1
|
She R, Xu P. Mechanism of curcumin in the prevention and treatment of oral submucosal fibrosis and progress in clinical application research. BDJ Open 2024; 10:82. [PMID: 39455570 PMCID: PMC11512022 DOI: 10.1038/s41405-024-00268-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/10/2024] [Accepted: 09/18/2024] [Indexed: 10/28/2024] Open
Abstract
INTRODUCTION Oral submucosal fibrosis is a potentially life-threatening oral disease that significantly impacts physiological functions such as speech and swallowing while also diminishing the quality of life for patients. Currently, the mainstream treatment for oral submucosal fibrosis in clinical practice involves invasive glucocorticoid drugs such as injection therapy. However, this method often leads to intraoperative pain, anxiety, fear, and poor medical experience due to associated side effects. METHODS There is an urgent need to actively explore new drugs and relatively noninvasive approaches for the treatment of oral submucosal fibrosis in order to enhance patients' medical experience and compliance. This has become a focal point of attention in clinical research. After conducting an extensive literature search, it was discovered that curcumin, a natural polyphenolic compound, exhibits potent anti-tumor, anti-inflammatory, antioxidant, anti-metastatic and anti-angiogenic properties. Moreover, curcumin holds significant clinical potential in the prevention and treatment of various diseases such as oral submucosal fibrosis. CONCLUSION This review presents a comprehensive elaboration encompassing the action mechanisms, biological activity, potential applications, and clinical characteristics of curcumin in the management of oral submucosal fibrosis, aiming to provide diagnostic insights and novel therapeutic perspectives for its prevention and treatment.
Collapse
Affiliation(s)
- Rong She
- Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, 570208, China
| | - Pu Xu
- Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, 570208, China.
| |
Collapse
|
2
|
Hu Y, Miao Y, Zhang Y, Wang X, Liu X, Zhang W, Deng D. Co-Assembled Binary Polyphenol Natural Products for the Prevention and Treatment of Radiation-Induced Skin Injury. ACS NANO 2024; 18:27557-27569. [PMID: 39329362 DOI: 10.1021/acsnano.4c08508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Radiation therapy, a fundamental treatment for tumors, is often accompanied by radiation-induced skin injury (RISI). Excessive production of reactive oxygen species (ROS) and subsequent inflammation are two key factors in RISI development that will cause skin injury and affect radiotherapy. Herein, the co-assembled binary polyphenol natural products inspired the development of a dual-functional cascade microneedle system for prevention and treatment of RISI. Specifically, epigallocatechin gallate (EGCG) and curcumin (CUR) were co-assembled into nanoparticles (CEPG) by intermolecular interactions and then incorporated with catalase (CAT) to achieve a cascade system in the microneedles (this microneedle system was conducive to penetrate into the epidermal keratinocytes where RISI had the greatest impact). When using microneedles, the tip dissolved rapidly and delivered CEPG and CAT into the dermis, where CEPG NPs were able to respond to ROS and decompose into EGCG and CUR. More importantly, EGCG and CAT formed a cascade that converts superoxide anions into water step-by-step, which can reduce cell damage caused by free radicals in the early stages of radiation for prevention; meanwhile, CUR inhibited inflammatory pathways, achieving the treatment of skin inflammation in the post-radiotherapy period. These explorations broaden the strategy for the application of natural products in RISI.
Collapse
Affiliation(s)
- Yanwei Hu
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Yuhang Miao
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Yan Zhang
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Xin Wang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Xin Liu
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Wei Zhang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Dawei Deng
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
3
|
Sun N, Wang Z, Jiang H, Wang B, Du K, Huang C, Wang C, Yang T, Wang Y, Liu Y, Wang L. Angelica sinensis polysaccharides promote extramedullary stress erythropoiesis via ameliorating splenic glycolysis and EPO/STAT5 signaling-regulated macrophages. J Mol Histol 2024; 55:661-673. [PMID: 38969952 DOI: 10.1007/s10735-024-10219-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/30/2024] [Indexed: 07/07/2024]
Abstract
Conventional treatments exhibit various side effects on chronic stress anemia. Extramedullary stress erythropoiesis is a compensatory mechanism, which may effectively counteract anemia. Angelica sinensis polysaccharides (ASP) are the main active ingredient found in Angelica sinensis and exhibit antioxidant and hematopoietic effects. However, the effects of ASP on extramedullary stress erythropoiesis remain to be unclear. Here, we demonstrated the protective effects of ASP on chemotherapeutic drug 5-fluorouracil (5-FU)-induced decline in peripheral blood parameters such as RBC counts, HGB, HCT, and MCH, and the decline of BFU-E colony enumeration in the bone marrow. Meanwhile, ASP promoted extramedullary erythropoiesis, increasing cellular proliferation in the splenic red pulp and cyclin D1 protein expression, abrogating phase G0/G1 arrest of c-kit+ cells in mouse spleen. RT-qPCR and immunohistochemistry further revealed that ASP increased macrophage chemokine Ccl2 genetic expression and the number of F4/80+ macrophages in the spleen. The colony-forming assay showed that ASP significantly increased splenic BFU-E. Furthermore, we found that ASP facilitated glycolytic genes including Hk2, Pgk1, Pkm, Pdk1, and Ldha via PI3K/Akt/HIF2α signaling in the spleen. Subsequently, ASP declined pro-proinflammatory factor IL-1β, whereas upregulating erythroid proliferation-associated genes Gdf15, Bmp4, Wnt2b, and Wnt8a. Moreover, ASP facilitated EPO/STAT5 signaling in splenic macrophages, thus enhancing erythroid lineage Gata2 genetic expression. Our study indicated that ASP may improve glycolysis, promoting the activity of splenic macrophages, subsequently promoting erythroid progenitor cell expansion. Additionally, ASP facilitates erythroid differentiation via macrophage-mediated EpoR/STAT5 signaling; suggesting it might be a promising strategy for stress anemia treatment.
Collapse
Affiliation(s)
- Nianci Sun
- Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, China
- Department of Histology and Embryology, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Ziling Wang
- Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, China
- Department of Histology and Embryology, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Honghui Jiang
- Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, China
- Department of Histology and Embryology, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Biyao Wang
- Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, China
- Department of Histology and Embryology, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Kunhang Du
- Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, China
- Department of Histology and Embryology, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Caihong Huang
- Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, China
- Department of Histology and Embryology, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Cheng Wang
- Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, China
- Department of Histology and Embryology, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Ting Yang
- Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, China
- Department of Histology and Embryology, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Yaping Wang
- Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, China
- Department of Histology and Embryology, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Yafei Liu
- Chongqing University Jiangjin Hospital, Chongqing, China.
| | - Lu Wang
- Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, China.
- Department of Histology and Embryology, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
4
|
Wang S, Huang Y, Sun Y, Wang J, Tang X. Physiological, transcriptomic, and metabolomic analyses reveal that Pantoea sp. YSD J2 inoculation improves the accumulation of flavonoids in Cyperus esculentus L. var. sativus. Heliyon 2024; 10:e35966. [PMID: 39224290 PMCID: PMC11367128 DOI: 10.1016/j.heliyon.2024.e35966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/01/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024] Open
Abstract
Plant growth-promoting microorganisms (PGPMs), such as Pantoea sp. YSD J2, promote plant development and stress resistance, while their role in flavonoids accumulation still needs to be further understood. To investigate the complex flavonoid biosynthesis pathway of Cyperus esculentus L. var. sativus (tigernut), we compared Pantoea sp. YSD J2 inoculation (YSD J2) and water inoculation (CK) groups. YSD J2 significantly elevated the content of indole-3-acetic acid (IAA) and orientin. Furthermore, when analyzing flavonoid metabolome, YSD J2 caused increased levels of uralenol, petunidin-3-O-glucoside-5-O-arabinoside, luteolin-7-O-glucuronide-(2 → 1)-glucuronide, kaempferol-3-O-neohesperidoside, cyanidin-3-O-(2″-O-glucosyl)glucoside, kaempferol-3-O-glucuronide-7-O-glucoside, quercetin-3-O-glucoside, luteolin-7-O-glucuronide-(2 → 1)-(2″-sinapoyl)glucuronide, and quercetin-4'-O-glucoside, which further enhanced antioxidant activity. We then performed RNA-seq and LC-MS/MS, aiming to validate key genes and related flavonoid metabolites under YSD J2 inoculation, and rebuild the gene-metabolites regulatory subnetworks. Furthermore, the expression patterns of the trans cinnamate 4-monooxygenase (CYP73A), flavonol-3-O-L-rhamnoside-7-O-glucosyltransferase (UGT73C6), shikimate O-hydroxycinnamoyltransferase (HCT), chalcone isomerase (CHI), flavonol synthase (FLS), and anthocyanidin synthase (ANS) genes were confirmed by qRT-PCR. Additionally, 4 transcription factors (TF) (especially bHLH34, Cluster-37505.3) under YSD J2 inoculation are also engaged in regulating flavonoid accumulation. Moreover, the current work sheds new light on studying the regulatory effect of Pantoea sp. YSD J2 on tigernut development and flavonoid biosynthesis.
Collapse
Affiliation(s)
- Saisai Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Dongchuan Road 800, Minhang District, Shanghai, 200240, PR China
- Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Dongchuan Road 800, Minhang District, Shanghai, 200240, PR China
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Dongchuan Road 800, Minhang District, Shanghai, 200240, PR China
| | - Yanna Huang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Dongchuan Road 800, Minhang District, Shanghai, 200240, PR China
- Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Dongchuan Road 800, Minhang District, Shanghai, 200240, PR China
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Dongchuan Road 800, Minhang District, Shanghai, 200240, PR China
| | - Yu Sun
- Biotechnology Research Institute Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Beidi Road 2901, Minhang District, Shanghai, 201106, PR China
| | - Jinbin Wang
- Biotechnology Research Institute Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Beidi Road 2901, Minhang District, Shanghai, 201106, PR China
| | - Xueming Tang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Dongchuan Road 800, Minhang District, Shanghai, 200240, PR China
- Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Dongchuan Road 800, Minhang District, Shanghai, 200240, PR China
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Dongchuan Road 800, Minhang District, Shanghai, 200240, PR China
| |
Collapse
|
5
|
Yang H, Zhang H, Tian L, Guo P, Liu S, Chen H, Sun L. Curcumin attenuates lupus nephritis by inhibiting neutrophil migration via PI3K/AKT/NF-κB signalling pathway. Lupus Sci Med 2024; 11:e001220. [PMID: 39053932 DOI: 10.1136/lupus-2024-001220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/12/2024] [Indexed: 07/27/2024]
Abstract
OBJECTIVE To investigate the role of curcumin in the treatment of lupus nephritis (LN) by inhibiting the migration of neutrophils and the underlying mechanism involved. METHODS Two lupus mouse models, MRL/lpr mice and R848-treated mice, were treated with 50 mg/kg curcumin by intraperitoneal injection. H&E and Masson staining were used to estimate histopathological changes in the kidney. Immunofluorescence was used to assess the deposition of immune complexes. The expression of inflammatory factors was detected by enzyme-linked immunosorbent assay (ELISA) and real-time reverse transcription polymerase reaction (RT-PCR), and the protein expression was detected by western blotting. RESULTS We revealed the remarkable potential of curcumin in improving inflammatory conditions in both MRL/lpr mice and R848-induced lupus mice. Curcumin effectively decelerates the progression of inflammation and diminishes the infiltration of neutrophils and their release of pivotal inflammatory factors, thereby reducing inflammation in renal tissues. Mechanistically, curcumin significantly inhibits the expression of p-PI3K, p-AKT and p-NF-κB, which are upregulated by interleukin-8 to induce neutrophil migration and renal inflammation, thereby reducing neutrophil migration and the release of inflammatory factors. CONCLUSION Curcumin significantly inhibits the recruitment of neutrophils and the release of proinflammatory factors in the kidney by inhibiting the PI3K/AKT/NF-κB signalling pathway, providing new therapeutic targets and medication strategies for the treatment of LN.
Collapse
Affiliation(s)
- Hui Yang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Haiwei Zhang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital Clinical College of Xuzhou Medical University, Nanjing, Jiangsu, China
| | - Lili Tian
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Panpan Guo
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Shanshan Liu
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Hongwei Chen
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Lingyun Sun
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| |
Collapse
|
6
|
Rastegar-Pouyani N, Dongsar TS, Ataei M, Hassani S, Gumpricht E, Kesharwani P, Sahebkar A. An overview of the efficacy of inhaled curcumin: a new mode of administration for an old molecule. Expert Opin Drug Deliv 2024. [PMID: 38771504 DOI: 10.1080/17425247.2024.2358880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 03/23/2024] [Accepted: 05/20/2024] [Indexed: 05/22/2024]
Abstract
INTRODUCTION Curcumin is a polyphenol with a variety of pharmacological actions. Despite its therapeutic effects and well-known safety profile, the utility of curcumin has been limited due to its deprived physical, chemical, and pharmacokinetic profile resulting from limited solubility, durability, prompt deterioration and pitiable systemic availability. Employment of an amalgamated framework integrating the potential advantages of a nanoscaffold alongside the beneficial traits of inhalational drug delivery system beautifully bringing down the restricting attributes of intended curative interventions and further assures its clinical success. AREAS COVERED Current review discussed different application of inhalable nanocurcumin in different medical conditions. Lung diseases have been the prime field in which inhalable nanocurcumin had resulted in significant beneficial effects. Apart from this several lung protective potentials of the inhaled nanocurcumin have been discussed against severe pulmonary disorders such as pulmonary fibrosis, radiation pneumonitis and IUGR induced bronchopulmonary dysplasia. Also, application of the disclosed intervention in the clinical management of COVID-19 and Alzheimer's Disease has been discussed. EXPERT OPINION In this portion, the potential of inhalable nanocurcumin in addressing various medical conditions along with ongoing advancements in nanoencapsulation techniques and the existing challenges in transitioning from pre-clinical models to clinical practice has been summarized.
Collapse
Affiliation(s)
- Nima Rastegar-Pouyani
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Tenzin Sonam Dongsar
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Mahshid Ataei
- Toxicology and Diseases Specialty Group, Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Shokoufeh Hassani
- Toxicology and Diseases Specialty Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Eric Gumpricht
- Department of Pharmacology, Isagenix International, LLC, Gilbert, Arizona, AZ, USA
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
7
|
Ghasemzadeh Rahbardar M, Hosseinzadeh H. The ameliorative effect of turmeric (Curcuma longa Linn) extract and its major constituent, curcumin, and its analogs on ethanol toxicity. Phytother Res 2024; 38:2165-2181. [PMID: 38396341 DOI: 10.1002/ptr.8165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/09/2023] [Accepted: 02/04/2024] [Indexed: 02/25/2024]
Abstract
Ethanol toxicity is a major public health problem that can cause damage to various organs in the body by several mechanisms inducing oxidative stress, inflammation, and apoptosis. Recently, there has been a growing interest in the potential of herbal medicines as therapeutic agents for the prevention and treatment of various disorders. Turmeric (Curcuma longa) extracts and its main components including curcumin have antioxidant, anti-inflammatory, and anti-apoptotic properties. This review aims to evaluate the literature on the ameliorative effects of turmeric extracts and their main components on ethanol toxicity. The relevant studies were identified through searches of Google Scholar, PubMed, and Scopus without any time limitation. The underlying mechanisms of turmeric and curcumin were also discussed. The findings suggest that turmeric and curcumin ameliorate ethanol-induced organ damage by suppressing oxidative stress, inflammation, apoptosis, MAPK activation, TGF-β/Smad signaling pathway, hyperlipidemia, regulating hepatic enzymes, expression of SREBP-1c and PPAR-α. However, the limited clinical evidence suggests that further research is needed to determine the efficacy and safety of turmeric and curcumin in human subjects. In conclusion, the available evidence supports the potential use of turmeric and curcumin as alternative treatments for ethanol toxicity, but further high-quality studies are needed to firmly establish the clinical efficacy of the plant.
Collapse
Affiliation(s)
| | - Hossein Hosseinzadeh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
8
|
Guan Y, Liu S, Li A, Cheng W. Comparison of the efficacy among different interventions for radiodermatitis: A Bayesian network meta‑analysis of randomized controlled trials. PLoS One 2024; 19:e0298209. [PMID: 38598529 PMCID: PMC11006171 DOI: 10.1371/journal.pone.0298209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 01/20/2024] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND Radiation dermatitis (RD) is a prevalent and difficult-to-manage consequence of radiation therapy (RT). A variety of interventions have been proven effective in preventing and treating RD. However, the optimal approach remains unclear. This network meta-analysis (NMA) conducted a comparison and ranking of the effectiveness and patient-reported outcomes (PROs) of the interventions currently utilized in RD. METHODS PubMed, Web of Science, Embase, and Cochrane Library were searched to identify pertinent randomized controlled trials (RCTs) focused on the prevention and treatment of RD. The primary outcome measures included the incidence of grade≥2 RD (i.e., percentage of moist desquamation) and RD score. The secondary outcome measures encompassed patients' subjective assessment scores of pains, itching and burning sensations. RESULTS Our meta-analysis encompassed 42 studies and 4884 participants. Regarding the primary outcomes, photobiomodulation treatment (PBMT) ranked first in surface under curve cumulative ranking area (SUCRA:0.92) for reducing the incidence of grade≥2 RD. It demonstrated a significant difference when compared to Trolamine (OR 0.18,95%CrI 0.09-0.33) and Xonrid® (OR 0.28,95%CrI 0.12-0.66). Mepitelfilm (SUCRA: 0.98) achieved the highest rank in reducing the RD score, demonstrating superiority over StrataXRT® (MD -0.89, 95% CrI -1.49, -0.29). Henna (SUCRA: 0.89) demonstrated the highest effectiveness in providing pain relief, with a significant difference compared to Hydrofilm (MD -0.44, 95% CrI -0.84, -0.04) and Mepitelfilm (MD -0.55, 95% CrI -0.91, -0.19). Hydrofilm (SUCRA: 0.84) exhibited the fewest itching sensations, demonstrating superiority over Mepitelfilm (MD -0.50, 95% CrI -0.84, -0.17). No statistically significant difference was observed among various interventions in the assessment of burning sensations. CONCLUSION PBMT and Mepitelfilm demonstrated better efficacy in reducing the incidence of grade≥2 RD and RD score, respectively. In terms of PROs, Henna and Hydrofilm had fewer complaints in pain and itching sensations, respectively. However, studies with larger sample size on different interventions are warranted in the future. TRIAL REGISTRATION PROSPERO registration number CRD42023428598.
Collapse
Affiliation(s)
- Ying Guan
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, P.R. China
| | - Shuai Liu
- Department of Radiotherapy Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, P. R. China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, P. R. China
| | - Anchuan Li
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, P. R. China
| | - Wanqin Cheng
- Department of Radiation Oncology, Shunde Hospital, Southern Medical University, Shunde, P. R. China
| |
Collapse
|
9
|
Musazadeh V, Abbasi S, Kavyani Z, Moridpour AH, Safarzadeh D, Moradi Z, Bahadori F, Faghfouri AH. The effect of curcumin supplementation on circulating adiponectin and leptin concentration in adults: a GRADE-assessed systematic review and meta-analysis of randomised controlled trials. Br J Nutr 2024; 131:964-973. [PMID: 37980942 DOI: 10.1017/s0007114523002428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Curcumin is a phytocompound found in the root of turmeric, a common herbal ingredient in many Asian cuisines. The compound contains anti-inflammatory activity, which is mediated through an upregulation of adiponectin and reduction of leptin. Results of randomised controlled trials (RCT) have shown that the effects of curcumin on adipokines are conflicting. Therefore, the current systematic review and meta-analysis of RCT were conducted with the aim of elucidating the role of curcumin supplementation on serum adiponectin and leptin. The search included PubMed, Embase, Cochrane Library, Scopus, Web of Science and Google Scholar from inception to August 2023. For net changes in adipokines, standardised mean differences (SMD) were calculated using random effects models. Thirteen RCT with fourteen treatment arms were eligible for inclusion in this meta-analysis. Curcumin supplementation was effective in increasing serum adiponectin (SMD = 0·86, 95 % CI (0·33, 1·39), P < 0·001; I2 = 93·1 %, P < 0·001) and reducing serum leptin (SMD = -1·42, 95 % CI (-2·29, -0·54), P < 0·001; I2 = 94·7 %, P < 0·001). In conclusion, curcumin supplementation significantly increased circulating adiponectin and decreased leptin levels in adults.
Collapse
Affiliation(s)
- Vali Musazadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- School of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shaghayegh Abbasi
- Department of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Zeynab Kavyani
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- School of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Hossein Moridpour
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- School of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Diba Safarzadeh
- Vocational School of Health Service, Near East University, Nicosia, Cyprus
| | - Zahra Moradi
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Joensuu, Finland
| | - Fatemeh Bahadori
- Maternal and Childhood Obesity Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Amir Hossein Faghfouri
- Maternal and Childhood Obesity Research Center, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
10
|
Li W, Cheng X, Zhu G, Hu Y, Wang Y, Niu Y, Li H, Aierken A, Li J, Feng L, Liu G. A review of chemotherapeutic drugs-induced arrhythmia and potential intervention with traditional Chinese medicines. Front Pharmacol 2024; 15:1340855. [PMID: 38572424 PMCID: PMC10987752 DOI: 10.3389/fphar.2024.1340855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 03/05/2024] [Indexed: 04/05/2024] Open
Abstract
Significant advances in chemotherapy drugs have reduced mortality in patients with malignant tumors. However, chemotherapy-related cardiotoxicity increases the morbidity and mortality of patients, and has become the second leading cause of death after tumor recurrence, which has received more and more attention in recent years. Arrhythmia is one of the common types of chemotherapy-induced cardiotoxicity, and has become a new risk related to chemotherapy treatment, which seriously affects the therapeutic outcome in patients. Traditional Chinese medicine has experienced thousands of years of clinical practice in China, and has accumulated a wealth of medical theories and treatment formulas, which has unique advantages in the prevention and treatment of malignant diseases. Traditional Chinese medicine may reduce the arrhythmic toxicity caused by chemotherapy without affecting the anti-cancer effect. This paper mainly discussed the types and pathogenesis of secondary chemotherapeutic drug-induced arrhythmia (CDIA), and summarized the studies on Chinese medicine compounds, Chinese medicine Combination Formula and Chinese medicine injection that may be beneficial in intervention with secondary CDIA including atrial fibrillation, ventricular arrhythmia and sinus bradycardia, in order to provide reference for clinical prevention and treatment of chemotherapy-induced arrhythmias.
Collapse
Affiliation(s)
- Weina Li
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaozhen Cheng
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Guanghui Zhu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ying Hu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine (National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion), Tianjin, China
| | - Yunhan Wang
- Henan Province Hospital of Traditional Chinese Medicine (The Second Affiliated Hospital of Henan University of Traditional Chinese Medicine), Zhengzhou, Henan, China
| | - Yueyue Niu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hongping Li
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Aikeremu Aierken
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jie Li
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ling Feng
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Guifang Liu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
11
|
Almatroodi SA, Almatroudi A, Alharbi HOA, Khan AA, Rahmani AH. Effects and Mechanisms of Luteolin, a Plant-Based Flavonoid, in the Prevention of Cancers via Modulation of Inflammation and Cell Signaling Molecules. Molecules 2024; 29:1093. [PMID: 38474604 DOI: 10.3390/molecules29051093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/18/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Luteolin, a flavonoid, is mainly found in various vegetables and fruits, including carrots, cabbages, onions, parsley, apples, broccoli, and peppers. Extensive research in vivo and in vitro has been performed to explore its role in disease prevention and treatment. Moreover, this compound possesses the ability to combat cancer by modulating cell-signaling pathways across various types of cancer. The studies have confirmed that luteolin can inhibit cancer-cell survival and proliferation, angiogenesis, invasion, metastasis, mTOR/PI3K/Akt, STAT3, Wnt/β-catenin, and cell-cycle arrest, and induce apoptosis. Further, scientific evidence describes that this compound plays a vital role in the up/down-regulation of microRNAs (miRNAs) in cancer therapy. This review aims to outline the anti-cancer mechanisms of this compound and its molecular targets. However, a knowledge gap remains regarding the studies on its safety and efficacy and clinical trials. Therefore, it is essential to conduct more research based on safety, efficacy, and clinical trials to explore the beneficial role of this compound in disease management, including cancer.
Collapse
Affiliation(s)
- Saleh A Almatroodi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Hajed Obaid A Alharbi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Amjad Ali Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| |
Collapse
|
12
|
Wang Y, Zhou D, Zhang X, Qing M, Li X, Chou Y, Chen G, Li N. Curcumin promotes renewal of intestinal epithelium by miR-195-3p. JOURNAL OF ETHNOPHARMACOLOGY 2024; 320:117413. [PMID: 37972911 DOI: 10.1016/j.jep.2023.117413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/26/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Turmeric (Curcuma longa) has been used to treat gastrointestinal disorders in the Indian Ayurvedic medical system. According to the theory behind traditional Chinese medicine, turmeric can be distributed in the spleen meridian, for which it has been used as a digestive aid. Curcumin (Cur), a natural polyphenol compound originally derived from turmeric, has anti-inflammatory activity and can assist in treating inflammatory bowel disease. AIMS OF THE STUDY To investigate curcumin's protective effects on intestinal epithelium and explore the underlying miR-195-3p-related mechanisms. MATERIALS AND METHODS The miR-195-3p mimics were used to over-express miR-195-3p. The in vitro effects of Cur and miR-195-3p on the intestine were shown utilizing intestinal cryptlike epithelial cell line-6 (IEC-6) cells. By fasting for 48 h, an intestinal mucosal atrophy model of SD rats was created in vivo. Cur (25 or 50 mg/kg) was assessed for its protective effect on intestinal epithelium. Glycyrrhetinic acid (GA) with an intestinal protective effect reported in our previous research was adopted as a positive drug for the in vivo and in vitro bioactivity evaluation since there is no universally positive drug for either intestinal mucosal restitution or miR-195-3p modulation. RESULTS Cur protects the intestinal epithelium and promotes its repair after injury via down-regulating miR-195-3p. In vitro experiments showed that Cur inhibited the apoptosis of IEC-6 cells, stimulated their growth, and down-regulated the level of miR-195-3p in cells. When miR-195-3p was overexpressed, the viability of IEC-6 cells decreased while the apoptosis rate increased. All the above detrimental effects were alleviated after curcumin intervention. Moreover, Cur reversed the effect of miR-195-3p on its downstream occludin. In vivo, results showed that 48-h fasting impaired the integrity of the small intestinal mucosa (abnormal crypt structure and reduced goblet cell number), which was ameliorated by Cur treatment. In addition, the Cur treatment reversed both the increased expression level of miR-195-3p and decreased levels of ki-67 and occludin caused by fasting. CONCLUSIONS Cur could promote the proliferation and repair after injury of the intestinal mucosa by down-regulating miR-195-3p.
Collapse
Affiliation(s)
- Yajun Wang
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning Province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, 110016, PR China.
| | - Di Zhou
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning Province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, 110016, PR China.
| | - Xueni Zhang
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning Province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, 110016, PR China.
| | - Mengli Qing
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning Province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, 110016, PR China.
| | - Xiaohong Li
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning Province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, 110016, PR China.
| | - Yixian Chou
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning Province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, 110016, PR China.
| | - Gang Chen
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning Province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, 110016, PR China.
| | - Ning Li
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning Province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, 110016, PR China.
| |
Collapse
|
13
|
Boretti A. Evidence for the use of curcumin in radioprotection and radiosensitization. Phytother Res 2024; 38:464-469. [PMID: 36897074 DOI: 10.1002/ptr.7803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/21/2023] [Accepted: 02/24/2023] [Indexed: 03/11/2023]
Abstract
Curcumin has antineoplastic properties and is considered a chemotherapeutic and chemopreventive agent. Curcumin may be associated with radiation therapy (RT) as a radiosensitizer for cancer cells and a radioprotector for normal cells. In principle, it may result in a reduction of RT dosage for the same therapeutic effect on cancer cells, and further reduced damage to normal cells. Though the overall level of evidence is modest, limited to in vivo and in vitro experiences and practically no clinical trials, as the risks of adverse effects are extremely low, it is reasonable to promote the general supplementation with curcumin during RT targeting the reduction of side effects through anti-inflammatory mechanisms.
Collapse
|
14
|
Guo K, Wang Y, Feng ZX, Lin XY, Wu ZR, Zhong XC, Zhuang ZM, Zhang T, Chen J, Tan WQ. Recent Development and Applications of Polydopamine in Tissue Repair and Regeneration Biomaterials. Int J Nanomedicine 2024; 19:859-881. [PMID: 38293610 PMCID: PMC10824616 DOI: 10.2147/ijn.s437854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/29/2023] [Indexed: 02/01/2024] Open
Abstract
The various tissue damages are a severe problem to human health. The limited human tissue regenerate ability requires suitable biomaterials to help damage tissue repair and regeneration. Therefore, many researchers devoted themselves to exploring biomaterials suitable for tissue repair and regeneration. Polydopamine (PDA) as a natural and multifunctional material which is inspired by mussel has been widely applied in different biomaterials. The excellent properties of PDA, such as strong adhesion, photothermal and high drug-loaded capacity, seem to be born for tissue repair and regeneration. Furthermore, PDA combined with different materials can exert unexpected effects. Thus, to inspire researchers, this review summarizes the recent and representative development of PDA biomaterials in tissue repair and regeneration. This article focuses on why apply PDA in these biomaterials and what PDA can do in different tissue injuries.
Collapse
Affiliation(s)
- Kai Guo
- Department of Plastic Surgery, Sir Run Run Shaw Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Yong Wang
- Department of Plastic Surgery, Sir Run Run Shaw Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Zi-Xuan Feng
- Department of Plastic Surgery, Sir Run Run Shaw Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Xiao-Ying Lin
- Department of Plastic Surgery, Sir Run Run Shaw Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Zhang-Rui Wu
- Department of Plastic Surgery, Sir Run Run Shaw Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Xin-Cao Zhong
- Department of Plastic Surgery, Sir Run Run Shaw Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Ze-Ming Zhuang
- Department of Plastic Surgery, Sir Run Run Shaw Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Tao Zhang
- Department of Plastic Surgery, Sir Run Run Shaw Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Jian Chen
- Department of Ultrasonography, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang Province, People’s Republic of China
| | - Wei-Qiang Tan
- Department of Plastic Surgery, Sir Run Run Shaw Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People’s Republic of China
| |
Collapse
|
15
|
Jafari-Nozad AM, Jafari A, Yousefi S, Bakhshi H, Farkhondeh T, Samarghandian S. Anti-gout and Urate-lowering Potentials of Curcumin: A Review from Bench to Beside. Curr Med Chem 2024; 31:3715-3732. [PMID: 37488765 DOI: 10.2174/0929867331666230721154653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 05/23/2023] [Accepted: 06/01/2023] [Indexed: 07/26/2023]
Abstract
BACKGROUND Gouty arthritis is a complex form of inflammatory arthritis, triggered by the sedimentation of monosodium urate crystals in periarticular tissues, synovial joints, and other sites in the body. Curcumin is a natural polyphenol compound, isolated from the rhizome of the plant Curcuma longa, possessing countless physiological features, including antioxidant, anti-inflammatory, and anti-rheumatic qualities. OBJECTIVE This study aimed to discuss the beneficial impacts of curcumin and its mechanism in treating gout disease. METHODS Ten English and Persian databases were used to conduct a thorough literature search. Studies examining the anti-gouty arthritis effects of curcumin and meeting the inclusion criteria were included. RESULTS According to the studies, curcumin has shown xanthine oxidase and urate transporter- 1 inhibitory properties, uric acid inhibitory characteristics, and antioxidant and anti- inflammatory effects. However, some articles found no prominent reduction in uric acid levels. CONCLUSION In this review, we emphasized the potency of curcumin and its compounds against gouty arthritis. Despite the potency, we suggest an additional well-designed evaluation of curcumin, before its therapeutic effectiveness is completely approved as an antigouty arthritis agent.
Collapse
Affiliation(s)
| | - Amirsajad Jafari
- Department of Basic Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Saman Yousefi
- Faculty of Veterinary Medicine, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Hasan Bakhshi
- Vector-borne Diseases Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Tahereh Farkhondeh
- Department of Toxicology and Pharmacology, School of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur 9318614139, Iran
| |
Collapse
|
16
|
Wu H, Wang T, Liang Y, Chen L, Li Z. Self-assembled and dynamic bond crosslinked herb-polysaccharide hydrogel with anti-inflammation and pro-angiogenesis effects for burn wound healing. Colloids Surf B Biointerfaces 2024; 233:113639. [PMID: 37951186 DOI: 10.1016/j.colsurfb.2023.113639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/16/2023] [Accepted: 11/06/2023] [Indexed: 11/13/2023]
Abstract
Excessive inflammation and defective angiogenesis can affect burn wound healing. Recently, naturally derived substances with anti-inflammatory and proangiogenic properties have attracted public attention. The design and fabrication of naturally derived substance-based bioactive hydrogels as wound dressings are of interest and important for regulating the complex microenvironment of the wound bed. Herein, we developed a hydrogel by self-assembling a natural herb (glycyrrhizic acid, GA) dynamic Schiff base crosslinking of hyaluronic acid derivatives and integrating deferoxamine (DFO). The naturally derived herbal GA endowed the bioactive hydrogel with a native anti-inflammatory capability. The introduction of dynamic bond crosslinking improved the hydrogel stability. In addition, dynamic crosslinking is conducive for integrating the naturally-derived DFO, delivering it to the wound site, and promoting angiogenesis. Rheological tests, injectability, degradation behavior, and drug release performance demonstrated the enhanced stability of the hydrogel and sustained release of DFO. Cytotoxicity, cell proliferation, and cell migration tests suggested that the hydrogel was biocompatible. Further, the hydrogel exerted anti-inflammatory and angiogenic effects and accelerated burn wound healing in rats. Therefore, the proposed hydrogel has the potential to be a natural, herb-based, bioactive dressing for burn wound management.
Collapse
Affiliation(s)
- Hongfu Wu
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
| | - Tao Wang
- Department of Surgery, The Third Hospital of Guangdong Medical University (Longjiang Hospital of Shunde District), Foshan 528318, China
| | - Yinru Liang
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
| | - Liji Chen
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
| | - Ziyi Li
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China; The Second Clinical Medical College, Guangdong Medical University, Dongguan 523808, China.
| |
Collapse
|
17
|
Rafiyan M, Davoodvandi A, Reiter RJ, Mansournia MA, Rasooli Manesh SM, Arabshahi V, Asemi Z. Melatonin and cisplatin co-treatment against cancer: A mechanistic review of their synergistic effects and melatonin's protective actions. Pathol Res Pract 2024; 253:155031. [PMID: 38103362 DOI: 10.1016/j.prp.2023.155031] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/19/2023]
Abstract
Combination chemotherapy appears to be a preferable option for some cancer patients, especially when the medications target multiple pathways of oncogenesis; individuals treated with combination treatments may have a better prognosis than those treated with single agent chemotherapy. However, research has revealed that this is not always the case, and that this technique may just enhance toxicity while having little effect on boosting the anticancer effects of the medications. Cisplatin (CDDP) is a chemotherapeutic medicine that is commonly used to treat many forms of cancer. However, it has major adverse effects such as cardiotoxicity, skin necrosis, testicular toxicity, and nephrotoxicity. Many research have been conducted to investigate the effectiveness of melatonin (MLT) as an anticancer medication. MLT operates in a variety of ways, including decreasing cancer cell growth, causing apoptosis, and preventing metastasis. We review the literature on the role of MLT as an adjuvant in CDDP-based chemotherapies and discuss how MLT may enhance CDDP's antitumor effects (e.g., by inducing apoptosis and suppressing metastasis) while protecting other organs from its adverse effects, such as cardio- and nephrotoxicity.
Collapse
Affiliation(s)
- Mahdi Rafiyan
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Amirhossein Davoodvandi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran; Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health. Long School of Medicine, San Antonio, TX, USA
| | - Mohammad Ali Mansournia
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Vajiheh Arabshahi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
18
|
Lateef Al-Awsi GR, Arshed U, Arif A, Ramírez-Coronel AA, Alhassan MS, Mustafa YF, Rahman FF, Zabibah RS, Gupta J, Iqbal MS, Iswanto AH, Farhood B. The Chemoprotective Potentials of Alpha-lipoic Acid against Cisplatin-induced Ototoxicity: A Systematic Review. Curr Med Chem 2024; 31:3588-3603. [PMID: 37165582 DOI: 10.2174/0929867330666230509162513] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 03/08/2023] [Accepted: 04/05/2023] [Indexed: 05/12/2023]
Abstract
PURPOSE Ototoxicity is one of the major adverse effects of cisplatin therapy which restrict its clinical application. Alpha-lipoic acid administration may mitigate cisplatin-induced ototoxicity. In the present study, we reviewed the protective potentials of alpha-lipoic acid against the cisplatin-mediated ototoxic adverse effects. METHODS Based on the PRISMA guideline, we performed a systematic search for the identification of all relevant studies in various electronic databases up to June 2022. According to the inclusion and exclusion criteria, the obtained articles (n=59) were screened and 13 eligible articles were finally included in the present study. RESULTS The findings of in-vitro experiments showed that cisplatin treatment significantly reduced the auditory cell viability in comparison with the control group; nevertheless, the alpha-lipoic acid co-administration protected the cells against the reduction of cell viability induced by cisplatin treatment. Moreover, the in-vivo results of the auditory brainstem response (ABR) and distortion product otoacoustic emission (DPOAE) tests revealed a decrease in DPOAE and an increase in ABR threshold of cisplatin-injected animals; however, it was shown that alpha-lipoic acid co-treatment had an opposite pattern on the evaluated parameters. Other findings demonstrated that cisplatin treatment could significantly induce the biochemical and histopathological alterations in inner ear cells/tissue; in contrast, alpha-lipoic acid co-treatment ameliorated the cisplatin-mediated biochemical and histological changes. CONCLUSION The findings of audiometry, biochemical parameters, and histological evaluation showed that alpha-lipoic acid co-administration alleviates the cisplatin-induced ototoxicity. The protective role of alpha-lipoic acid against the cisplatin-induced ototoxicity can be due to different mechanisms of anti-oxidant, anti-apoptotic, anti-inflammatory activities, and regulation of cell cycle progression.
Collapse
Affiliation(s)
| | - Uzma Arshed
- Gujranwala Medical College, Gujranwala, Pakistan
| | - Anam Arif
- Gujranwala Medical College, Gujranwala, Pakistan
| | | | - Muataz S Alhassan
- Division of Advanced Nanomaterial Technologies, Scientific Research Center, Al-Ayen University, Thi-Qar, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul-41001, Iraq
| | - Ferry Fadzlul Rahman
- Public Health Department, Universitas Muhammadiyah Kalimantan Timur, Samarinda, Indonesia
| | - Rahman S Zabibah
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, Pin Code 281406, U.P., India
| | - Muhammad Shahid Iqbal
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Acim Heri Iswanto
- Public Health Department, Faculty of Health Science, University of Pembangunan Nasional Veteran Jakarta, Jakarta, Indonesia
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
19
|
Aslam MA, Ahmad H, Malik HS, Uinarni H, Karim YS, Akhmedov YM, Abdelbasset WK, Awadh SA, Abid MK, Mustafa YF, Farhood B, Sahebkar A. Radiotherapy-associated Sensorineural Hearing Loss in Pediatric Oncology Patients. Curr Med Chem 2024; 31:5351-5369. [PMID: 37190814 DOI: 10.2174/0929867330666230515112245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 03/08/2023] [Accepted: 03/27/2023] [Indexed: 05/17/2023]
Abstract
During the radiotherapeutic treatment of pediatric oncology patients, they would be at a latent risk of developing ionizing radiation-induced ototoxicity when the cochlea or auditory nerve is located within the radiation field. Sensorineural hearing loss (SNHL) is an irreversible late complication of radiotherapy, and its incidence depends on various factors such as the patient's hearing sensitivity, total radiation dose to the cochlea, radiotherapy fractionation regimen, age and chemoradiation. Importantly, this complication exhibits serious challenges to adult survivors of childhood cancer, as it has been linked to impairments in academic achievement, psychosocial development, independent living skills, and employment in the survivor population. Therefore, early detection and proper management can alleviate academic, speech, language, social, and psychological morbidity arising from hearing deficits. In the present review, we have addressed issues such as underlying mechanisms of radiation-induced SNHL, audiometric findings of pediatric cancer patients treated with radiotherapy, and management and protection measures against radiation-induced ototoxicity.
Collapse
Affiliation(s)
- Muhammad Ammar Aslam
- Department of Emergency Medicine, Rawalpindi Medical University, Rawalpindi, Pakistan
| | - Hassaan Ahmad
- Department of Medicine, Rawalpindi Medical University, Rawalpindi, Pakistan
| | - Hamza Sultan Malik
- Department of Medicine, Rawalpindi Medical University, Rawalpindi, Pakistan
| | - Herlina Uinarni
- Department of Anatomy, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Jakarta, Indonesia
- Radiologist at Pantai Indah Kapuk Hospital, Jakarta, Indonesia
| | | | - Yusuf Makhmudovich Akhmedov
- Department of Pediatric Surgery, Samarkand State Medical Institute, Samarkand, Uzbekistan
- Department of Scientific Affairs, Tashkent State Dental Institute, Makhtumkuli Street 103, Tashkent, 100047, Uzbekistan
| | - Walid Kamal Abdelbasset
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al Kharj, Saudi Arabia
- Department of Physical Therapy, Kasr Al-Aini Hospital, Cairo University, Giza, Egypt
| | - Sura A Awadh
- Department of Anesthesia, Al-Mustaqbal University, Babylon, Iraq
| | - Mohammed Kadhem Abid
- Department of Anesthesia, College of Health & medical Technology, Al-Ayen University, Thi-Qar, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Amirhosein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
20
|
Pacheco KML, Torres BBM, Sanfelice RC, da Costa MM, Assis L, Marques RB, Filho ALMM, Tim CR, Pavinatto A. Chitosan and chitosan/turmeric-based membranes for wound healing: Production, characterization and application. Int J Biol Macromol 2023; 253:127425. [PMID: 37864933 DOI: 10.1016/j.ijbiomac.2023.127425] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 09/19/2023] [Accepted: 10/11/2023] [Indexed: 10/23/2023]
Abstract
In the present study, chitosan and chitosan/turmeric-based membranes were produced, characterized and applied in in vivo experiments showing the applicability for skin wound repair. Chitosan 1 % (w/v), chitosan + glycerol 30 % (w/w) and chitosan + glycerol 30 % + turmeric 1.5 % (w/w) membranes were produced through the casting technique. Self-sustainable, homogeneous, and flexible membranes were obtained from all materials tested. The FTIR spectra showed the main vibrational bands for materials used in the chemical groups. The membranes containing glycerol are more flexible than those formed with pure chitosan. Membranes formed with glycerol and glycerol/turmeric are more hydrophilic compared to the membranes formed by pure chitosan. The in vivo results showed that the group who received the chi/gly/turmeric membrane had a statistically greater reduction in the injured area, as well as a better healing process in the histological analysis compared to the other experimental groups. The material developed here is from a natural source, low cost and easy to apply and can accelerate the process of repairing skin lesions.
Collapse
Affiliation(s)
- Karoline M L Pacheco
- Scientific and Technological Institute, Brazil University, 08230-030 São Paulo, SP, Brazil
| | - Bruno B M Torres
- Sao Carlos Institute of Physics, University of São Paulo, 13566-970 São Carlos, SP, Brazil
| | - Rafaela C Sanfelice
- Science and Technology Institute, Federal University of Alfenas, 37715-400 Poços de Caldas, MG, Brazil
| | - Mardoqueu M da Costa
- Scientific and Technological Institute, Brazil University, 08230-030 São Paulo, SP, Brazil
| | - Lívia Assis
- Scientific and Technological Institute, Brazil University, 08230-030 São Paulo, SP, Brazil
| | - Rosemarie Brandim Marques
- Biotechnology and Biodiversity Research Center, State University of Piaui, 64002-150 Teresina, PI, Brazil
| | | | - Carla R Tim
- Scientific and Technological Institute, Brazil University, 08230-030 São Paulo, SP, Brazil
| | - Adriana Pavinatto
- Scientific and Technological Institute, Brazil University, 08230-030 São Paulo, SP, Brazil.
| |
Collapse
|
21
|
Mehrab H, Sharifi M, Akhavan A, Aarabi MH, Mansourian M, Mosavi E, Moghaddas A. Curcumin supplementation prevents cisplatin-induced nephrotoxicity: a randomized, double-blinded, and placebo-controlled trial. Res Pharm Sci 2023; 18:648-662. [PMID: 39005571 PMCID: PMC11246108 DOI: 10.4103/1735-5362.389952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/20/2023] [Accepted: 10/02/2023] [Indexed: 07/16/2024] Open
Abstract
Background and purpose Cisplatin-induced nephrotoxicity (CIN) remains the most prevailing unfavorable influence and may affect its clinical usage. This study sought to explore the possible impacts of curcumin on preventing CIN in human subjects. Clinical design The investigation was a placebo-controlled, double-blinded, randomized clinical trial conducted on 82 patients receiving nano-curcumin (80 mg twice daily for five days) or an identical placebo with standard nephroprotective modalities against CIN. Data was gathered on patients' demographics, blood, urinary nitrogen, creatinine (Cr) levels, urinary electrolytes, and urine neutrophil gelatinase-associated lipocalin (NGAL) levels in treatment and placebo groups, 24 h and five days after initiating the administration of cisplatin. Findings/Results Both investigation groups were alike considering the demographic characteristics and clinical baseline data. Curcumin administration led to a significant improvement in blood-urine nitrogen (BUN). BUN, Cr, glomerular filtration rate (GFR), and the ratio of NGAL-to-Cr considerably altered during the follow-up periods. However, the further alterations in other indices, including urinary sodium, potassium, magnesium, NGAL values, and potassium-to-Cr ratio were not statistically noteworthy. The significant differences in the NGAL-to-Cr ratio between the two groups may indicate the potential protective impact of curcumin supplementation against tubular toxicity. Curcumin management was safe and well-accepted; only insignificant gastrointestinal side effects were reported. Conclusion and implications Curcumin supplementation may have the potential to alleviate CIN and urinary electrolyte wasting in cancer patients. Future research investigating the effects of a longer duration of follow-up, a larger participant pool, and a higher dosage of curcumin are recommended.
Collapse
Affiliation(s)
- Hasan Mehrab
- Department of Clinical Pharmacy and Pharmacy Practice, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Mehran Sharifi
- Department of Internal Medicine, Oncology and Haematology Section, School of Medicine, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Ali Akhavan
- Department of Radiation Oncology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Mohammad-Hosein Aarabi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Marjan Mansourian
- Department of Biostatics and Epidemiology, School of Health, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Elaheh Mosavi
- Department of Clinical Pharmacy and Pharmacy Practice, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Azadeh Moghaddas
- Department of Clinical Pharmacy and Pharmacy Practice, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| |
Collapse
|
22
|
Schuh L, Reginato M, Florêncio I, Falcao L, Boron L, Gris EF, Mello V, Báo SN. From Nature to Innovation: The Uncharted Potential of Natural Deep Eutectic Solvents. Molecules 2023; 28:7653. [PMID: 38005377 PMCID: PMC10675409 DOI: 10.3390/molecules28227653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/04/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
This review discusses the significance of natural deep eutectic solvents (NaDESs) as a promising green extraction technology. It employs the consolidated meta-analytic approach theory methodology, using the Web of Science and Scopus databases to analyze 2091 articles as the basis of the review. This review explores NaDESs by examining their properties, challenges, and limitations. It underscores the broad applications of NaDESs, some of which remain unexplored, with a focus on their roles as solvents and preservatives. NaDESs' connections with nanocarriers and their use in the food, cosmetics, and pharmaceutical sectors are highlighted. This article suggests that biomimicry could inspire researchers to develop technologies that are less harmful to the human body by emulating natural processes. This approach challenges the notion that green science is inferior. This review presents numerous successful studies and applications of NaDESs, concluding that they represent a viable and promising avenue for research in the field of green chemistry.
Collapse
Affiliation(s)
- Luísa Schuh
- Microscopy and Microanalysis Laboratory, Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasília 70910-900, Brazil; (L.S.); (M.R.); (I.F.); (V.M.)
- Cooil Cosmetics, Brasília 71070-524, Brazil
- Nanocycle Group, Brasília 72622-401, Brazil
| | - Marcella Reginato
- Microscopy and Microanalysis Laboratory, Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasília 70910-900, Brazil; (L.S.); (M.R.); (I.F.); (V.M.)
- Cooil Cosmetics, Brasília 71070-524, Brazil
- Nanocycle Group, Brasília 72622-401, Brazil
| | - Isadora Florêncio
- Microscopy and Microanalysis Laboratory, Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasília 70910-900, Brazil; (L.S.); (M.R.); (I.F.); (V.M.)
- Cooil Cosmetics, Brasília 71070-524, Brazil
- Nanocycle Group, Brasília 72622-401, Brazil
| | - Leila Falcao
- Inaturals SAS, 2 Bis, Impasse Henri Mouret, 84000 Avignon, France;
| | - Luana Boron
- Inaturals BR, Rua Gerson Luís Piovesan 200, Concórdia 89701-012, Brazil;
| | - Eliana Fortes Gris
- Department of Bromatology, Faculty of Ceilândia, University of Brasília, Ceilândia 72220-275, Brazil;
| | - Victor Mello
- Microscopy and Microanalysis Laboratory, Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasília 70910-900, Brazil; (L.S.); (M.R.); (I.F.); (V.M.)
- Cooil Cosmetics, Brasília 71070-524, Brazil
- Nanocycle Group, Brasília 72622-401, Brazil
| | - Sônia Nair Báo
- Microscopy and Microanalysis Laboratory, Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasília 70910-900, Brazil; (L.S.); (M.R.); (I.F.); (V.M.)
- Nanocycle Group, Brasília 72622-401, Brazil
| |
Collapse
|
23
|
Hu M, Shi S, Peng X, Pu X, Yu X. A synergistic strategy of dual-crosslinking and loading intelligent nanogels for enhancing anti-coagulation, pro-endothelialization and anti-calcification properties in bioprosthetic heart valves. Acta Biomater 2023; 171:466-481. [PMID: 37793601 DOI: 10.1016/j.actbio.2023.09.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/07/2023] [Accepted: 09/26/2023] [Indexed: 10/06/2023]
Abstract
Currently, glutaraldehyde (GA)-crosslinked bioprosthetic heart valves (BHVs) still do not guarantee good biocompatibility and long-term effective durability for clinical application due to their subacute thrombus, inflammation, calcification, tearing and limited durability. In this study, double-modified xanthan gum (oxidized/vinylated xanthan gum (O2CXG)) was acquired from xanthan gum for subsequent double crosslinking and modification platform construction. Sulfonic acid groups with anticoagulant properties were also introduced through the free radical polymerization of vinyl sulfonate (VS) and vinyl on O2CXG. Taking advantage of the drug-loading function of xanthan gum, the treated pericardium was further loaded with inflammation-triggered dual drug-loaded nanogel (heparin (Hep) and atorvastatin (Ator)). Mechanical properties of O2CXG-crosslinked porcine pericardium (O2CXG-PP) were significantly improved via the first network formed by Schiff base bonds and the second C-C bonds network. Due to the presence of sulfonic acid groups as well as the dual drug release from nanogels under the stimulation of H2O2, the hemocompatibility, anti-inflammatory, pro-endothelialization and anti-calcification properties of the crosslinked pericardium modified with nanogels loaded with Hep and Ator (O2CXG+VS+(Hep+Ator) nanogel-PP) was significantly better than that of GA-crosslinked PP (GA-PP). The collaborative strategy of double crosslinking and sequential release of anticoagulant/endothelium-promoting drugs triggered by inflammation could effectively meet the requirement of enhanced multiple performance and long-term durability of bioprosthetic heart valves and provide a valuable pattern for multi-functionalization of blood contacting materials. STATEMENT OF SIGNIFICANCE: Currently, glutaraldehyde-crosslinked bioprosthetic heart valves (BHVs) are subject to subacute thrombus, inflammation, calcification and tearing, which would not guarantee good biocompatibility and long-term effective durability. We developed a cooperative strategy of double crosslinking and surface modification in which double-modified xanthan gum plays a cornerstone. The mechanical properties of this BHV were significantly improved via the first network formed by Schiff base bonds and the second C-C bonds network. Inflammation-triggered combination delivery of heparin and atorvastatin has been demonstrated to enhance anticoagulation, anti-inflammatory and pro-endothelialization of BHVs by utilizing local inflammatory response. The collaborative strategy could effectively meet the requirement of enhanced multiple performance and long-term durability of BHVs and provide a valuable pattern for the multi-functionalization of blood-contacting materials.
Collapse
Affiliation(s)
- Mengyue Hu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, PR China
| | - Shubin Shi
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, PR China
| | - Xu Peng
- Experimental and Research Animal Institute, Sichuan University, Chengdu 610065, PR China
| | - Xinyun Pu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, PR China
| | - Xixun Yu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, PR China.
| |
Collapse
|
24
|
Gao D, Fang L, Liu C, Yang M, Yu X, Wang L, Zhang W, Sun C, Zhuang J. Microenvironmental regulation in tumor progression: Interactions between cancer-associated fibroblasts and immune cells. Biomed Pharmacother 2023; 167:115622. [PMID: 37783155 DOI: 10.1016/j.biopha.2023.115622] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/20/2023] [Accepted: 09/28/2023] [Indexed: 10/04/2023] Open
Abstract
The tumor microenvironment (TME), the "soil" on which tumor cells grow, has an important role in regulating the proliferation and metastasis of tumor cells as well as their response to treatment. Cancer-associated fibroblasts (CAFs), as the most abundant stromal cells of the TME, can not only directly alter the immunosuppressive effect of the TME through their own metabolism, but also influence the aggregation and function of immune cells by secreting a large number of cytokines and chemokines, reducing the body's immune surveillance of tumor cells and making them more prone to immune escape. Our study provides a comprehensive review of fibroblast chemotaxis, malignant transformation, metabolic characteristics, and interactions with immune cells. In addition, the current small molecule drugs targeting CAFs have been summarized, including both natural small molecules and targeted drugs for current clinical therapeutic applications. A complete review of the role of fibroblasts in TME from an immune perspective is presented, which has important implications in improving the efficiency of immunotherapy by targeting fibroblasts.
Collapse
Affiliation(s)
- Dandan Gao
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang 261000, China
| | - Liguang Fang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Cun Liu
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang 261000, China
| | - Mengrui Yang
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang 261000, China
| | - Xiaoyun Yu
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang 261000, China
| | - Longyun Wang
- State Key Laboratory of Quality Research in Chinese Medicine and Faculty of Chinese Medicine, Macau University of Science and Technology, 999078, Macao Special Administrative Region of China
| | - Wenfeng Zhang
- State Key Laboratory of Quality Research in Chinese Medicine and Faculty of Chinese Medicine, Macau University of Science and Technology, 999078, Macao Special Administrative Region of China
| | - Changgang Sun
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang 261000, China; Department of Oncology, Weifang Traditional Chinese Hospital, Weifang 261000, China.
| | - Jing Zhuang
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang 261000, China.
| |
Collapse
|
25
|
Manasa PS, Kamble AD, Chilakamarthi U. Various Extraction Techniques of Curcumin-A Comprehensive Review. ACS OMEGA 2023; 8:34868-34878. [PMID: 37779951 PMCID: PMC10535260 DOI: 10.1021/acsomega.3c04205] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/24/2023] [Indexed: 10/03/2023]
Abstract
Curcumin, the active component of the rhizome of Curcuma longa, is a safe substance whose applications are extensively used in medicinal, biological, pharmacological activities, and food cosmetic additives. In the field of medicine, curcuminoids have a greater impact; they have been associated with the suppression of neuropathic pain, depression, angiogenesis, tumorigenesis, diabetes, and diseases of the liver, skin, and pulmonary systems, as well as cardiovascular and nervous systems. These are in high demand and have high market potential and inflated costs. For the aforementioned uses, as well as for basic research, it is crucial to get pure curcumin from plant sources. There is a need for effective extraction and purification techniques that adhere to standards for process efficiency, environmental friendliness, and safety. Scope: This account offers an accurate and thorough explanation of the many techniques used to extract and purify curcumin from plant sources, as well as a look at its various roles in the pharmaceutical, cosmetic, medical, and other industries. Curcumin's prospective and commercial roles are also discussed. Key findings: Curcuminoids have been extracted and purified by using a broad range of techniques that are utilized extensively across the world. Extraction of curcuminoids includes both traditional and contemporary approaches, of which a handful include Soxhlet extraction, maceration, solvent extraction, ultrasound-assisted extraction, microwave-assisted extraction, enzyme-assisted extraction, and supercritical liquid extraction. The other process called purification can be performed alone or in combination with techniques. The use of column chromatography and semipreparative high-performance liquid chromatography are examples of traditional purification procedures, and other innovative methods include high-speed counter-current chromatography and supercritical fluid chromatography.
Collapse
Affiliation(s)
- P. Sai
Lakshmi Manasa
- Department
of Engineering Chemistry, College of Engineering, Koneru Lakshmaiah Education Foundation (KLEF-Deemed to be University), Greenfield, Vaddeswaram, Guntur 522302, Andhra
Pradesh, India
| | - Alka D. Kamble
- Department
of Engineering Chemistry, College of Engineering, Koneru Lakshmaiah Education Foundation (KLEF-Deemed to be University), Greenfield, Vaddeswaram, Guntur 522302, Andhra
Pradesh, India
| | - Ushasri Chilakamarthi
- Department
of Oils, Lipids Science and Technology, Indian Institute of Chemical Technology, Hyderabad 500007, Telangana, India
| |
Collapse
|
26
|
Zhang Y, Huang Y, Li Z, Wu H, Zou B, Xu Y. Exploring Natural Products as Radioprotective Agents for Cancer Therapy: Mechanisms, Challenges, and Opportunities. Cancers (Basel) 2023; 15:3585. [PMID: 37509245 PMCID: PMC10377328 DOI: 10.3390/cancers15143585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/04/2023] [Accepted: 07/09/2023] [Indexed: 07/30/2023] Open
Abstract
Radiotherapy is an important cancer treatment. However, in addition to killing tumor cells, radiotherapy causes damage to the surrounding cells and is toxic to normal tissues. Therefore, an effective radioprotective agent that prevents the deleterious effects of ionizing radiation is required. Numerous synthetic substances have been shown to have clear radioprotective effects. However, most of these have not been translated for use in clinical applications due to their high toxicity and side effects. Many medicinal plants have been shown to exhibit various biological activities, including antioxidant, anti-inflammatory, and anticancer activities. In recent years, new agents obtained from natural products have been investigated by radioprotection researchers, due to their abundance of sources, high efficiency, and low toxicity. In this review, we summarize the mechanisms underlying the radioprotective effects of natural products, including ROS scavenging, promotion of DNA damage repair, anti-inflammatory effects, and the inhibition of cell death signaling pathways. In addition, we systematically review natural products with radioprotective properties, including polyphenols, polysaccharides, alkaloids, and saponins. Specifically, we discuss the polyphenols apigenin, genistein, epigallocatechin gallate, quercetin, resveratrol, and curcumin; the polysaccharides astragalus, schisandra, and Hohenbuehelia serotina; the saponins ginsenosides and acanthopanax senticosus; and the alkaloids matrine, ligustrazine, and β-carboline. However, further optimization through structural modification, improved extraction and purification methods, and clinical trials are needed before clinical translation. With a deeper understanding of the radioprotective mechanisms involved and the development of high-throughput screening methods, natural products could become promising novel radioprotective agents.
Collapse
Affiliation(s)
- Yi Zhang
- Division of Thoracic Oncology, Cancer Center, Department of Radiation Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ying Huang
- College of Management, Sichuan Agricultural University, Chengdu 611130, China
| | - Zheng Li
- Division of Thoracic Oncology, Cancer Center, Department of Radiation Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hanyou Wu
- Zhongshan Ophthalmic Center, State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou 510060, China
| | - Bingwen Zou
- Division of Thoracic Oncology, Cancer Center, Department of Radiation Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yong Xu
- Division of Thoracic Oncology, Cancer Center, Department of Radiation Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
27
|
Xu D, Wan Y, Xie Z, Du C, Wang Y. Hierarchically Structured Hydroxyapatite Particles Facilitate the Enhanced Integration and Selective Anti-Tumor Effects of Amphiphilic Prodrug for Osteosarcoma Therapy. Adv Healthc Mater 2023; 12:e2202668. [PMID: 36857811 DOI: 10.1002/adhm.202202668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 02/22/2023] [Indexed: 03/03/2023]
Abstract
Efficient delivery of cargo into target cells is a formidable challenge in modern medicine. Despite the great promise of biomimetic hydroxyapatite (HA) particles in tissue engineering, their potential applications in bone tumor therapy, particularly their structure-function relationships in cargo delivery to target cells, have not yet been well explored. In this study, biomimetic multifunctional composite microparticles (Bm-cMPs) are developed by integrating an amphiphilic prodrug of curcumin with hierarchically structured HA microspheres (Hs-hMPs). Then, the effects of the hierarchical structure of vehicles on the integration and delivery of cargo as well as the anti-osteosarcoma (OS) effect of the composite are determined. Different hierarchical structures of the vehicles strongly influence the self-assembly behavior of the prodrug. The flake-like crystals of Hs-hMPs enable the highest loading capacity and enhance the stability of the cargo. Compared to the normal cells, OS cells exhibit 3.56-times better uptake of flake-like Hs-hMPs, facilitating the selective anti-tumor effect of the prodrug. Moreover, Bm-cMPs suppress tumor growth and metastasis by promoting apoptosis and inhibiting cell proliferation and tumor vascularization. The findings shed light on the potential application of Bm-cMPs and suggest a feasible strategy for developing an effective targeted therapy platform using hierarchically structured minerals for OS treatment.
Collapse
Affiliation(s)
- Dong Xu
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Yuxin Wan
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Zhenze Xie
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Chang Du
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Yingjun Wang
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510006, P. R. China
| |
Collapse
|
28
|
Hu M, Peng X, Shi S, Wan C, Cheng C, Yu X. Dialdehyde xanthan gum and curcumin synergistically crosslinked bioprosthetic valve leaflets with anti-thrombotic, anti-inflammatory and anti-calcification properties. Carbohydr Polym 2023; 310:120724. [PMID: 36925249 DOI: 10.1016/j.carbpol.2023.120724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/03/2023] [Accepted: 02/15/2023] [Indexed: 02/21/2023]
Abstract
Currently commercial glutaraldehyde (GA)-crosslinked bioprosthetic valve leaflets (BVLs) suffer from thromboembolic complications, calcification, and limited durability, which are the major stumbling block to wider clinical application of BVLs. Thus, developing new-style BVLs will be an urgent need to enhance the durability of BVLs and alleviate thromboembolic complications. In this study, a quick and effective collaborative strategy of the double crosslinking agents (oxidized polysaccharide and natural active crosslinking agent) was reported to realize enhanced mechanical, and structural stability, excellent hemocompatibility and anti-calcification properties of BVLs. Dialdehyde xanthan gum (AXG) exhibiting excellent stability to heat, acid-base, salt, and enzymatic hydrolysis was first introduced to crosslink decellularized porcine pericardium (D-PP) and then curcumin with good properties of anti-inflammatory, anti-coagulation, anti-liver fibrosis, and anti-atherosclerosis was used to synergistically crosslink and multi-functionalize D-PP to obtain AXG + Cur-PP. A comprehensive evaluation of structural characterization, hemocompatibility, endothelialization potential, mechanical properties and component stability showed that AXG + Cur-PP exhibited better anti-thrombotic properties and endothelialization potential, milder immune responses, excellent anti-calcification properties and enhanced mechanical properties compared with GA-crosslinked PP. Overall, this cooperative crosslinking strategy provides a novel solution to achieve BVLs with enhanced mechanical properties and excellent anti-coagulation, anti-inflammatory, anti-calcification, and the ability to promote endothelial cell proliferation.
Collapse
Affiliation(s)
- Mengyue Hu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, PR China
| | - Xu Peng
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, PR China; Experimental and Research Animal Institute, Sichuan University, Chengdu 610065, PR China
| | - Shubin Shi
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, PR China
| | - Chang Wan
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, PR China
| | - Can Cheng
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, PR China
| | - Xixun Yu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, PR China.
| |
Collapse
|
29
|
Sun X, Follett PA, Wall MM, Duff KS, Wu X, Shu C, Plotto A, Liang P, Stockton DG. Physical, Chemical, and Sensory Properties of a Turmeric-Fortified Pineapple Juice Beverage. Foods 2023; 12:2323. [PMID: 37372534 DOI: 10.3390/foods12122323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/30/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Beverage mixtures based on pineapple (Ananas comosus) and turmeric (Curcuma longa) juice as a ready-to-drink product were developed, and their physicochemical, nutritional, and sensory properties were evaluated. Four different concentrations of turmeric juice (5%, 10%, 15%, and 20% (v/v)) were added to pineapple juice to make turmeric-fortified pineapple (TFP) juice samples. Pineapple juice without turmeric was the control. The L*, a*, b*, titratable acidity (TA), total antioxidant capacity, and %DPPH scavenging values, as well as the concentrations of the phenolic compounds curcumin and demethoxycurcumin, were significantly increased with increasing turmeric concentration. Thirty volatile compounds were detected in the mixed juice samples with turmeric. Most of the turmeric-specific compounds, including monoterpenes, sesquiterpenes and turmerones, were detected in the TFP juice samples. While the antioxidant activity of the juice samples increased with increasing turmeric concentration, the pineapple juice fortified with 10% turmeric (10%T) had the best overall quality as determined by panelists. Greater concentrations of turmeric were associated with decreased palatability due to reduced mouthfeel and sweetness and increased aftertaste and sourness. These results suggest that the 10%T juice could be developed into a commercial functional beverage with increased overall flavor and nutritional quality.
Collapse
Affiliation(s)
- Xiuxiu Sun
- United States Department of Agriculture, Agricultural Research Service, Daniel K. Inouye U.S. Pacific Basin Agricultural Research Center, 64 Nowelo Street, Hilo, HI 96720, USA
| | - Peter A Follett
- United States Department of Agriculture, Agricultural Research Service, Daniel K. Inouye U.S. Pacific Basin Agricultural Research Center, 64 Nowelo Street, Hilo, HI 96720, USA
| | - Marisa M Wall
- United States Department of Agriculture, Agricultural Research Service, Daniel K. Inouye U.S. Pacific Basin Agricultural Research Center, 64 Nowelo Street, Hilo, HI 96720, USA
| | - Keegan S Duff
- United States Department of Agriculture, Agricultural Research Service, Daniel K. Inouye U.S. Pacific Basin Agricultural Research Center, 64 Nowelo Street, Hilo, HI 96720, USA
| | - Xiaohua Wu
- United States Department of Agriculture, Agricultural Research Service, Daniel K. Inouye U.S. Pacific Basin Agricultural Research Center, 64 Nowelo Street, Hilo, HI 96720, USA
| | - Chang Shu
- United States Department of Agriculture, Agricultural Research Service, Daniel K. Inouye U.S. Pacific Basin Agricultural Research Center, 64 Nowelo Street, Hilo, HI 96720, USA
| | - Anne Plotto
- United States Department of Agriculture, Agricultural Research Service, U.S. Horticultural Research Laboratory, 2001 South Rock Road, Fort Pierce, FL 34945, USA
| | - Peishih Liang
- United States Department of Agriculture, Agricultural Research Service, Daniel K. Inouye U.S. Pacific Basin Agricultural Research Center, 64 Nowelo Street, Hilo, HI 96720, USA
| | - Dara G Stockton
- United States Department of Agriculture, Agricultural Research Service, Daniel K. Inouye U.S. Pacific Basin Agricultural Research Center, 64 Nowelo Street, Hilo, HI 96720, USA
| |
Collapse
|
30
|
He C, Miyazawa T, Abe C, Ueno T, Suzuki M, Mizukami M, Kurihara K, Toda M. Hypolipidemic and Anti-Inflammatory Effects of Curcuma longa-Derived Bisacurone in High-Fat Diet-Fed Mice. Int J Mol Sci 2023; 24:ijms24119366. [PMID: 37298318 DOI: 10.3390/ijms24119366] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/16/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
Turmeric (Curcuma longa) contains various compounds that potentially improve health. Bisacurone is a turmeric-derived compound but has been less studied compared to other compounds, such as curcumin. In this study, we aimed to evaluate the anti-inflammatory and lipid-lowering effects of bisacurone in high-fat diet (HFD)-fed mice. Mice were fed HFD to induce lipidemia and orally administered bisacurone daily for two weeks. Bisacurone reduced liver weight, serum cholesterol and triglyceride levels, and blood viscosity in mice. Splenocytes from bisacurone-treated mice produced lower levels of the pro-inflammatory cytokines IL-6 and TNF-α upon stimulation with a toll-like receptor (TLR) 4 ligand, lipopolysaccharide (LPS), and TLR1/2 ligand, Pam3CSK4, than those from untreated mice. Bisacurone also inhibited LPS-induced IL-6 and TNF-α production in the murine macrophage cell line, RAW264.7. Western blot analysis revealed that bisacurone inhibited the phosphorylation of IKKα/β and NF-κB p65 subunit, but not of the mitogen-activated protein kinases, p38 kinase and p42/44 kinases, and c-Jun N-terminal kinase in the cells. Collectively, these results suggest that bisacurone has the potential to reduce serum lipid levels and blood viscosity in mice with high-fat diet-induced lipidemia and modulate inflammation via inhibition of NF-κB-mediated pathways.
Collapse
Affiliation(s)
- Chaoqi He
- Laboratory of Food and Biomolecular Science, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Taiki Miyazawa
- Food Biotechnology Platform Promoting Project, New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai 980-8579, Japan
| | - Chizumi Abe
- Food Biotechnology Platform Promoting Project, New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai 980-8579, Japan
| | - Takahiro Ueno
- Laboratory of Food and Biomolecular Science, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Mikiko Suzuki
- Center for Radioisotope Sciences, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Masashi Mizukami
- New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai 980-8579, Japan
| | - Kazue Kurihara
- New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai 980-8579, Japan
| | - Masako Toda
- Laboratory of Food and Biomolecular Science, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| |
Collapse
|
31
|
Safari Z, Bagherniya M, Khoram Z, Ebrahimi Varzaneh A, Heidari Z, Sahebkar A, Askari G. The effect of curcumin on anthropometric indices, blood pressure, lipid profiles, fasting blood glucose, liver enzymes, fibrosis, and steatosis in non-alcoholic fatty livers. Front Nutr 2023; 10:1163950. [PMID: 37275651 PMCID: PMC10233031 DOI: 10.3389/fnut.2023.1163950] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 04/17/2023] [Indexed: 06/07/2023] Open
Abstract
Background Non-alcoholic fatty liver disease (NAFLD) is the most common form of liver disease. Curcumin is a natural polyphenol that may be effective against liver steatosis and steatohepatitis. The present study aimed to evaluate the effects of phytosomal curcumin on lipid profile, fasting blood sugar, anthropometric indices, liver enzymes, fibrosis, and steatosis in non-alcoholic fatty liver patients. Methods The participants were randomized to the curcumin-phosphatidylserine phytosomal receiving group and the placebo receiving group and were followed up for 12 weeks. Data on anthropometric indices, lipid profile, blood glucose, blood pressure, liver enzymes, hepatic steatosis, and fibrosis were collected at the beginning and the end of the clinical trial. Results Supplementation for 12 weeks with phytosomal curcumin significantly reduced fibrosis and steatosis in the phytosomal curcumin receiving group compared with the placebo group (p < 0.05). Phytosomal curcumin also significantly reduced waist circumference and blood pressure compared with the placebo group (p < 0.05). There was no significant difference between the phytosomal curcumin and the placebo groups regarding changes in weight, body mass index, fasting blood glucose, liver enzymes, and lipid profile. Conclusion Curcumin, at a dose of 250 mg per day, might be effective in treating patients with NAFLD. Further studies are necessary to confirm these findings and to discover the underlying mechanisms. Clinical trial registration https://www.irct.ir/trial/43730, identifier: IRCT20121216011763N39.
Collapse
Affiliation(s)
- Zahra Safari
- Nutrition and Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Bagherniya
- Nutrition and Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
- Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ziba Khoram
- Gastroenterology and Hepatology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Zahra Heidari
- Department of Biostatistics and Epidemiology, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
- Isfahan Cardiac Rehabilitation Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Medicine, The University of Western Australia, Perth, WA, Australia
| | - Gholamreza Askari
- Nutrition and Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
- Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
32
|
Shih KC, Chan HW, Wu CY, Chuang HY. Curcumin Enhances the Abscopal Effect in Mice with Colorectal Cancer by Acting as an Immunomodulator. Pharmaceutics 2023; 15:pharmaceutics15051519. [PMID: 37242761 DOI: 10.3390/pharmaceutics15051519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/13/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Radiotherapy (RT) is an effective cancer treatment. The abscopal effect, referring to the unexpected shrinkage observed in non-irradiated tumors after radiation therapy, is thought to be mediated by systemic immune activation. However, it has low incidence and is unpredictable. Here, RT was combined with curcumin to investigate how curcumin affects RT-induced abscopal effects in mice with bilateral CT26 colorectal tumors. Indium 111-labeled DOTA-anti-OX40 mAb was synthesized to detect the activated T cell accumulations in primary and secondary tumors correlating with the changes in protein expressions and tumor growth to understand the overall effects of the combination of RT and curcumin. The combination treatment caused the most significant tumor suppression in both primary and secondary tumors, accompanied by the highest 111In-DOTA-OX40 mAb tumor accumulations. The combination treatment elevated expressions of proapoptotic proteins (Bax and cleaved caspase-3) and proinflammatory proteins (granzyme B, IL-6, and IL-1β) in both primary and secondary tumors. Based on the biodistribution of 111In-DOTA-OX40 mAb, tumor growth inhibition, and anti-tumor protein expression, our findings suggest that curcumin could act as an immune booster to augment RT-induced anti-tumor and abscopal effects effectively.
Collapse
Affiliation(s)
- Kuang-Chung Shih
- Division of Endocrinology and Metabolism, Department of Medicine, Cheng-Hsin General Hospital, Taipei 11220, Taiwan
- Division of Endocrinology & Metabolism, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan
- School of Medicine, National Defense Medical Center, Taipei 11490, Taiwan
| | - Hui-Wen Chan
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Chun-Yi Wu
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Hui-Yen Chuang
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| |
Collapse
|
33
|
Mirsanei Z, Heidari N, Hazrati A, Asemani Y, Niknam B, Yousefi Z, Jafari R. Oleuropein reduces LPS-induced inflammation via stimulating M2 macrophage polarization. Biomed Pharmacother 2023; 163:114857. [PMID: 37178576 DOI: 10.1016/j.biopha.2023.114857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/04/2023] [Accepted: 05/06/2023] [Indexed: 05/15/2023] Open
Abstract
Oleuropein (OLEU) is the most prevalent phenolic component in olive varieties, and it has been considered for its powerful antioxidant properties in therapeutic applications. OLEU has anti-inflammatory properties and performs this property by suppressing inflammatory cells' function and reducing oxidative stress caused by various factors. This study investigated the ability of OLEU to polarize LPS-stimulated murine macrophage (MQ) cell RAW 264.7 into M1/M2 macrophages. As a first step, the cytotoxicity effects of OLEU were evaluated on LPS-stimulated RAW 264.7 cells using the thiazolyl blue (MTT) colorimetric test. Then, cytokines production, gene expression (Real-Time PCR), and functions (Nitrite oxide assay and phagocytosis assay) of OLEU-treated LPS-stimulated RAW 264.7 cells were evaluated. Our findings demonstrated that OLEU could reduce nitrite oxide (NO) production in LPS-stimulated RAW 264.7 cells by downregulating the inducible nitric oxide synthase gene expression. Furthermore, OLEU therapy decreases the expression of M1-associated pro-inflammatory cytokines production (IL-12, IFN-γ, and TNF-α) and genes expression (iNOS, TNF-α) while increasing the M2-associated anti-inflammatory gene expression and cytokines production (IL-10, and TGF-β). Based on the result, OLEU may be considered a potential therapeutic approach for inflammatory diseases due to its possible effects on oxidative stress-related factors, cytokine expression and production, and phagocytosis.
Collapse
Affiliation(s)
- Zahra Mirsanei
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Neda Heidari
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Hazrati
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Yahya Asemani
- Student Research Committee, Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bahare Niknam
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Yousefi
- School of Allied Medical Sciences, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Reza Jafari
- School of Allied Medical Sciences, Shahroud University of Medical Sciences, Shahroud, Iran.
| |
Collapse
|
34
|
Singh M, Kadhim MM, Turki Jalil A, Oudah SK, Aminov Z, Alsaikhan F, Jawhar ZH, Ramírez-Coronel AA, Farhood B. A systematic review of the protective effects of silymarin/silibinin against doxorubicin-induced cardiotoxicity. Cancer Cell Int 2023; 23:88. [PMID: 37165384 PMCID: PMC10173635 DOI: 10.1186/s12935-023-02936-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/03/2023] [Indexed: 05/12/2023] Open
Abstract
PURPOSE Although doxorubicin chemotherapy is commonly applied for treating different malignant tumors, cardiotoxicity induced by this chemotherapeutic agent restricts its clinical use. The use of silymarin/silibinin may mitigate the doxorubicin-induced cardiac adverse effects. For this aim, the potential cardioprotective effects of silymarin/silibinin against the doxorubicin-induced cardiotoxicity were systematically reviewed. METHODS In this study, we performed a systematic search in accordance with PRISMA guideline for identifying all relevant studies on "the role of silymarin/silibinin against doxorubicin-induced cardiotoxicity" in different electronic databases up to June 2022. Sixty-one articles were obtained and screened based on the predefined inclusion and exclusion criteria. Thirteen eligible papers were finally included in this review. RESULTS According to the echocardiographic and electrocardiographic findings, the doxorubicin-treated groups presented a significant reduction in ejection fraction, tissue Doppler peak mitral annulus systolic velocity, and fractional shortening as well as bradycardia, prolongation of QT and QRS interval. However, these echocardiographic abnormalities were obviously improved in the silymarin plus doxorubicin groups. As well, the doxorubicin administration led to induce histopathological and biochemical changes in the cardiac cells/tissue; in contrast, the silymarin/silibinin co-administration could mitigate these induced alterations (for most of the cases). CONCLUSION According to the findings, it was found that the co-administration of silymarin/silibinin alleviates the doxorubicin-induced cardiac adverse effects. Silymarin/silibinin exerts its cardioprotective effects via antioxidant, anti-inflammatory, anti-apoptotic activities, and other mechanisms.
Collapse
Affiliation(s)
- Mandeep Singh
- Department of Physical Education, University of Jammu, Srinagar, Jammu, India
| | - Mustafa M Kadhim
- Department of Dentistry, Kut University College, Kut, Wasit, 52001, Iraq
- Medical Laboratory Techniques Department, Al-Farahidi University, Baghdad, 10022, Iraq
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, 51001, Iraq.
| | | | - Zafar Aminov
- Department of Public Health and Healthcare Management, Samarkand State Medical University, 18 Amir Temur Street, Samarkand, Uzbekistan
- Department of Scientific Affairs, Tashkent State Dental Institute, 103 Makhtumkuli Str., Tashkent, Uzbekistan
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia.
| | - Zanko Hassan Jawhar
- Department of Medical Laboratory Science, College of Health Sciences, Lebanese French University, Erbil, Kurdistan Region, Iraq
- Clinical Biochemistry Department, College of Health Sciences, Hawler Medical University, Erbil, Kurdistan Region, Iraq
| | - Andrés Alexis Ramírez-Coronel
- Azogues Campus Nursing Career, Health and Behavior Research Group (HBR), Psychometry and Ethology Laboratory, Catholic University of Cuenca, Cuenca, Ecuador
- Epidemiology and Biostatistics Research Group, CES University, Medellín, Colombia
- Educational Statistics Research Group (GIEE), National University of Education, Cuenca, Ecuador
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
35
|
Marwa A, Jufri M. Nanoemulsion curcumin injection showed significant anti-inflammatory activities on carrageenan-induced paw edema in Sprague-Dawley rats. Heliyon 2023; 9:e15457. [PMID: 37151685 PMCID: PMC10161698 DOI: 10.1016/j.heliyon.2023.e15457] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/27/2023] [Accepted: 04/10/2023] [Indexed: 05/09/2023] Open
Abstract
Medicinal plants are candidates for the discovery of potential new anti-inflammatory agents. Curcumin is the active compound found in turmeric root, which has high anti-inflammatory activity. One of the limitations of curcumin as a therapeutic agent is its low solubility in water and extensive first-pass effect metabolism. The aim of this study was to formulate curcumin nanoemulsion for parenteral injection. We prepared curcumin nanoemulsions with a homogenizer using three surfactant concentrations (1.8%; 2.4%; and 3%) and two curcumin concentrations (1% and 3%). Formulas were evaluated for droplet diameter, polydispersity index, zeta potential, viscosity, pH, entrapment efficiency (EE), osmolality, sterility, and morphology. The nanoemulsion containing 1% curcumin and 3% surfactant (F3) demonstrated good stability. Curcumin nanoemulsions at 20 and 40 mg/kg doses showed anti-inflammatory activity on carrageenan-induced paw edema in male Sprague-Dawley rats. These two doses inhibited paw edema by 33% and 56% respectively at 5 h after carrageenan induction. Inhibition of edema volume by curcumin nanoemulsion at a dose of 40 mg/kg did not show a significant difference (P > 0.05) compared to the activity of the standard drug ketorolac at a dose of 2.7 mg/kg. We conclude that curcumin nanoemulsion has anti-inflammatory activity and can be a promising anti-inflammatory agent.
Collapse
|
36
|
Wang L, Li P, Feng K. EGCG adjuvant chemotherapy: Current status and future perspectives. Eur J Med Chem 2023; 250:115197. [PMID: 36780831 DOI: 10.1016/j.ejmech.2023.115197] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023]
Abstract
The resistance of cancer cells to chemotherapeutic drugs greatly reduces the therapeutic effect in cancer patients, and the toxic side effects caused by chemotherapy also seriously affect the quality of life of patients. The combination of epigallocatechin-3-gallate (EGCG), the main active ingredient in tea, with cisplatin, 5-FU, doxorubicin and paclitaxel enhances their sensitizing effect on tumors and combats the drug resistance of cancer cells. These effects seem to be mediated by a variety of mechanisms, including combating drug resistance mediated by cancer stem cells, enhancing drug sensitivity, inducing cell cycle arrest and apoptosis, and blocking angiogenesis. In addition, EGCG can suppress a series of adverse effects caused by chemotherapy, such as gastrointestinal disorders, nephrotoxicity and cardiotoxicity, through its anti-inflammatory and antioxidant effects and improve the quality of life of patients. However, the low bioavailability and off-target effects of EGCG and its reactivity with some chemotherapeutic agents limit its clinical application. The nanomodification of EGCG and chemotherapeutic drugs not only enhances the antitumor activity but also prolongs the survival time of tumor-bearing mice, and has the advantage of low toxicity. Therefore, this review aims to discuss the current status and challenges regarding the use of EGCG in combination with chemotherapy drugs in the treatment of cancer. In general, EGCG is a promising adjuvant for chemotherapy.
Collapse
Affiliation(s)
- Lin Wang
- Pingshan District People's Hospital of Shenzhen, Pingshan General Hospital of Southern Medical University, Shenzhen, 518118, Guangdong, China
| | - Penghui Li
- Center for Health Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, Guangdong, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kun Feng
- Pingshan District People's Hospital of Shenzhen, Pingshan General Hospital of Southern Medical University, Shenzhen, 518118, Guangdong, China.
| |
Collapse
|
37
|
Shelash Al-Hawary SI, Abdalkareem Jasim S, M Kadhim M, Jaafar Saadoon S, Ahmad I, Romero Parra RM, Hasan Hammoodi S, Abulkassim R, M Hameed N, K Alkhafaje W, Mustafa YF, Javed Ansari M. Curcumin in the treatment of liver cancer: From mechanisms of action to nanoformulations. Phytother Res 2023; 37:1624-1639. [PMID: 36883769 DOI: 10.1002/ptr.7757] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 01/10/2023] [Accepted: 01/22/2023] [Indexed: 03/09/2023]
Abstract
Liver cancer is the sixth most prevalent cancer and ranks third in cancer-related death, after lung and colorectal cancer. Various natural products have been discovered as alternatives to conventional cancer therapy strategies, including radiotherapy, chemotherapy, and surgery. Curcumin (CUR) with antiinflammatory, antioxidant, and antitumor activities has been associated with therapeutic benefits against various cancers. It can regulate multiple signaling pathways, such as PI3K/Akt, Wnt/β-catenin, JAK/STAT, p53, MAPKs, and NF-ĸB, which are involved in cancer cell proliferation, metastasis, apoptosis, angiogenesis, and autophagy. Due to its rapid metabolism, poor oral bioavailability, and low solubility in water, CUR application in clinical practices is restricted. To overcome these limitations, nanotechnology-based delivery systems have been applied to use CUR nanoformulations with added benefits, such as reducing toxicity, improving cellular uptake, and targeting tumor sites. Besides the anticancer activities of CUR in combating various cancers, especially liver cancer, here we focused on the CUR nanoformulations, such as micelles, liposomes, polymeric, metal, and solid lipid nanoparticles, and others, in the treatment of liver cancer.
Collapse
Affiliation(s)
| | - Saade Abdalkareem Jasim
- Medical Laboratory Techniques Department, Al-maarif University College, Al-Anbar-Ramadi, Iraq
| | - Mustafa M Kadhim
- Medical Laboratory Techniques Department, Al-Farahidi University, Baghdad, Iraq.,Medical Laboratory Techniques Department, Al-Turath University College, Baghdad, Iraq
| | | | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | | | | | | | - Noora M Hameed
- Anesthesia Techniques, Al-Nisour University College, Baghdad, Iraq
| | - Waleed K Alkhafaje
- Anesthesia Techniques Department, Al-Mustaqbal University College, Babylon, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, Iraq
| | - Mohammad Javed Ansari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj, Saudi Arabia
| |
Collapse
|
38
|
Robijns J, Becherini C, Caini S, Wolf JR, van den Hurk C, Beveridge M, Lam H, Bonomo P, Chow E, Behroozian T. Natural and miscellaneous agents for the prevention of acute radiation dermatitis: a systematic review and meta-analysis. Support Care Cancer 2023; 31:195. [PMID: 36859690 DOI: 10.1007/s00520-023-07656-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023]
Abstract
PURPOSE This systematic review and meta-analysis aimed to evaluate the available literature describing the efficacy of natural and miscellaneous agents in preventing acute radiation dermatitis (RD) in cancer patients. METHODS OVID MedLine, Embase, and Cochrane literature databases were searched from 1946 to January 2023 for randomized controlled trials studying the use of natural and miscellaneous agents to prevent RD. RevMan 5.4 was used for the meta-analysis to calculate the pooled effect sizes and 95% confidence intervals (CI) using the random effects analysis. RESULTS For the systematic review and meta-analysis, 19 and 16 studies were included, respectively. Of the five studied natural products (aloe vera, oral enzymes, olive oil, calendula, and curcumin), only oral enzymes and olive oil significantly reduced the incidence of Radiation Therapy Oncology Group grade 2+ (RR: 0.42, 95%CI 0.30-0.58, p < 0.00001, RR: 0.66, 95% CI 0.51-0.85, p = 0.001, resp.). The oral enzymes also reduced the grade 3+ RD incidence (RR: 0.18, 95%CI 0.06-0.55, p = 0.003). The other agents demonstrated no significant effect. CONCLUSION This review and meta-analysis on natural and miscellaneous agents in preventing RD in cancer patients demonstrated that oral enzymes and olive oil prevented RD severity. However, evidence supporting natural agents to prevent RD is inconsistent, mainly because of low studies numbers, low-quality study designs, and small sample sizes. Therefore, concrete conclusions cannot be made. Research on (new) natural or miscellaneous agents should focus on a randomized controlled double-blinded study design with a large patient population, a higher consistency in research methods, and clinician- and patient-reported outcomes.
Collapse
Affiliation(s)
- Jolien Robijns
- Faculty of Medicine and Life Sciences, Limburg Clinical Research Center, Hasselt University, Hasselt, Belgium
| | - Carlotta Becherini
- Department of Experimental and Clinical Biomedical Sciences "M. Serio", University of Florence, Florence, Italy.,Radiation Oncology Unit - Oncology Department, Azienda Ospedaliero Universitaria Careggi, Florence, Italy
| | - Saverio Caini
- Cancer Risk Factors and Lifestyle Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network (ISPO), Florence, Italy
| | - Julie Ryan Wolf
- Department of Dermatology, University of Rochester Medical Centre, Rochester, NY, USA.,Department of Radiation Oncology, University of Rochester Medical Centre, Rochester, NY, USA
| | - Corina van den Hurk
- Department of Research and Development, Netherlands Comprehensive Cancer Organization, Utrecht, The Netherlands
| | - Mara Beveridge
- Department of Dermatology, University Hospitals, Cleveland, OH, USA
| | - Henry Lam
- Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Pierluigi Bonomo
- Radiation Oncology Unit - Oncology Department, Azienda Ospedaliero Universitaria Careggi, Florence, Italy
| | - Edward Chow
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - Tara Behroozian
- Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
39
|
Sabouni N, Marzouni HZ, Palizban S, Meidaninikjeh S, Kesharwani P, Jamialahmadi T, Sahebkar A. Role of curcumin and its nanoformulations in the treatment of neurological diseases through the effects on stem cells. J Drug Target 2023; 31:243-260. [PMID: 36305097 DOI: 10.1080/1061186x.2022.2141755] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Curcumin from turmeric is a natural phenolic compound with a promising potential to regulate fundamental processes involved in neurological diseases, including inflammation, oxidative stress, protein aggregation, and apoptosis at the molecular level. In this regard, employing nanoformulation can improve curcumin efficiency by reducing its limitations, such as low bioavailability. Besides curcumin, growing data suggest that stem cells are a noteworthy candidate for neurodegenerative disorders therapy due to their anti-inflammatory, anti-oxidative, and neuronal-differentiation properties, which result in neuroprotection. Curcumin and stem cells have similar neurogenic features and can be co-administered in a cell-drug delivery system to achieve better combination therapeutic outcomes for neurological diseases. Based on the evidence, curcumin can induce the neuroprotective activity of stem cells by modulating their related signalling pathways. The present review is about the role of curcumin and its nanoformulations in the improvement of neurological diseases alone and through the effect on different categories of stem cells by discussing the underlying mechanisms to provide a roadmap for future investigations.
Collapse
Affiliation(s)
- Nasim Sabouni
- Department of Immunology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hadi Zare Marzouni
- Qaen School of Nursing and Midwifery, Birjand University of Medical Sciences, Birjand, Iran
| | - Sepideh Palizban
- Semnan Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Sepideh Meidaninikjeh
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran.,Cancer Biomedical Center (CBC) Research Institute, Tehran, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, India
| | - Tannaz Jamialahmadi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Medicine, The University of Western Australia, Perth, Australia.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
40
|
The aOECs Facilitate the Neuronal Differentiation of Neural Stem Cells in the Inflammatory Microenvironment Through Up-Regulation of Bioactive Factors and Activation of Wnt3/β-Catenin Pathway. Mol Neurobiol 2023; 60:789-806. [PMID: 36371572 DOI: 10.1007/s12035-022-03113-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/29/2022] [Indexed: 11/13/2022]
Abstract
The therapeutic application of neural stem cells (NSCs) in the central nerve system (CNS) injury is a promising strategy for combating irreversible neuronal loss. However, a variety of obvious inflammatory responses following nerve injury rapidly create an unfavorable microenvironment for survival and neuronal differentiation of NSCs in lesion area, limiting the efficacy of NSC-based therapy for CNS injury. It remained unknown how to effectively increase the neuronal differentiation efficiency of NSCs through transplantation. Here, we demonstrated that curcumin (CCM)-activated olfactory ensheathing cells (aOECs) effectively promoted neuronal differentiation of NSCs in the activated microglial inflammatory condition, and co-transplantation of aOECs and NSCs improved neurological recovery of rats after spinal cord injury (SCI), as evidenced by higher expression levels of neuronal markers and lower expression levels of glial markers in the differentiated cells, greater number of Tuj-1-positive cells as well as higher Basso, Beattie, and Bresnahan (BBB) locomotor scale, compared to the corresponding controls. Pathologically, hematoxylin and eosin (HE) staining and immunostaining also showed that aOECs remarkably enhanced the in vivo neuronal differentiation of NSCs and migration, and nerve repair. Further analysis revealed that the underlying mechanisms of aOECs potentiating the neuronal conversion of NSCs under inflammatory environment were tightly associated with up-regulation of anti-inflammatory cytokines and neurotrophic factors in OECs, and importantly, the activation of Wnt3/β-catenin pathway was likely involved in the mechanisms underlying the observed cellular events. Therefore, this study provides a promising strategy for SCI repair by co-transplantation of aOECs and NSCs.
Collapse
|
41
|
Askari G, Bagherniya M, Kiani Z, Alikiaii B, Mirjalili M, Shojaei M, Hassanizadeh S, Vajdi M, Feizi A, Majeed M, Sahebkar A. Evaluation of Curcumin-Piperine Supplementation in COVID-19 Patients Admitted to the Intensive Care: A Double-Blind, Randomized Controlled Trial. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1412:413-426. [PMID: 37378780 DOI: 10.1007/978-3-031-28012-2_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
BACKGROUND Curcumin is a traditional remedy for diseases associated with hyper-inflammatory responses and immune system impairment. Piperine, a bioactive compound in black pepper, has the potential to enhance curcumin bioavailability. 0This study aims to examine the effect of the curcumin-piperine co-supplementation in patients infected with SARS-CoV-2 and admitted to the intensive care unit (ICU). MATERIAL AND METHODS In this parallel randomized, double-blind, placebo-controlled trial, 40 patients with COVID-19 admitted to ICU were randomized to receive three capsules of curcumin (500 mg)-piperine (5 mg) or placebo for 7 days. RESULTS After 1 week of the intervention, serum aspartate aminotransferase (AST) (p = 0.02) and C-reactive protein (CRP) (p = 0.03) were significantly decreased, and hemoglobin was increased (p = 0.03) in the curcumin-piperine compared to the placebo group. However, compared with the placebo, curcumin-piperine had no significant effects on the other biochemical, hematological, and arterial blood gas and 28-day mortality rate was three patients in each group (p = 0.99). CONCLUSION The study results showed that short-term curcumin-piperine supplementation significantly decreased CRP, AST, and increased hemoglobin in COVID-19 patients admitted to the ICU. Based on these promising findings, curcumin appears to be a complementary treatment option for COVID-19 patients, although some parameters were not affected by the intervention.
Collapse
Affiliation(s)
- Gholamreza Askari
- Nutrition and Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
- Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Bagherniya
- Nutrition and Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
- Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zahra Kiani
- Nutrition and Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Babak Alikiaii
- Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahdiye Mirjalili
- Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehrnaz Shojaei
- Nutrition and Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shirin Hassanizadeh
- Nutrition and Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahdi Vajdi
- Nutrition and Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Awat Feizi
- Department of Biostatistics and Epidemiology, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
42
|
Pandey P, Chaturvedi S, Gumathannavar R, Shirolkar MM, Kanuru V, Kulkarni A, Moh SH. A Xanthan-Gum-Stabilized PEG-Conjugated Nanocurcumin Complex: Telescoping Synthesis for Enhanced Permeation Potential. ChemistryOpen 2023; 12:e202200200. [PMID: 36599688 PMCID: PMC9812755 DOI: 10.1002/open.202200200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/01/2022] [Indexed: 01/06/2023] Open
Abstract
We report a facile room temperature telescoping synthesis of a nanocurcumin complex with 17.5-fold permeation enhancement as determined by comparative in vitro permeation study with raw curcumin. The permeation results were further validated with in silico drug absorption prediction using ADMET predictors.
Collapse
Affiliation(s)
- Prem Pandey
- Symbiosis Center for Nanoscience and Nanotechnology (SCNN)Symbiosis International (Deemed University) (SIU) LavalePune412115MaharashtraIndia
| | - Supriya Chaturvedi
- Nuimance Phytovigyan Private Limited (NPPL) Anusha EnclavePashan-Sus RoadPune411021MaharashtraIndia
| | - Rutuja Gumathannavar
- Symbiosis Center for Nanoscience and Nanotechnology (SCNN)Symbiosis International (Deemed University) (SIU) LavalePune412115MaharashtraIndia
| | - Mandar M. Shirolkar
- Symbiosis Center for Nanoscience and Nanotechnology (SCNN)Symbiosis International (Deemed University) (SIU) LavalePune412115MaharashtraIndia
| | - Vijay Kanuru
- Oncocur India Private Limited#1, Pitruchhaya, Sanghavi Corporate Park Govandi (E)Mumbai400088India
| | - Atul Kulkarni
- Symbiosis Center for Nanoscience and Nanotechnology (SCNN)Symbiosis International (Deemed University) (SIU) LavalePune412115MaharashtraIndia
| | - Sang Hyun Moh
- Plant Cell Research Institute of BIO-FD&C509-512, Smartvalley A, 30 Songdomirae-ro, Yeonsu-guIncheon21990South Korea
| |
Collapse
|
43
|
Zhou X, Wang X, Li N, Guo Y, Yang X, Lei Y. Therapy resistance in neuroblastoma: Mechanisms and reversal strategies. Front Pharmacol 2023; 14:1114295. [PMID: 36874032 PMCID: PMC9978534 DOI: 10.3389/fphar.2023.1114295] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/06/2023] [Indexed: 02/18/2023] Open
Abstract
Neuroblastoma is one of the most common pediatric solid tumors that threaten the health of children, accounting for about 15% of childhood cancer-related mortality in the United States. Currently, multiple therapies have been developed and applied in clinic to treat neuroblastoma including chemotherapy, radiotherapy, targeted therapy, and immunotherapy. However, the resistance to therapies is inevitable following long-term treatment, leading to treatment failure and cancer relapse. Hence, to understand the mechanisms of therapy resistance and discover reversal strategies have become an urgent task. Recent studies have demonstrated numerous genetic alterations and dysfunctional pathways related to neuroblastoma resistance. These molecular signatures may be potential targets to combat refractory neuroblastoma. A number of novel interventions for neuroblastoma patients have been developed based on these targets. In this review, we focus on the complicated mechanisms of therapy resistance and the potential targets such as ATP-binding cassette transporters, long non-coding RNAs, microRNAs, autophagy, cancer stem cells, and extracellular vesicles. On this basis, we summarized recent studies on the reversal strategies to overcome therapy resistance of neuroblastoma such as targeting ATP-binding cassette transporters, MYCN gene, cancer stem cells, hypoxia, and autophagy. This review aims to provide novel insight in how to improve the therapy efficacy against resistant neuroblastoma, which may shed light on the future directions that would enhance the treatment outcomes and prolong the survival of patients with neuroblastoma.
Collapse
Affiliation(s)
- Xia Zhou
- Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Xiaokang Wang
- Department of Pharmacy, Shenzhen Longhua District Central Hospital, Shenzhen, China.,Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan, China.,The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, China
| | - Nan Li
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Yu Guo
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Xiaolin Yang
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuhe Lei
- Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, China
| |
Collapse
|
44
|
Salehiabar M, Ghaffarlou M, Mohammadi A, Mousazadeh N, Rahimi H, Abhari F, Rashidzadeh H, Nasehi L, Rezaeejam H, Barsbay M, Ertas YN, Nosrati H, Kavetskyy T, Danafar H. Targeted CuFe 2O 4 hybrid nanoradiosensitizers for synchronous chemoradiotherapy. J Control Release 2023; 353:850-863. [PMID: 36493951 DOI: 10.1016/j.jconrel.2022.12.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 11/08/2022] [Accepted: 12/03/2022] [Indexed: 12/23/2022]
Abstract
Multifunctional nanoplatforms based on novel bimetallic nanoparticles have emerged as effective radiosensitizers owing to their potential capability in cancer cells radiosensitization. Implementation of chemotherapy along with radiotherapy, known as synchronous chemoradiotherapy, can augment the treatment efficacy. Herein, a tumor targeted nanoradiosensitizer with synchronous chemoradiotion properties, termed as CuFe2O4@BSA-FA-CUR, loaded with curcumin (CUR) and modified by bovine serum albumin (BSA) and folic acid (FA) was developed to enhance tumor accumulation and promote the anti-cancer activity while attenuating adverse effects. Both copper (Cu) and iron (Fe) were utilized in the construction of these submicron scale entities, therefore strong radiosensitization effect is anticipated by implementation of these two metals. The structure-function relationships between constituents of nanomaterials and their function led to the development of nanoscale materials with great radiosensitizing capacity and biosafety. BSA was used to anchor Fe and Cu ions but also to improve colloidal stability, blood circulation time, biocompatibility, and further functionalization. Moreover, to specifically target tumor sites and enhance cellular uptake, FA was conjugated onto the surface of hybrid bimetallic nanoparticles. Finally, CUR as a natural chemotherapeutic agent was encapsulated into the developed bimetallic nanoparticles. With incorporation of all abovementioned stages into one multifunctional nanoplatform, CuFe2O4@BSA-FA-CUR is produced for synergistic chemoradiotherapy with positive outcomes. In vitro investigation revealed that these nanoplatforms bear excellent biosafety, great tumor cell killing ability and radiosensitizing capacity. In addition, high cancer-suppression efficiency was observed through in vivo studies. It is worth mentioning that co-use of CuFe2O4@BSA-FA-CUR nanoplatforms and X-ray radiation led to complete tumor ablation in almost all of the treated mice. No mortality or radiation-induced normal tissue toxicity were observed following administration of CuFe2O4@BSA-FA-CUR nanoparticles which highlights the biosafety of these submicron scale entities. These results offer powerful evidence for the potential capability of CuFe2O4@BSA-FA-CUR in radiosensitization of malignant tumors and opens up a new avenue of research in this area.
Collapse
Affiliation(s)
- Marziyeh Salehiabar
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran; Joint Ukraine-Azerbaijan International Research and Education Center of Nanobiotechnology and Functional Nanosystems, Drohobych, Ukraine
| | | | - Ali Mohammadi
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Navid Mousazadeh
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hossein Rahimi
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Abhari
- Department of Radiology, School of Paramedical Sciences, Zanjan University of Medical Sciences, Zanjan 45139- 56184, Iran
| | - Hamid Rashidzadeh
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Leila Nasehi
- Department of Medical Laboratory, School of Paramedical Sciences, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hamed Rezaeejam
- Department of Radiology, School of Paramedical Sciences, Zanjan University of Medical Sciences, Zanjan 45139- 56184, Iran
| | - Murat Barsbay
- Hacettepe University, Department of Chemistry, Beytepe, Ankara 06800, Türkiye
| | - Yavuz Nuri Ertas
- ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri 38039, Türkiye; Department of Biomedical Engineering, Erciyes University, Kayseri 38039, Türkiye
| | - Hamed Nosrati
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran; Joint Ukraine-Azerbaijan International Research and Education Center of Nanobiotechnology and Functional Nanosystems, Drohobych, Ukraine.
| | - Taras Kavetskyy
- Joint Ukraine-Azerbaijan International Research and Education Center of Nanobiotechnology and Functional Nanosystems, Drohobych, Ukraine; Department of Materials Engineering, The John Paul II Catholic University of Lublin, 20-950 Lublin, Poland; Drohobych Ivan Franko State Pedagogical University, 82100 Drohobych, Ukraine.
| | - Hossein Danafar
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran; Joint Ukraine-Azerbaijan International Research and Education Center of Nanobiotechnology and Functional Nanosystems, Drohobych, Ukraine.
| |
Collapse
|
45
|
Ataei M, Roufogalis BD, Majeed M, Shah MA, Sahebkar A. Curcumin Nanofibers: A Novel Approach to Enhance the Anticancer Potential and Bioavailability of Curcuminoids. Curr Med Chem 2023; 30:286-303. [PMID: 35319355 DOI: 10.2174/0929867329666220322110348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/27/2021] [Accepted: 12/19/2021] [Indexed: 11/22/2022]
Abstract
Development of novel treatment methods for cancer is needed given the limitations of current treatment methods, including side effects and chemotherapeutic resistance, which may provide new hope to cancer patients. Cancer is the second leading cause of global mortality. Curcumin, the active ingredient of turmeric, has been used since ancient times for various therapeutic purposes. Several studies have identified its activity against cancer. Despite the established anticancer activity of curcumin, its low aqueous solubility and bioavailability are barriers to its effectiveness. In an attempt to solve this problem, many studies have formulated curcumin nanofiber preparations using a variety of methods. Electrospinning is a simple and affordable method for the production of nanofibers. Studies have shown increased curcumin bioavailability in nanofibers resulting from their high surface/volume ratio and porosity. We have undertaken a detailed review of studies on the anticancer effects of curcumin nanofibers. Curcumin acts by inhibiting various biological cancer pathways, including NF-κB, mTOR, complex I, cytokines, expression of p-p65, Ki67, and angiogenesis-associated genes. It also induces apoptosis through activation of caspase pathways and ROS production in cancer cells. Curcumin-loaded PLA50/PVP50/Cur15 nanofibers were investigated in breast cancer, one of the most studied cancers, and was shown to have significant effects on the widely used HeLa-cell line. Most of the studies undertaken have been performed in cell lines in vitro, while relatively few animal studies have been reported. More preclinical and clinical studies are needed to evaluate the anticancer activity of curcumin nanofibers. Amongst studies undertaken, a variety of curcumin nanofibers of various formulations have been shown to suppress a variety of cancer types. Overall, curcumin nanofibers have been found to be more efficient than free curcumin. Thus, curcumin nanofibers have been observed to improvise cancer treatment, offering great potential for effective cancer management. Further studies, both in vitro and in vivo, involving curcumin nanofibers have the potential to benefit cancer management.
Collapse
Affiliation(s)
- Mahshid Ataei
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Toxicology & Pharmacology, School of Pharmacy and Toxicology & Diseases Group, Pharmaceutical Sciences Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Basil D Roufogalis
- Discipline of Pharmacology, School of Medical Sciences, University of Sydney, Sydney, NSW, Australia.,National Institute of Complementary Medicine, Western Sydney University, Westmead, NSW, Australia
| | | | - Muhammad A Shah
- Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Medicine, The University of Western Australia, Perth, Australia.,Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
46
|
Hosseinikhah SM, Gheybi F, Moosavian SA, Shahbazi MA, Jaafari MR, Sillanpää M, Kesharwani P, Alavizadeh SH, Sahebkar A. Role of exosomes in tumour growth, chemoresistance and immunity: state-of-the-art. J Drug Target 2023; 31:32-50. [PMID: 35971773 DOI: 10.1080/1061186x.2022.2114000] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Cancer is one of the most lethal diseases, and limited available treatment options contribute to its high mortality rate. Exosomes are considered membrane-bound nanovesicles that include different molecules such as lipids, proteins, and nucleic acids. Virtually most cells could release exosomes via exocytosis in physiological and pathological conditions. Tumour-derived exosomes (TDEs) play essential roles in tumorigenesis, proliferation, progression, metastasis, immune escape, and chemoresistance by transferring functional biological cargos, triggering different autocrine, and paracrine signalling cascades. Due to their antigen-presenting properties, exosomes are widely used as biomarkers and drug carriers and have a prominent role in cancer immunotherapy. They offer various advantages in carrier systems (e.g. in chemotherapy, siRNA, and miRNA), delivery of diagnostic agents owing to their stability, loading of hydrophobic and hydrophilic agents, and drug targeting. Novel exosomes-based carriers can be generated as intelligent systems using various sources and crosslinking chemistry extracellular vesicles (EVs). Exosomes studded with targeting ligands, including peptides, can impart in targeted delivery of cargos to tumour cells. In this review, we comprehensively summarised the important role of tumour-derived exosomes in dictating cancer pathogenesis and resistance to therapy. We have therefore, investigated in further detail the pivotal role of tumour-derived exosomes in targeting various cancer cells and their applications, and prospects in cancer therapy and diagnosis. Additionally, we have implicated the potential utility and significance of tumour exosomes-based nanoparticles as an efficient and novel therapeutic carrier and their applications in treating advanced cancers.
Collapse
Affiliation(s)
- Seyedeh Maryam Hosseinikhah
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Gheybi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyedeh Alia Moosavian
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad-Ali Shahbazi
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.,Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mika Sillanpää
- Environmental Engineering and Management Research Group, Ton Duc Thang University, Ho Chi Minh City, Vietnam.,Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, New Delhi, India
| | - Seyedeh Hoda Alavizadeh
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Medicine, The University of Western Australia, Perth, Australia.,Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
47
|
Li K, Zhang Y, Hao X, Xie D, Wang C, Zhang H, Jin P, Du Q. Improved Stability and In Vitro Anti-Arthritis Bioactivity of Curcumin-Casein Nanoparticles by Ultrasound-Driven Encapsulation. Nutrients 2022; 14:nu14235192. [PMID: 36501222 PMCID: PMC9740927 DOI: 10.3390/nu14235192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/02/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Curcumin possesses beneficial biological functions, namely anti-inflammation and anti-diabetic functions. However, due to its low solubility and crystallinity, its applications are limited. In this work, curcumin was encapsulated in casein micelles in order to form curcumin-casein nanoparticles by ultrasound treatment (5 min). The ultrasound treatment induced the entry of the hydrophobic groups to the inner micelles and the polar sulfydryl groups to the surface of the micelles in order to form compact curcumin-casein nanoparticles of an appropriate size (100-120 nm) for cellular endocytosis. The product exhibited excellent stability during 8 months of cold storage, 6 days at room temperature, and 2 days at body temperature. Advanced in vitro experiments demonstrated that curcumin-casein nanoparticles displayed significantly greater inhibitory activity against the proliferation and proinflammatory cytokines of human fibroblast-like synoviocyte-osteo arthritis (HFLS-OA) cells and HFLS-rheumatoid (RA) cells than native curcumin due to better cellular uptake as a result of the low crystallinity and the appropriate nano-size of the nano-form. The results provide a reference for the use of ultrasound treatment to encapsulate other drug molecules and curcumin-casein nanoparticles as potential treatment for arthritis.
Collapse
|
48
|
Mohamadian M, Parsamanesh N, Chiti H, Sathyapalan T, Sahebkar A. Protective effects of curcumin on ischemia/reperfusion injury. Phytother Res 2022; 36:4299-4324. [PMID: 36123613 DOI: 10.1002/ptr.7620] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 08/06/2022] [Accepted: 08/24/2022] [Indexed: 12/13/2022]
Abstract
Ischemia/reperfusion (I/R) injury is a term used to describe phenomena connected to the dysfunction of various tissue damage due to reperfusion after ischemic injury. While I/R may result in systemic inflammatory response syndrome or multiple organ dysfunction syndrome, there is still a long way to improve therapeutic outcomes. A number of cellular metabolic and ultrastructural alterations occur by prolonged ischemia. Ischemia increases the expression of proinflammatory gene products and bioactive substances within the endothelium, such as cytokines, leukocytes, and adhesion molecules, even as suppressing the expression of other "protective" gene products and substances, such as thrombomodulin and constitutive nitric oxide synthase (e.g., prostacyclin, nitric oxide [NO]). Curcumin is the primary phenolic pigment derived from turmeric, the powdered rhizome of Curcuma longa. Numerous studies have shown that curcumin has strong antiinflammatory and antioxidant characteristics. It also prevents lipid peroxidation and scavenges free radicals like superoxide anion, singlet oxygen, NO, and hydroxyl. In our study, we highlight the mechanisms of protective effects of curcumin against I/R injury in various organs.
Collapse
Affiliation(s)
- Malihe Mohamadian
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Negin Parsamanesh
- Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hossein Chiti
- Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Thozhukat Sathyapalan
- Department of Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull, UK
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Medicine, The University of Western Australia, Perth, Australia.,Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
49
|
Bagherniya M, Mahdavi A, Shokri-Mashhadi N, Banach M, Von Haehling S, Johnston TP, Sahebkar A. The beneficial therapeutic effects of plant-derived natural products for the treatment of sarcopenia. J Cachexia Sarcopenia Muscle 2022; 13:2772-2790. [PMID: 35961944 PMCID: PMC9745475 DOI: 10.1002/jcsm.13057] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 06/12/2022] [Accepted: 07/04/2022] [Indexed: 12/15/2022] Open
Abstract
Sarcopenia is an age-related muscle disorder typically associated with a poor quality of life. Its definition has evolved over time, and several underlying causes of sarcopenia in the elderly have been proposed. However, the exact mechanisms involved in sarcopenia, as well as effective treatments for this condition, are not fully understood. The purpose of this article was to conduct a comprehensive review of previous evidence regarding the definition, diagnosis, risk factors, and efficacy of plant-derived natural products for sarcopenia. The methodological approach for the current narrative review was performed using PubMed, Scopus, and Web of Science databases, as well as Google Scholar (up to March 2021) in order to satisfy our objectives. The substantial beneficial effects along with the safety of some plant-derived natural products including curcumin, resveratrol, catechin, soy protein, and ginseng on sarcopenia are reported in this review. Based on clinical studies, nutraceuticals and functional foods may have beneficial effects on physical performance, including handgrip and knee-extension strength, weight-lifting capacity, time or distance travelled before feeling fatigued, mitochondrial function, muscle fatigue, mean muscle fibre area, and total number of myonuclei. In preclinical studies, supplementation with herbs and natural bioactive compounds resulted in beneficial effects including increased plantaris mass, skeletal muscle mass and strength production, increased expression of anabolic factors myogenin, Myf5 and MyoD, enhanced mitochondrial capacity, and inhibition of muscle atrophy and sarcopenia. We found that several risk factors such as nutritional status, physical inactivity, inflammation, oxidative stress, endocrine system dysfunction, insulin resistance, history of chronic disease, mental health, and genetic factors are linked or associated with sarcopenia. The substantial beneficial effects of some nutraceuticals and functional foods on sarcopenia, including curcumin, resveratrol, catechin, soy protein, and ginseng, without any significant side effects, are reported in this review. Plant-derived natural products might have a beneficial effect on various components of sarcopenia. Nevertheless, due to limited human trials, the clinical benefits of plant-derived natural products remain inconclusive. It is suggested that comprehensive longitudinal clinical studies to better understand risk factors over time, as well as identifying a treatment strategy for sarcopenia that is based on its pathophysiology, be undertaken in future investigations.
Collapse
Affiliation(s)
- Mohammad Bagherniya
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran.,Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.,Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Atena Mahdavi
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nafiseh Shokri-Mashhadi
- Department of Clinical Nutrition, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maciej Banach
- Department of Hypertension, WAM University Hospital in Lodz, Medical University of Lodz, Lodz, Poland.,Cardiovascular Research Centre, University of Zielona-Gora, Zielona-Gora, Poland
| | - Stephan Von Haehling
- Department of Cardiology and Pneumology, University of Göttingen Medical Center, Göttingen, Germany.,German Center for Cardiovascular Research (DZHK), partner site Göttingen, Göttingen, Germany
| | - Thomas P Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Medicine, The University of Western Australia, Perth, Australia
| |
Collapse
|
50
|
Arabi SM, Bahari H, Hamidipor S, Bahrami LS, Feizy Z, Nematy M, Kesharwani P, Sahebkar A. The effects of curcumin-containing supplements on inflammatory biomarkers in hemodialysis patients: A systematic review and meta-analysis. Phytother Res 2022; 36:4361-4370. [PMID: 36205586 DOI: 10.1002/ptr.7642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 06/27/2022] [Accepted: 09/18/2022] [Indexed: 12/13/2022]
Abstract
In the past decade, the effect of curcumin or turmeric supplementation on many aspects of health status in different populations has been evaluated. In the present study, a systematic review and meta-analysis were conducted to estimate the effect of curcumin administration on inflammatory markers in hemodialysis (HD) patients. A systematic search was performed in MEDLINE, EMBASE, Scopus, and Clarivate Analytics Web of Science databases from 1997 until June2022 for terms related to curcumin/turmeric and hemodialysis (HD). Randomized, double-blind/single-blind studies examining the effects of curcumin/turmeric on the inflammation of HD participants older than 18 years were considered eligible for inclusion. Data were pooled using the weighted mean difference (WMD) and 95% CI as the summary statistic, considering a random-effects analysis model. The data that were pooled from nine studies with 472 patients indicated that curcumin-containing supplement had significant effect on serum C-reactive protein (CRP) levels (WMD = -3.3 mg/L; 95% CI: -5.4 to -1.3; p < 0.001, I2 = 76.7%, 8 studies, 467 participants), and interlukine-6 (IL-6) levels (SMD: -0.4; 95% CI: -0.8 to -0.07; p = 0.02, I2 = 31.6%, 3 studies, 153 participants) compared control group. Although curcumin intervention could not change tumor neurosis factor-α (TNF-α) concentration (SMD = -0.3; 95% CI: -0.7 to 0.04; p = 0.08, I2 = 25.3%, 3 studies, 153 participants), when compared with the placebo group. Our study's main limitations were small number of studies, overall high risk of bias in the included trials, and high heterogeneity in some results. The present meta-analysis suggested that intervention with curcumin-containing supplements was associated with a significant reduction in serum hs-CRP and IL-6 concentrations in HD patients. The curcumin intervention in the reduction of hs-CRP levels was greater than the minimal clinically important difference (MCID) for CRP (0.5 mg/L), which can be helpful in physicians' clinical decisions.
Collapse
Affiliation(s)
- Seyyed Mostafa Arabi
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran.,Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Bahari
- Metabolic Syndrome Research Center, Department of Nutrition, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sina Hamidipor
- Department of Physical Education & Sport Sciences, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Leila Sadat Bahrami
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran.,Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Feizy
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas, USA
| | - Mohsen Nematy
- Metabolic Syndrome Research Center, Department of Nutrition, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Medicine, The University of Western Australia, Perth, Western Australia, Australia.,Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|