1
|
Kawakami A, Sato H, Nakadate Y, Roque P, Khoutorsky A, Matsukawa T, Schricker T. Cardioprotective effects of l-glutamine in an ischemic rat heart model. Microvasc Res 2024; 158:104764. [PMID: 39571748 DOI: 10.1016/j.mvr.2024.104764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/08/2024] [Accepted: 11/17/2024] [Indexed: 11/24/2024]
Abstract
INTRODUCTION l-glutamine has been shown to have cardioprotective effects in models of ischemia-reperfusion injury. Its potential cardioprotective effects when given before and during early reperfusion, however, have not been studied. METHODS This study hypothesized that l-glutamine administered before and after myocardial ischemia provides better cardioprotection than when administered after ischemia only. Eighteen male rat hearts were exposed to 15 min of ischemia using the Langendorff system and randomly assigned to three groups of six each. Group one received Krebs-Henseleit (KH) buffer over 20 min before ischemia and during 20 min of reperfusion (Control), group two received KH buffer containing 2.5 mmol・L-1 glutamine during reperfusion (Post-Gln) and group three was given KH buffer containing glutamine before and after the ischemic insult (Pre + Post-Gln). Indicators of hemodynamics such as maximum left ventricular derivative of pressure development (LV dP/dt max) were recorded at 5, 10, 15 and 20 min post-reperfusion. Myocardial levels of O-linked β-N-acetylglucosamine (O-GlcNAc) and heat shock protein 70 (HSP70) were measured by Western blotting technique after 20 min of reperfusion. RESULTS The LV dp/dt max in the Pre + Post-Gln group was significantly elevated as compared to the Post-Gln group after 10 min of reperfusion and was significantly higher than in the control group at all-time points. Myocardial expression of O-GlcNAc was increased in the Pre + Post-Gln group (P < 0.01 vs. control) without showing any differences in HSP70. CONCLUSION In this model of stunned myocardium, pre- and post-ischemic administration of l-glutamine improved cardiac function indicating cardioprotective effects, possibly mediated by O-GlcNAc.
Collapse
Affiliation(s)
- Akiko Kawakami
- Department of Anesthesia, Royal Victoria Hospital, McGill University Health Centre Glen Site, Montreal, QC, Canada; Department of Anesthesiology, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan.
| | - Hiroaki Sato
- Department of Anesthesia, Royal Victoria Hospital, McGill University Health Centre Glen Site, Montreal, QC, Canada
| | - Yosuke Nakadate
- Department of Anesthesiology, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan; Department of Anesthesia, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Patricia Roque
- Department of Anesthesia, Royal Victoria Hospital, McGill University Health Centre Glen Site, Montreal, QC, Canada; School of Human Nutrition, McGill University, Montreal, QC, Canada
| | - Arkady Khoutorsky
- Department of Anesthesia and Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, Canada; Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
| | - Takashi Matsukawa
- Department of Anesthesiology, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Thomas Schricker
- Department of Anesthesia, Royal Victoria Hospital, McGill University Health Centre Glen Site, Montreal, QC, Canada
| |
Collapse
|
2
|
Wu S, Ding D, Wang D. Regulated Cell Death Pathways in Pathological Cardiac Hypertrophy. Rev Cardiovasc Med 2024; 25:366. [PMID: 39484135 PMCID: PMC11522757 DOI: 10.31083/j.rcm2510366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/19/2024] [Accepted: 06/03/2024] [Indexed: 11/03/2024] Open
Abstract
Cardiac hypertrophy is characterized by an increased volume of individual cardiomyocytes rather than an increase in their number. Myocardial hypertrophy due to pathological stimuli encountered by the heart, which reduces pressure on the ventricular walls to maintain cardiac function, is known as pathological hypertrophy. This eventually progresses to heart failure. Certain varieties of regulated cell death (RCD) pathways, including apoptosis, pyroptosis, ferroptosis, necroptosis, and autophagy, are crucial in the development of pathological cardiac hypertrophy. This review summarizes the molecular mechanisms and signaling pathways underlying these RCD pathways, focusing on their mechanism of action findings for pathological cardiac hypertrophy. It intends to provide new ideas for developing therapeutic approaches targeted at the cellular level to prevent or reverse pathological cardiac hypertrophy.
Collapse
Affiliation(s)
- Shengnan Wu
- Department of Geriatrics, The First Affiliated Hospital of Wannan Medical College, 241001 Wuhu, Anhui, China
| | - Ding Ding
- Department of Geriatrics, The First Affiliated Hospital of Wannan Medical College, 241001 Wuhu, Anhui, China
| | - Deguo Wang
- Department of Geriatrics, The First Affiliated Hospital of Wannan Medical College, 241001 Wuhu, Anhui, China
| |
Collapse
|
3
|
Bahr AC, Naasani LIS, de Gregório E, Wink MR, da Rosa Araujo AS, Turck P, Dal Lago P. Photobiomodulation improves cell survival and death parameters in cardiomyocytes exposed to hypoxia/reoxygenation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 258:112991. [PMID: 39033547 DOI: 10.1016/j.jphotobiol.2024.112991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/01/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
INTRODUCTION Cardiovascular diseases are the leading cause of morbidity and mortality worldwide. Ischemic heart disease is one of the most harmful conditions to cellular structure and function. After reperfusion treatment, a spectrum of adverse effects becomes evident, encompassing altered cell viability, heightened oxidative stress, activated autophagy, and increased apoptosis. Photobiomodulation (PBM) has been utilized in experimental models of cardiac hypoxia to enhance mitochondrial response and ameliorate biochemical changes in injured tissue. However, the effects of PBM on cultured cardiomyocytes subjected to hypoxia/reoxygenation are not yet well established. METHOD H9C2 cardiomyocytes were exposed to hypoxia with concentrations of 300 μM CoCl2 for 24 h, followed by 16 h of reoxygenation through incubation in a normoxic medium. Treatment was conducted using GaAIAs Laser (850 nm) after hypoxia at an intensity of 1 J/cm2. Cells were divided into three groups: Group CT (cells maintained under normoxic conditions), Group HR (cells maintained in hypoxia and reoxygenation conditions without treatment), Group HR + PBM (cells maintained in hypoxia and reoxygenation conditions that underwent PBM treatment). Cell viability was analyzed using MTT, and protein expression was assessed by western blot. One-way ANOVA with the Tukey post hoc test was used for data analysis. Differences were significant when p < 0.05. RESULTS PBM at an intensity of 1 J/cm2 mitigated the alterations in cell survival caused by hypoxia/reoxygenation. Additionally, it significantly increased the expression of proteins Nrf2, HSP70, mTOR, LC3II, LC3II/I, and Caspase-9, while reducing the expression of PGC-1α, SOD2, xanthine oxidase, Beclin-1, LC3I, and Bax. CONCLUSION PBM at intensities of 1 J/cm2 reverses the changes related to oxidative stress, mitochondrial biogenesis, autophagy, and apoptosis caused by hypoxia and reoxygenation in a culture of cardiomyocytes.
Collapse
Affiliation(s)
- Alan Christhian Bahr
- Experimental Physiology Laboratory, Graduate Program in Rehabilitation Sciences (PPG-CR), Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil; Department of Physiotherapy, UFCSPA, Porto Alegre, RS, Brazil
| | - Liliana Ivet Sous Naasani
- Cell Biology Laboratory, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Elizama de Gregório
- Department of Physiology, Universidade Federal Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Márcia Rosângela Wink
- Cell Biology Laboratory, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | | | - Patrick Turck
- Department of Physiology, Universidade Federal Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Pedro Dal Lago
- Experimental Physiology Laboratory, Graduate Program in Rehabilitation Sciences (PPG-CR), Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil; Department of Physiotherapy, UFCSPA, Porto Alegre, RS, Brazil.
| |
Collapse
|
4
|
Kiełbowski K, Skórka P, Plewa P, Bakinowska E, Pawlik A. The Role of Alarmins in the Pathogenesis of Atherosclerosis and Myocardial Infarction. Curr Issues Mol Biol 2024; 46:8995-9015. [PMID: 39194749 DOI: 10.3390/cimb46080532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/30/2024] [Accepted: 08/15/2024] [Indexed: 08/29/2024] Open
Abstract
Atherosclerosis is a condition that is associated with lipid accumulation in the arterial intima. Consequently, the enlarging lesion, which is also known as an atherosclerotic plaque, may close the blood vessel lumen, thus leading to organ ischaemia. Furthermore, the plaque may rupture and initiate the formation of a thrombus, which can cause acute ischaemia. Atherosclerosis is a background pathological condition that can eventually lead to major cardiovascular diseases such as acute coronary syndrome or ischaemic stroke. The disorder is associated with an altered profile of alarmins, stress response molecules that are secreted due to cell injury or death and that induce inflammatory responses. High-mobility group box 1 (HMGB1), S100 proteins, interleukin-33, and heat shock proteins (HSPs) also affect the behaviour of endothelial cells and vascular smooth muscle cells (VSMCs). Thus, alarmins control the inflammatory responses of endothelial cells and proliferation of VSMCs, two important processes implicated in the pathogenesis of atherosclerosis. In this review, we will discuss the role of alarmins in the pathophysiology of atherosclerosis and myocardial infarction.
Collapse
Affiliation(s)
- Kajetan Kiełbowski
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Patryk Skórka
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Paulina Plewa
- Institute of Biology, University of Szczecin, 71-412 Szczecin, Poland
| | - Estera Bakinowska
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| |
Collapse
|
5
|
Takeuchi T, Kitani Y, Minoshima A, Ota H, Nakagawa N, Sumitomo K, Ishii Y, Hasebe N. Potential Effects of Ischemic Postconditioning and Changes in Heat Shock Protein 72 in Patients with Acute Myocardial Infarction without Prodromal Angina. Int Heart J 2024; 65:395-403. [PMID: 38749746 DOI: 10.1536/ihj.23-651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
The effectiveness of ischemic postconditioning (iPoC) in patients with ST-elevation myocardial infarction (STEMI) without ischemic preconditioning has not been determined. Therefore, we investigated the impact of iPoC and its potential mechanism related to heat shock protein 72 (HSP72) induction on myocardial salvage in patients with STEMI without prodromal angina (PA).We retrospectively analyzed data from 102 patients with STEMI with successful reperfusion among 323 consecutive patients with acute coronary syndrome. Among these, 55 patients with iPoC (iPoC (+) ) underwent 4 cycles of 60-second inflation and 30-second deflation of the angioplasty balloon. Both the iPoC (+) and iPoC (-) groups were divided into 2 further subgroups: patients with PA (PA (+) ) and those without (PA (-) ). We analyzed HSP72 levels in neutrophils, which were measured until 48 hours after reperfusion. I-123 β-methyl-p-iodophenyl-pentadecanoic acid (BMIPP) scintigraphy was performed within a week of reperfusion therapy. In 64% of patients, thallium-201 (TL) scintigraphy was performed 6-8 months after STEMI onset.Using BMIPP and TL, in the PA (-) subgroups, the iPoC (+) group had a significantly greater myocardial salvage ratio than the iPoC (-) group. iPoC was identified as an independent predictor of the myocardial salvage ratio. The HSP72 increase ratio was significantly elevated in the iPoC (+) PA (-) group. Importantly, the myocardial salvage effect in patients without PA was significantly correlated with the HSP72 increase ratio, which was greater in patients with iPoC.These results suggest the potential impact of iPoC via HSP72 induction on myocardial salvage; however, the effects may be limited to patients with STEMI without PA.
Collapse
Affiliation(s)
- Toshiharu Takeuchi
- Division of Cardiology, Department of Internal Medicine, Asahikawa Medical University
| | - Yuya Kitani
- Division of Cardiology, Department of Internal Medicine, Asahikawa Medical University
| | - Akiho Minoshima
- Division of Cardiology, Department of Internal Medicine, Asahikawa Medical University
| | - Hisanobu Ota
- Division of Cardiology, Department of Internal Medicine, Asahikawa Medical University
| | - Naoki Nakagawa
- Division of Cardiology, Department of Internal Medicine, Asahikawa Medical University
| | - Kazuhiro Sumitomo
- Department of Community Medicine, Tohoku Medical and Pharmaceutical University Wakabayashi Hospital
| | - Yoshinao Ishii
- Division of Cardiology, Department of Internal Medicine, Asahikawa City Hospital
| | - Naoyuki Hasebe
- Division of Cardiology, Department of Internal Medicine, Asahikawa Medical University
| |
Collapse
|
6
|
Xue Q, Ji S, Xu H, Yu S. O-GlcNAcylation: a pro-survival response to acute stress in the cardiovascular and central nervous systems. Eur J Med Res 2024; 29:174. [PMID: 38491477 PMCID: PMC10943874 DOI: 10.1186/s40001-024-01773-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 03/06/2024] [Indexed: 03/18/2024] Open
Abstract
O-GlcNAcylation is a unique monosaccharide modification that is ubiquitously present in numerous nucleoplasmic and mitochondrial proteins. The hexosamine biosynthesis pathway (HBP), which is a key branch of glycolysis, provides the unique sugar donor UDP-GlcNAc for the O-GlcNAc modification. Thus, HBP/O-GlcNAcylation can act as a nutrient sensor to perceive changes in nutrient levels and trigger O-GlcNAc modifications of functional proteins in cellular (patho-)physiology, thereby regulating diverse metabolic processes. An imbalance in O-GlcNAcylation has been shown to be a pathogenic contributor to dysfunction in metabolic diseases, including type 2 diabetes, cancer, and neurodegeneration. However, under acute stress conditions, protein O-GlcNAc modification exhibits rapid and transient upregulation, which is strongly correlated with stress tolerance and cell survival. In this context, we discuss the metabolic, pharmacological and genetic modulation of HBP/O-GlcNAc modification in the biological system, the beneficial role of O-GlcNAcylation in regulating stress tolerance for cardioprotection, and neuroprotection, which is a novel and rapidly growing field. Current evidence suggests that transient activation of the O-GlcNAc modification represents a potent pro-survival signalling pathway and may provide a promising strategy for stress-related disorder therapy.
Collapse
Affiliation(s)
- Qiu Xue
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 19 Qixiu Road, Nantong, 226001, China
- Department of General Surgery, Nantong Tumor Hospital, Nantong Fifth People's Hospital, Affiliated Tumor Hospital of Nantong University, 30 Tongyang North Road, Nantong, 226361, China
| | - Shengtao Ji
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 19 Qixiu Road, Nantong, 226001, China
- Department of Neurology, Affiliated Hospital of Nantong University, Medical School of Nantong University, 20 Xisi Road, Nantong, 226001, China
| | - Hui Xu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 19 Qixiu Road, Nantong, 226001, China
- Nantong Institute of Genetics and Reproductive Medicine, Affiliated Maternity & Child Healthcare Hospital of Nantong University, 399 Century Avenue, Nantong, 226001, China
| | - Shu Yu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 19 Qixiu Road, Nantong, 226001, China.
| |
Collapse
|
7
|
Hou L, Dong H, Zhang E, Lu H, Zhang Y, Zhao H, Xing M. A new insight into fluoride induces cardiotoxicity in chickens: Involving the regulation of PERK/IRE1/ATF6 pathway and heat shock proteins. Toxicology 2024; 501:153688. [PMID: 38036095 DOI: 10.1016/j.tox.2023.153688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/24/2023] [Accepted: 11/25/2023] [Indexed: 12/02/2023]
Abstract
Fluorosis poses a significant threat to human and animal health and is an urgent public safety concern in various countries. Subchronic exposure to fluoride has the potential to result in pathological damage to the heart, but its potential mechanism requires further investigation. This study investigated the effects of long-term exposure to sodium fluoride (0, 500, 1000, and 2000 mg/kg) on the hearts of chickens were investigated. The results showed that an elevated exposure dose of sodium fluoride led to congested cardiac tissue and disrupted myofiber organisation. Sodium fluoride exposure activated the ERS pathways of PERK, IRE1, and ATF6, increasing HSP60 and HSP70 and decreasing HSP90. The NF-κB pathway and the activation of TNF-α and iNOS elicited an inflammatory response. BAX, cytc, and cleaved-caspase3 were increased, triggering apoptosis and leading to cardiac injury. The abnormal expression of HSP90 and HSP70 affected the stability and function of RIPK1, RIPK3, and MLKL, which are crucial necroptosis markers. HSPs inhibited TNF-α-mediated necroptosis and apoptosis of the death receptor pathway. Sodium fluoride resulted in heart injury in chickens because of the ERS and variations in HSPs, inducing inflammation and apoptosis. Cardiac-adapted HSPs impeded the activation of necroptosis. This paper may provide a reference for examining the potential cardiotoxic effects of sodium fluoride.
Collapse
Affiliation(s)
- Lulu Hou
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Haiyan Dong
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Enyu Zhang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Hongmin Lu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Yue Zhang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Hongjing Zhao
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China.
| | - Mingwei Xing
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
8
|
Alruhaimi RS, Hassanein EHM, Bin-Jumah MN, Mahmoud AM. Cadmium cardiotoxicity is associated with oxidative stress and upregulated TLR-4/NF-kB pathway in rats; protective role of agomelatine. Food Chem Toxicol 2023; 180:114055. [PMID: 37739054 DOI: 10.1016/j.fct.2023.114055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 09/17/2023] [Accepted: 09/19/2023] [Indexed: 09/24/2023]
Abstract
Cardiotoxicity is one of the hazardous effects of the exposure to the heavy metal cadmium (Cd). Inflammation and oxidative injury are implicated in the cardiotoxic mechanism of Cd. The melatonin receptor agonist agomelatine (AGM) showed promising effects against oxidative and inflammatory responses. This study evaluated the effect of AGM on Cd-induced cardiotoxicity in rats, pointing to its modulatory effect on TLR-4/NF-kB pathway and HSP70. Rats received AGM for 14 days and a single dose of Cd on day 7 and blood and heart samples were collected for analyses. Cd increased serum CK-MB, AST and LDH and caused cardiac tissue injury. Cardiac malondialdehyde (MDA), nitric oxide (NO) and MPO were elevated and GSH, SOD and GST decreased in Cd-administered rats. AGM ameliorated serum CK-MB, AST and LDH and cardiac MDA, NO and MPO, prevented tissue injury and enhanced antioxidants. AGM downregulated serum CRP and cardiac TLR-4, NF-kB, iNOS, IL-6, TNF-α and COX-2 in Cd-administered rats. HSP70 was upregulated in the heart of Cd-challenged rats treated with AGM. In silico findings revealed the binding affinity of AGM with TLR-4 and NF-kB. In conclusion, AGM protected against Cd cardiotoxicity by preventing myocardial injury and oxidative stress and modulating HSP70 and TLR-4/NF-kB pathway.
Collapse
Affiliation(s)
- Reem S Alruhaimi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, 11671, Saudi Arabia
| | - Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, 71562, Egypt
| | - May N Bin-Jumah
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, 11671, Saudi Arabia
| | - Ayman M Mahmoud
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, M1 5GD, UK; Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62514, Egypt.
| |
Collapse
|
9
|
Kong E, Li Y, Geng X, Wang J, He Y, Feng X. Ischemic preconditioning attenuates endoplasmic reticulum stress-dependent apoptosis of hepatocytes by regulating autophagy in hepatic ischemia-reperfusion injury. Int Immunopharmacol 2023; 122:110637. [PMID: 37473713 DOI: 10.1016/j.intimp.2023.110637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 07/02/2023] [Accepted: 07/09/2023] [Indexed: 07/22/2023]
Abstract
Hepatic ischemia-reperfusion injury (HIRI) usually occurs during subtotal hepatectomy and severely damages liver function during the perioperative period. Endoplasmic reticulum stress (ERS) dependent apoptosis has been suggested to play a crucial role in HIRI progression. The present study focused on the regulatory effect of autophagy activation induced by ischemic preconditioning (IPC) on ERS-dependent apoptosis of hepatocytes in HIRI. A HIRI mouse model and oxygen-glucose deprivation/reperfusion (OGD/R) AML-12 hepatocyte cell lines were constructed to evaluate the protective effect of IPC in vivo and in vitro. The protein levels of p-eIF2α, CHOP, and cleaved caspase-12 were used to evaluate the ERS-dependent apoptosis, whereas LC3-II and p62 were considered as the autophagy activation markers. The beneficial molecular chaperones GRP78, HSP60, and HSP70 were also tested to evaluate autophagy. HIRI significantly increased ERS-dependent apoptosis markers and the number of apoptotic cells and damaged liver function. The ERS inhibitor salubrinal significantly alleviated liver injury in HIRI and OGD/R hepatocytes. Furthermore, both remote IPC and direct IPC significantly alleviated liver injury and inflammatory cell infiltration. IPC also upregulated LC3-II, downregulated p62 expression, and increased the mRNA levels of GRP78, HSP60, and HSP70 in HIRI mice and OGD/R hepatocytes, indicating the activation of autophagy by IPC. The autophagy inhibitor 3-methyladenine significantly attenuated the protective effects of IPC on ERS-dependent apoptosis and liver function, whereas the autophagy activator rapamycin mimicked the protective effects of IPC on ERS-dependent apoptosis in vivo and in vitro, suggesting a regulatory role of autophagy in ERS-dependent apoptosis. These results demonstrated that IPC could induce moderate autophagy and upregulate a few molecular chaperones to strengthen endogenous defense mechanisms, which is beneficial for alleviating ERS-dependent apoptosis and protecting hepatocytes from HIRI.
Collapse
Affiliation(s)
- Erliang Kong
- Department of Anesthesiology, The 988th Hospital of Joint Logistic Support Force of Chinese People's Liberation Army, Zhengzhou 450042, Henan, China; Department of Anesthesiology, Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| | - Yongchang Li
- Department of Anesthesiology, Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| | - Xuqiang Geng
- Department of Rheumatology and Immunology, Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| | - Jianxin Wang
- Department of Anesthesiology, The 988th Hospital of Joint Logistic Support Force of Chinese People's Liberation Army, Zhengzhou 450042, Henan, China
| | - Yan He
- Department of Anesthesiology, Fuzhou Maternity and Child Health Care Hospital, Fuzhou 350000, Fujian, China.
| | - Xudong Feng
- Department of Anesthesiology, The 988th Hospital of Joint Logistic Support Force of Chinese People's Liberation Army, Zhengzhou 450042, Henan, China.
| |
Collapse
|
10
|
Hou P, Xue H, Chang S, Xie P, Chen Y, Wang Y, Miura D, Fan J, Liang J, Kitayama A, Fang F, Yuan H, Wu X, Zhang X, Wang J, Ding N, Zhang C, Sun X, Takashi E. Thermal preconditioning can reduce the incidence of intraoperatively acquired pressure injuries. J Therm Biol 2023; 115:103617. [PMID: 37352595 DOI: 10.1016/j.jtherbio.2023.103617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 05/17/2023] [Accepted: 06/07/2023] [Indexed: 06/25/2023]
Abstract
Intraoperatively acquired pressure injuries (IAPIs) occur frequently among patients who undergo surgical procedures that last longer than 3 h. Several studies indicated that heat shock proteins (HSPs) play an important role in the protection of stress-induced damages in skin tissues. Hence, the aim of this study was to investigate the potential preventive effect of thermal preconditioning (TPC) on IAPIs in surgical patients and rats and to identify the differentially expressed HSP genes in response to the above treatment. TPC was performed on one group of hairless rats before the model of pressure injuries was established. Subsequently, the size of skin lesions was measured and the expression levels of mRNA and protein of HSPs of the pressured skin were detected by real-time polymerase chain reaction (RT-PCR), western blot, and immunohistochemical staining. For human studies, 118 surgical patients were randomly divided into the TPC group (n = 59) and the control group (n = 59), respectively. The temperature and pressure of sacral skin, as well as the incidence of pressure injury (PI) were detected and compared. In animal studies, TPC significantly reduced both the size and incidence of PI in rats on the second, third and fourth days post treatment. In addition, the expression levels of both mRNA and protein of HSP27 were increased in the TPC group, compared with the control group. Immunohistochemical staining showed that HSP27 was distributed in various types of dermal cells and increased in basal cells. In human studies, a significant reduction (75%) of IAPIs was observed among the patients in the TPC group. TPC can reduce the incidence of PI in rats and humans, and the upregulation of HSP27 may play an important role in this biological progress. Further studies are warranted to explore the molecular mechanism of the preventive effect in PI mediated by HSP27.
Collapse
Affiliation(s)
- Ping Hou
- Nagano College of Nursing, 399-4117, Nagano, Japan; School of Nursing and School of Public Health, Yangzhou University, 225000, Yangzhou, China
| | - Huiping Xue
- Nagano College of Nursing, 399-4117, Nagano, Japan; Emergency Intensive Care Unit, Affiliated Hospital of Nantong University, 226000, Nantong, China
| | - Shuwen Chang
- Nagano College of Nursing, 399-4117, Nagano, Japan; Nursing Department, Northern Jiangsu People's Hospital, 225000, Yangzhou, China
| | - Ping Xie
- Nursing Department, Northern Jiangsu People's Hospital, 225000, Yangzhou, China.
| | - Yajie Chen
- Department of Molecular Pathology, Faculty of Medicine, Graduate School of Medical Sciences, University of Yamanashi, 409-3898, Yamanashi, Japan
| | - Yanwei Wang
- Nagano College of Nursing, 399-4117, Nagano, Japan
| | - Daiji Miura
- Nagano College of Nursing, 399-4117, Nagano, Japan
| | - Jianglin Fan
- Department of Molecular Pathology, Faculty of Medicine, Graduate School of Medical Sciences, University of Yamanashi, 409-3898, Yamanashi, Japan
| | - Jingyan Liang
- Health Science Center, Yangzhou University, 225000, Yangzhou, China.
| | | | - Fang Fang
- Nursing Department, Northern Jiangsu People's Hospital, 225000, Yangzhou, China
| | - Haijuan Yuan
- Nursing Department, Northern Jiangsu People's Hospital, 225000, Yangzhou, China
| | - Xiaoling Wu
- Nursing Department, Northern Jiangsu People's Hospital, 225000, Yangzhou, China
| | - Xiaolin Zhang
- Nursing Department, Northern Jiangsu People's Hospital, 225000, Yangzhou, China
| | - Jing Wang
- Nursing Department, Northern Jiangsu People's Hospital, 225000, Yangzhou, China
| | - Ning Ding
- Nursing Department, Northern Jiangsu People's Hospital, 225000, Yangzhou, China
| | - Can Zhang
- Nursing Department, Northern Jiangsu People's Hospital, 225000, Yangzhou, China
| | - Xiuyun Sun
- Nursing Department, Northern Jiangsu People's Hospital, 225000, Yangzhou, China
| | - En Takashi
- Nagano College of Nursing, 399-4117, Nagano, Japan.
| |
Collapse
|
11
|
Schleef M, Rozes M, Pillot B, Bidaux G, Guebre-Egziabher F, Juillard L, Baetz D, Lemoine S. Heat Shock Protein 70 Is Involved in the Efficiency of Preconditioning with Cyclosporine A in Renal Ischemia Reperfusion Injury by Modulating Mitochondrial Functions. Int J Mol Sci 2023; 24:9541. [PMID: 37298493 PMCID: PMC10253937 DOI: 10.3390/ijms24119541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/22/2023] [Accepted: 05/27/2023] [Indexed: 06/12/2023] Open
Abstract
Cyclosporine A (CsA) preconditioning is known to target mitochondrial permeability transition pore and protect renal function after ischemia reperfusion (IR). The upregulation of heat-shock protein 70 (Hsp70) expression after CsA injection is thought to be associated with renal protection. The aim of this study was to test the effect of Hsp70 expression on kidney and mitochondria functions after IR. Mice underwent a right unilateral nephrectomy and 30 min of left renal artery clamping, performed after CsA injection and/or administration of the Hsp70 inhibitor. Histological score, plasma creatinine, mitochondrial calcium retention capacity, and oxidative phosphorylation were assessed after 24 h of reperfusion. In parallel, we used a model of hypoxia reoxygenation on HK2 cells to modulate Hsp70 expression using an SiRNA or a plasmid. We assessed cell death after 18 h of hypoxia and 4 h of reoxygenation. CsA significantly improved renal function, histological score, and mitochondrial functions compared to the ischemic group but the inhibition of Hsp70 repealed the protection afforded by CsA injection. In vitro, Hsp70 inhibition by SiRNA increased cell death. Conversely, Hsp70 overexpression protected cells from the hypoxic condition, as well as the CsA injection. We did not find a synergic association between Hsp70 expression and CsA use. We demonstrated Hsp70 could modulate mitochondrial functions to protect kidneys from IR. This pathway may be targeted by drugs to provide new therapeutics to improve renal function after IR.
Collapse
Affiliation(s)
- Maxime Schleef
- CarMeN Laboratory, Inserm U1060, INRA U1397, Université Claude Bernard Lyon 1, 69500 Bron, France; (M.S.); (M.R.); (B.P.); (G.B.); (F.G.-E.); (L.J.); (D.B.)
- Hospices Civils de Lyon, Médecine Intensive Réanimation, Hôpital Edouard Herriot, 69003 Lyon, France
| | - Margaux Rozes
- CarMeN Laboratory, Inserm U1060, INRA U1397, Université Claude Bernard Lyon 1, 69500 Bron, France; (M.S.); (M.R.); (B.P.); (G.B.); (F.G.-E.); (L.J.); (D.B.)
- Hospices Civils de Lyon, Néphrologie-HTA-Dialyse, Hôpital Edouard Herriot, 69003 Lyon, France
| | - Bruno Pillot
- CarMeN Laboratory, Inserm U1060, INRA U1397, Université Claude Bernard Lyon 1, 69500 Bron, France; (M.S.); (M.R.); (B.P.); (G.B.); (F.G.-E.); (L.J.); (D.B.)
| | - Gabriel Bidaux
- CarMeN Laboratory, Inserm U1060, INRA U1397, Université Claude Bernard Lyon 1, 69500 Bron, France; (M.S.); (M.R.); (B.P.); (G.B.); (F.G.-E.); (L.J.); (D.B.)
| | - Fitsum Guebre-Egziabher
- CarMeN Laboratory, Inserm U1060, INRA U1397, Université Claude Bernard Lyon 1, 69500 Bron, France; (M.S.); (M.R.); (B.P.); (G.B.); (F.G.-E.); (L.J.); (D.B.)
- Hospices Civils de Lyon, Néphrologie-HTA-Dialyse, Hôpital Edouard Herriot, 69003 Lyon, France
| | - Laurent Juillard
- CarMeN Laboratory, Inserm U1060, INRA U1397, Université Claude Bernard Lyon 1, 69500 Bron, France; (M.S.); (M.R.); (B.P.); (G.B.); (F.G.-E.); (L.J.); (D.B.)
- Hospices Civils de Lyon, Néphrologie-HTA-Dialyse, Hôpital Edouard Herriot, 69003 Lyon, France
| | - Delphine Baetz
- CarMeN Laboratory, Inserm U1060, INRA U1397, Université Claude Bernard Lyon 1, 69500 Bron, France; (M.S.); (M.R.); (B.P.); (G.B.); (F.G.-E.); (L.J.); (D.B.)
| | - Sandrine Lemoine
- CarMeN Laboratory, Inserm U1060, INRA U1397, Université Claude Bernard Lyon 1, 69500 Bron, France; (M.S.); (M.R.); (B.P.); (G.B.); (F.G.-E.); (L.J.); (D.B.)
- Hospices Civils de Lyon, Explorations Fonctionnelles Rénales, Hôpital Edouard Herriot, 69003 Lyon, France
| |
Collapse
|
12
|
Belenichev IF, Aliyeva OG, Popazova OO, Bukhtiyarova NV. Involvement of heat shock proteins HSP70 in the mechanisms of endogenous neuroprotection: the prospect of using HSP70 modulators. Front Cell Neurosci 2023; 17:1131683. [PMID: 37138769 PMCID: PMC10150069 DOI: 10.3389/fncel.2023.1131683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 03/28/2023] [Indexed: 05/05/2023] Open
Abstract
This analytical review summarizes literature data and our own research on HSP70-dependent mechanisms of neuroprotection and discusses potential pharmacological agents that can influence HSP70 expression to improve neurological outcomes and effective therapy. The authors formed a systemic concepts of the role of HSP70-dependent mechanisms of endogenous neuroprotection aimed at stopping the formation of mitochondrial dysfunction, activation of apoptosis, desensitization of estrogen receptors, reduction of oxidative and nitrosative stress, prevention of morpho-functional changes in brain cells during cerebral ischemia, and experimentally substantiated new target links for neuroprotection. Heat shock proteins (HSPs) are an evolutionarily integral part of the functioning of all cells acting as intracellular chaperones that support cell proteostasis under normal and various stress conditions (hyperthermia, hypoxia, oxidative stress, radiation, etc.). The greatest curiosity in conditions of ischemic brain damage is the HSP70 protein, as an important component of the endogenous neuroprotection system, which, first of all, performs the function of intracellular chaperones and ensures the processes of folding, holding and transport of synthesized proteins, as well as their degradation, both under normoxic conditions and stress-induced denaturation. A direct neuroprotective effect of HSP70 has been established, which is realized through the regulation the processes of apoptosis and cell necrosis due to a long-term effect on the synthesis of antioxidant enzymes, chaperone activity, and stabilization of active enzymes. An increase in the level of HSP70 leads to the normalization of the glutathione link of the thiol-disulfide system and an increase in the resistance of cells to ischemia. HSP 70 is able to activate and regulate compensatory ATP synthesis pathways during ischemia. It was found that in response to the cerebral ischemia formation, HIF-1a is expressed, which initiates the launch of compensatory mechanisms for energy production. Subsequently, the regulation of these processes switches to HSP70, which "prolongs" the action of HIF-1a, and also independently maintains the expression of mitochondrial NAD-dependent malate dehydrogenase activity, thereby maintaining the activity of the malate-aspartate shuttle mechanism for a long time. During ischemia of organs and tissues, HSP70 performs a protective function, which is realized through increased synthesis of antioxidant enzymes, stabilization of oxidatively damaged macromolecules, and direct anti-apoptotic and mitoprotective action. Such a role of these proteins in cellular reactions during ischemia raises the question of the development of new neuroprotective agents which are able to provide modulation/protection of the genes encoding the synthesis of HSP 70 and HIF-1a proteins. Numerous studies of recent years have noted the important role of HSP70 in the implementation of the mechanisms of metabolic adaptation, neuroplasticity and neuroprotection of brain cells, so the positive modulation of the HSP70 system is a perspective concept of neuroprotection, which can improve the efficiency of the treatment of ischemic-hypoxic brain damage and be the basis for substantiating of the feasibility of using of HSP70 modulators as promising neuroprotectors.
Collapse
Affiliation(s)
- Igor F. Belenichev
- Department of Pharmacology and Medical Formulation With Course of Normal Physiology, Zaporizhzhia State Medical University, Zaporizhzhia, Ukraine
| | - Olena G. Aliyeva
- Department of Medical Biology, Parasitology and Genetics, Zaporizhzhia State Medical University, Zaporizhzhia, Ukraine
| | - Olena O. Popazova
- Department of Histology, Cytology and Embryology, Zaporizhzhia State Medical University, Zaporizhzhia, Ukraine
| | - Nina V. Bukhtiyarova
- Department of Clinical Laboratory Diagnostics, Zaporizhzhia State Medical University, Zaporizhzhia, Ukraine
| |
Collapse
|
13
|
He X, Guo X, Deng B, Kang J, Liu W, Zhang G, Wang Y, Yang Y, Kang X. HSPA1A ameliorated spinal cord injury in rats by inhibiting apoptosis to exert neuroprotective effects. Exp Neurol 2023; 361:114301. [PMID: 36538982 DOI: 10.1016/j.expneurol.2022.114301] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/23/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
Traumatic spinal cord injury (TSCI) is a serious nervous system insult, and apoptosis in secondary injury is an important barrier to recovery from TSCI. Heat shock protein family A member 1A (HSPA1A) is a protective protein whose expression is elevated after stress. However, whether HSPA1A can inhibit apoptosis after spinal cord injury, and the potential mechanism of this inhibition, remain unclear. In this study, we established in vivo and in vitro models of TSCI and induced HSPA1A overexpression and silencing. HSPA1A upregulation promoted the recovery of neurological function and pathological morphology at the injury site, enhanced neurological cell survival, and inhibited apoptosis in rats following TSCI. In the in vitro model, HSPA1A overexpression inhibited H2O2-induced apoptosis, indicating that HSPA1A suppressed the expression of Bax, caspase-9, and cleaved-caspase-3, promoted the expression of Bcl-2. Furthermore, inhibition of HSPA1A expression can aggravate H2O2-induced apoptosis. We also found that HSPA1A overexpression activated the Wnt/β-catenin signaling pathway, and that inhibition of this pathway attenuated the inhibitory effect of HSPA1A overexpression on apoptosis. Together, these results indicate that HSPA1A has neuroprotective effects against TSCI that may be exerted through activation of the Wnt/β-catenin signaling pathway to inhibit apoptosis.
Collapse
Affiliation(s)
- Xuegang He
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China; The Second Clinical Medical College, Lanzhou University, Lanzhou, China; The International Cooperation Base of Gansu Province for the Pain Research in Spinal Disorders, Lanzhou, China
| | - Xudong Guo
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China; The Second Clinical Medical College, Lanzhou University, Lanzhou, China; The International Cooperation Base of Gansu Province for the Pain Research in Spinal Disorders, Lanzhou, China
| | - Bo Deng
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China; The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Jihe Kang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China; The Second Clinical Medical College, Lanzhou University, Lanzhou, China; The International Cooperation Base of Gansu Province for the Pain Research in Spinal Disorders, Lanzhou, China
| | - Wenzhao Liu
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China; The Second Clinical Medical College, Lanzhou University, Lanzhou, China; The International Cooperation Base of Gansu Province for the Pain Research in Spinal Disorders, Lanzhou, China
| | - Guangzhi Zhang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China; The Second Clinical Medical College, Lanzhou University, Lanzhou, China; The International Cooperation Base of Gansu Province for the Pain Research in Spinal Disorders, Lanzhou, China
| | - Yonggang Wang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China; The Second Clinical Medical College, Lanzhou University, Lanzhou, China; The International Cooperation Base of Gansu Province for the Pain Research in Spinal Disorders, Lanzhou, China
| | - Yong Yang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China; The International Cooperation Base of Gansu Province for the Pain Research in Spinal Disorders, Lanzhou, China
| | - Xuewen Kang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China; The Second Clinical Medical College, Lanzhou University, Lanzhou, China; The International Cooperation Base of Gansu Province for the Pain Research in Spinal Disorders, Lanzhou, China.
| |
Collapse
|
14
|
Chen Y, Xie Y, Ni H. Effects of overexpression of Hsp70 in neural stem cells on neurotoxicity and cognitive dysfunction in neonatal mice under sevoflurane exposure. Exp Brain Res 2022; 240:3207-3216. [PMID: 36271938 DOI: 10.1007/s00221-022-06490-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 10/16/2022] [Indexed: 11/26/2022]
Abstract
As one of the commonly used inhalation anesthetics in clinical practice, sevoflurane is currently widely applied in surgery for children and the elderly due to its safety and efficacy. However, the neurotoxicity and cognitive impairment induced by sevoflurane exposure cannot be ignored. A recombinant adenovirus with green fluorescent protein-labeled heat shock protein 70 (Hsp70) was constructed and used to infect neural stem cells (NSCs) separated from neonatal mice. Quantitative real-time PCR and Western blot assays were used to evaluate the expression of certain genes. 5‑Ethynyl‑2'‑deoxyuridine staining and cell counting kit assay were used to detect the proliferation and differentiation ability of NSCs. The Morris water maze experiment was used to test the cognitive abilities of mice. Adv-Hsp70 induced the overexpression of Hsp70 in mouse NSCs. Upregulation of Hsp70 promoted the proliferation ability and differentiation of mouse NSCs. NSCs that overexpressed Hsp70 attenuated sevoflurane-induced neurotoxicity and protected cognitive dysfunction in mice under sevoflurane exposure. In summary, our findings demonstrate the potential of overexpression of Hsp70 in NSCs against sevoflurane-induced impairments.
Collapse
Affiliation(s)
- Yijia Chen
- Department of Anesthesiology, Longyan People's Hospital, No. 72 Denggao West Road, Xinluo District, Longyan, 364000, Fujian, China.
| | - Yongxiang Xie
- Department of Anesthesiology, Longyan People's Hospital, No. 72 Denggao West Road, Xinluo District, Longyan, 364000, Fujian, China
| | - Honghu Ni
- Department of Anesthesiology, Longyan People's Hospital, No. 72 Denggao West Road, Xinluo District, Longyan, 364000, Fujian, China
| |
Collapse
|
15
|
Wu J, Chen S, Wu P, Wang Y, Qi X, Zhang R, Liu Z, Wang D, Cheng Y. Cathepsin B/HSP70 complex induced by Ilexsaponin I suppresses NLRP3 inflammasome activation in myocardial ischemia/reperfusion injury. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 105:154358. [PMID: 35952578 DOI: 10.1016/j.phymed.2022.154358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 06/17/2022] [Accepted: 07/24/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Myocardial ischemia/reperfusion injury (MI/RI) is a clinical issue in MI therapy that requires effective intervention. Cathepsin B (CTSB) plays an essential role in regulating cell death, inflammatory response and angiogenesis. Ilexsaponin I (ISI), a triterpenoid saponin obtained from Ilex pubescens Hook. et Arn, has anti-inflammatory and cardioprotective effects. However, the effect of ISI on MI/RI is unclear. PURPOSE The study aims to disclose the mechanism of ISI as a potent therapeutic agent for MI/RI. METHODS Left anterior descending (LAD) coronary artery ligation and oxygen-glucose deprivation and reperfusion (OGD/R) were used to establish MI/RI model in vivo and in vitro. ELISA, western blot and immunofluorescence were carried out to detect CTSB activity and NLRP3 inflammasome activation. Coimmunoprecipitation (Co-IP), molecular docking and surface plasmon resonance (SPR) analysis were used to detect the interaction of CTSB/HSP70 complex. Infarct area determination, echocardiography and hematoxylin and eosin (HE) staining were performed to assess the cardioprotection of ISI in vivo. RESULTS Plasma CTSB was elevated in patients after percutaneous coronary intervention (PCI), and was positively correlated with the level of cTnI in plasma, which was also found in MI/RI rat model. ISI significantly suppressed the overexpression and activity of CTSB after MI/RI or OGD/R. ISI remarkably suppressed CTSB triggered-NLRP3 inflammasome activation and reduced the maturation of IL-1β and IL-18. Importantly, we firstly found that ISI promoted CTSB/HSP70 complex formation to disrupt CTSB/NLRP3 complex, leading to NLRP3 inflammasome inactivation. ISI could also limit infarct size, improve cardiac function and reduce inflammatory infiltrates in vivo and protected H9c2 cells against OGD/R insult in vitro. Interrupting the HSP70 and CTSB interaction with HSP70 siRNA blocked the effect of ISI on CTSB, NLRP3 inflammasome activation and the cardioprotective effect. CONCLUSION ISI probably exerts cardioprotective effect against MI/RI by modulating HSP70 competitively bind to CTSB to suppress the activation of the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Junxuan Wu
- Shunde Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Foshan, Guangdong, 528333, PR China; Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou Univ Chinese Med, Guangzhou, Guangdong, 510006, PR China
| | - Sixuan Chen
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou Univ Chinese Med, Guangzhou, Guangdong, 510006, PR China
| | - Peng Wu
- Shunde Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Foshan, Guangdong, 528333, PR China; Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou Univ Chinese Med, Guangzhou, Guangdong, 510006, PR China
| | - Ying Wang
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou Univ Chinese Med, Guangzhou, Guangdong, 510006, PR China
| | - Xiaoxiao Qi
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou Univ Chinese Med, Guangzhou, Guangdong, 510006, PR China
| | - Rong Zhang
- Shunde Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Foshan, Guangdong, 528333, PR China; Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou Univ Chinese Med, Guangzhou, Guangdong, 510006, PR China
| | - Zhongqiu Liu
- Shunde Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Foshan, Guangdong, 528333, PR China; Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou Univ Chinese Med, Guangzhou, Guangdong, 510006, PR China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou Univ Chinese Med, Guangzhou, Guangdong, 510006, PR China.
| | - Dawei Wang
- Shunde Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Foshan, Guangdong, 528333, PR China; Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou Univ Chinese Med, Guangzhou, Guangdong, 510006, PR China.
| | - Yuanyuan Cheng
- Shunde Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Foshan, Guangdong, 528333, PR China; Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou Univ Chinese Med, Guangzhou, Guangdong, 510006, PR China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou Univ Chinese Med, Guangzhou, Guangdong, 510006, PR China.
| |
Collapse
|
16
|
Li Z, Zhang J, Duan X, Zhao G, Zhang M. Celastrol: A Promising Agent Fighting against Cardiovascular Diseases. Antioxidants (Basel) 2022; 11:antiox11081597. [PMID: 36009315 PMCID: PMC9405053 DOI: 10.3390/antiox11081597] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/11/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
Cardiovascular diseases (CVD) are leading causes of morbidity and mortality worldwide; therefore, seeking effective therapeutics to reduce the global burden of CVD has become increasingly urgent. Celastrol, a bioactive compound isolated from the roots of the plant Tripterygium wilfordii (TW), has been attracting increasing research attention in recent years, as it exerts cardiovascular treatment benefits targeting both CVD and their associated risk factors. Substantial evidence has revealed a protective role of celastrol against a broad spectrum of CVD including obesity, diabetes, atherosclerosis, cerebrovascular injury, calcific aortic valve disease and heart failure through complicated and interlinked mechanisms such as direct protection against cardiomyocyte hypertrophy and death, and indirect action on oxidation and inflammation. This review will mainly summarize the beneficial effects of celastrol against CVD, largely based on in vitro and in vivo preclinical studies, and the potential underlying mechanisms. We will also briefly discuss celastrol’s pharmacokinetic limitations, which hamper its further clinical applications, and prospective future directions.
Collapse
Affiliation(s)
- Zhexi Li
- Department of Cardiology, Life Science Research Center, The First Affiliated Hospital of Xinxiang Medical University, Weihui 453100, China
| | - Jingyi Zhang
- School of Cardiovascular and Metabolic Medicine & Sciences, King’s College London British Heart Foundation Centre of Research Excellence, London SE5 9NU, UK
| | - Xulei Duan
- Department of Cardiology, Life Science Research Center, The First Affiliated Hospital of Xinxiang Medical University, Weihui 453100, China
| | - Guoan Zhao
- Department of Cardiology, Life Science Research Center, The First Affiliated Hospital of Xinxiang Medical University, Weihui 453100, China
| | - Min Zhang
- Department of Cardiology, Life Science Research Center, The First Affiliated Hospital of Xinxiang Medical University, Weihui 453100, China
- School of Cardiovascular and Metabolic Medicine & Sciences, King’s College London British Heart Foundation Centre of Research Excellence, London SE5 9NU, UK
- Correspondence: ; Tel.: +44-207848-5319; Fax: +44-207848-5193
| |
Collapse
|
17
|
Allani SK, Rayala R, Rivera O, Prentice HM, Chen X, Ramírez-Alcántara V, Canzoneri J, Menzie-Suderam J, Huang X, Georgescu C, Wren JD, Piazza GA, Weissbach H. A novel sulindac derivative protects against oxidative damage by a cyclooxygenase-independent mechanism. J Pharmacol Exp Ther 2022; 382:JPET-AR-2022-001086. [PMID: 35680377 PMCID: PMC9341458 DOI: 10.1124/jpet.122.001086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/30/2022] [Accepted: 05/03/2022] [Indexed: 11/22/2022] Open
Abstract
Oxidative damage is believed to play a major role in the etiology of many age-related diseases and the normal aging process. We previously reported that sulindac, a cyclooxygenase (COX) inhibitor and FDA approved anti-inflammatory drug, has chemoprotective activity in cells and intact organs by initiating a pharmacological preconditioning response, similar to ischemic preconditioning (IPC). The mechanism is independent of its COX inhibitory activity as suggested by studies on the protection of the heart against oxidative damage from ischemia/reperfusion and retinal pigmented endothelial (RPE) cells against chemical oxidative and UV damage . Unfortunately, sulindac is not recommended for long-term use due to toxicities resulting from its COX inhibitory activity. To develop a safer and more efficacious derivative of sulindac, we screened a library of indenes and identified a lead compound, MCI-100, that lacked significant COX inhibitory activity but displayed greater potency than sulindac to protect RPE cells against oxidative damage. MCI-100 also protected the intact rat heart against ischemia/reperfusion damage following oral administration. The chemoprotective activity of MCI-100 involves a preconditioning response similar to sulindac, which is supported by RNA sequencing data showing common genes that are induced or repressed by sulindac or MCI-100 treatment. Both sulindac and MCI-100 protection against oxidative damage may involve modulation of Wnt/β-catenin signaling resulting in proliferation while inhibiting TGFb signaling leading to apoptosis. In summary MCI-100, is more active than sulindac in protecting cells against oxidative damage, but without significant NSAID activity, and could have therapeutic potential in treatment of diseases that involve oxidative damage. Significance Statement In this study, we describe a novel sulindac derivative, MCI-100, that lacks significant COX inhibitory activity, but is appreciably more potent than sulindac in protecting retinal pigmented epithelial (RPE) cells against oxidative damage. Oral administration of MCI-100 markedly protected the rat heart against ischemia/reperfusion damage. MCI-100 has potential therapeutic value as a drug candidate for age-related diseases by protecting cells against oxidative damage and preventing organ failure.
Collapse
Affiliation(s)
| | | | | | | | - Xi Chen
- Auburn University, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Zhang L, Wang L, Tao L, Chen C, Ren S, Zhang Y. Risk Factors of Ischemia Reperfusion Injury After PCI in Patients with Acute ST-Segment Elevation Myocardial Infarction and its Influence on Prognosis. Front Surg 2022; 9:891047. [PMID: 35747437 PMCID: PMC9209655 DOI: 10.3389/fsurg.2022.891047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/05/2022] [Indexed: 12/04/2022] Open
Abstract
Purpose To explore the risk factors of ischemia reperfusion injury (IRI) after percutaneous coronary intervention (PCI) in patients with acute ST-segment elevation myocardial infarction (STEMI) and its influence on prognosis. Methods The clinical data of 80 patients with STMEI undergoing PCI in our hospital from June 2020 to June 2021 were collected. According to whether IRI occurred after PCI, STMEI patients were divided into IRI group and non-IRI group. The basic information, clinical characteristics, examination parameters and other data of all patients were collected, and the prognosis of the two groups was observed. Risk factors were analyzed by fitting binary Logistic regression model. The survival prognosis was analyzed by Kaplan-Meier survival curve. Results Logistic regression analysis showed that type 2 diabetes mellitus (T2DM), pre-hospital delay time (PHD) and door-to-balloon expansion time (DTB) were the influencing factors of IRI in patients with STMEI (p < 0.05). MACE occurred in 11 cases (32.35%) in the IRI group and 13 cases (28.26%) in the non-IRI group. Log-rank test showed p = 0.503, indicating no statistically significant difference. Conclusion T2DM, PHD and DTB were the influencing factors of IRI in patients with STMEI, and IRI will not reduce the prognosis of patients.
Collapse
Affiliation(s)
- Li Zhang
- Department of Cardiovascular Medicine, The First People’s Hospital of Taizhou City, Taizhou, China
| | - Lingqing Wang
- Department of Cardiovascular Medicine, The First People’s Hospital of Taizhou City, Taizhou, China
| | - Luyuan Tao
- Department of Cardiovascular Medicine, The First People’s Hospital of Taizhou City, Taizhou, China
| | - Changgong Chen
- Department of Cardiovascular Medicine, The First People’s Hospital of Taizhou City, Taizhou, China
| | - Shijia Ren
- Department of Cardiovascular Medicine, The First People’s Hospital of Taizhou City, Taizhou, China
| | - Youyou Zhang
- Department of Endocrinology, The First People’s Hospital of Taizhou City, Taizhou, China
- Correspondence: Youyou Zhang
| |
Collapse
|
19
|
Hu B, Wang P, Zhang S, Liu W, Lv X, Shi D, Zhao L, Liu H, Wang B, Chen S, Shao Z. HSP70 attenuates compression-induced apoptosis of nucleus pulposus cells by suppressing mitochondrial fission via upregulating the expression of SIRT3. Exp Mol Med 2022; 54:309-323. [PMID: 35338257 PMCID: PMC8980024 DOI: 10.1038/s12276-022-00745-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 11/29/2021] [Accepted: 12/21/2021] [Indexed: 11/21/2022] Open
Abstract
Compression-induced apoptosis of nucleus pulposus (NP) cells plays a pivotal role in the pathogenesis of intervertebral disc degeneration (IVDD). Recent studies have shown that the dysregulation of mitochondrial fission and fusion is implicated in the pathogenesis of a variety of diseases. However, its role in and regulatory effects on compression-induced apoptosis of NP cells have not yet been fully elucidated. Heat shock protein 70 (HSP70) is a major cytoprotective heat shock protein, but its physiological role in IVDD, especially its effect on mitochondrial fission and fusion, is still unknown. Herein, we found that compression could induce mitochondrial fission, which ultimately trigger apoptosis of NP cells via the mitochondrial apoptotic pathway. In addition, we identified the cytoprotective effects of HSP70 on NP cells, and we found that promoting the expression of HSP70 could protect NP cells from abnormal mechanical loading in vitro and in vivo. Finally, we showed that HSP70 inhibited compression-induced mitochondrial fission by promoting SIRT3 expression, thereby attenuating mitochondrial dysfunction and the production of reactive oxygen species and ultimately inhibiting the mitochondrial apoptotic pathway in NP cells. In conclusion, our results demonstrated that HSP70 could attenuate compression-induced apoptosis of NP cells by suppressing mitochondrial fission via upregulating SIRT3 expression. Promoting the expression of HSP70 might be a novel strategy for the treatment of IVDD. A so-called chaperone protein that assists other proteins in correctly folding helps to prevent compression-induced cell death in the intervertebral discs responsible for cushioning the spine. Binwu Hu from Huazhong University of Science and Technology, Wuhan, China, and coworkers showed that mitochondria in the cells from the jelly-like substance found in vertebral discs in the spine tended to divide when exposed to abnormal mechanical loading. This fission resulted in cell death. In cell culture experiments and in mice, the researchers found that boosting levels of the molecular chaperone HSP70 (heat shock protein 70) prevented this mitochondrial dysfunction, in part by activating another stress-response protein called SIRT3. The findings point to HSP70 as a promising drug target for addressing intervertebral disc degeneration, a common cause of chronic back pain.
Collapse
Affiliation(s)
- Binwu Hu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Peng Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shuo Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Weijian Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiao Lv
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Deyao Shi
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lei Zhao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hongjian Liu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Baichuan Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Songfeng Chen
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Zengwu Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
20
|
Odabasi E, Turan M. The importance of body core temperature evaluation in balneotherapy. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2022; 66:25-33. [PMID: 34623501 DOI: 10.1007/s00484-021-02201-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 09/17/2021] [Accepted: 10/04/2021] [Indexed: 06/13/2023]
Abstract
It is not wrong to say that there are no application standards or best practices in balneotherapy considering traditional applications. There is not enough information about how changes in body temperature, duration, and frequency of exposure to heat affect therapeutic outcomes of balneotherapeutic applications. Body core temperature (BCT) is probably the best parameter for expressing the heat load of the body and can be used to describe the causal relationship between heat exposure and its effects. There are several reasons to take BCT changes into account; for example, it can be used for individualized treatment planning, defining the consequences of thermal effects, developing disease-specific approaches, avoiding adverse effects, and designing clinical trials. The reasons why BCT changes should be considered instead of conventional measures will be discussed while explaining the effects of balneotherapy in this article, along with a discussion of BCT measurement in balneotherapy practice.
Collapse
Affiliation(s)
- Ersin Odabasi
- Department of Medical Ecology and Hydroclimatology, Gulhane Faculty of Medicine, University of Health Science, Gulhane EAH, 06018, Etlik, Ankara, Turkey.
| | - Mustafa Turan
- Department of Medical Education and Informatics, TOBB Faculty of Medicine, TOBB University of Economics and Technology, Ankara, Turkey
| |
Collapse
|
21
|
Wang Y, Yu Z, Fan Z, Fang Y, He L, Peng M, Chen Y, Hu Z, Zhao K, Zhang H, Liu C. Cardiac developmental toxicity and transcriptome analyses of zebrafish (Danio rerio) embryos exposed to Mancozeb. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 226:112798. [PMID: 34592528 DOI: 10.1016/j.ecoenv.2021.112798] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/12/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
Mancozeb (MZ), an antibacterial pesticide, has been linked to reproductive toxicity, neurotoxicity, and endocrine disruption. However, whether MZ has cardiactoxicity is unclear. In this study, the cardiotoxic effects of exposure to environment-related MZ concentrations ranging from 1.88 μM to 7.52 μM were evaluated at the larval stage of zebrafish. Transcriptome sequencing predicted the mechanism of MZ-induced cardiac developmental toxicity in zebrafish by enrichment analysis of Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO). Consistent with morphological changes, the osm, pfkfb3, foxh1, stc1, and nrarpb genes may effect normal development of zebrafish heart by activating NOTCH signaling pathways, resulting in pericardial edema, myocardial fibrosis, and congestion in the heart area. Moreover, differential gene expression analysis indicated that cyp-related genes (cyp1c2 and cyp3c3) were significantly upregulated after MZ treatment, which may be related to apoptosis of myocardial cells. These results were verified by real-time quantitative RT-qPCR and acridine orange staining. Our findings suggest that MZ-mediated cardiotoxic development of zebrafish larvae may be related to the activation of Notch and apoptosis-related signaling pathways.
Collapse
Affiliation(s)
- Yongfeng Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei 430030, PR China.
| | - Zhiquan Yu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei 430030, PR China.
| | - Zunpan Fan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei 430030, PR China.
| | - Yiwei Fang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei 430030, PR China.
| | - Liting He
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei 430030, PR China.
| | - Meili Peng
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei 430030, PR China.
| | - Yuanyao Chen
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei 430030, PR China.
| | - Zhiyong Hu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei 430030, PR China.
| | - Kai Zhao
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei 430030, PR China.
| | - Huiping Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei 430030, PR China.
| | - Chunyan Liu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei 430030, PR China.
| |
Collapse
|
22
|
Zhou YK, Patel HH, Roth DM. Extracellular Vesicles: A New Paradigm for Cellular Communication in Perioperative Medicine, Critical Care, and Pain Management. Anesth Analg 2021; 133:1162-1179. [PMID: 34304233 PMCID: PMC8542619 DOI: 10.1213/ane.0000000000005655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Extracellular vesicles (EVs) play critical roles in many health and disease states, including ischemia, inflammation, and pain, which are major concerns in the perioperative period and in critically ill patients. EVs are functionally active, nanometer-sized, membrane-bound vesicles actively secreted by all cells. Cell signaling is essential to physiological and pathological processes, and EVs have recently emerged as key players in intercellular communication. Recent studies in EV biology have improved our mechanistic knowledge of the pathophysiological processes in perioperative and critical care patients. Studies also show promise in using EVs in novel diagnostic and therapeutic clinical applications. This review considers the current advances and gaps in knowledge of EVs in the areas of ischemia, inflammation, pain, and in organ systems that are most relevant to anesthesiology, perioperative medicine, critical care, and pain management. We expect the reader will better understand the relationship between EVs and perioperative and critical care pathophysiological states and their potential use as novel diagnostic and therapeutic modalities.
Collapse
Affiliation(s)
- Yingqiu K. Zhou
- Veterans Administration San Diego Healthcare System, San Diego, CA, USA and Department of Anesthesiology, UCSD School of Medicine, San Diego, CA, USA
| | - Hemal H. Patel
- Veterans Administration San Diego Healthcare System, San Diego, CA, USA and Department of Anesthesiology, UCSD School of Medicine, San Diego, CA, USA
| | - David M. Roth
- Veterans Administration San Diego Healthcare System, San Diego, CA, USA and Department of Anesthesiology, UCSD School of Medicine, San Diego, CA, USA
| |
Collapse
|
23
|
Exosomal microRNA-98-5p from hypoxic bone marrow mesenchymal stem cells inhibits myocardial ischemia-reperfusion injury by reducing TLR4 and activating the PI3K/Akt signaling pathway. Int Immunopharmacol 2021; 101:107592. [PMID: 34715573 DOI: 10.1016/j.intimp.2021.107592] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 12/16/2022]
Abstract
OBJECTIVE MicroRNAs (miRNAs) are essential biomarkers during development of human diseases. We aimed to explore the role of hypoxia-induced bone marrow mesenchymal stem cells (BMSCs)-derived exosomal miR-98-5p in myocardial ischemia-reperfusion injury (MI/RI). METHODS BMSCs were isolated, cultured, stimulated by hypoxia and transfected with adenovirus expressing miR-98-5p. The exosomes were extracted from BMSCs and named as BMSC-exos. The rat MI/RI models were established by ligation of left anterior descending artery and were respectively injected. Then, hemodynamic indices, myocardial enzymes, oxidative stress factors, inflammatory factors, macrophage infiltration and infarct size in these rats were determined. Expression of miR-98-5p, toll-like receptor 4 (TLR4) and the phosphatidylinositol-3-kinase/protein kinase B (PI3K/Akt) signaling pathway-related proteins was assessed. The target relation between miR-98-5p and TLR4 was confirmed by bioinformatic method and dual luciferase report gene assay. RESULTS MiR-98-5p was downregulated, TLR4 was upregulated and the PI3K/Akt signaling pathway was inactivated in MI/RI rat myocardial tissues. Exosomal miR-98-5p from hypoxic BMSCs promoted cardiac function and suppressed myocardial enzyme levels, oxidative stress, inflammation response, macrophage infiltration and infarct size in I/R myocardial tissues. Moreover, TRL4 was targeted by miR-98-5p and miR-98-5p activated PI3K/Akt signaling pathway. CONCLUSION Hypoxia-induced BMSC-exos elevated miR-98-5p to protect against MI/RI. This study may be helpful for treatment of MI/RI.
Collapse
|
24
|
Lai T, Shen Y, Chen C, Huang B, Deng T, Zhao Z, Zhang Z, Huang Z, Pan X. Glycyrrhizic acid ameliorates myocardial ischemia-reperfusion injury in rats through inhibiting endoplasmic reticulum stress. Eur J Pharmacol 2021; 908:174353. [PMID: 34274339 DOI: 10.1016/j.ejphar.2021.174353] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/14/2021] [Accepted: 07/14/2021] [Indexed: 01/23/2023]
Abstract
The purpose of this study was to investigate the role of glycyrrhizic acid (GA) in regulating myocardial ischemia-reperfusion injury (MIRI) in rats as well as the underlying mechanism. H9c2 cells were subjected to hypoxia/re-oxygenation (H/R) to mimic the MIRI in vitro, while a rat model of ischemia-reperfusion (I/R) was constructed by occlusion of the left anterior descending coronary artery for 0.5 h followed by 2 h of reperfusion. While flow cytometry and TUNEL assay were performed to analyze apoptosis in cells and myocardial tissue, echocardiography, hematoxylin and eosin staining, and Masson's trichrome staining were conducted to evaluate cardiac function and pathological changes, respectively. The levels of serum CK, CK-MB, LDH, AST, TNF-α, and IL-6 as well as the contents of MDA and SOD in tissues were measured by ELISA, while Western blot analysis was performed to detect the expression of endoplasmic reticulum stress (ERS)-related proteins. GA treatment significantly reduced apoptosis in H9c2 cells, while it alleviated left ventricular dysfunction, fibrosis and myocardial apoptosis, down-regulated the levels of CK, CK-MB, LDH, AST, TNF-α, IL-6, and MDA, and up-regulated SOD levels in I/R rats. Moreover, GA treatment led to a decrease in the expression of CHOP, GRP78, and p-PERK in both H/R cells and I/R rats. This study demonstrates that cardioprotective role of GA in MIRI may involve the attenuation of ERS-induced apoptosis and inflammation, potentially providing an alternative strategy for intervention of MIRI.
Collapse
Affiliation(s)
- Tengfang Lai
- Department of Cardiovascular Medicine, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Yong Shen
- Department of Cardiovascular Medicine, The People's Hospital of Hechi, Hechi, China
| | - Chengcai Chen
- Department of Cardiovascular Medicine, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Bo Huang
- Department of Cardiovascular Medicine, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Tongyuan Deng
- Department of Cardiovascular Medicine, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Zhuangzhi Zhao
- Department of Cardiology, Liuzhou Hospital of Traditional Chinese Medicine, Liuzhou, China
| | - Zhuohua Zhang
- Department of Cardiovascular Medicine, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Zhaohe Huang
- Department of Cardiovascular Medicine, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China.
| | - Xingshou Pan
- Department of Cardiovascular Medicine, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China.
| |
Collapse
|
25
|
Gomez CR. Role of heat shock proteins in aging and chronic inflammatory diseases. GeroScience 2021; 43:2515-2532. [PMID: 34241808 PMCID: PMC8599533 DOI: 10.1007/s11357-021-00394-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 05/24/2021] [Indexed: 01/01/2023] Open
Abstract
Advanced age is associated with a decline in response to stress. This contributes to the establishment of chronic inflammation, one of the hallmarks of aging and age-related disease. Heat shock proteins (HSP) are determinants of life span, and their progressive malfunction leads to age-related pathology. To discuss the function of HSP on age-related chronic inflammation and illness. An updated review of literature and discussion of relevant work on the topic of HSP in normal aging and chronic inflammatory pathology was performed. HSP contribute to inflamm-aging. They also play a key role in age-associated pathology linked to chronic inflammation such as autoimmune disorders, neurological disease, cardiovascular disorder, and cancer. HSP may be targeted for control of their effects related to age and chronic inflammation. Research on HSP functions in age-linked chronic inflammatory disorders provides an opportunity to improve health span and delay age-related chronic disorders.
Collapse
Affiliation(s)
- Christian R Gomez
- Department of Pathology, University of Mississippi Medical Cent, er, 2500 N. State St, Jackson, MS, 39216, USA.
- Department of Radiation Oncology, University of Mississippi Medical Center, 2500 N. State St, Jackson, MS, 39216, USA.
- Preclinical Research Unit, Center for Clinical and Translational Science, University of Mississippi, 2500 N. State St, Jackson, MS, 39216, USA.
- Cancer Center and Research Institute, University of Mississippi Medical Center, 2500 N. State St, Jackson, MS, 39216, USA.
- Division of Lung Diseases, National Institutes of Health (NIH), National Heart, Lung and Blood Institute (NHLBI), Bethesda, MD, USA.
| |
Collapse
|
26
|
Zhang J, Wang H, Sun X. Sevoflurane Postconditioning Reduces Hypoxia/Reoxygenation Injury in Cardiomyocytes via Upregulation of Heat Shock Protein 70. J Microbiol Biotechnol 2021; 31:1069-1078. [PMID: 34226409 PMCID: PMC9705948 DOI: 10.4014/jmb.2103.03040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/04/2021] [Accepted: 06/09/2021] [Indexed: 12/15/2022]
Abstract
Sevoflurane postconditioning (SPostC) has been proved effective in cardioprotection against myocardial ischemia/reperfusion injury. It was also reported that heat shock protein 70 (HSP70) could be induced by sevoflurane, which played a crucial role in hypoxic/reoxygenation (HR) injury of cardiomyocytes. However, the mechanism by which sevoflurane protects cardiomyocytes via HSP70 is still not understood. Here, we aimed to investigate the related mechanisms of SPostC inducing HSP70 expression to reduce the HR injury of cardiomyocytes. After the HR cardiomyocytes model was established, the cells transfected with siRNA for HSP70 (siHSP70) or not were treated with sevoflurane during reoxygenation. The lactate dehydrogenase (LDH) level was detected by colorimetry while cell viability and apoptosis were detected by MTT and flow cytometry. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and Western blotting were used to detect HSP70, apoptosis-, cell cycle-associated factors, iNOS, and Cox-2 expressions. Enzyme-linked immuno sorbent assay (ELISA) was used to measure malondialdehyde (MDA) and superoxide dismutase (SOD). SPostC decreased apoptosis, cell injury, oxidative stress and inflammation and increased viability of HR-induced cardiomyocytes. In addition, SPostC downregulated Bax and cleaved caspase-3 levels, while SPostC upregulated Bcl-2, CDK-4, Cyclin D1, and HSP70 levels. SiHSP70 had the opposite effect that SPostC had on HR-induced cardiomyocytes. Moreover, siHSP70 further reversed the effect of SPostC on apoptosis, cell injury, oxidative stress, inflammation, viability and the expressions of HSP70, apoptosis-, and cell cycle-associated factors in HR-induced cardiomyocytes. In conclusion, this study demonstrates that SPostC can reduce the HR injury of cardiomyocytes by inducing HSP70 expression.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Anesthesiology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, Shandong, P.R. China
| | - Haiyan Wang
- Department of Anesthesiology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, Shandong, P.R. China
| | - Xizhi Sun
- Department of Anesthesiology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, Shandong, P.R. China,Corresponding author Phone: +86-0535-6691999 E-mail:
| |
Collapse
|
27
|
Wang H, Ba Y, Han W, Zhang H, Zhu L, Jiang P. Association of heat shock protein polymorphisms with patient susceptibility to coronary artery disease comorbid depression and anxiety in a Chinese population. PeerJ 2021; 9:e11636. [PMID: 34178482 PMCID: PMC8216166 DOI: 10.7717/peerj.11636] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/27/2021] [Indexed: 01/03/2023] Open
Abstract
Background Coronary artery disease (CAD) is one of the severe diseases that threaten human health worldwide. In addition, the associated rate of comorbidity with depression and anxiety is extremely high. Heat shock proteins (HSPs) are a group of proteins that possesses cardiovascular and psychological protection properties. The objective of this study is to determine the association of the two most widely studied HSPs, namely, HSP70 and HSP90, with CAD comorbid depression and anxiety in a Chinese population. Methods A case-control study involving 271 CAD patients and 113 healthy individuals was conducted. The 271 CAD patients include individuals with (123) and without depression (148) and individuals with (57) and without anxiety (214). Ten single nucleotide polymorphisms (SNPs) for HSP70 and seven SNPs for HSP90 were selected and genotyped. Results Results revealed that the HSP70 rs10892958 C allele and HSP70 rs2236658 T allele were associated with a decreased risk of CAD (P < 0.05), whereas the G allele of the rs11218941 polymorphism was associated with an increased risk of CAD. The haplotype analysis results indicated that the haplotype TGGGC of the HSPA8 gene (coded the HSP70 family, rs4936770/rs4802/rs10892958/rs11218941/rs2236658) significantly increased the risk of CAD (P = 0.008). Among the patients with CAD, the carriers of the CC genotype for the HSP90 rs1042665 showed higher risks of anxiety than the carriers of another genotypes. However, no significant relationships were found among the CAD with depression and CAD without depression groups for the selected SNPs. These findings suggested that the genetic polymorphisms in the HSP gene, especially the HSPA8 of HSP70, contribute to CAD susceptibility and rs1042665 genetic polymorphisms might have an effect on the anxiety incidence among CAD patients.
Collapse
Affiliation(s)
- Haidong Wang
- Department of Pharmacy, The Affiliated Lianyungang Hospital of Xuzhou Medical University/The First People's Hospital of Lianyungang, Lianyungang, China
| | - Yudong Ba
- Department of Pharmacy, Dongying People's Hospital, Dongying, China
| | - Wenxiu Han
- Jining First People's Hospital, Jining Medical University, Jining, China
| | - Haixia Zhang
- Jining First People's Hospital, Jining Medical University, Jining, China
| | - Laiqing Zhu
- Jining First People's Hospital, Jining Medical University, Jining, China
| | - Pei Jiang
- Jining First People's Hospital, Jining Medical University, Jining, China
| |
Collapse
|
28
|
Hasenauer A, Bédat B, Parapanov R, Lugrin J, Debonneville A, Abdelnour-Berchtold E, Gonzalez M, Perentes JY, Piquilloud L, Szabo C, Krueger T, Liaudet L. Effects of cold or warm ischemia and ex-vivo lung perfusion on the release of damage associated molecular patterns and inflammatory cytokines in experimental lung transplantation. J Heart Lung Transplant 2021; 40:905-916. [PMID: 34193360 DOI: 10.1016/j.healun.2021.05.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 05/14/2021] [Accepted: 05/24/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Lung transplantation (LTx) is associated with sterile inflammation, possibly related to the release of damage associated molecular patterns (DAMPs) by injured allograft cells. We have measured cellular damage and the release of DAMPs and cytokines in an experimental model of LTx after cold or warm ischemia and examined the effect of pretreatment with ex-vivo lung perfusion (EVLP). METHODS Rat lungs were exposed to cold ischemia alone (CI group) or with 3h EVLP (CI-E group), warm ischemia alone (WI group) or with 3 hour EVLP (WI-E group), followed by LTx (2 hour). Bronchoalveolar lavage (BAL) was performed before (right lung) or after (left lung) LTx to measure LDH (marker of cellular injury), the DAMPs HMGB1, IL-33, HSP-70 and S100A8, and the cytokines IL-1β, IL-6, TNFα, and CXCL-1. Graft oxygenation capacity and static compliance after LTx were also determined. RESULTS Compared to CI, WI displayed cellular damage and inflammation without any increase of DAMPs after ischemia alone, but with a significant increase of HMGB1 and functional impairment after LTx. EVLP promoted significant inflammation in both cold (CI-E) and warm (WI-E) groups, which was not associated with cell death or DAMP release at the end of EVLP, but with the release of S100A8 after LTx. EVLP reduced graft damage and dysfunction in warm ischemic, but not cold ischemic, lungs. CONCLUSIONS The pathomechanisms of sterile lung inflammation during LTx are significantly dependent on the conditions. The release of HMGB1 (in the absence of EVLP) and S100A8 (following EVLP) may be important factors in the pathogenesis of LTx.
Collapse
Affiliation(s)
- Arpad Hasenauer
- Service of Thoracic Surgery, Lausanne University Hospital, Lausanne, Switzerland
| | - Benoît Bédat
- Service of Thoracic Surgery, Lausanne University Hospital, Lausanne, Switzerland
| | - Roumen Parapanov
- Service of Thoracic Surgery, Lausanne University Hospital, Lausanne, Switzerland; Service of Thoracic Surgery and Department of Adult Intensive Care Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - Jérôme Lugrin
- Service of Thoracic Surgery and Department of Adult Intensive Care Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - Anne Debonneville
- Service of Thoracic Surgery, Lausanne University Hospital, Lausanne, Switzerland
| | | | - Michel Gonzalez
- Service of Thoracic Surgery, Lausanne University Hospital, Lausanne, Switzerland
| | - Jean Y Perentes
- Service of Thoracic Surgery, Lausanne University Hospital, Lausanne, Switzerland
| | - Lise Piquilloud
- Department of Adult Intensive Care Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - Csaba Szabo
- Department of Pharmacology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Thorsten Krueger
- Service of Thoracic Surgery, Lausanne University Hospital, Lausanne, Switzerland
| | - Lucas Liaudet
- Department of Adult Intensive Care Medicine, Lausanne University Hospital, Lausanne, Switzerland.
| |
Collapse
|
29
|
Knockdown of lncRNA Abhd11os attenuates myocardial ischemia/reperfusion injury by inhibiting apoptosis in cardiomyocytes. J Cardiovasc Pharmacol 2021; 79:192-198. [PMID: 34117183 DOI: 10.1097/fjc.0000000000001074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 05/08/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT Long non-coding RNA (lncRNA) is one potential target for the treatment of various disorders. Here, we explored the role of Abhd11os in ischemia/reperfusion-induced myocardial injury, and preliminarily explored the regulatory mechanisms. Relative Abhd11os expression level was examined by qRT-PCR. Western blot was done to measure the expression of apoptotic-related proteins. CCK-8 assay and flow cytometry were performed to detect cell viability and apoptosis, respectively. ELISA assay was used to ensure the levels of LDH, CK, and cTnI in serum. Besides, the infarct sizes were confirmed by TTC and Evans blue staining. Apoptotic rate of cardiomyocytes in myocardial tissues was evaluated by TUNEL assay. Here, increased Abhd11os expression was found in rat myocardial ischemia/reperfusion injury (MIRI) model and hypoxia/reoxygenation (H/R)-treated cardiomyocytes. Subsequently, our data in vitro showed that upregulation of Abhd11os inhibited proliferation of cardiomyocytes, but promoted cell apoptosis. In animal experiments, myocardial infarct size in MIRI rats was reduced by Abhd11os knockdown. Moreover, downregulation of Abhd11os inhibited apoptosis of cardiomyocytes. Overall, our results revealed that knockdown of Abhd11os could notably attenuate H/R-induced myocardial injury through suppressing apoptosis of cardiomyocytes. These data suggest that Abhd11os may be a potential target for MIRI therapy.
Collapse
|
30
|
Andreadou I, Daiber A, Baxter GF, Brizzi MF, Di Lisa F, Kaludercic N, Lazou A, Varga ZV, Zuurbier CJ, Schulz R, Ferdinandy P. Influence of cardiometabolic comorbidities on myocardial function, infarction, and cardioprotection: Role of cardiac redox signaling. Free Radic Biol Med 2021; 166:33-52. [PMID: 33588049 DOI: 10.1016/j.freeradbiomed.2021.02.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/03/2021] [Accepted: 02/06/2021] [Indexed: 02/06/2023]
Abstract
The morbidity and mortality from cardiovascular diseases (CVD) remain high. Metabolic diseases such as obesity, hyperlipidemia, diabetes mellitus (DM), non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) as well as hypertension are the most common comorbidities in patients with CVD. These comorbidities result in increased myocardial oxidative stress, mainly from increased activity of nicotinamide adenine dinucleotide phosphate oxidases, uncoupled endothelial nitric oxide synthase, mitochondria as well as downregulation of antioxidant defense systems. Oxidative and nitrosative stress play an important role in ischemia/reperfusion injury and may account for increased susceptibility of the myocardium to infarction and myocardial dysfunction in the presence of the comorbidities. Thus, while early reperfusion represents the most favorable therapeutic strategy to prevent ischemia/reperfusion injury, redox therapeutic strategies may provide additive benefits, especially in patients with heart failure. While oxidative and nitrosative stress are harmful, controlled release of reactive oxygen species is however important for cardioprotective signaling. In this review we summarize the current data on the effect of hypertension and major cardiometabolic comorbidities such as obesity, hyperlipidemia, DM, NAFLD/NASH on cardiac redox homeostasis as well as on ischemia/reperfusion injury and cardioprotection. We also review and discuss the therapeutic interventions that may restore the redox imbalance in the diseased myocardium in the presence of these comorbidities.
Collapse
Affiliation(s)
- Ioanna Andreadou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece.
| | - Andreas Daiber
- Department of Cardiology 1, Molecular Cardiology, University Medical Center, Langenbeckstr. 1, 55131, Mainz, Germany; Partner Site Rhine-Main, German Center for Cardiovascular Research (DZHK), Langenbeckstr, Germany.
| | - Gary F Baxter
- Division of Pharmacology, School of Pharmacy and Pharmaceutical Sciences, Cardiff University, United Kingdom
| | | | - Fabio Di Lisa
- Department of Biomedical Sciences, University of Padova, Italy; Neuroscience Institute, National Research Council of Italy (CNR), Padova, Italy
| | - Nina Kaludercic
- Neuroscience Institute, National Research Council of Italy (CNR), Padova, Italy
| | - Antigone Lazou
- Laboratory of Animal Physiology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| | - Zoltán V Varga
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary; HCEMM-SU Cardiometabolic Immunology Research Group, Budapest, Hungary
| | - Coert J Zuurbier
- Laboratory of Experimental Intensive Care Anesthesiology, Department Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Rainer Schulz
- Institute of Physiology, Justus Liebig University Giessen, Giessen, Germany.
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary; Pharmahungary Group, Szeged, Hungary
| |
Collapse
|
31
|
Heat Shock Proteins in Oxidative Stress and Ischemia/Reperfusion Injury and Benefits from Physical Exercises: A Review to the Current Knowledge. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6678457. [PMID: 33603951 PMCID: PMC7868165 DOI: 10.1155/2021/6678457] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/14/2021] [Accepted: 01/25/2021] [Indexed: 02/07/2023]
Abstract
Heat shock proteins (HSPs) are molecular chaperones produced in response to oxidative stress (OS). These proteins are involved in the folding of newly synthesized proteins and refolding of damaged or misfolded proteins. Recent studies have been focused on the regulatory role of HSPs in OS and ischemia/reperfusion injury (I/R) where reactive oxygen species (ROS) play a major role. ROS perform many functions, including cell signaling. Unfortunately, they are also the cause of pathological processes leading to various diseases. Biological pathways such as p38 MAPK, HSP70 and Akt/GSK-3β/eNOS, HSP70, JAK2/STAT3 or PI3K/Akt/HSP70, and HSF1/Nrf2-Keap1 are considered in the relationship between HSP and OS. New pathophysiological mechanisms involving ROS are being discovered and described the protein network of HSP interactions. Understanding of the mechanisms involved, e.g., in I/R, is important to the development of treatment methods. HSPs are multifunctional proteins because they closely interact with the antioxidant and the nitric oxide generation systems, such as HSP70/HSP90/NOS. A deficiency or excess of antioxidants modulates the activation of HSF and subsequent HSP biosynthesis. It is well known that HSPs are involved in the regulation of several redox processes and play an important role in protein-protein interactions. The latest research focuses on determining the role of HSPs in OS, their antioxidant activity, and the possibility of using HSPs in the treatment of I/R consequences. Physical exercises are important in patients with cardiovascular diseases, as they affect the expression of HSPs and the development of OS.
Collapse
|
32
|
Manukhina EB, Tseilikman VE, Komelkova MV, Lapshin MS, Goryacheva AV, Kondashevskaya MV, Mkhitarov VA, Lazuko SS, Tseilikman OB, Sarapultsev AP, Dmitrieva YA, Strizhikov VK, Kuzhel OP, Downey HF. Сardiac injury in rats with experimental posttraumatic stress disorder and mechanisms of its limitation in experimental posttraumatic stress disorder-resistant rats. J Appl Physiol (1985) 2021; 130:759-771. [PMID: 33411642 DOI: 10.1152/japplphysiol.00694.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Traumatic stress causes posttraumatic stress disorder (PTSD). PTSD is associated with cardiovascular diseases and risk of sudden cardiac death in some subjects. We compared effects of predator stress (PS, cat urine scent, 10 days) on mechanisms of cardiac injury and protection in experimental PTSD-vulnerable (PTSD) and -resistant (PTSDr) rats. Fourteen days post-stress, rats were evaluated with an elevated plus-maze test, and assigned to PTSD and PTSDr groups according to an anxiety index calculated from the test results. Cardiac injury was evaluated by: 1) exercise tolerance; 2) ECG; 3) myocardial histomorphology; 4) oxidative stress; 5) pro- and anti-inflammatory cytokines. Myocardial heat shock protein 70 (HSP70) was also measured. Experimental PTSD developed in 40% of rats exposed to PS. Exercise tolerance of PTSD rats was 25% less than control rats and 21% less than PTSDr rats. ECG QRS, QT, and OTc intervals were significantly longer in PTSD rats than in control and PTSDr rats. Only cardiomyocytes of PTSD rats had histomorphological signs of metabolic and hypoxic injury and impaired contractility. Oxidative stress markers were higher in PTSD than in PTSDr rats. Pro-inflammatory IL-6 was higher in PTSD rats than in control and PTSDr rats, and anti-inflammatory IL-4 was lower in PTSD than in control and PTSDr rats. Myocardial HSP70 was lower in PTSD rats than in PTSDr and control rats. Our conclusion was that rats with PTSD developed multiple signs of cardiac injury. PTSDr rats were resistant also to cardiac injury. Factors that limit cardiac damage in PS rats include reduced inflammation and oxidative stress and increased protective HSP70.NEW & NOTEWORTHY For the first time, rats exposed to stress were segregated into experimental PTSD (ePTSD)-susceptible and ePTSD-resistant rats. Cardiac injury, ECG changes, and impaired exercise tolerance were more pronounced in ePTSD-susceptible rats. Resistance to ePTSD was associated with decreased inflammation and oxidative stress and with increased protective heat shock protein 70. Results may help identify individuals at high risk of PTSD and also provide a foundation for developing preventive and therapeutic means to restrict PTSD-associated cardiac morbidity.
Collapse
Affiliation(s)
- Eugenia B Manukhina
- School of Medical Biology, South Ural State University, Chelyabinsk, Russian Federation.,Laboratory for Regulatory Mechanisms of Stress and Adaptation, Institute of General Pathology and Pathophysiology, Moscow, Russian Federation.,Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| | - Vadim E Tseilikman
- School of Medical Biology, South Ural State University, Chelyabinsk, Russian Federation
| | - Maria V Komelkova
- School of Medical Biology, South Ural State University, Chelyabinsk, Russian Federation
| | - Maxim S Lapshin
- School of Medical Biology, South Ural State University, Chelyabinsk, Russian Federation
| | - Anna V Goryacheva
- Laboratory for Regulatory Mechanisms of Stress and Adaptation, Institute of General Pathology and Pathophysiology, Moscow, Russian Federation
| | - Marina V Kondashevskaya
- Laboratory for Immunomorphology of Inflammation, Research Institute of Human Morphology, Moscow, Russian Federation
| | - Vladimir A Mkhitarov
- Laboratory for Immunomorphology of Inflammation, Research Institute of Human Morphology, Moscow, Russian Federation
| | - Svetlana S Lazuko
- Department of Normal Physiology, Vitebsk State Medical University, Vitebsk, Republic of Belarus
| | - Olga B Tseilikman
- School of Medical Biology, South Ural State University, Chelyabinsk, Russian Federation.,School of Basic Medicine, Chelyabinsk State University, Chelyabinsk, Russian Federation
| | - Alexey P Sarapultsev
- School of Medical Biology, South Ural State University, Chelyabinsk, Russian Federation.,Laboratory of Immunopathophysiology, Institute of Immunology and Physiology of RAS, Ekaterinburg, Russian Federation
| | - Yulia A Dmitrieva
- School of Medical Biology, South Ural State University, Chelyabinsk, Russian Federation
| | - Viktor K Strizhikov
- Department of Morphology and Histology, South Ural State Agricultural University, Troitsk, Russian Federation
| | - Olga P Kuzhel
- Department of Normal Physiology, Vitebsk State Medical University, Vitebsk, Republic of Belarus
| | - H Fred Downey
- School of Medical Biology, South Ural State University, Chelyabinsk, Russian Federation.,Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| |
Collapse
|
33
|
Jiang L, Shen X, Dun Y, Xie M, Fu S, Zhang W, Qiu L, Ripley-Gonzalez JW, Liu S. Exercise combined with trimetazidine improves anti-fatal stress capacity through enhancing autophagy and heat shock protein 70 of myocardium in mice. Int J Med Sci 2021; 18:1680-1686. [PMID: 33746584 PMCID: PMC7976563 DOI: 10.7150/ijms.53899] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 01/06/2021] [Indexed: 12/26/2022] Open
Abstract
Background: Anti-stress capacity is important to resist the occurrence of adverse events. To observe the effects of exercise, trimetazidine alone or combined on the anti-stress capacity of mice, and further explore its potential mechanism. Methods: Forty-four C57BL/6 male mice aged 8 weeks were randomly divided into four groups (n=11 for each group): control group (group C), exercise group (group E), trimetazidine group (group T), exercise combined with trimetazidine group (group TE). After the intervention, each group was randomly subdivided into the exhaustive exercise (EE, n=6) and the non-EE (n=5) subgroups. The mice in the EE-subgroup underwent EE. Mice were sacrificed 12 hours later after EE. The myocardial ultrastructure and autophagosomes were observed under an electron microscope. The expression of autophagy-related proteins: BNIP3, LC3-II, and P62 were analyzed and the heat shock protein 70 mRNA transcription and protein expression were also investigated. Results: Exercise or trimetazidine increased the expression of BNIP3, LC3-II, and heat shock protein 70, decreased the expression of P62 pre- and post-EE while the combination has the synergistic effect. Conclusion: Exercise and trimetazidine, alone or combined enhanced the anti-stress capacity of mice significantly. The underlying mechanism may be associated with the promotion of autography and the expression of heat shock protein 70.
Collapse
Affiliation(s)
- Lingjun Jiang
- Division of Cardiac Rehabilitation, Department of Physical Medicine & Rehabilitation, Xiangya Hospital Central South University, Changsha, Hunan 410008, P.R China.,Division of Sport and Rehabilitation Medicine, University Hospital Ulm, Parkstr. 11, 89075, Ulm, Germany
| | - Xuanlin Shen
- Department of Rehabilitation, The Affiliated Changshu Hospital of Xuzhou Medical University, Changshu, Jiangsu 215500, P.R China
| | - Yaoshan Dun
- Division of Cardiac Rehabilitation, Department of Physical Medicine & Rehabilitation, Xiangya Hospital Central South University, Changsha, Hunan 410008, P.R China
| | - Murong Xie
- Division of Cardiac Rehabilitation, Department of Physical Medicine & Rehabilitation, Xiangya Hospital Central South University, Changsha, Hunan 410008, P.R China
| | - Siqian Fu
- Division of Cardiac Rehabilitation, Department of Physical Medicine & Rehabilitation, Xiangya Hospital Central South University, Changsha, Hunan 410008, P.R China
| | - Wenliang Zhang
- Division of Cardiac Rehabilitation, Department of Physical Medicine & Rehabilitation, Xiangya Hospital Central South University, Changsha, Hunan 410008, P.R China
| | - Ling Qiu
- Division of Cardiac Rehabilitation, Department of Physical Medicine & Rehabilitation, Xiangya Hospital Central South University, Changsha, Hunan 410008, P.R China
| | - Jeffrey W Ripley-Gonzalez
- Division of Cardiac Rehabilitation, Department of Physical Medicine & Rehabilitation, Xiangya Hospital Central South University, Changsha, Hunan 410008, P.R China
| | - Suixin Liu
- Division of Cardiac Rehabilitation, Department of Physical Medicine & Rehabilitation, Xiangya Hospital Central South University, Changsha, Hunan 410008, P.R China
| |
Collapse
|
34
|
Ellis BW, Traktuev DO, Merfeld-Clauss S, Can UI, Wang M, Bergeron R, Zorlutuna P, March KL. Adipose stem cell secretome markedly improves rodent heart and human induced pluripotent stem cell-derived cardiomyocyte recovery from cardioplegic transport solution exposure. STEM CELLS (DAYTON, OHIO) 2020; 39:170-182. [PMID: 33159685 DOI: 10.1002/stem.3296] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 10/18/2020] [Indexed: 12/21/2022]
Abstract
Heart transplantation is a life-saving therapy for end-stage organ failure. Organ deterioration during transportation limits storage to 4 hours, limiting hearts available. Approaches ameliorating organ damage could increase the number of hearts acceptable for transplantation. Prior studies show that adipose-derived stem/stromal cell secretome (ASC-S) rescues tissues from postischemic damage in vivo. This study tested whether ASC-S preserved the function of mouse hearts and human induced pluripotent stem cell-derived cardiomyocytes (iCM) exposed to organ transportation and transplantation conditions. Hearts were subjected to cold University of Wisconsin (UW) cardioplegic solution ± ASC-S for 6 hours followed by analysis using the Langendorff technique. In parallel, the effects of ASC-S on the recovery of iCM from UW solution were examined when provided either during or after cold cardioplegia. Exposure of hearts and iCM to UW deteriorated contractile activity and caused cell apoptosis, worsening in iCM as a function of exposure time; these were ameliorated by augmenting with ASC-S. Silencing of superoxide dismutase 3 and catalase expression prior to secretome generation compromised the ASC-S cardiomyocyte-protective effects. In this study, a novel in vitro iCM model was developed to complement a rodent heart model in assessing efficacy of approaches to improve cardiac preservation. ASC-S displays strong cardioprotective activity on iCM either with or following cold cardioplegia. This effect is associated with ASC-S-mediated cellular clearance of reactive oxygen species. The effect of ASC-S on the temporal recovery of iCM function supports the possibility of lengthening heart storage by augmenting cardioplegic transport solution with ASC-S, expanding the pool of hearts for transplantation.
Collapse
Affiliation(s)
- Bradley W Ellis
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, Indiana, USA
| | - Dmitry O Traktuev
- Division of Cardiovascular Medicine and Center for Regenerative Medicine, University of Florida, Gainesville, Florida, USA.,Malcom Randall Veterans' Affairs Medical Center, Gainesville, Florida, USA
| | - Stephanie Merfeld-Clauss
- Division of Cardiovascular Medicine and Center for Regenerative Medicine, University of Florida, Gainesville, Florida, USA.,Malcom Randall Veterans' Affairs Medical Center, Gainesville, Florida, USA
| | - Uryan Isik Can
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana, USA
| | - Meijing Wang
- The Division of Cardiothoracic Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Ray Bergeron
- Division of Cardiovascular Medicine and Center for Regenerative Medicine, University of Florida, Gainesville, Florida, USA
| | - Pinar Zorlutuna
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, Indiana, USA.,Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana, USA
| | - Keith L March
- Division of Cardiovascular Medicine and Center for Regenerative Medicine, University of Florida, Gainesville, Florida, USA.,Malcom Randall Veterans' Affairs Medical Center, Gainesville, Florida, USA
| |
Collapse
|
35
|
The Crosstalk of Adipose-Derived Stem Cells (ADSC), Oxidative Stress, and Inflammation in Protective and Adaptive Responses. Int J Mol Sci 2020; 21:ijms21239262. [PMID: 33291664 PMCID: PMC7730805 DOI: 10.3390/ijms21239262] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/01/2020] [Accepted: 12/01/2020] [Indexed: 02/08/2023] Open
Abstract
The potential use of stem cell-based therapies for the repair and regeneration of various tissues and organs is a major goal in repair medicine. Stem cells are classified by their potential to differentiate into functional cells. Compared with other sources, adipose-derived stem cells (ADSCs) have the advantage of being abundant and easy to obtain. ADSCs are considered to be tools for replacing, repairing, and regenerating dead or damaged cells. The capacity of ADSCs to maintain their properties depends on the balance of complex signals in their microenvironment. Their properties and the associated outcomes are in part regulated by reactive oxygen species, which mediate the oxidation-reduction state of cells as a secondary messenger. ADSC therapy has demonstrated beneficial effects, suggesting that secreted factors may provide protection. There is evidence that ADSCs secrete a number of cytokines, growth factors, and antioxidant factors into their microenvironment, thus regulating intracellular signaling pathways in neighboring cells. In this review, we introduce the roles of ADSCs in the protection of cells by modulating inflammation and immunity, and we develop their potential therapeutic properties.
Collapse
|
36
|
Yang Z, Zhang Q, Yu H, Du H, Li L, He Y, Zhu S, Li C, Zhang S, Luo B, Gao Y. Genetic association study of a novel indel polymorphism in HSPA1B with the risk of sudden cardiac death in the Chinese populations. Forensic Sci Int 2020; 318:110637. [PMID: 33309992 DOI: 10.1016/j.forsciint.2020.110637] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 10/16/2020] [Accepted: 11/29/2020] [Indexed: 12/12/2022]
Abstract
Sudden cardiac death (SCD) has become a global problem due to its high mortality in the general population. Identification of genetic factors predisposed to SCD is significant since it enables genetic testing that would contribute to molecular diagnosis and risk stratification of SCD. It has been reported that HSPA1B gene mutations might be related with SCD. In this study, based on candidate-gene-based approach and systematic screening strategy, a 5-base pair insertion/deletion (Indel) polymorphism (rs3036297) in the 3'UTR of HSPA1B gene was selected to perform a case-control study aiming to investigate its association with SCD susceptibility in Chinese populations. Logistic regression analysis showed that the insertion allele of rs3036297 was correlated with a comparatively lower risk for SCD [OR=0.58, 95%CI=0.43-0.77, P=1.28×10-4] compared with the deletion allele. Luciferase activity assay indicated that HSPA1B expression could be regulated by rs3036297 through interfering binding with miR-134-5p. Furthermore, analysis of database from Haploreg and GTEx revealed that the rs3036297 variant was involved in potential cis-regulatory element with the promoter of HLA-DRB5 through a long-range interaction and the deletion allele of rs3036297 increased HLA-DRB5 expression. In conclusion, the rs3036297 variant may regulate HSPA1B expression via a mechanism of miRNA binding and HLA-DRB5 expression via a long-range promoter interaction through which contributed to SCD susceptibility. Therefore, rs3036297 would be a potential marker for molecular diagnosis and genetic counseling of SCD.
Collapse
Affiliation(s)
- Zhenzhen Yang
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, China; Institute of Forensic Sciences, Henan University of Economics and Law, Zhengzhou, China
| | - Qing Zhang
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, China
| | - Huan Yu
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, China
| | - Hailin Du
- Nanjing Red Cross Blood Center, Nanjing, China
| | - Lijuan Li
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, China
| | - Yan He
- Department of Epidemiology, Medical College of Soochow University, Suzhou, China
| | - Shaohua Zhu
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, China
| | - Chengtao Li
- Shanghai Key Laboratory of Forensic Medicine, Institute of Forensic Sciences, Ministry of Justice, Shanghai, China
| | - Suhua Zhang
- Shanghai Key Laboratory of Forensic Medicine, Institute of Forensic Sciences, Ministry of Justice, Shanghai, China
| | - Bin Luo
- Department of Forensic Pathology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
| | - Yuzhen Gao
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, China.
| |
Collapse
|
37
|
Wu J, Chen S, Liu Y, Liu Z, Wang D, Cheng Y. Therapeutic perspectives of heat shock proteins and their protein-protein interactions in myocardial infarction. Pharmacol Res 2020; 160:105162. [DOI: 10.1016/j.phrs.2020.105162] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/03/2020] [Accepted: 08/17/2020] [Indexed: 12/26/2022]
|
38
|
Wang L, Fu Y, Yu B, Jiang X, Liu H, Liu J, Zha B, Chu Y. HSP70, a Novel Regulatory Molecule in B Cell-Mediated Suppression of Autoimmune Diseases. J Mol Biol 2020; 433:166634. [PMID: 32860772 DOI: 10.1016/j.jmb.2020.08.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 08/12/2020] [Accepted: 08/21/2020] [Indexed: 12/12/2022]
Abstract
B cells have recently emerged as playing regulatory role in autoimmune diseases. We have previously demonstrated that human peripheral blood CD19+CD24hiCD27+ B cells have regulatory function both in healthy donors and in patients with autoimmune disease. However, the mechanism of this regulation is still not fully understood. In this study, microarrays were utilized to compare gene expression of CD19+CD24hiCD27+ B cells (regulatory B cells, Bregs) with CD19+CD24loCD27- B cells (non-Bregs) in human peripheral blood. We found that heat shock protein 70 (HSP70) expression was significantly upregulated in Bregs. In vitro studies explored that HSP70 inhibition impaired the regulatory function of peripheral blood Bregs. In mouse models of autoimmune disease, using HSP70-deficient mice or HSP70 inhibitors, Bregs suppressed effector cells and rescued disease-associated phenotypes that were dependent on HSP70. Mechanistically, Bregs secreted HSP70, directly suppressing effector cells, such as T effect cells. These findings reveal that HSP70 is a novel factor that modulates Breg function and suggest that enhancing Breg-mediated production of HSP70 could be a viable therapy for autoimmune disease.
Collapse
Affiliation(s)
- Luman Wang
- Department of Immunology, School of Basic Medical Sciences, and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Endocrinology and Metabolism, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China; Biotherapy Research Center, Fudan University, Shanghai 200032, China
| | - Ying Fu
- Department of Immunology, School of Basic Medical Sciences, and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Baichao Yu
- Department of Immunology, School of Basic Medical Sciences, and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Xuechao Jiang
- Department of Immunology, School of Basic Medical Sciences, and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Hongchun Liu
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jun Liu
- Department of Endocrinology and Metabolism, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Bingbing Zha
- Department of Endocrinology and Metabolism, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China.
| | - Yiwei Chu
- Department of Immunology, School of Basic Medical Sciences, and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Biotherapy Research Center, Fudan University, Shanghai 200032, China.
| |
Collapse
|
39
|
Bochaton T, Paccalet A, Jeantet P, Crola Da Silva C, Cartier R, Prieur C, Jossan C, Bonnefoy-Cudraz E, Mewton N, Ovize M. Heat Shock Protein 70 as a Biomarker of Clinical Outcomes After STEMI. J Am Coll Cardiol 2020; 75:122-124. [PMID: 31918818 DOI: 10.1016/j.jacc.2019.10.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/08/2019] [Accepted: 10/22/2019] [Indexed: 01/19/2023]
|
40
|
Saber M, Pathak KV, McGilvrey M, Garcia-Mansfield K, Harrison JL, Rowe RK, Lifshitz J, Pirrotte P. Proteomic analysis identifies plasma correlates of remote ischemic conditioning in the context of experimental traumatic brain injury. Sci Rep 2020; 10:12989. [PMID: 32737368 PMCID: PMC7395133 DOI: 10.1038/s41598-020-69865-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 07/20/2020] [Indexed: 12/02/2022] Open
Abstract
Remote ischemic conditioning (RIC), transient restriction and recirculation of blood flow to a limb after traumatic brain injury (TBI), can modify levels of pathology-associated circulating protein. This study sought to identify TBI-induced molecular alterations in plasma and whether RIC would modulate protein and metabolite levels at 24 h after diffuse TBI. Adult male C57BL/6 mice received diffuse TBI by midline fluid percussion or were sham-injured. Mice were assigned to treatment groups 1 h after recovery of righting reflex: sham, TBI, sham RIC, TBI RIC. Nine plasma metabolites were significantly lower post-TBI (six amino acids, two acylcarnitines, one carnosine). RIC intervention returned metabolites to sham levels. Using proteomics analysis, twenty-four putative protein markers for TBI and RIC were identified. After application of Benjamini–Hochberg correction, actin, alpha 1, skeletal muscle (ACTA1) was found to be significantly increased in TBI compared to both sham groups and TBI RIC. Thus, identified metabolites and proteins provide potential biomarkers for TBI and therapeutic RIC in order to monitor disease progression and therapeutic efficacy.
Collapse
Affiliation(s)
- Maha Saber
- BARROW Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, USA.,Child Health, University of Arizona College of Medicine-Phoenix, 425 N 5th street ABC1, Phoenix, AZ, USA
| | - Khyati V Pathak
- Collaborative Center for Translational Mass Spectrometry, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Marissa McGilvrey
- Collaborative Center for Translational Mass Spectrometry, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Krystine Garcia-Mansfield
- Collaborative Center for Translational Mass Spectrometry, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Jordan L Harrison
- BARROW Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, USA.,Child Health, University of Arizona College of Medicine-Phoenix, 425 N 5th street ABC1, Phoenix, AZ, USA
| | - Rachel K Rowe
- BARROW Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, USA.,Child Health, University of Arizona College of Medicine-Phoenix, 425 N 5th street ABC1, Phoenix, AZ, USA.,Phoenix VA Health Care System, Phoenix, AZ, USA
| | - Jonathan Lifshitz
- BARROW Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, USA. .,Child Health, University of Arizona College of Medicine-Phoenix, 425 N 5th street ABC1, Phoenix, AZ, USA. .,Phoenix VA Health Care System, Phoenix, AZ, USA.
| | - Patrick Pirrotte
- Collaborative Center for Translational Mass Spectrometry, Translational Genomics Research Institute, Phoenix, AZ, USA
| |
Collapse
|
41
|
Li J, Sun D, Li Y. Novel Findings and Therapeutic Targets on Cardioprotection of Ischemia/ Reperfusion Injury in STEMI. Curr Pharm Des 2020; 25:3726-3739. [PMID: 31692431 DOI: 10.2174/1381612825666191105103417] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 10/30/2019] [Indexed: 12/19/2022]
Abstract
Acute ST-segment elevation myocardial infarction (STEMI) remains a leading cause of morbidity and mortality around the world. A large number of STEMI patients after the infarction gradually develop heart failure due to the infarcted myocardium. Timely reperfusion is essential to salvage ischemic myocardium from the infarction, but the restoration of coronary blood flow in the infarct-related artery itself induces myocardial injury and cardiomyocyte death, known as ischemia/reperfusion injury (IRI). The factors contributing to IRI in STEMI are complex, and microvascular obstruction, inflammation, release of reactive oxygen species, myocardial stunning, and activation of myocardial cell death are involved. Therefore, additional cardioprotection is required to prevent the heart from IRI. Although many mechanical conditioning procedures and pharmacological agents have been identified as effective cardioprotective approaches in animal studies, their translation into the clinical practice has been relatively disappointing due to a variety of reasons. With new emerging data on cardioprotection in STEMI over the past few years, it is mandatory to reevaluate the effectiveness of "old" cardioprotective interventions and highlight the novel therapeutic targets and new treatment strategies of cardioprotection.
Collapse
Affiliation(s)
- Jianqiang Li
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Danghui Sun
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Yue Li
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| |
Collapse
|
42
|
Islam M, Diwan A, Mani K. Come Together: Protein Assemblies, Aggregates and the Sarcostat at the Heart of Cardiac Myocyte Homeostasis. Front Physiol 2020; 11:586. [PMID: 32581848 PMCID: PMC7287178 DOI: 10.3389/fphys.2020.00586] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/11/2020] [Indexed: 12/13/2022] Open
Abstract
Homeostasis in vertebrate systems is contingent on normal cardiac function. This, in turn, depends on intricate protein-based cellular machinery, both for contractile function, as well as, durability of cardiac myocytes. The cardiac small heat shock protein (csHsp) chaperone system, highlighted by αB-crystallin (CRYAB), a small heat shock protein (sHsp) that forms ∼3–5% of total cardiac mass, plays critical roles in maintaining proteostatic function via formation of self-assembled multimeric chaperones. In this work, we review these ancient proteins, from the evolutionarily preserved role of homologs in protists, fungi and invertebrate systems, as well as, the role of sHsps and chaperones in maintaining cardiac myocyte structure and function. We propose the concept of the “sarcostat” as a protein quality control mechanism in the sarcomere. The roles of the proteasomal and lysosomal proteostatic network, as well as, the roles of the aggresome, self-assembling protein complexes and protein aggregation are discussed in the context of cardiac myocyte homeostasis. Finally, we will review the potential for targeting the csHsp system as a novel therapeutic approach to prevent and treat cardiomyopathy and heart failure.
Collapse
Affiliation(s)
- Moydul Islam
- Division of Cardiology, Washington University School of Medicine, St. Louis, MO, United States.,Center for Cardiovascular Research, Washington University School of Medicine, St. Louis, MO, United States.,Department of Chemistry, Washington University in St. Louis, St. Louis, MO, United States
| | - Abhinav Diwan
- Division of Cardiology, Washington University School of Medicine, St. Louis, MO, United States.,Center for Cardiovascular Research, Washington University School of Medicine, St. Louis, MO, United States.,John Cochran Veterans Affairs Medical Center, St. Louis, MO, United States
| | - Kartik Mani
- Division of Cardiology, Washington University School of Medicine, St. Louis, MO, United States.,Center for Cardiovascular Research, Washington University School of Medicine, St. Louis, MO, United States.,John Cochran Veterans Affairs Medical Center, St. Louis, MO, United States
| |
Collapse
|
43
|
Zi C, Zhang C, Yang Y, Ma J. Penehyclidine hydrochloride protects against anoxia/reoxygenation injury in cardiomyocytes through ATP-sensitive potassium channels, and the Akt/GSK-3β and Akt/mTOR signaling pathways. Cell Biol Int 2020; 44:1353-1362. [PMID: 32125033 DOI: 10.1002/cbin.11329] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/01/2020] [Indexed: 12/13/2022]
Abstract
Penehyclidine hydrochloride (PHC) can protect against myocardial ischemia/reperfusion (I/R) injury. However, the possible mechanisms of PHC in anoxia/reoxygenation (A/R)-induced injury in H9c2 cells remain unclear. In the present study, H9c2 cells were pretreated with PI3K/Akt inhibitor LY294002, ATP-sensitive K+ (KATP) channel blocker 5-hydroxydecanoate (5-HD), PHC, or KATP channel opener diazoxide (DZ) before subjecting to A/R injury. Cell viability and cell apoptosis were determined by cell counting kit-8 assay and annexin V/PI assay, respectively. Myocardial injury was evaluated by measuring creatine kinase (CK) and lactate dehydrogenase (LDH) activities. Intracellular Ca2+ levels, reactive oxygen species (ROS) generation, mitochondrial membrane potential (ΔΨm ), and mitochondrial permeability transition pore (mPTP) were measured. The levels of cytoplasmic/mitochondrial cytochrome c (Cyt-C), Bax, Bcl-2, cleaved caspase-3, KATP channel subunits (Kir6.2 and SUR2A), and the members of the Akt/GSK-3β and Akt/mTOR signaling pathways were determined by western blotting. We found that PHC preconditioning alleviated A/R-induced cell injury by increasing cell viability, reducing CK and LDH activities, and inhibiting cell apoptosis. In addition, PHC preconditioning ameliorated intracellular Ca2+ overload and ROS production, accompanied by inhibition of both mPTP opening and Cyt-C release into cytoplasm, and maintenance of ΔΨm . Moreover, PHC preconditioning activated mitochondrial KATP channels, and modulated the Akt/GSK-3β and Akt/mTOR signaling pathways. Similar effects were observed upon treatment with DZ. Pretreatment with LY294002 or 5-HD blocked the beneficial effects of PHC. These results suggest that the protective effects of PHC preconditioning on A/R injury may be related to mitochondrial KATP channels, as well as the Akt/GSK-3β and Akt/mTOR signaling pathways.
Collapse
Affiliation(s)
- Congna Zi
- Department of Anesthesiology, Beijing Anzhen Hospital, Beijing Institute of Heart Lung and Blood Vessel Diseases, Capital Medical University, Beijing, 100029, PR China.,Department of Anesthesiology, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, PR China
| | - Chunlei Zhang
- Department of Anesthesiology, Beijing Anzhen Hospital, Beijing Institute of Heart Lung and Blood Vessel Diseases, Capital Medical University, Beijing, 100029, PR China
| | - Yanli Yang
- Department of Anesthesiology, Beijing Anzhen Hospital, Beijing Institute of Heart Lung and Blood Vessel Diseases, Capital Medical University, Beijing, 100029, PR China
| | - Jun Ma
- Department of Anesthesiology, Beijing Anzhen Hospital, Beijing Institute of Heart Lung and Blood Vessel Diseases, Capital Medical University, Beijing, 100029, PR China
| |
Collapse
|
44
|
Verdesoto Rodriguez MC, Spenceley N, Ilina M, Danton MH. A Prospective Randomized Blinded Trial of Remote Ischemic Preconditioning in Children Undergoing Cardiac Surgery. Semin Thorac Cardiovasc Surg 2020; 32:313-322. [DOI: 10.1053/j.semtcvs.2019.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 12/11/2019] [Indexed: 02/06/2023]
|
45
|
Konstantinova EV, Chipigina NS, Shurdumova MH, Kovalenko E, Sapozhnikov AM. Heat Shock Protein 70 kDa as a Target for Diagnostics and Therapy of Cardiovascular and Cerebrovascular Diseases. Curr Pharm Des 2019; 25:710-714. [DOI: 10.2174/1381612825666190329123924] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 03/25/2019] [Indexed: 01/12/2023]
Abstract
Acute focal ischemia is a main factor of pathogenesis of a number of widespread cardiovascular and
cerebrovascular diseases, in particular, myocardial infarction and ischemic stroke. It is known that under the
conditions of ischemia expression of intracellular heat shock proteins (HSPs), especially HSP70, grows greatly
irrespective of the cell type. This stress-induced cell response is connected with cytoprotective properties of
HSP70. The protective functions of HSP70 contribute to the cell survival under adverse conditions and inhibit
development of programmed cell death. It was shown, that the level of HSP70 increases in cardiomyocytes and
brain cells in response to ischemia, that was connected with cardioprotective and neuroprotective effects. Besides,
in recent years, clinical studies of HSP70 have demonstrated elevated level of HSP70 in peripheral blood lymphocytes
in groups of patients with ischemic stroke and myocardial infarction. This review indicates that HSP70
can serve as a target for developing new approaches to diagnostics and therapy of cardiovascular and cerebrovascular
diseases.
Collapse
Affiliation(s)
- Ekaterina V. Konstantinova
- Pirogov Russian National Research Medical University, Ulitsa Ostrovityanova, 1, Moskva, Russian Federation
| | - Natalia S. Chipigina
- Pirogov Russian National Research Medical University, Ulitsa Ostrovityanova, 1, Moskva, Russian Federation
| | - Marina H. Shurdumova
- Pirogov Russian National Research Medical University, Ulitsa Ostrovityanova, 1, Moskva, Russian Federation
| | - E.I. Kovalenko
- M.M. Shemyakin-Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Federation
| | | |
Collapse
|
46
|
Abstract
IMPACT STATEMENT Over the past several decades, ex vivo perfusion has emerged as a promising technology for the assessment, preservation, and recovery of donor organs. Many exciting pre-clinical findings have now been translated to clinical use, and successful transplantation following ex vivo perfusion has been achieved for heart, lung, and liver. While machine perfusion provides distinct advantages over traditional cold preservation, many challenges remain, including that of long-term (multi-day) ex vivo support. Here, we provide an overview of the current status of ex vivo machine perfusion in the pre-clinical and clinical setting and share our perspective on the future direction of the field.
Collapse
Affiliation(s)
- Meghan Pinezich
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Gordana Vunjak-Novakovic
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
- Department of Medicine, Columbia University, New York NY 10032, USA
| |
Collapse
|
47
|
Jensen RV, Andreadou I, Hausenloy DJ, Bøtker HE. The Role of O-GlcNAcylation for Protection against Ischemia-Reperfusion Injury. Int J Mol Sci 2019; 20:ijms20020404. [PMID: 30669312 PMCID: PMC6359045 DOI: 10.3390/ijms20020404] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/12/2019] [Accepted: 01/15/2019] [Indexed: 01/13/2023] Open
Abstract
Ischemia reperfusion injury (IR injury) associated with ischemic heart disease contributes significantly to morbidity and mortality. O-linked β-N-acetylglucosamine (O-GlcNAc) is a dynamic posttranslational modification that plays an important role in numerous biological processes, both in normal cell functions and disease. O-GlcNAc increases in response to stress. This increase mediates stress tolerance and cell survival, and is protective. Increasing O-GlcNAc is protective against IR injury. Experimental cellular and animal models, and also human studies, have demonstrated that protection against IR injury by ischemic preconditioning, and the more clinically applicable remote ischemic preconditioning, is associated with increases in O-GlcNAc levels. In this review we discuss how the principal mechanisms underlying tissue protection against IR injury and the associated immediate elevation of O-GlcNAc may involve attenuation of calcium overload, attenuation of mitochondrial permeability transition pore opening, reduction of endoplasmic reticulum stress, modification of inflammatory and heat shock responses, and interference with established cardioprotective pathways. O-GlcNAcylation seems to be an inherent adaptive cytoprotective response to IR injury that is activated by mechanical conditioning strategies.
Collapse
Affiliation(s)
- Rebekka Vibjerg Jensen
- Department of Cardiology, Aarhus University Hospital, Skejby, Palle Juul-Jensens Blvd. 99, 8200 Aarhus N, Denmark.
| | - Ioanna Andreadou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens Panepistimiopolis, 15771 Zografou, Greece.
| | - Derek J Hausenloy
- Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore 169857, Singapore.
- National Heart Research Institute Singapore, National Heart Centre, Singapore 169609, Singapore.
- Yong Loo Lin School of Medicine, National University Singapore, Singapore 119228, Singapore.
- The Hatter Cardiovascular Institute, University College London, London WC1E 6HX, UK.
- The National Institute of Health Research University College London Hospitals Biomedical Research Centre, Research & Development, London W1T 7DN, UK.
- Tecnologico de Monterrey, Centro de Biotecnologia-FEMSA, Monterrey 64849, Mexico.
| | - Hans Erik Bøtker
- Department of Cardiology, Aarhus University Hospital, Skejby, Palle Juul-Jensens Blvd. 99, 8200 Aarhus N, Denmark.
| |
Collapse
|