018-1427-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 06/28/2018] [Indexed: 01/19/2023]
Abstract
The aim of this study is to investigate whether copper (Cu) could induce testicular poisoning and influence the mitochondrial dynamics, apoptosis, and autophagy in chickens. For this purpose, thirty-six 1-day-old male Hy-line chickens were divided into control group (C group) and test group (Cu group). The chickens were exposed to 0 (C group) or 300 mg/kg (Cu group) of copper sulfate (CuSO4) for 30, 60, and 90 days. CuSO4 was added into the basal diet to make supplements. Testis tissues were subjected to observation of ultrastructure and detection of testis-related indexes. The results indicated that in the test group, the levels of the pro-apoptotic genes were up-regulated and the levels of the anti-apoptotic genes were down-regulated; the levels of mitochondrial fission-related genes markedly increased, and the levels of mitochondrial fusion-related genes were highly decreased; autophagy-related gene (autophagy-associated gene 4B (ATG4B), dynein, microtubule-associated protein 1 light chain 3 beta (LC3-II), ATG5, and beclin-1) levels were increased, while mammalian target of rapamycin (mTOR) and LC3-I levels were declined. The results of transmission electron microscopy (TEM) demonstrated that Cu induced mitochondrial fragmentation, which induced autophagy and apoptosis in chicken testes. In conclusion, CuSO4 exposure can influence the mitochondrial dynamics balance and lead to mitochondria-initiated intrinsic pathway of apoptosis and autophagy, which triggers the testicular poisoning in chickens. What is more, there is a correlation among mitochondrial dynamics, apoptosis, and autophagy.
Collapse
Affiliation(s)
- Yizhi Shao
- College of Wildlife Resources, Northeast Forestry University, Harbin, 150040, Heilongjiang Province, China
| | - Hongjing Zhao
- College of Wildlife Resources, Northeast Forestry University, Harbin, 150040, Heilongjiang Province, China
| | - Yu Wang
- College of Wildlife Resources, Northeast Forestry University, Harbin, 150040, Heilongjiang Province, China
| | - Juanjuan Liu
- College of Wildlife Resources, Northeast Forestry University, Harbin, 150040, Heilongjiang Province, China
| | - Hui Zong
- Guangdong Vocational College of Science and Trade, Guangzhou, China
| | - Mingwei Xing
- College of Wildlife Resources, Northeast Forestry University, Harbin, 150040, Heilongjiang Province, China.
| |
Collapse
|
17
|
Chlorpyrifos Suppresses Neutrophil Extracellular Traps in Carp by Promoting Necroptosis and Inhibiting Respiratory Burst Caused by the PKC/MAPK Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:1763589. [PMID: 30881588 PMCID: PMC6383406 DOI: 10.1155/2019/1763589] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/01/2018] [Accepted: 12/07/2018] [Indexed: 02/07/2023]
Abstract
Neutrophil extracellular traps (NETs) are reticular structures formed by myeloperoxidase (MPO), histones, and neutrophil elastase (NE) that are released from neutrophils in response to pathogenic stimuli. Chlorpyrifos (CPF) is wildly used as an organophosphorus pesticide that causes a range of toxicological and environmental problems. Exposure to CPF can increase the production of neutrophils in carps, and this increase can be considered a biomarker of water pollution. To explore a relationship between NETs and CPF and its mechanism of influence, we treated neutrophils from the blood of carp with 1 μg/mL phorbol 12-myristate 13-acetate (PMA), 0.325 mg/L CPF, or 20 μM necrostatin-1 (Nec-1). The production of MPO and NETs was reduced in the CPF+PMA group compared with that in the PMA group. CPF can cause an increase in reactive oxygen species (ROS), while inhibiting respiratory burst caused by PMA stimulation. We found that the expression levels of protein-coupled receptor 84 (gpr84), dystroglycan (DAG), proto-oncogene serine/threonine kinase (RAF), protein kinase C (PKC), and mitogen-activated protein kinase 3 (MAPK3) in the CPF+PMA group were lower than those in the PMA group, indicating that the PKC-MAPK pathway was suppressed. The expression levels of cylindromatosis (CYLD), mixed lineage kinase domain-like pseudokinase (MLKL), receptor-interacting serine-threonine kinase 1 (RIP1), and receptor-interacting serine-threonine kinase 3 (RIP3) were increased, and the expression levels of caspase 8 were reduced by CPF, indicating that CPF may cause necroptosis. The addition of Nec-1 restored the number of NETs in the CPF+PMA group. The results indicate that CPF reduced the production of NETs by inhibiting respiratory burst and increasing necroptosis. The results contribute to the understanding of the immunotoxicological mechanism of CPF and provide a reference for comparative medical studies.
Collapse
|
18
|
Wang S, Zhang Q, Zheng S, Chen M, Zhao F, Xu S. Atrazine exposure triggers common carp neutrophil apoptosis via the CYP450s/ROS pathway. FISH & SHELLFISH IMMUNOLOGY 2019; 84:551-557. [PMID: 30308298 DOI: 10.1016/j.fsi.2018.10.029] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 09/16/2018] [Accepted: 10/08/2018] [Indexed: 06/08/2023]
Abstract
Due to the excessive pursuit of crop yields and the abuse of herbicides, water pollution caused by atrazine (ATR) has become one of the most severe environmental issues threatening the health of fish and aquatic animals. However, no detailed report has been conducted on the mechanisms of ATR immunotoxicity in fish neutrophils. To investigate these mechanism, we exposed peripheral blood neutrophils to 25 μg/ml atrazine for 1, 2, and 3 h. The results showed that ATR induced the mRNA expression of CYPs enzymes (CYP1A1, CYP1B1, CYP1C and CYP3A138), which increased the ROS levels, and inhibited the SOD and CAT activities, GSH content and spurred the accumulation of MDA. Additionally, a significant decline in the OXPHOS, Na+-K+-ATPase and Ca2+-Mg2+-ATPase activities of mitochondria was observed after ATR exposure. Concurrently, ATR activated Caspase3 and induced apoptosis by changing the expression of mitochondrial pathway factors (Bcl-2, BAX, Caspase9) and death receptor pathway major genes (TNF-α, TNFR, Fas, FasL, and Caspase8). The results reported here indicate that the oxidative stress and mitochondrial damage caused by ATR metabolism may play a crucial role in the apoptosis of carp neutrophils, and enrich the immunotoxicological mechanisms of ATR observed in fish.
Collapse
Affiliation(s)
- Shengchen Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Qiaojian Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Shufang Zheng
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Menghao Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Fuqing Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Department of Veterinary and Husbandry, Liao ning Agricultural Technical College, Ying kou, Liao ning, 115009, China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|