1
|
Naseri B, Alipour S, Masoumi J, Hatami-Sadr A, Vaysi E, Hemmat N, Alizadeh N, Baradaran B. RAD001-mediated mTOR targeting in human monocyte-derived dendritic cells shifts them toward an immunogenic phenotype. Immunol Res 2024; 73:21. [PMID: 39699830 DOI: 10.1007/s12026-024-09572-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 10/21/2024] [Indexed: 12/20/2024]
Abstract
Dendritic cells (DCs) are essential for promoting T lymphocyte responses since they are specialist antigen-presenting cells. In order to maintain tolerance or initiate immune responses, DCs must be activated in a balanced and regulated manner via diverse signaling pathways. By using a variety of pharmacological components, we can interfere with their different signaling pathways such as the mammalian target of rapamycin (mTOR) to appropriately modulate DC activity. In the current study, we administered RAD001 to DCs to examine the impact of mTOR inhibition on both the maturation stage and the expression of inflammatory and anti-inflammatory molecules in DCs. Pure monocytes were cultivated and stimulated with GM-CSF and IL-4 to generate immature DCs, which were then treated with RAD001. The phenotype of the DCs was determined by labeling surface markers and analyzing them using flow cytometry. Afterward, real-time PCR was carried out to evaluate the expression of inflammatory and anti-inflammatory genes. The administration of RAD001 to DCs led to a significant upregulation in the gene expression of inflammatory molecules such as IL-12, IL-1β, tumor necrosis factor (TNF)-α, and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-KB). Conversely, RAD001 treatment resulted in a decrease in the gene expression of anti-inflammatory factors IL-10 and indoleamine 2,3-dioxygenase (IDO). However, the expression of differentiation and antigen presentation-related markers CD11c and human leukocyte antigens (HLA)-DR in RAD001-treated DCs was lower and higher compared to the control group that did not receive the treatment, respectively. Taken together, our findings indicated that RAD001 treatment of DCs can be a promising therapeutic approach for the generation of immunogenic DCs in order to barricade tumor growth. However, there is a need for further investigation to evaluate the impacts of mTOR inhibition by RAD001 in DCs on cellular immune responses in vitro and in vivo.
Collapse
Affiliation(s)
- Bahar Naseri
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shiva Alipour
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Masoumi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amirhossein Hatami-Sadr
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Edris Vaysi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nima Hemmat
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nazila Alizadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
2
|
Liang X, Zhang C, Tang Y, Li Y, Zhu Z, Qiu T, Zhao J. A Meta-analysis of the Risk of Adverse Cardiovascular Events in Patients with Cancer Treated with Inhibitors of the PI3K/AKT/mTOR Signaling Pathway. Cardiovasc Toxicol 2024:10.1007/s12012-024-09933-7. [PMID: 39521735 DOI: 10.1007/s12012-024-09933-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/12/2024] [Indexed: 11/16/2024]
Abstract
With the increasing of PI3K/AKT/mTOR (PAM) inhibitors in cancer therapy, there is a growing need to understand the incidence of cardiovascular events (CVAEs) associated with PAM inhibitors. A systematic search of all randomized clinical trials (RCTs) containing at least one PAM group in electronic databases such as PubMed, ClinicalTrials.gov registry, Embase, Medline, Cochrane Library, and major conferences was performed to extract available CVAEs. The cut-off date was January 31, 2024. Study heterogeneity was assessed using the I2 statistic. The risk of CVAEs associated with PAM inhibitors was calculated using Peto OR. The primary outcome was the incidence (95% CI) of PAM inhibitors cardiovascular adverse events in the total population and subgroups. The secondary outcome was the pooled risk of different CVAEs associated with PAM inhibitor exposure in the RCTs. 33 unique RCTs (n = 12,351) were included. The incidence of PAM inhibitors CVAEs of any grade in the intervention group was 48.2%, yielding a combined OR of 2.52 (95% CI 1.82-3.49). The incidence of severe adverse cardiovascular events (≥ grade 3) in the intervention group was estimated at 7.1%, yielding a combined Peto OR of 1.41 (95% CI 1.04-1.93). PAM inhibitors were associated with an increased risk of 5 CVAEs including peripheral edema, lymphoedema, hypercholesterolemia, hypertriglyceridaemia and hyperlipidemia, with higher risks for hypercholesterolemia (Peto OR: 3.27,95% CI 2.61-4.11, P < 0.01; I2 = 55.5%, P = 0.06) and hyperlipidemia (Peto OR: 3.53. 95% CI 1.70-7.32, P < 0.01; I2 = 19.3%, P = 0.29). This study identified an overall incidence of PAM inhibitors CVAEs and the increased risks associated with PAM inhibitor for five specific CVAEs, not confined to hypercholesterolemia and peripheral edema.
Collapse
Affiliation(s)
- Xiao Liang
- Breast Disease Diagnosis and Treatment Center of Affiliated Hospital of Qinghai, University & Affiliated Cancer Hospital of Qinghai University, Xining, 810000, China.
| | - Chengrong Zhang
- Breast Disease Diagnosis and Treatment Center of Affiliated Hospital of Qinghai, University & Affiliated Cancer Hospital of Qinghai University, Xining, 810000, China
| | - Yuyao Tang
- Breast Disease Diagnosis and Treatment Center of Affiliated Hospital of Qinghai, University & Affiliated Cancer Hospital of Qinghai University, Xining, 810000, China
| | - YongXin Li
- Breast Disease Diagnosis and Treatment Center of Affiliated Hospital of Qinghai, University & Affiliated Cancer Hospital of Qinghai University, Xining, 810000, China
| | - Zijun Zhu
- Breast Disease Diagnosis and Treatment Center of Affiliated Hospital of Qinghai, University & Affiliated Cancer Hospital of Qinghai University, Xining, 810000, China
| | - Tianlei Qiu
- Breast Disease Diagnosis and Treatment Center of Affiliated Hospital of Qinghai, University & Affiliated Cancer Hospital of Qinghai University, Xining, 810000, China
| | - Jiuda Zhao
- Breast Disease Diagnosis and Treatment Center of Affiliated Hospital of Qinghai, University & Affiliated Cancer Hospital of Qinghai University, Xining, 810000, China.
| |
Collapse
|
3
|
Xia Y, Yu X, Yuan Z, Yang Y, Liu Y. Whole-Transcriptome Analysis Reveals Potential CeRNA Regulatory Mechanism in Takifugu rubripes against Cryptocaryon irritans Infection. BIOLOGY 2024; 13:788. [PMID: 39452097 PMCID: PMC11504436 DOI: 10.3390/biology13100788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/21/2024] [Accepted: 08/29/2024] [Indexed: 10/26/2024]
Abstract
Cryptocaryon irritans (C. irritans) is a proto-ciliate parasite that infects marine fishes, including the cultured species Takifugu rubripes (T. rubripes), causing disease and potential mortality. In host organisms, infection by parasites triggers an immune response that is modulated by regulatory elements including proteins and non-coding RNAs. In this study, the whole transcriptome RNA sequencing of T. rubripes gill tissue before and after infection with C. irritans was performed to reveal the competitive endogenous RNA (ceRNA) regulatory network. Histomorphology revealed gill segment swelling and parasitic invasion in the infected group. The analysis identified 18 differentially expressed miRNAs (DEMs), 214 lncRNAs (DELs), 2501 genes (DEGs), and 7 circRNAs (DECs) in the infected group. Gene Ontology (GO) enrichment analysis revealed that these genes were notably enriched in the Wnt signaling pathway and mTOR signaling pathway. The co-expression networks (lncRNA/circRNA-miRNA-mRNA) were constructed based on correlation analysis of the differentially expressed RNAs. Further analysis suggested that the LOC105418663-circ_0000361-fru-miR-204a-fzd3a ceRNA axis was potentially involved in the regulation of immune responses against C. irritans infection. Finally, the expression levels of DEG, DEL, and DEM were validated. This study reveals the regulatory mechanism of a candidate ceRNA network, providing insights into the potential mechanism of T. rubripes' infection with C. irritans.
Collapse
Affiliation(s)
- Yuqing Xia
- Key Laboratory of Environment Controlled Aquaculture, Dalian Ocean University, Ministry of Education, 52 Heishijiao Street, Dalian 116023, China; (Y.X.); (Y.Y.)
- College of Fisheries and Life Science, Dalian Ocean University, 52 Heishijiao Street, Dalian 116023, China
| | - Xiaoqing Yu
- Key Laboratory of Environment Controlled Aquaculture, Dalian Ocean University, Ministry of Education, 52 Heishijiao Street, Dalian 116023, China; (Y.X.); (Y.Y.)
| | - Zhen Yuan
- Key Laboratory of Environment Controlled Aquaculture, Dalian Ocean University, Ministry of Education, 52 Heishijiao Street, Dalian 116023, China; (Y.X.); (Y.Y.)
| | - Yi Yang
- Key Laboratory of Environment Controlled Aquaculture, Dalian Ocean University, Ministry of Education, 52 Heishijiao Street, Dalian 116023, China; (Y.X.); (Y.Y.)
| | - Ying Liu
- Key Laboratory of Environment Controlled Aquaculture, Dalian Ocean University, Ministry of Education, 52 Heishijiao Street, Dalian 116023, China; (Y.X.); (Y.Y.)
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| |
Collapse
|
4
|
Su R, Shao Y, Huang M, Liu D, Yu H, Qiu Y. Immunometabolism in cancer: basic mechanisms and new targeting strategy. Cell Death Discov 2024; 10:236. [PMID: 38755125 PMCID: PMC11099033 DOI: 10.1038/s41420-024-02006-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/18/2024] Open
Abstract
Maturing immunometabolic research empowers immune regulation novel approaches. Progressive metabolic adaptation of tumor cells permits a thriving tumor microenvironment (TME) in which immune cells always lose the initial killing capacity, which remains an unsolved dilemma even with the development of immune checkpoint therapies. In recent years, many studies on tumor immunometabolism have been reported. The development of immunometabolism may facilitate anti-tumor immunotherapy from the recurrent crosstalk between metabolism and immunity. Here, we discuss clinical studies of the core signaling pathways of immunometabolism and their inhibitors or agonists, as well as the specific functions of these pathways in regulating immunity and metabolism, and discuss some of the identified immunometabolic checkpoints. Understanding the comprehensive advances in immunometabolism helps to revise the status quo of cancer treatment. An overview of the new landscape of immunometabolism. The PI3K pathway promotes anabolism and inhibits catabolism. The LKB1 pathway inhibits anabolism and promotes catabolism. Overactivation of PI3K/AKT/mTOR pathway and IDO, IL4I1, ACAT, Sirt2, and MTHFD2 promote immunosuppression of TME formation, as evidenced by increased Treg and decreased T-cell proliferation. The LKBI-AMPK pathway promotes the differentiation of naive T cells to effector T cells and memory T cells and promotes anti-tumor immunity in DCs.
Collapse
Affiliation(s)
- Ranran Su
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Yingying Shao
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Manru Huang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Donghui Liu
- School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Haiyang Yu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China.
| | - Yuling Qiu
- School of Pharmacy, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
5
|
Ravizza T, Scheper M, Di Sapia R, Gorter J, Aronica E, Vezzani A. mTOR and neuroinflammation in epilepsy: implications for disease progression and treatment. Nat Rev Neurosci 2024; 25:334-350. [PMID: 38531962 DOI: 10.1038/s41583-024-00805-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2024] [Indexed: 03/28/2024]
Abstract
Epilepsy remains a major health concern as anti-seizure medications frequently fail, and there is currently no treatment to stop or prevent epileptogenesis, the process underlying the onset and progression of epilepsy. The identification of the pathological processes underlying epileptogenesis is instrumental to the development of drugs that may prevent the generation of seizures or control pharmaco-resistant seizures, which affect about 30% of patients. mTOR signalling and neuroinflammation have been recognized as critical pathways that are activated in brain cells in epilepsy. They represent a potential node of biological convergence in structural epilepsies with either a genetic or an acquired aetiology. Interventional studies in animal models and clinical studies give strong support to the involvement of each pathway in epilepsy. In this Review, we focus on available knowledge about the pathophysiological features of mTOR signalling and the neuroinflammatory brain response, and their interactions, in epilepsy. We discuss mitigation strategies for each pathway that display therapeutic effects in experimental and clinical epilepsy. A deeper understanding of these interconnected molecular cascades could enhance our strategies for managing epilepsy. This could pave the way for new treatments to fill the gaps in the development of preventative or disease-modifying drugs, thus overcoming the limitations of current symptomatic medications.
Collapse
Affiliation(s)
- Teresa Ravizza
- Department of Acute Brain and Cardiovascular Injury, Mario Negri Institute for Pharmacological Research IRCCS, Milano, Italy
| | - Mirte Scheper
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Rossella Di Sapia
- Department of Acute Brain and Cardiovascular Injury, Mario Negri Institute for Pharmacological Research IRCCS, Milano, Italy
| | - Jan Gorter
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, The Netherlands
| | - Eleonora Aronica
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.
- Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, The Netherlands.
| | - Annamaria Vezzani
- Department of Acute Brain and Cardiovascular Injury, Mario Negri Institute for Pharmacological Research IRCCS, Milano, Italy.
| |
Collapse
|
6
|
Ding M, Jin L, Zhao J, Yang L, Cui S, Wang X, He J, Chang F, Shi M, Ma J, Song S, Jin H, Liu A. Add-on sirolimus for the treatment of mild or moderate systemic lupus erythematosus via T lymphocyte subsets balance. Lupus Sci Med 2024; 11:e001072. [PMID: 38351097 PMCID: PMC10868177 DOI: 10.1136/lupus-2023-001072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/31/2024] [Indexed: 02/16/2024]
Abstract
OBJECTIVE The efficacy of sirolimus in treating severe or refractory systemic lupus erythematosus (SLE) has been confirmed by small-scale clinical trials. However, few studies focused on mild or moderate SLE. Therefore, in this study we elucidated clinical efficacy of add-on sirolimus in patients with mild or moderate SLE. METHODS Data of 17 consecutive patients with SLE were retrospectively collected. SLE Disease Activity Index-2000 (SLEDAI-2K), clinical manifestation, laboratory data and peripheral T lymphocyte subsets with cytokines were collected before and 6 months after sirolimus add-on treatment. T cell subsets were detected by flow cytometry and cytokines were determined by multiplex bead-based flow fluorescent immunoassay simultaneously. Twenty healthy controls matched with age and sex were also included in our study. RESULTS (1) The numbers of peripheral blood lymphocytes, T cells, T helper (Th) cells, regulatory T (Treg) cells, Th1 cells, Th2 cells and Treg/Th17 ratios in patients with SLE were significantly lower, while the numbers of Th17 cells were evidently higher than those of healthy control (p<0.05). (2) After 6 months of sirolimus add-on treatment, urinary protein, pancytopenia, immunological indicators and SLEDAI-2K in patients with SLE were distinctively improved compared with those before sirolimus treatment (p<0.05). (3) The numbers of peripheral blood lymphocytes, T cells, Th cells, Treg cells, Th2 cells and the ratios of Treg/Th17 in patients with SLE after treatment were clearly higher than those before (p<0.05). (4) The levels of plasma interleukin (IL)-5, IL-6 and IL-10 in patients with SLE decreased notably, conversely the IL-4 levels increased remarkably compared with pretreatment (p<0.05). CONCLUSIONS (1) Patients with SLE presented imbalanced T cell subsets, especially the decreased ratio of Treg/Th17. (2) Sirolimus add-on treatment ameliorated clinical involvement, serological abnormalities and disease activity without adverse reactions in patients with SLE. (3) The multi-target therapy facilitates the enhanced numbers of Treg cells, Treg/Th17 imbalance and anti-inflammatory cytokines, simultaneously, reducing inflammatory cytokines.
Collapse
Affiliation(s)
- Meng Ding
- Department of Rheumatology and Immunology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Lu Jin
- Department of Rheumatology and Immunology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jinwen Zhao
- Department of Rheumatology and Immunology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Lin Yang
- Department of Rheumatology and Immunology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Shaoxin Cui
- Department of Rheumatology and Immunology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xiaoping Wang
- Department of Rheumatology and Immunology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jingjing He
- Department of Rheumatology and Immunology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Fei Chang
- Department of Rheumatology and Immunology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Min Shi
- Department of Clinical Laboratory, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Laboratory Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jun Ma
- Department of Anatomy, Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, Hebei, China
| | - Shuran Song
- Department of Clinical Laboratory, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Laboratory Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Hongtao Jin
- Department of Rheumatology and Immunology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Aijing Liu
- Department of Rheumatology and Immunology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Laboratory Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, Hebei, China
| |
Collapse
|
7
|
Zhen L, Chen Y, Gao J, Li B, Jia Y. MicroRNA-99b Regulates Bacillus Calmette-Guerin-Infected Immature Dendritic Cell-Induced CD4+ T Cell Differentiation by Targeting mTOR Signaling. Crit Rev Immunol 2024; 44:35-47. [PMID: 38305335 DOI: 10.1615/critrevimmunol.2023050312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
This study aimed to elucidate the mechanisms by which microRNA-99b (miR-99b) regulates CD4+ T cell differentiation induced by Bacillus Calmette-Guerin (BCG)-infected immature dendritic cells (imDCs). Levels of miR-99b, interferon-gamma (IFN-γ), Foxp3, interleukin (IL)-10, IL-17, IL-23, and ROR-γt were assessed. Effects of miR-99b inhibition and mechanistic target of rapamycin (mTOR) agonist on Th17/Treg cell ratio and cytokine levels (IL-6, IL-17, IL-23) were studied. Expression of mTOR, S6K1, and 4E-BP1 related to miR-99b was analyzed. BCG-infected imDCs led to CD4+ T cell differentiation and altered levels of IFN-γ, Foxp3, IL-10, miR-99b, IL-17, IL-23, and ROR-γt. Inhibition of miR-99b increased the Th17/Treg cell ratio in CD4+ T cells co-cultured with BCG-infected imDCs, and this effect was further enhanced by the mTOR agonist. Additionally, the miR-99b inhibitor elevated the levels of IL-6, IL-17, and IL-23 when CD4+ T cells were co-cultured with BCG-infected imDCs, and the mTOR agonist further amplified this increase. Notably, miR-99b negatively regulated mTOR signaling, as the miR-99b inhibitor upregulated the expression levels of mTOR, S6K1, and 4E-BP1 while decreasing miR-99b. It was concluded that miR-99b modulates CD4+ T cell differentiation via mTOR pathway in response to BCG-infected im-DCs. Inhibiting miR-99b affects Th17/Treg ratio and pro-inflammatory cytokines, potentially impacting tuberculosis immunotherapies.
Collapse
Affiliation(s)
- Libo Zhen
- Department of Tuberculosis, Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine, Hangzhou 310030, China
| | - Yuanyuan Chen
- Tuberculosis Laboratory, Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine, Hangzhou 310030, China
| | - Juwei Gao
- Department of Oncology, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310061, China
| | - Boying Li
- Department of Tuberculosis, Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine, Hangzhou 310030, China
| | - Yangmin Jia
- Department of Occupational Medicine, Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine, Hangzhou 310030, China
| |
Collapse
|
8
|
Zurlo M, Zuccato C, Cosenza LC, Gasparello J, Gamberini MR, Stievano A, Fortini M, Prosdocimi M, Finotti A, Gambari R. Decrease in α-Globin and Increase in the Autophagy-Activating Kinase ULK1 mRNA in Erythroid Precursors from β-Thalassemia Patients Treated with Sirolimus. Int J Mol Sci 2023; 24:15049. [PMID: 37894732 PMCID: PMC10606773 DOI: 10.3390/ijms242015049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023] Open
Abstract
The β-thalassemias are hereditary monogenic diseases characterized by a low or absent production of adult hemoglobin and excess in the content of α-globin. This excess is cytotoxic for the erythroid cells and responsible for the β-thalassemia-associated ineffective erythropoiesis. Therefore, the decrease in excess α-globin is a relevant clinical effect for these patients and can be realized through the induction of fetal hemoglobin, autophagy, or both. The in vivo effects of sirolimus (rapamycin) and analogs on the induction of fetal hemoglobin (HbF) are of key importance for therapeutic protocols in a variety of hemoglobinopathies, including β-thalassemias. In this research communication, we report data showing that a decrease in autophagy-associated p62 protein, increased expression of ULK-1, and reduction in excess α-globin are occurring in erythroid precursors (ErPCs) stimulated in vitro with low dosages of sirolimus. In addition, increased ULK-1 mRNA content and a decrease in α-globin content were found in ErPCs isolated from β-thalassemia patients recruited for the NCT03877809 clinical trial and treated with 0.5-2 mg/day sirolimus. Our data support the concept that autophagy, ULK1 expression, and α-globin chain reduction should be considered important endpoints in sirolimus-based clinical trials for β-thalassemias.
Collapse
Affiliation(s)
- Matteo Zurlo
- Department of Life Sciences and Biotechnology, Ferrara University, 44121 Ferrara, Italy; (M.Z.); (C.Z.); (L.C.C.); (J.G.)
| | - Cristina Zuccato
- Department of Life Sciences and Biotechnology, Ferrara University, 44121 Ferrara, Italy; (M.Z.); (C.Z.); (L.C.C.); (J.G.)
- Center “Chiara Gemmo and Elio Zago” for the Research on Thalassemia, Ferrara University, 44121 Ferrara, Italy
| | - Lucia Carmela Cosenza
- Department of Life Sciences and Biotechnology, Ferrara University, 44121 Ferrara, Italy; (M.Z.); (C.Z.); (L.C.C.); (J.G.)
| | - Jessica Gasparello
- Department of Life Sciences and Biotechnology, Ferrara University, 44121 Ferrara, Italy; (M.Z.); (C.Z.); (L.C.C.); (J.G.)
| | - Maria Rita Gamberini
- Thalassemia Unit, Arcispedale S. Anna, 44121 Ferrara, Italy; (M.R.G.); (A.S.); (M.F.)
| | - Alice Stievano
- Thalassemia Unit, Arcispedale S. Anna, 44121 Ferrara, Italy; (M.R.G.); (A.S.); (M.F.)
| | - Monica Fortini
- Thalassemia Unit, Arcispedale S. Anna, 44121 Ferrara, Italy; (M.R.G.); (A.S.); (M.F.)
| | | | - Alessia Finotti
- Department of Life Sciences and Biotechnology, Ferrara University, 44121 Ferrara, Italy; (M.Z.); (C.Z.); (L.C.C.); (J.G.)
- Center “Chiara Gemmo and Elio Zago” for the Research on Thalassemia, Ferrara University, 44121 Ferrara, Italy
| | - Roberto Gambari
- Department of Life Sciences and Biotechnology, Ferrara University, 44121 Ferrara, Italy; (M.Z.); (C.Z.); (L.C.C.); (J.G.)
- Center “Chiara Gemmo and Elio Zago” for the Research on Thalassemia, Ferrara University, 44121 Ferrara, Italy
| |
Collapse
|
9
|
Tang J, Yang L, Guan F, Miller H, Camara NOS, James LK, Benlagha K, Kubo M, Heegaard S, Lee P, Lei J, Zeng H, He C, Zhai Z, Liu C. The role of Raptor in lymphocytes differentiation and function. Front Immunol 2023; 14:1146628. [PMID: 37283744 PMCID: PMC10239924 DOI: 10.3389/fimmu.2023.1146628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/28/2023] [Indexed: 06/08/2023] Open
Abstract
Raptor, a key component of mTORC1, is required for recruiting substrates to mTORC1 and contributing to its subcellular localization. Raptor has a highly conserved N-terminus domain and seven WD40 repeats, which interact with mTOR and other mTORC1-related proteins. mTORC1 participates in various cellular events and mediates differentiation and metabolism. Directly or indirectly, many factors mediate the differentiation and function of lymphocytes that is essential for immunity. In this review, we summarize the role of Raptor in lymphocytes differentiation and function, whereby Raptor mediates the secretion of cytokines to induce early lymphocyte metabolism, development, proliferation and migration. Additionally, Raptor regulates the function of lymphocytes by regulating their steady-state maintenance and activation.
Collapse
Affiliation(s)
- Jianing Tang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lu Yang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Fei Guan
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Heather Miller
- Cytek Biosciences, R&D Clinical Reagents, Fremont, CA, United States
| | - Niels Olsen Saraiva Camara
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Louisa K. James
- Centre for Immunobiology, Bizard Institute, Queen Mary University of London, London, United Kingdom
| | - Kamel Benlagha
- Université de Paris, Institut de Recherche Saint-Louis, EMiLy, Paris, France
| | - Masato Kubo
- Laboratory for Cytokine Regulation, Center for Integrative Medical Science (IMS), Rikagaku Kenkyusho, Institute of Physical and Chemical Research (RIKEN) Yokohama Institute, Yokohama, Japan
| | - Steffen Heegaard
- Department of Ophthalmology, Rigshospitalet Glostrup, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Pamela Lee
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Jiahui Lei
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hu Zeng
- Department of Immunology, Mayo Clinic, Rochester, MN, United States
- Division of Rheumatology, Department of Medicine, Mayo Clinic, Rochester, MN, United States
| | - Chengwei He
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, China
| | - Zhimin Zhai
- Department of Hematology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Chaohong Liu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
10
|
Mei Z, Gao X, Pan C, Wu Q, Wang S, Qian J, Xu Z, Xu K, Zhou L, Zhen S. Lenvatinib enhances antitumor immunity by promoting the infiltration of TCF1 + CD8 + T cells in HCC via blocking VEGFR2. Cancer Sci 2023; 114:1284-1296. [PMID: 36609997 PMCID: PMC10067412 DOI: 10.1111/cas.15719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 12/11/2022] [Accepted: 12/20/2022] [Indexed: 01/09/2023] Open
Abstract
Lenvatinib is the favorable treatment for advanced hepatocellular carcinoma (HCC), and it is currently undergoing phase III clinical trials. However, the specific effects of lenvatinib on PD1+ CD8+ T cells in HCC microenvironment have not been systematically studied. Here, we established an orthotopic hepa1-6 mouse model treated with lenvatinib to investigate CD8+ T cells' role in the tumor and spleen. We found an increasing proportion of TCF-1+ in PD1+ CD8+ T cells and proliferation of PD1+ CD8+ T cells after lenvatinib treatment. Meanwhile, lenvatinib treatment upregulated the expression of granzyme B on PD1+ CD8+ T cells both in vitro and in vivo. Lenvatinib activated the endogenous mTOR pathway of exhausted CD8+ T cells, and mTOR pathway blockade eliminated the antitumor effect of lenvatinib and function of PD1+ CD8+ T cells. The effects of the mTOR pathway on PD1+ CD8+ T cells after lenvatinib treatment were mediated by VEGFR2 inhibition. Overall, our work provides insight into the mechanism of lenvatinib's antitumor efficacy through exhausted CD8+ T cells in HCC treatment.
Collapse
Affiliation(s)
- Zhibin Mei
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, China.,NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, China.,Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang, China
| | - Xingxing Gao
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, China.,NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, China.,Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang, China
| | - Caixu Pan
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, China.,NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, China.,Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang, China
| | - Qinchuan Wu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, China.,NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, China.,Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang, China
| | - Shuai Wang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, China.,NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, China.,Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang, China
| | - Junjie Qian
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, China.,NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, China.,Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang, China
| | - Zhentian Xu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, China.,NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, China.,Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang, China
| | - Kangdi Xu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, China.,NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, China.,Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang, China
| | - Lin Zhou
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, China.,NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, China.,Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang, China
| | - Shushen Zhen
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, China.,NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, China.,Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang, China
| |
Collapse
|
11
|
Khabbazi A, Ahangari Maleki M, Soltani-Zangbar MS, Yousefi M, Malek Mahdavi A. Effects of synbiotic supplementation on regulatory T cells' response in patients with axial spondyloarthritis: a randomized double-masked placebo-controlled trial. Food Funct 2022; 13:12733-12741. [PMID: 36409223 DOI: 10.1039/d2fo01377k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This study was conducted on samples from patients enrolled in a randomized double-masked placebo-controlled trial on the effect of synbiotic supplementation on the IL-17/IL-23 pathway and disease activity in patients with axial spondyloarthritis (axSpA) to investigate the effects of synbiotic supplementation on regulatory T (Treg) cells' response in these patients. Forty-eight axSpA patients were randomized to take one synbiotic capsule or placebo daily for 12 weeks. Treg cell proportion, gene expression of forkhead box protein P3 (Foxp3), microRNA (miRNA)-25, miRNA-106b, miRNA-146a, interleukin (IL)-10, and transforming growth factor (TGF)-β as well as serum IL-10 and TGF-β levels were assessed before and after the trial. Thirty-eight patients (19 in each group) completed the trial. The proportion of Treg cells (P < 0.001), the gene expression of FoxP3 (P < 0.001), IL-10 (P = 0.001), TGF-β (P < 0.001), and miRNA-146a (P < 0.001) and serum IL-10 (P = 0.003) and TGF-β (P = 0.002) levels significantly increased compared to the baseline in the synbiotic group. Additionally, a significant reduction in the gene expression of miRNA-25 (P < 0.001) and miRNA-106b (P < 0.001) was observed in the synbiotic group. Significant between-group differences were observed in the proportion of Treg cells (P = 0.024) and the gene expression of FoxP3 (P = 0.010), IL-10 (P = 0.002), TGF-β (P = 0.016), miRNA-25 (P = 0.008), miRNA-106b (P = 0.001), and miRNA-146a (P = 0.010). Differences in the serum levels of IL-10 and TGF-β between the groups were not significant. As a conclusion, synbiotic supplementation could modulate Treg cells' response in axSpA patients and thus can be promising as an adjunctive therapy. Additional investigations would help in further clarifying the subject.
Collapse
Affiliation(s)
- Alireza Khabbazi
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Masoud Ahangari Maleki
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | | | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aida Malek Mahdavi
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Rahat Breathe and Sleep Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
12
|
Ren X, Liu Y, Zhao Y, Li B, Bai D, Bou G, Zhang X, Du M, Wang X, Bou T, Shen Y, Dugarjaviin M. Analysis of the Whole-Genome Sequences from an Equus Parent-Offspring Trio Provides Insight into the Genomic Incompatibilities in the Hybrid Mule. Genes (Basel) 2022; 13:genes13122188. [PMID: 36553455 PMCID: PMC9778318 DOI: 10.3390/genes13122188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/07/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
Interspecific hybridization often shows negative effects on hybrids. However, only a few multicellular species, limited to a handful of plants and animals, have shown partial genetic mechanisms by which hybridization leads to low fitness in hybrids. Here, to explore the outcome of combining the two genomes of a horse and donkey, we analyzed the whole-genome sequences from an Equus parent-offspring trio using Illumina platforms. We generated 41.39× and 46.21× coverage sequences for the horse and mule, respectively. For the donkey, a 40.38× coverage sequence was generated and stored in our laboratory. Approximately 24.86 million alleles were discovered that varied from the reference genome. Single nucleotide polymorphisms were used as polymorphic markers for assigning alleles to their parental genomic inheritance. We identified 25,703 Mendelian inheritance error single nucleotide polymorphisms in the mule genome that were not inherited from the parents through Mendelian inheritance. A total of 555 de novo single nucleotide polymorphisms were also identified. The rate of de novo single nucleotide polymorphisms was 2.21 × 10-7 in the mule from the Equus parent-offspring trio. This rate is obviously higher than the natural mutation rate for Equus, which is also consistent with the previous hypothesis that interracial crosses may have a high mutation rate. The genes associated with these single nucleotide polymorphisms are mainly involved in immune processes, DNA repair, and cancer processes. The results of the analysis of three genomes from an Equus parent-offspring trio improved our knowledge of the consequences of the integration of parental genomes in mules.
Collapse
|
13
|
Li L, Xia X, Luo Y, Zhu Y, Luo X, Yang B, Shang L. Prospects and hot spots for mammalian target of rapamycin in the field of neuroscience from 2002 to 2021. Front Integr Neurosci 2022; 16:940265. [PMID: 36118114 PMCID: PMC9477085 DOI: 10.3389/fnint.2022.940265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/22/2022] [Indexed: 11/13/2022] Open
Abstract
Mammalian target of rapamycin (mTOR) is an important molecule that regulates cell metabolism, growth, and proliferation in the nervous system. This study aimed to present the current study hot spots and predict the future development trend of the mTOR pathway in neurologic diseases using bibliometrics. We referred to the publications in the Web of Science Core Collection database. VOSviewer and CiteSpace programs were used to evaluate countries/regions, institutions, authors, journals, keywords, and citations showing the current study focus and predicting the future trend of mTOR in neuroscience. The search date ended on 19 June 2022, and there were 3,029 articles on mTOR in neuroscience from 2002 to 2021. Visual analysis showed that although the number of publications declined slightly in some years, the number of publications related to mTOR generally showed an upward trend, reaching its peak in 2021. It had the largest number of publications in the United States. Keywords and literature analysis showed that protein synthesis regulation, ischemia, mitochondrial dysfunction, oxidative stress, and neuroinflammation may be hot spots and future directions of the nervous system in mTOR studies. Recently, the most studied neurological diseases are Alzheimer’s disease (AD), tuberous sclerosis complex (TSC), and depression, which are still worthy of further studies by researchers in the future. This can provide a useful reference for future researchers to study mTOR further in the field of neuroscience.
Collapse
Affiliation(s)
- Lijun Li
- Jiangxi Clinical Research Center for Ophthalmic Disease, Jiangxi Research Institute of Ophthalmology and Visual Science, Affiliated Eye Hospital of Nanchang University, Nanchang, China
| | - Xiaojing Xia
- Jiangxi Clinical Research Center for Ophthalmic Disease, Jiangxi Research Institute of Ophthalmology and Visual Science, Affiliated Eye Hospital of Nanchang University, Nanchang, China
| | - Yunfeng Luo
- Jiangxi Clinical Research Center for Ophthalmic Disease, Jiangxi Research Institute of Ophthalmology and Visual Science, Affiliated Eye Hospital of Nanchang University, Nanchang, China
| | - Yuanting Zhu
- Jiangxi Clinical Research Center for Ophthalmic Disease, Jiangxi Research Institute of Ophthalmology and Visual Science, Affiliated Eye Hospital of Nanchang University, Nanchang, China
| | - Xuhong Luo
- Jiangxi Clinical Research Center for Ophthalmic Disease, Jiangxi Research Institute of Ophthalmology and Visual Science, Affiliated Eye Hospital of Nanchang University, Nanchang, China
| | - Baolin Yang
- Department of Human Anatomy, School of Basic Medicine, Nanchang University, Nanchang, China
| | - Lei Shang
- Jiangxi Clinical Research Center for Ophthalmic Disease, Jiangxi Research Institute of Ophthalmology and Visual Science, Affiliated Eye Hospital of Nanchang University, Nanchang, China
- *Correspondence: Lei Shang,
| |
Collapse
|
14
|
Jiang Y, Zhao T, Zhou X, Xiang Y, Gutierrez‐Castrellon P, Ma X. Inflammatory pathways in COVID-19: Mechanism and therapeutic interventions. MedComm (Beijing) 2022; 3:e154. [PMID: 35923762 PMCID: PMC9340488 DOI: 10.1002/mco2.154] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 02/05/2023] Open
Abstract
The 2019 coronavirus disease (COVID-19) pandemic has become a global crisis. In the immunopathogenesis of COVID-19, SARS-CoV-2 infection induces an excessive inflammatory response in patients, causing an inflammatory cytokine storm in severe cases. Cytokine storm leads to acute respiratory distress syndrome, pulmonary and other multiorgan failure, which is an important cause of COVID-19 progression and even death. Among them, activation of inflammatory pathways is a major factor in generating cytokine storms and causing dysregulated immune responses, which is closely related to the severity of viral infection. Therefore, elucidation of the inflammatory signaling pathway of SARS-CoV-2 is important in providing otential therapeutic targets and treatment strategies against COVID-19. Here, we discuss the major inflammatory pathways in the pathogenesis of COVID-19, including induction, function, and downstream signaling, as well as existing and potential interventions targeting these cytokines or related signaling pathways. We believe that a comprehensive understanding of the regulatory pathways of COVID-19 immune dysregulation and inflammation will help develop better clinical therapy strategies to effectively control inflammatory diseases, such as COVID-19.
Collapse
Affiliation(s)
- Yujie Jiang
- Laboratory of Aging Research and Cancer Drug TargetState Key Laboratory of BiotherapyNational Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengduPR China
| | - Tingmei Zhao
- Laboratory of Aging Research and Cancer Drug TargetState Key Laboratory of BiotherapyNational Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengduPR China
| | - Xueyan Zhou
- Laboratory of Aging Research and Cancer Drug TargetState Key Laboratory of BiotherapyNational Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengduPR China
| | - Yu Xiang
- Department of BiotherapyState Key Laboratory of Biotherapy Cancer CenterWest China HospitalSichuan UniversityChengduPR China
| | - Pedro Gutierrez‐Castrellon
- Center for Translational Research on Health Science Hospital General Dr. Manuel Gea GonzalezMinistry of HealthMexico CityMexico
| | - Xuelei Ma
- Department of BiotherapyState Key Laboratory of Biotherapy Cancer CenterWest China HospitalSichuan UniversityChengduPR China
| |
Collapse
|
15
|
Wang C, Aikemu B, Shao Y, Zhang S, Yang G, Hong H, Huang L, Jia H, Yang X, Zheng M, Sun J, Li J. Genomic signature of MTOR could be an immunogenicity marker in human colorectal cancer. BMC Cancer 2022; 22:818. [PMID: 35883111 PMCID: PMC9327395 DOI: 10.1186/s12885-022-09901-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 07/13/2022] [Indexed: 12/24/2022] Open
Abstract
Background The mTOR signaling pathway plays an important role in cancer. As a master regulator, the status of MTOR affects pathway activity and the efficacy of mTOR inhibitor therapy. However, little research has been performed to explore MTOR in colorectal cancer (CRC). Methods In this study, gene expression and clinical data were analyzed using The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) databases. Signaling pathways related to MTOR in CRC were identified by Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and gene set enrichment analysis (GSEA). Somatic mutation data were downloaded from TCGA and analyzed using the maftools R package. Tumor Immune Estimation Resource (TIMER) and CIBERSORT were used to analyze correlations between MTOR and tumor-infiltrating immune cells (TIICs). Finally, we detected MTOR mutations in a CRC cohort from our database using whole-exome sequencing. Results We found that MTOR was overexpressed in Asian CRC patients and associated with a poor prognosis. Enrichment analysis showed that MTOR was involved in metabolism, cell adhesion, and translation pathways in CRC. High MTOR expression was correlated with high tumor mutation burden (TMB) and several TIICs. Finally, we found that the mTOR signaling pathway was activated in CRC lines characterized by microsatellite instability (MSI), and the frequency of MTOR mutations was higher in MSI-high (MSI-H) patients than in microsatellite stable (MSS) patients. Conclusions MTOR may represent a comprehensive indicator of prognosis and immunological status in CRC. The genomic signatures of MTOR may provide guidance for exploring the role of mTOR inhibitors in CRC. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09901-w.
Collapse
Affiliation(s)
- Chenxing Wang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Batuer Aikemu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yanfei Shao
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Sen Zhang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Guang Yang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Hiju Hong
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ling Huang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Hongtao Jia
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiao Yang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Minhua Zheng
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jing Sun
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China. .,Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Jianwen Li
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China. .,Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
16
|
Kaldirim M, Lang A, Pfeiler S, Fiegenbaum P, Kelm M, Bönner F, Gerdes N. Modulation of mTOR Signaling in Cardiovascular Disease to Target Acute and Chronic Inflammation. Front Cardiovasc Med 2022; 9:907348. [PMID: 35845058 PMCID: PMC9280721 DOI: 10.3389/fcvm.2022.907348] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/30/2022] [Indexed: 01/18/2023] Open
Abstract
Inflammation is a key component in the pathogenesis of cardiovascular diseases causing a significant burden of morbidity and mortality worldwide. Recent research shows that mammalian target of rapamycin (mTOR) signaling plays an important role in the general and inflammation-driven mechanisms that underpin cardiovascular disease. mTOR kinase acts prominently in signaling pathways that govern essential cellular activities including growth, proliferation, motility, energy consumption, and survival. Since the development of drugs targeting mTOR, there is proven efficacy in terms of survival benefit in cancer and allograft rejection. This review presents current information and concepts of mTOR activity in myocardial infarction and atherosclerosis, two important instances of cardiovascular illness involving acute and chronic inflammation. In experimental models, inhibition of mTOR signaling reduces myocardial infarct size, enhances functional remodeling, and lowers the overall burden of atheroma. Aside from the well-known effects of mTOR inhibition, which are suppression of growth and general metabolic activity, mTOR also impacts on specific leukocyte subpopulations and inflammatory processes. Inflammatory cell abundance is decreased due to lower migratory capacity, decreased production of chemoattractants and cytokines, and attenuated proliferation. In contrast to the generally suppressed growth signals, anti-inflammatory cell types such as regulatory T cells and reparative macrophages are enriched and activated, promoting resolution of inflammation and tissue regeneration. Nonetheless, given its involvement in the control of major cellular pathways and the maintenance of a functional immune response, modification of this system necessitates a balanced and time-limited approach. Overall, this review will focus on the advancements, prospects, and limits of regulating mTOR signaling in cardiovascular disease.
Collapse
Affiliation(s)
- Madlen Kaldirim
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, University Hospital, Heinrich-Heine University, Düsseldorf, Germany
| | - Alexander Lang
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, University Hospital, Heinrich-Heine University, Düsseldorf, Germany
| | - Susanne Pfeiler
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, University Hospital, Heinrich-Heine University, Düsseldorf, Germany
| | - Pia Fiegenbaum
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, University Hospital, Heinrich-Heine University, Düsseldorf, Germany
| | - Malte Kelm
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, University Hospital, Heinrich-Heine University, Düsseldorf, Germany.,Medical Faculty, Cardiovascular Research Institute Düsseldorf (CARID), Heinrich-Heine University, Düsseldorf, Germany
| | - Florian Bönner
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, University Hospital, Heinrich-Heine University, Düsseldorf, Germany.,Medical Faculty, Cardiovascular Research Institute Düsseldorf (CARID), Heinrich-Heine University, Düsseldorf, Germany
| | - Norbert Gerdes
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, University Hospital, Heinrich-Heine University, Düsseldorf, Germany.,Medical Faculty, Cardiovascular Research Institute Düsseldorf (CARID), Heinrich-Heine University, Düsseldorf, Germany
| |
Collapse
|
17
|
Wang R, Guo Y, Ma P, Song Y, Min J, Zhao T, Hua L, Zhang C, Yang C, Shi J, Zhu L, Gan D, Li S, Li J, Su H. Comprehensive Analysis of 5-Methylcytosine (m 5C) Regulators and the Immune Microenvironment in Pancreatic Adenocarcinoma to Aid Immunotherapy. Front Oncol 2022; 12:851766. [PMID: 35433474 PMCID: PMC9009261 DOI: 10.3389/fonc.2022.851766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/07/2022] [Indexed: 11/24/2022] Open
Abstract
Background Pancreatic adenocarcinoma (PAAD) is one of the most malignant cancers and has a poor prognosis. As a critical RNA modification, 5-methylcytosine (m5C) has been reported to regulate tumor progression, including PAAD progression. However, a comprehensive analysis of m5C regulators in PAAD is lacking. Methods In the present study, PAAD datasets were obtained from the Gene Expression Omnibus (GEO), The Cancer Genome Atlas (TCGA), International Cancer Genome Consortium (ICGC), and ArrayExpress databases. The expression pattern of m5C regulators were analyzed and patients were divided into different m5C clusters according to consensus clustering based on m5C regulators. Additionally, m5C differentially expressed genes (DEGs) were determined using Limma package. Based on m5C DEGs, patients were divided into m5C gene clusters. Moreover, m5C gene signatures were derived from m5C DEGs and a quantitative indicator, the m5C score, was developed from the m5C gene signatures. Results Our study showed that m5C regulators were differentially expressed in patients with PAAD. The m5C clusters and gene clusters based on m5C regulators and m5C DEGs were related to immune cell infiltration, immune-related genes and patient survival status, indicating that m5C modification play a central role in regulating PAAD development partly by modulating immune microenvironment. Additionally, a quantitative indicator, the m5C score, was also developed and was related to a series of immune-related indicators. Moreover, the m5C score precisely predicted the immunotherapy response and prognosis of patients with PAAD. Conclusion In summary, we confirmed that m5C regulators regulate PAAD development by modulating the immune microenvironment. In addition, a quantitative indicator, the m5C score, was developed to predict immunotherapy response and prognosis and assisted in identifying PAAD patients suitable for tailored immunotherapy strategies.
Collapse
Affiliation(s)
- Ronglin Wang
- Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Yongdong Guo
- Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Peixiang Ma
- Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Yang Song
- Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Jie Min
- Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Ting Zhao
- Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Lei Hua
- Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Chao Zhang
- Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Cheng Yang
- Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Jingjie Shi
- Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Liaoliao Zhu
- Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Dongxue Gan
- Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Shanshan Li
- Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Junqiang Li
- Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Haichuan Su
- Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi'an, China
| |
Collapse
|
18
|
Effects of Dietary Chlorogenic Acid Supplementation Derived from Lonicera macranthoides Hand-Mazz on Growth Performance, Free Amino Acid Profile, and Muscle Protein Synthesis in a Finishing Pig Model. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6316611. [PMID: 35313639 PMCID: PMC8934221 DOI: 10.1155/2022/6316611] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 12/10/2021] [Accepted: 02/21/2022] [Indexed: 12/22/2022]
Abstract
Chlorogenic acid (CGA), as one of the richest polyphenol compounds in nature, has broad applications in many fields due to its various biological properties. However, initial data on the effects of dietary CGA on protein synthesis and related basal metabolic activity has rarely been reported. The current study is aimed at (1) determining whether dietary CGA supplementation improves the growth performance and carcass traits, (2) assessing whether dietary CGA alters the free amino acid profile, and (3) verifying whether dietary CGA promotes muscle protein synthesis in finishing pigs. Thirty-two (Large × White × Landrace) finishing barrows with an average initial body weight of
kg were randomly allotted to 4 groups and fed diets supplemented with 0, 0.02%, 0.04%, and 0.08% CGA, respectively. The results indicated that, compared with the control group, dietary supplementation with 0.04% CGA slightly stimulated the growth performance of pigs, whereas no significant correlation was noted between the dietary CGA levels and animal growth (
). Furthermore, the carcass traits of pigs were improved by 0.04% dietary CGA (
). In addition, dietary CGA significantly improved the serum free amino acid profiles of pigs (
), while 0.04% dietary CGA promoted more amino acids to translocate to skeletal muscles (
). The relative mRNA expression levels of SNAT2 in both longissimus dorsi (LD) and biceps femoris (BF) muscles were augmented in the 0.02% and 0.04% groups (
), and the LAT1 mRNA expression in the BF muscle was elevated in the 0.02% group (
). We also found that dietary CGA supplementation at the levels of 0.04% or 0.08% promoted the expression of p-Akt and activated the mTOR-S6K1-4EBP1 axis in the LD muscle (
). Besides, the MAFbx mRNA abundance in the 0.02% and 0.04% groups was significantly lower (
). Our results revealed that dietary supplementation with CGA of 0.04% improved the free amino acid profile and enhanced muscle protein biosynthesis in the LD muscle in finishing pigs.
Collapse
|
19
|
Mafi S, Mansoori B, Taeb S, Sadeghi H, Abbasi R, Cho WC, Rostamzadeh D. mTOR-Mediated Regulation of Immune Responses in Cancer and Tumor Microenvironment. Front Immunol 2022; 12:774103. [PMID: 35250965 PMCID: PMC8894239 DOI: 10.3389/fimmu.2021.774103] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 12/14/2021] [Indexed: 12/17/2022] Open
Abstract
The mechanistic/mammalian target of rapamycin (mTOR) is a downstream mediator in the phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathways, which plays a pivotal role in regulating numerous cellular functions including cell growth, proliferation, survival, and metabolism by integrating a variety of extracellular and intracellular signals in the tumor microenvironment (TME). Dysregulation of the mTOR pathway is frequently reported in many types of human tumors, and targeting the PI3K/Akt/mTOR signaling pathway has been considered an attractive potential therapeutic target in cancer. The PI3K/Akt/mTOR signaling transduction pathway is important not only in the development and progression of cancers but also for its critical regulatory role in the tumor microenvironment. Immunologically, mTOR is emerging as a key regulator of immune responses. The mTOR signaling pathway plays an essential regulatory role in the differentiation and function of both innate and adaptive immune cells. Considering the central role of mTOR in metabolic and translational reprogramming, it can affect tumor-associated immune cells to undergo phenotypic and functional reprogramming in TME. The mTOR-mediated inflammatory response can also promote the recruitment of immune cells to TME, resulting in exerting the anti-tumor functions or promoting cancer cell growth, progression, and metastasis. Thus, deregulated mTOR signaling in cancer can modulate the TME, thereby affecting the tumor immune microenvironment. Here, we review the current knowledge regarding the crucial role of the PI3K/Akt/mTOR pathway in controlling and shaping the immune responses in TME.
Collapse
Affiliation(s)
- Sahar Mafi
- Department of Clinical Biochemistry, Yasuj University of Medical Sciences, Yasuj, Iran
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Behzad Mansoori
- The Wistar Institute, Molecular & Cellular Oncogenesis Program, Philadelphia, PA, United States
| | - Shahram Taeb
- Department of Radiology, School of Paramedical Sciences, Guilan University of Medical Sciences, Rasht, Iran
- Medical Biotechnology Research Center, School of Paramedical Sciences, Guilan University of Medical Sciences, Rasht, Iran
| | - Hossein Sadeghi
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Reza Abbasi
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, Hong Kong SAR, China
- *Correspondence: Davoud Rostamzadeh, ; ; William C. Cho, ;
| | - Davoud Rostamzadeh
- Department of Clinical Biochemistry, Yasuj University of Medical Sciences, Yasuj, Iran
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
- *Correspondence: Davoud Rostamzadeh, ; ; William C. Cho, ;
| |
Collapse
|
20
|
Fattahi S, Khalifehzadeh-Esfahani Z, Mohammad-Rezaei M, Mafi S, Jafarinia M. PI3K/Akt/mTOR pathway: a potential target for anti-SARS-CoV-2 therapy. Immunol Res 2022; 70:269-275. [PMID: 35107743 PMCID: PMC8808470 DOI: 10.1007/s12026-022-09268-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/30/2022] [Indexed: 02/08/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is a viral infection caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). A single-stranded RNA virus from a β-Coronaviridae family causes acute clinical manifestations. Its high death rate and severe clinical symptoms have turned it into the most significant challenge worldwide. Up until now, several effective COVID-19 vaccines have been designed and marketed, but our data on specialized therapeutic drugs for the treatment of COVID-19 is still limited. In order to synthesis virus particles, SARS-CoV-2 uses host metabolic pathways such as phosphoinositide3-kinase (PI3K)/protein kinase B (PKB, also known as AKT)/mammalian target of rapamycin (mTOR). mTOR is involved in multiple biological processes. Over-activation of the mTOR pathway improves viral replication, which makes it a possible target in COVID-19 therapy. Clinical data shows the hyperactivation of the mTOR pathway in lung tissues during respiratory viral infections. However, the exact impact of mTOR pathway inhibitors on the COVID-19 severity and death rate is yet to be thoroughly investigated. There are several mTOR pathway inhibitors. Rapamycin is the most famous inhibitor of mTORC1 among all. Studies on other respiratory viruses suggest that the therapeutic inhibitors of the mTOR pathway, especially rapamycin, can be a potential approach to anti-SARS-CoV-2 therapy. Using therapeutic methods that inhibit harmful immune responses can open a new chapter in treating severe COVID-19 disease. We highlighted the potential contribution of PI3K/Akt/mTOR inhibitors in the treatment of COVID-19.
Collapse
Affiliation(s)
- Soheila Fattahi
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | | | - Mina Mohammad-Rezaei
- Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sahar Mafi
- Medical Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.,Department of Clinical Biochemistry, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Morteza Jafarinia
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
21
|
CAR Treg: A new approach in the treatment of autoimmune diseases. Int Immunopharmacol 2021; 102:108409. [PMID: 34863655 DOI: 10.1016/j.intimp.2021.108409] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 11/07/2021] [Accepted: 11/23/2021] [Indexed: 12/22/2022]
Abstract
Regulatory T cells (Tregs) have the role of regulating self-tolerance, and suppressing immune responses. Defects in Treg function and number can lead to in loss of tolerance or autoimmune disease. To treat or control autoimmune diseases, one of the options is to develop immune tolerance for Tregs cell therapy, which includes promotion and activation. Recently, cell-based treatment as a promising approach to increase cells function and number has been developed. Cell therapy by chimeric T antigen receptor (CAR-T) cells has shown significant efficacy in the treatment of leukemia, which has led researchers to use CAR-T cells in other diseases like autoimmune diseases. Here, we describe the existing treatments for autoimmune diseases and the available treatments based on Treg, their benefits and restrictions for implementation in clinical trials. We also discussed potential solutions to overcome these limitations. It seems novel designs of CARs to be new hope for autoimmune diseases and expected to be a potential cure option in a wide array of disease in the future. Therefore, it is very important to address this issue and increase information about it.
Collapse
|
22
|
Targeting lysosomes in human disease: from basic research to clinical applications. Signal Transduct Target Ther 2021; 6:379. [PMID: 34744168 PMCID: PMC8572923 DOI: 10.1038/s41392-021-00778-y] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/26/2021] [Indexed: 01/18/2023] Open
Abstract
In recent years, accumulating evidence has elucidated the role of lysosomes in dynamically regulating cellular and organismal homeostasis. Lysosomal changes and dysfunction have been correlated with the development of numerous diseases. In this review, we interpreted the key biological functions of lysosomes in four areas: cellular metabolism, cell proliferation and differentiation, immunity, and cell death. More importantly, we actively sought to determine the characteristic changes and dysfunction of lysosomes in cells affected by these diseases, the causes of these changes and dysfunction, and their significance to the development and treatment of human disease. Furthermore, we outlined currently available targeting strategies: (1) targeting lysosomal acidification; (2) targeting lysosomal cathepsins; (3) targeting lysosomal membrane permeability and integrity; (4) targeting lysosomal calcium signaling; (5) targeting mTOR signaling; and (6) emerging potential targeting strategies. Moreover, we systematically summarized the corresponding drugs and their application in clinical trials. By integrating basic research with clinical findings, we discussed the current opportunities and challenges of targeting lysosomes in human disease.
Collapse
|
23
|
Braun C, Weichhart T. mTOR-dependent immunometabolism as Achilles' heel of anticancer therapy. Eur J Immunol 2021; 51:3161-3175. [PMID: 34648202 DOI: 10.1002/eji.202149270] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/07/2021] [Accepted: 10/06/2021] [Indexed: 12/14/2022]
Abstract
Immune cells are important constituents of the tumor microenvironment and essential in eradicating tumor cells during conventional therapies or novel immunotherapies. The mechanistic target of rapamycin (mTOR) signaling pathway senses the intra- and extracellular nutrient status, growth factor supply, and cell stress-related changes to coordinate cellular metabolism and activation dictating effector and memory functions in mainly all hematopoietic immune cells. In addition, the mTOR complex 1 (mTORC1) and mTORC2 are frequently deregulated and become activated in cancer cells to drive cell transformation, survival, neovascularization, and invasion. In this review, we provide an overview of the influence of mTOR complexes on immune and cancer cell function and metabolism. We discuss how mTOR inhibitors aiming to target cancer cells will influence immunometabolic cell functions participating either in antitumor responses or favoring tumor cell progression in individual immune cells. We suggest immunometabolism as the weak spot of anticancer therapy and propose to evaluate patients according to their predominant immune cell subtype in the cancer tissue. Advances in metabolic drug development that hold promise for more effective treatments in different types of cancer will have to consider their effects on the immune system.
Collapse
Affiliation(s)
- Clarissa Braun
- Center of Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria.,Clinical Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Thomas Weichhart
- Center of Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
24
|
Wang C, Guan D, Li R, Bing Z, Yang Y, Yang K. Comparative efficacies of different immunotherapy regimens in recurrent implantation failure: A systematic review and network meta-analysis. J Reprod Immunol 2021; 148:103429. [PMID: 34638024 DOI: 10.1016/j.jri.2021.103429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 11/30/2022]
Abstract
For patients with recurrent implantation failure (RIF), immune system imbalances have become the focus of research. The effects of different classes of immunotherapies on improving pregnancy outcomes have not been fully established. This network meta-analysis was performed to assess the impact of popular immunotherapies in women with RIF. We systematically searched the Cochrane Central Register of Controlled Trials, PubMed, Embase, and Web of Science databases as well as clinical trial registration websites. Randomized controlled trials comparing immunotherapeutic outcomes were included. We performed the random-effects network meta-analysis to compare efficacy measures. A total of 21 trials involving 2277 participants and 8 immunotherapies were eligible for this study. Patients that had been administered with PBMCs, G-CSF, PRP, and sirolimus exhibited higher CPR than those administered with the placebo (2.63, 1.71-4.06; 2.03, 1.35-3.05; 1.98, 1.02-3.84; 2.55, 1.36-4.79; and 3.95, 1.33-11.72, respectively). For IR, only PBMCs and G-CSF were significantly more effective than the placebo (2.92, 1.39-6.12; 2.66, 1.16-6.06, respectively). In terms of LBR, PBMCs (2.96, 1.67-5.27) and sirolimus (3.55, 1.18-10.64) were effective. However, r-hLIF (0.25, 0.10-0.62) had a reduced risk of LBR. No therapeutic regimen was found to have significantly decreased MR, but PBMCs exhibited the lowest rank among all interventions (0.28, 0.06-1.44). To improve clinical pregnancy while reducing miscarriage outcomes, PBMCs might be a beneficent therapeutic option for RIF in the future.
Collapse
Affiliation(s)
- Caiyun Wang
- The First Clinical Medical College of Lanzhou University, Lanzhou, China; Department of Obstetrics and Gynecology, The First Hospital of Lanzhou University, Lanzhou, China; Evidence Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China; Key Laboratory of Evidence Based Medicine and Knowledge Translation of Gansu Province, Lanzhou, China
| | - Defeng Guan
- Reproductive Medicine Center of the First Hospital of Lanzhou University, Lanzhou, China
| | - Rui Li
- Evidence Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China; Key Laboratory of Evidence Based Medicine and Knowledge Translation of Gansu Province, Lanzhou, China; Evidence Based Social Science Research Center, School of Public Health, Lanzhou University, Lanzhou, China
| | - Zhitong Bing
- Evidence Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China; Key Laboratory of Evidence Based Medicine and Knowledge Translation of Gansu Province, Lanzhou, China
| | - Yongxiu Yang
- The First Clinical Medical College of Lanzhou University, Lanzhou, China; Department of Obstetrics and Gynecology, The First Hospital of Lanzhou University, Lanzhou, China.
| | - Kehu Yang
- The First Clinical Medical College of Lanzhou University, Lanzhou, China; Evidence Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China; Key Laboratory of Evidence Based Medicine and Knowledge Translation of Gansu Province, Lanzhou, China; Evidence Based Social Science Research Center, School of Public Health, Lanzhou University, Lanzhou, China.
| |
Collapse
|
25
|
Abbasian S, Soltani-Zangbar MS, Khabbazi A, Farzaneh R, Malek Mahdavi A, Motavalli R, Hajialilo M, Yousefi M. Nanocurcumin supplementation ameliorates Behcet's disease by modulating regulatory T cells: A randomized, double-blind, placebo-controlled trial. Int Immunopharmacol 2021; 101:108237. [PMID: 34653732 DOI: 10.1016/j.intimp.2021.108237] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/01/2021] [Accepted: 10/04/2021] [Indexed: 11/30/2022]
Abstract
Current research was designed to assess the effects of nanocurcumin supplementation on regulatory T (Treg) cells frequency and function in Behçet's disease (BD). In this randomized double-masked, placebo-controlled trial, 36 BD subjects were randomly put into two groups to take one 80 mg nanocurcumin capsule or placebo daily for 8 weeks. Before and after trial, disease activity, Treg cells frequency and expression of related immunologic parameters including forkhead box protein P3 (Foxp3) transcription factor messenger RNA (mRNA) and microRNAs (miRNAs) such as miRNA-25 and miRNA-106b as well as cytokines including transforming growth factor (TGF)-β and interleukin (IL)-10 were studied. Thirty-two patients (17 in the nanocurcumin and 15 in the placebo groups) completed the trial. Treg cells frequency increased significantly in the nanocurcumin group compared with baseline (P < 0.001) and placebo group (P < 0.001). Moreover, FoxP3, TGF-β, IL-10, miRNA-25, and miRNA-106b mRNA expression levels increased considerably in the nanocurcumin group compared to baseline (P < 0.001) and placebo group (P < 0.001, P < 0.001, P = 0.025, P = 0.011, and P < 0.001, respectively). Significant increases in serum TGF-β and IL-10 were seen in nanocurcumin group compared with baseline (P < 0.001) and placebo group (P = 0.001 and P < 0.001, respectively). Significant decrease in disease activity was found in nanocurcumin group compared with placebo group (P = 0.044). Our study provided a promising view for desirable effects of nanocurcumin supplementation in improving immunological parameters and disease activity in BD.
Collapse
Affiliation(s)
- Samaneh Abbasian
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Alireza Khabbazi
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rojin Farzaneh
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aida Malek Mahdavi
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Roza Motavalli
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehrzad Hajialilo
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
26
|
Nazari N, Jafari F, Ghalamfarsa G, Hadinia A, Atapour A, Ahmadi M, Dolati S, Rostamzadeh D. The emerging role of microRNA in regulating the mTOR signaling pathway in immune and inflammatory responses. Immunol Cell Biol 2021; 99:814-832. [PMID: 33988889 DOI: 10.1111/imcb.12477] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 05/10/2021] [Accepted: 05/10/2021] [Indexed: 01/01/2023]
Abstract
The mechanistic/mammalian target of rapamycin (mTOR) is considered to be an atypical protein kinase that plays a critical role in integrating different cellular and environmental inputs in the form of growth factors, nutrients and energy and, subsequently, in regulating different cellular events, including cell metabolism, survival, homeostasis, growth and cellular differentiation. Immunologically, mTOR is a critical regulator of immune function through integrating numerous signals from the immune microenvironment, which coordinates the functions of immune cells and T cell fate decisions. The crucial role of mTOR in immune responses has been lately even more appreciated. MicroRNAs (miRNAs) are endogenous, small, noncoding single-stranded RNAs that act as molecular regulators involved in multiple processes during immune cells development, homeostasis, activation and effector polarization. Several studies have recently indicated that a range of miRNAs are involved in regulating the phosphoinositide 3-kinase/protein kinase B/mTOR (PI3K/AKT/mTOR) signaling pathway by targeting multiple components of this signaling pathway and modulating the expression and function of these targets. Current evidence has revealed the interplay between miRNAs and the mTOR pathway circuits in various immune cell types. The expression of individual miRNA can affect the function of mTOR signaling to determine the cell fate decisions in immune responses through coordinating immune signaling and cell metabolism. Dysregulation of the mTOR pathway/miRNAs crosstalk has been reported in cancers and various immune-related diseases. Thus, expression profiles of dysregulated miRNAs could influence the mTOR pathway, resulting in the promotion of aberrant immunity. This review summarizes the latest information regarding the reciprocal role of the mTOR signaling pathway and miRNAs in orchestrating immune responses.
Collapse
Affiliation(s)
- Nazanin Nazari
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farzaneh Jafari
- Department of Medical Genetics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ghasem Ghalamfarsa
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Abolghasem Hadinia
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Amir Atapour
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Majid Ahmadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sanam Dolati
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Davood Rostamzadeh
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.,Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| |
Collapse
|
27
|
Handono K, Pratama MZ, Sermoati IA, Yuniati MG, Haryati NPS, Norahmawati E, Endharti AT, Irwanto Y, Solikhin MB, Hidayat S. The Effect of Mango Mistletoes (Dendrophthoe pentandra) Leaves Extract on Percentage of CD4+CD28+, CD8+CD28+, and interleukin-2 Levels of Aged Balb/c Mice. Open Access Maced J Med Sci 2021. [DOI: 10.3889/oamjms.2021.6182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND: Population aging is considered to be a global phenomenon today. Age-associated immune system dysfunction or “immunosenescence” is indicated by increased susceptibility to infections and chronic diseases, such as hypertension, diabetes mellitus, autoimmune diseases, heart disease, and atherosclerosis. One of the immunosenescence markers is a significant drop in CD28 and reduced proinflammatory cytokine interleukin-2 (IL-2). The mango mistletoes are deemed to have a better affinity for docking the CD28 and IL-2R receptors of α and β subunits than other plants.
AIM: This study aims to determine the effect of ethanol extract of mango mistletoes on IL-2 levels, the percentage of CD4+CD28+, and the percentage of CD8+CD28+ in aged female mice.
METHODS: The leaves of mango mistletoes were extracted using 96% ethanol solvent, and the extract was administered to aged female mice (18–20 months) orally with different doses for each group, namely 150, 300, and 600 mg/kg. Mango mistletoe leaves extract was administered once a day for 14 days. Then, the IL-2 levels of the mice were checked from their heart blood samples using Enzyme-Linked Immunosorbent Assay, while the percentages of CD4+CD28+ and CD8+CD28+ were examined from the spleen samples using flow cytometry.
RESULTS: The ethanol extract of mango mistletoe leaves was able to increase the percentage of CD4+CD28+ significantly (p < 0.05) at doses of 300 and 600 mg/kg and increase the percentage of CD8+CD28+ significantly (p < 0.05) at a dose of 600 mg/kgBW, while other various doses had a strong enough correlation (r = 0.48) to increase IL-2 levels.
CONCLUSION: The ethanol extract of mango mistletoe leaves has the good potential to inhibit the aging process in the immune system, as characterized by an increase in IL-2 levels and the percentage of CD4+CD28+ and CD8+CD28+.
Collapse
|
28
|
Huang J, Xu X, Yang J. miRNAs Alter T Helper 17 Cell Fate in the Pathogenesis of Autoimmune Diseases. Front Immunol 2021; 12:593473. [PMID: 33968012 PMCID: PMC8096907 DOI: 10.3389/fimmu.2021.593473] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 02/18/2021] [Indexed: 01/05/2023] Open
Abstract
T helper 17 (Th17) cells are characterized by the secretion of the IL-17 cytokine and are essential for the immune response against bacterial and fungal infections. Despite the beneficial roles of Th17 cells, unrestrained IL-17 production can contribute to immunopathology and inflammatory autoimmune diseases, including multiple sclerosis, rheumatoid arthritis, and inflammatory bowel disease. Although these diverse outcomes are directed by the activation of Th17 cells, the regulation of Th17 cells is incompletely understood. The discovery that microRNAs (miRNAs) are involved in the regulation of Th17 cell differentiation and function has greatly improved our understanding of Th17 cells in immune response and disease. Here, we provide an overview of the biogenesis and function of miRNA and summarize the role of miRNAs in Th17 cell differentiation and function. Finally, we focus on recent advances in miRNA-mediated dysregulation of Th17 cell fate in autoimmune diseases.
Collapse
Affiliation(s)
| | | | - Ji Yang
- Department of Dermatology, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
29
|
Impact of mTOR signaling pathway on CD8+ T cell immunity through Eomesodermin in response to invasive candidiasis. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2021; 54:370-378. [PMID: 33972181 DOI: 10.1016/j.jmii.2021.03.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/16/2021] [Accepted: 03/30/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND We investigated the effect of the mammalian target of rapamycin (mTOR) pathway on CD8+ T cell immunity through Eomesodermin (Eomes) in intensive care unit (ICU) patients with invasive candidiasis (IC) and in a mouse model. METHODS We evaluated quantitative changes in parameters of the mTOR/phosphorylated ribosomal S6 kinase (pS6K) pathway and immune system at the onset of infection in ICU patients. The study was registered on 28 February 2017 at chictr.org.cn (ChiCTR-ROC-17010750). We also used a mouse model of Candida infection and constructed T-cell-specific mTOR and T-cell-specific tuberous sclerosis complex (TSC) 1 conditional knockout mice to elucidate the molecular mechanisms. RESULTS We enrolled 88 patients, including 8 with IC. The IC group had lower CD8+ T cell counts, higher serum levels of mTOR, pS6K, Eomes and interleukin (IL)-6. The mouse model with IC showed results consistent in the clinical study. The CD8+ T cell immune response to IC seemed to be weakened in TSC1 knockout mice compared with wild-type IC mice, demonstrating that mTOR activation resulted in the impaired CD8+ T cell immunity in IC. CONCLUSIONS In IC, the mTOR activation may play a vital role in impaired CD8+ T cell immunity through enhancing expression of Eomes. The study was registered on 28 February 2017 at chictr.org.cn (identifier ChiCTR-ROC-17010750).
Collapse
|
30
|
Thymic Aging May Be Associated with COVID-19 Pathophysiology in the Elderly. Cells 2021; 10:cells10030628. [PMID: 33808998 PMCID: PMC8001029 DOI: 10.3390/cells10030628] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/01/2021] [Accepted: 03/10/2021] [Indexed: 02/06/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused the global pandemic of coronavirus disease 2019 (COVID-19) and particularly exhibits severe symptoms and mortality in elderly individuals. Mounting evidence shows that the characteristics of the age-related clinical severity of COVID-19 are attributed to insufficient antiviral immune function and excessive self-damaging immune reaction, involving T cell immunity and associated with pre-existing basal inflammation in the elderly. Age-related changes to T cell immunosenescence is characterized by not only restricted T cell receptor (TCR) repertoire diversity, accumulation of exhausted and/or senescent memory T cells, but also by increased self-reactive T cell- and innate immune cell-induced chronic inflammation, and accumulated and functionally enhanced polyclonal regulatory T (Treg) cells. Many of these changes can be traced back to age-related thymic involution/degeneration. How these changes contribute to differences in COVID-19 disease severity between young and aged patients is an urgent area of investigation. Therefore, we attempt to connect various clues in this field by reviewing and discussing recent research on the role of the thymus and T cells in COVID-19 immunity during aging (a synergistic effect of diminished responses to pathogens and enhanced responses to self) impacting age-related clinical severity of COVID-19. We also address potential combinational strategies to rejuvenate multiple aging-impacted immune system checkpoints by revival of aged thymic function, boosting peripheral T cell responses, and alleviating chronic, basal inflammation to improve the efficiency of anti-SARS-CoV-2 immunity and vaccination in the elderly.
Collapse
|
31
|
Characterization of Copy-Number Variations and Possible Candidate Genes in Recurrent Pregnancy Losses. Genes (Basel) 2021; 12:genes12020141. [PMID: 33499090 PMCID: PMC7911754 DOI: 10.3390/genes12020141] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/09/2021] [Accepted: 01/19/2021] [Indexed: 12/12/2022] Open
Abstract
It is well established that embryonic chromosomal abnormalities (both in the number of chromosomes and the structure) account for 50% of early pregnancy losses. However, little is known regarding the potential differences in the incidence and distribution of chromosomal abnormalities between patients with sporadic abortion (SA) and recurrent pregnancy loss (RPL), let alone the role of submicroscopic copy-number variations (CNVs) in these cases. The aim of the present study was to systematically evaluate the role of embryonic chromosomal abnormalities and CNVs in the etiology of RPL compared with SA. Over a 3-year period, 1556 fresh products of conception (POCs) from miscarriage specimens were investigated using single nucleotide polymorphism array (SNP-array) and CNV sequencing (CNV-seq) in this study, along with further functional enrichment analysis. Chromosomal abnormalities were identified in 57.52% (895/1556) of all cases. Comparisons of the incidence and distributions of chromosomal abnormalities within the SA group and RPL group and within the different age groups were performed. Moreover, 346 CNVs in 173 cases were identified, including 272 duplications, 2 deletions and 72 duplications along with deletions. Duplications in 16q24.3 and 16p13.3 were significantly more frequent in RPL cases, and thereby considered to be associated with RPL. There were 213 genes and 131 signaling pathways identified as potential RPL candidate genes and signaling pathways, respectively, which were centered primarily on six functional categories. The results of the present study may improve our understanding of the etiologies of RPL and assist in the establishment of a population-based diagnostic panel of genetic markers for screening RPL amongst Chinese women.
Collapse
|
32
|
Li JK, Yang C, Su Y, Luo JC, Luo MH, Huang DL, Tu GW, Luo Z. Mesenchymal Stem Cell-Derived Extracellular Vesicles: A Potential Therapeutic Strategy for Acute Kidney Injury. Front Immunol 2021; 12:684496. [PMID: 34149726 PMCID: PMC8209464 DOI: 10.3389/fimmu.2021.684496] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/18/2021] [Indexed: 02/05/2023] Open
Abstract
Acute kidney injury (AKI) is a common and potential life-threatening disease in patients admitted to hospital, affecting 10%-15% of all hospitalizations and around 50% of patients in the intensive care unit. Severe, recurrent, and uncontrolled AKI may progress to chronic kidney disease or end-stage renal disease. AKI thus requires more efficient, specific therapies, rather than just supportive therapy. Mesenchymal stem cells (MSCs) are considered to be promising cells for cellular therapy because of their ease of harvesting, low immunogenicity, and ability to expand in vitro. Recent research indicated that the main therapeutic effects of MSCs were mediated by MSC-derived extracellular vesicles (MSC-EVs). Furthermore, compared with MSCs, MSC-EVs have lower immunogenicity, easier storage, no tumorigenesis, and the potential to be artificially modified. We reviewed the therapeutic mechanism of MSCs and MSC-EVs in AKI, and considered recent research on how to improve the efficacy of MSC-EVs in AKI. We also summarized and analyzed the potential and limitations of EVs for the treatment of AKI to provide ideas for future clinical trials and the clinical application of MSC-EVs in AKI.
Collapse
Affiliation(s)
- Jia-Kun Li
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Cheng Yang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ying Su
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jing-Chao Luo
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ming-Hao Luo
- Shanghai Medical College, Fudan University, Shanghai, China
| | - Dan-Lei Huang
- Shanghai Medical College, Fudan University, Shanghai, China
- *Correspondence: Zhe Luo, ; Guo-Wei Tu,
| | - Guo-Wei Tu
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- *Correspondence: Zhe Luo, ; Guo-Wei Tu,
| | - Zhe Luo
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Critical Care Medicine, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, China
- *Correspondence: Zhe Luo, ; Guo-Wei Tu,
| |
Collapse
|
33
|
Acute Conditioning of Antigen-Expanded CD8 + T Cells via the GSK3β-mTORC Axis Differentially Dictates Their Immediate and Distal Responses after Antigen Rechallenge. Cancers (Basel) 2020; 12:cancers12123766. [PMID: 33327544 PMCID: PMC7765077 DOI: 10.3390/cancers12123766] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/10/2020] [Accepted: 12/10/2020] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Expanded, antigen-experienced CD8+ T cells are utilized in immunotherapy to treat infections and cancers. Antigen rechallenge of these cells leads to their re-expansion. The effector functions of re-expanded CD8+ T cells are critical for their therapeutic efficacy. We found that acute conditioning of the cells, before antigen rechallenge, impacts their effector function after re-expansion. Our data showed that acute pharmacological modulation of the GSK3β-mTORC axis with TWS119 or rapamycin, but not Torin1, before antigen rechallenge promotes the effector functions of re-expanded CD8+ T cells. These findings suggest that acute conditioning of the GSK3β-mTORC axis in expanded CD8+ T cells, before antigen rechallenge, can promote the therapeutic performance of re-expanded CD8+ T cells. Abstract CD8+ T cells protect against tumors and intracellular pathogens. The inflammatory cytokines IL-2, IL-15, and IL-7 are necessary for their expansion. However, elevated serum levels of these cytokines are often associated with cancer, poorer prognosis of cancer patients, and exhaustion of antigen-expanded CD8+ T cells. The impact of acute conditioning of antigen-expanded CD8+ T cells with these cytokines is unknown. Here, we generated antigen-expanded CD8+ T cells using dendritic cells and PC-3 cells. The cells were acutely (18–24 h) conditioned with IL-2 and either the GSK3β inhibitor TWS119, the mTORC1 inhibitor rapamycin, or the mTORC1/2 inhibitor Torin1, then their immediate and post-re-expansion (distal) cytokine responses after antigen rechallenge were evaluated. We found that acute IL-2 conditioning upregulated the immediate antigen-induced cytokine response of the tested cells. Following their re-expansion, however, the cells showed a decreased cytokine response. These IL-2 conditioning-mediated impacts were counteracted with TWS119 or rapamycin but not with Torin1. Our data revealed that the acute conditioning of antigen-expanded CD8+ T cells with IL-2 modulates the GSK3β-mTORC signaling axis. This modulation differentially affected the immediate and distal cytokine responses of the cells. The acute targeting of this signaling axis could, therefore, represent a novel strategy for the modulation of antigen-expanded CD8+ T cells.
Collapse
|
34
|
Effective sirolimus treatment of 2 COPA syndrome patients. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2020; 9:999-1001.e1. [PMID: 33099043 DOI: 10.1016/j.jaip.2020.10.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 10/03/2020] [Accepted: 10/05/2020] [Indexed: 11/20/2022]
|
35
|
Cai W, Zhou W, Han Z, Lei J, Zhuang J, Zhu P, Wu X, Yuan W. Master regulator genes and their impact on major diseases. PeerJ 2020; 8:e9952. [PMID: 33083114 PMCID: PMC7546222 DOI: 10.7717/peerj.9952] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/25/2020] [Indexed: 01/10/2023] Open
Abstract
Master regulator genes (MRGs) have become a hot topic in recent decades. They not only affect the development of tissue and organ systems but also play a role in other signal pathways by regulating additional MRGs. Because a MRG can regulate the concurrent expression of several genes, its mutation often leads to major diseases. Moreover, the occurrence of many tumors and cardiovascular and nervous system diseases are closely related to MRG changes. With the development in omics technology, an increasing amount of investigations will be directed toward MRGs because their regulation involves all aspects of an organism’s development. This review focuses on the definition and classification of MRGs as well as their influence on disease regulation.
Collapse
Affiliation(s)
- Wanwan Cai
- The Center for Heart Development, State Key Laboratory of Development Biology of Freshwater Fish, Key Laboratory of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Wanbang Zhou
- College of Physical Education, Hunan Normal University, Changsha, Hunan, China
| | - Zhe Han
- University of Maryland School of Medicine, Center for Precision Disease Modeling, Baltimore, MD, USA
| | - Junrong Lei
- College of Physical Education, Hunan Normal University, Changsha, Hunan, China
| | - Jian Zhuang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Department of Cardiac Surgery, Guangzhou, Guangdong, China
| | - Ping Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Department of Cardiac Surgery, Guangzhou, Guangdong, China
| | - Xiushan Wu
- The Center for Heart Development, State Key Laboratory of Development Biology of Freshwater Fish, Key Laboratory of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Wuzhou Yuan
- The Center for Heart Development, State Key Laboratory of Development Biology of Freshwater Fish, Key Laboratory of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| |
Collapse
|
36
|
Curigliano G, Banerjee S, Cervantes A, Garassino MC, Garrido P, Girard N, Haanen J, Jordan K, Lordick F, Machiels JP, Michielin O, Peters S, Tabernero J, Douillard JY, Pentheroudakis G. Managing cancer patients during the COVID-19 pandemic: an ESMO multidisciplinary expert consensus. Ann Oncol 2020; 31:1320-1335. [PMID: 32745693 PMCID: PMC7836806 DOI: 10.1016/j.annonc.2020.07.010] [Citation(s) in RCA: 214] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/09/2020] [Accepted: 07/12/2020] [Indexed: 12/14/2022] Open
Abstract
We established an international consortium to review and discuss relevant clinical evidence in order to develop expert consensus statements related to cancer management during the severe acute respiratory syndrome coronavirus 2-related disease (COVID-19) pandemic. The steering committee prepared 10 working packages addressing significant clinical questions from diagnosis to surgery. During a virtual consensus meeting of 62 global experts and one patient advocate, led by the European Society for Medical Oncology, statements were discussed, amended and voted upon. When consensus could not be reached, the panel revised statements until a consensus was reached. Overall, the expert panel agreed on 28 consensus statements that can be used to overcome many of the clinical and technical areas of uncertainty ranging from diagnosis to therapeutic planning and treatment during the COVID-19 pandemic.
Collapse
Affiliation(s)
- G Curigliano
- Department of Oncology and Hemato-Oncology, Division of Early Drug Development, European Institute of Oncology, IRCCS and University of Milano, Milan, Italy.
| | - S Banerjee
- Gynaecology Unit, The Royal Marsden NHS Foundation Trust and The Institute of Cancer Research, London, UK
| | - A Cervantes
- Department of Medical Oncology, Biomedical Research Institute, INCLIVA, University of Valencia, Valencia, Spain; Hematology and Medical Oncology, CIBERONC Instituto de Salud Carlos III, Madrid, Spain
| | - M C Garassino
- Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - P Garrido
- Medical Oncology, Hospital Universitario Ramón y Cajal, Universidad de Alcalá, Madrid, Spain
| | - N Girard
- Thoracic Oncology, Université de Lyon, Université Claude Bernard Lyon, Lyon, France; Thoracic Surgery, Département Oncologie Médicale, Institut Curie, Paris, France
| | - J Haanen
- Division of Medical Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - K Jordan
- Department of Medicine V, Hematology, Oncology and Rheumatology, University of Heidelberg, Heidelberg, Germany
| | - F Lordick
- Department of Institut Roi Albert II, University Cancer Center Leipzig, Leipzig University Medical Center, Leipzig, Germany
| | - J P Machiels
- Institut Roi Albert II, Service d'Oncologie Médicale, Cliniques Universitaires Saint-Luc and Institut de Recherche Clinique et Expérimentale (POLE MIRO), Université Catholique de Louvain, Brussels, Belgium
| | - O Michielin
- Department of Oncology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - S Peters
- Department of Oncology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - J Tabernero
- Department of Medical Oncology, Vall d'Hebron University Hospital and Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - J Y Douillard
- Department of Medical Oncology, Centre René Gauducheau, Nantes, France
| | - G Pentheroudakis
- Department of Medical Oncology, Medical School, University of Ioannina, Ioannina, Epirus, Greece
| |
Collapse
|
37
|
IL-17A as a Potential Therapeutic Target for Patients on Peritoneal Dialysis. Biomolecules 2020; 10:biom10101361. [PMID: 32987705 PMCID: PMC7598617 DOI: 10.3390/biom10101361] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/16/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022] Open
Abstract
Chronic kidney disease (CKD) is a health problem reaching epidemic proportions. There is no cure for CKD, and patients may progress to end-stage renal disease (ESRD). Peritoneal dialysis (PD) is a current replacement therapy option for ESRD patients until renal transplantation can be achieved. One important problem in long-term PD patients is peritoneal membrane failure. The mechanisms involved in peritoneal damage include activation of the inflammatory and immune responses, associated with submesothelial immune infiltrates, angiogenesis, loss of the mesothelial layer due to cell death and mesothelial to mesenchymal transition, and collagen accumulation in the submesothelial compact zone. These processes lead to fibrosis and loss of peritoneal membrane function. Peritoneal inflammation and membrane failure are strongly associated with additional problems in PD patients, mainly with a very high risk of cardiovascular disease. Among the inflammatory mediators involved in peritoneal damage, cytokine IL-17A has recently been proposed as a potential therapeutic target for chronic inflammatory diseases, including CKD. Although IL-17A is the hallmark cytokine of Th17 immune cells, many other cells can also produce or secrete IL-17A. In the peritoneum of PD patients, IL-17A-secreting cells comprise Th17 cells, γδ T cells, mast cells, and neutrophils. Experimental studies demonstrated that IL-17A blockade ameliorated peritoneal damage caused by exposure to PD fluids. This article provides a comprehensive review of recent advances on the role of IL-17A in peritoneal membrane injury during PD and other PD-associated complications.
Collapse
|
38
|
Blagosklonny MV. From causes of aging to death from COVID-19. Aging (Albany NY) 2020; 12:10004-10021. [PMID: 32534452 PMCID: PMC7346074 DOI: 10.18632/aging.103493] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/08/2020] [Indexed: 12/19/2022]
Abstract
COVID-19 is not deadly early in life, but mortality increases exponentially with age, which is the strongest predictor of mortality. Mortality is higher in men than in women, because men age faster, and it is especially high in patients with age-related diseases, such as diabetes and hypertension, because these diseases are manifestations of aging and a measure of biological age. At its deepest level, aging (a program-like continuation of developmental growth) is driven by inappropriately high cellular functioning. The hyperfunction theory of quasi-programmed aging explains why COVID-19 vulnerability (lethality) is an age-dependent syndrome, linking it to other age-related diseases. It also explains inflammaging and immunosenescence, hyperinflammation, hyperthrombosis, and cytokine storms, all of which are associated with COVID-19 vulnerability. Anti-aging interventions, such as rapamycin, may slow aging and age-related diseases, potentially decreasing COVID-19 vulnerability.
Collapse
|
39
|
De Martinis M, Sirufo MM, Suppa M, Di Silvestre D, Ginaldi L. Sex and Gender Aspects for Patient Stratification in Allergy Prevention and Treatment. Int J Mol Sci 2020; 21:E1535. [PMID: 32102344 PMCID: PMC7073150 DOI: 10.3390/ijms21041535] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 02/20/2020] [Indexed: 12/11/2022] Open
Abstract
Allergies are rapidly worsening in recent decades, representing the most common immunological diseases. The mechanism of disorders such as asthma, rhinocongiuntivitis, urticaria, atopic dermatitis, food and drug allergies, and anaphylaxis still remain unclear and consequently treatments is mostly still symptomatic and aspecific while developments of new therapies are limited. A growing amount of data in the literature shows us how the prevalence of allergic diseases is different in both sexes and its changes over the course of life. Genes, hormones, environmental and immunological factors affect sex disparities associated with the development and control of allergic diseases, while they more rarely are considered and reported regarding their differences related to social, psychological, cultural, economic, and employment aspects. This review describes the available knowledge on the role of sex and gender in allergies in an attempt to improve the indispensable gender perspective whose potential is still underestimated while it represents a significant turning point in research and the clinic. It will offer insights to stimulate exploration of the many aspects still unknown in this relationship that could ameliorate the preventive, diagnostic, and therapeutic strategies in allergic diseases.
Collapse
Affiliation(s)
- Massimo De Martinis
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.M.S.); (D.D.S.); (L.G.)
- Allergy and Clinical Immunology Unit, Center for the diagnosis and treatment of Osteoporosis, AUSL 04 Teramo, Italy
| | - Maria Maddalena Sirufo
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.M.S.); (D.D.S.); (L.G.)
- Allergy and Clinical Immunology Unit, Center for the diagnosis and treatment of Osteoporosis, AUSL 04 Teramo, Italy
| | - Mariano Suppa
- Department of Dermatology, Hôpital Erasme, Université Libre de Bruxelles, 1070 Brussels, Belgium;
| | - Daniela Di Silvestre
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.M.S.); (D.D.S.); (L.G.)
- Allergy and Clinical Immunology Unit, Center for the diagnosis and treatment of Osteoporosis, AUSL 04 Teramo, Italy
| | - Lia Ginaldi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.M.S.); (D.D.S.); (L.G.)
- Allergy and Clinical Immunology Unit, Center for the diagnosis and treatment of Osteoporosis, AUSL 04 Teramo, Italy
| |
Collapse
|
40
|
Huang R, Meng T, Zhu R, Zhao L, Song D, Yin H, Huang Z, Cheng L, Zhang J. The Integrated Transcriptome Bioinformatics Analysis Identifies Key Genes and Cellular Components for Spinal Cord Injury-Related Neuropathic Pain. Front Bioeng Biotechnol 2020; 8:101. [PMID: 32140464 PMCID: PMC7042182 DOI: 10.3389/fbioe.2020.00101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 02/03/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Spinal cord injury (SCI) is one of the most devastating diseases with a high incidence rate around the world. SCI-related neuropathic pain (NeP) is a common complication, whereas its pathomechanism is still unclear. The purpose of this study is to identify key genes and cellular components for SCI-related NeP by an integrated transcriptome bioinformatics analysis. METHODS The gene expression profile of 25 peripheral blood samples from chronic phase SCI patients (E-GEOD-69901) and 337 normal peripheral blood samples were downloaded from ArrayExpress and Genotype-Tissue Expression Portal (GTEx), respectively. A total of 3,368 normal peripheral blood mononuclear cells (PBMC) were download from Sequence Read Archive (SRA713577). Non-parametric tests were used to evaluate the association between all of differential expression genes (DEGs) and SCI-related NeP. CellPhoneDB algorithm was performed to identify the ligand-receptor interactions and their cellular localization among single PBMCs. Transcription factor (TF) enrichment analysis and Gene Set Variation Analysis (GSVA) were used to identify the potential upstream regulatory TFs and downstream signaling pathways, respectively. Co-expression analysis among significantly enriched TFs, key cellular communication genes and differentially expressed signaling pathways were performed to identify key genes and cellular components for SCI-related NeP. RESULTS A total of 2,314 genes were identified as DEGs between the experimental and the control group. Five proteins (ADRB2, LGALS9, PECAM1, HAVCR2, LRP1) were identified in the overlap of proteins in the significant ligand-receptor interactions of PBMCs and protein-protein interaction (PPI) network based on the DEGs. Only HAVCR2 was significantly associated with NeP (P = 0.005). Besides, the co-expression analysis revealed that TF YY1 had significantly co-expression pattern with cellular communication receptor HAVCR2 (R = -0.54, P < 0.001) in NK cells while HAVCR2 was also co-expressed with mTOR signaling pathway (R = 0.57, P < 0.001). The results of RT-qPCR and external dataset validation supported the signaling axis with the most significant co-expression patterns. CONCLUSION In peripheral blood of chronic SCI, HAVCR2 might act as a key receptor on the surface of NK cells and interact with ligand LGALS9 secreted by CD14+ monocytes, inhibiting NK cells through mTOR signaling pathway and ultimately predicting the occurrence of SCI-related NeP. This hypothetical signaling axis may provide prognostic biomarkers and therapeutic targets for SCI-related NeP.
Collapse
Affiliation(s)
- Runzhi Huang
- Division of Spine, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Tong Meng
- Division of Spine, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Rui Zhu
- Division of Spine, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Lijuan Zhao
- Division of Spine, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Dianwen Song
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Huabin Yin
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zongqiang Huang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Liming Cheng
- Division of Spine, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jie Zhang
- Division of Spine, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Prevention, Tongji University School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
41
|
Motavalli R, Etemadi J, Kahroba H, Mehdizadeh A, Yousefi M. Immune system-mediated cellular and molecular mechanisms in idiopathic membranous nephropathy pathogenesis and possible therapeutic targets. Life Sci 2019; 238:116923. [DOI: 10.1016/j.lfs.2019.116923] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 09/16/2019] [Accepted: 09/29/2019] [Indexed: 12/21/2022]
|
42
|
Ye S, Liu H, Chen Y, Qiu F, Liang CL, Zhang Q, Huang H, Wang S, Zhang ZD, Lu W, Dai Z. A Novel Immunosuppressant, Luteolin, Modulates Alloimmunity and Suppresses Murine Allograft Rejection. THE JOURNAL OF IMMUNOLOGY 2019; 203:3436-3446. [PMID: 31732527 DOI: 10.4049/jimmunol.1900612] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 10/09/2019] [Indexed: 02/07/2023]
Abstract
An allograft is rejected in the absence of any immunosuppressive treatment because of vigorous alloimmunity and thus requires extensive immunosuppression for its survival. Although there are many conventional immunosuppressants for clinical use, it is necessary to seek alternatives to existing drugs, especially in case of transplant patients with complicated conditions. Luteolin, a natural ingredient, exists in many plants. It exhibits multiple biological and pharmacological effects, including anti-inflammatory properties. In particular, luteolin has been shown to upregulate CD4+CD25+ regulatory T cells (Tregs) in the context of airway inflammation. However, it remains unknown whether luteolin regulates alloimmune responses. In this study, we demonstrated that luteolin significantly prolonged murine skin allograft survival, ameliorated cellular infiltration, and downregulated proinflammatory cytokine gene expression in skin allografts. Furthermore, luteolin increased the percentage of CD4+Foxp3+ Tregs while reducing frequency of mature dendritic cells and CD44highCD62Llow effector CD4+/CD8+ T cells posttransplantation. It also suppressed the proliferation of T cells and their production of cytokines IFN-γ and IL-17A in vitro while increasing IL-10 level in the supernatant. Moreover, luteolin promoted CD4+Foxp3+ Treg generation from CD4+CD25- T cells in vitro. Depleting Tregs largely, although not totally, reversed luteolin-mediated extension of allograft survival. More importantly, luteolin inhibited AKT/mTOR signaling in T cells. Thus, for the first time, to our knowledge, we found that luteolin is an emerging immunosuppressant as an mTOR inhibitor in allotransplantation. This finding could be important for the suppression of human allograft rejection, although it remains to be determined whether luteolin has an advantage over other conventional immunosuppressants in suppression of allograft rejection.
Collapse
Affiliation(s)
- Shulin Ye
- Section of Immunology and Joint Immunology Program, Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong 510006, China
| | - Huazhen Liu
- Section of Immunology and Joint Immunology Program, Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong 510006, China
| | - Yuchao Chen
- Section of Immunology and Joint Immunology Program, Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong 510006, China
| | - Feifei Qiu
- Section of Immunology and Joint Immunology Program, Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong 510006, China
| | - Chun-Ling Liang
- Section of Immunology and Joint Immunology Program, Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong 510006, China
| | - Qunfang Zhang
- Section of Immunology and Joint Immunology Program, Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong 510006, China
| | - Haiding Huang
- Section of Immunology and Joint Immunology Program, Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong 510006, China
| | - Sumei Wang
- Section of Immunology and Joint Immunology Program, Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong 510006, China
| | - Zhong-De Zhang
- Section of Immunology and Joint Immunology Program, Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong 510006, China
| | - Weihui Lu
- Section of Immunology and Joint Immunology Program, Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong 510006, China
| | - Zhenhua Dai
- Section of Immunology and Joint Immunology Program, Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong 510006, China
| |
Collapse
|
43
|
Dreis C, Ottenlinger FM, Putyrski M, Ernst A, Huhn M, Schmidt KG, Pfeilschifter JM, Radeke HH. Tissue Cytokine IL-33 Modulates the Cytotoxic CD8 T Lymphocyte Activity During Nutrient Deprivation by Regulation of Lineage-Specific Differentiation Programs. Front Immunol 2019; 10:1698. [PMID: 31396219 PMCID: PMC6667839 DOI: 10.3389/fimmu.2019.01698] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 07/08/2019] [Indexed: 12/18/2022] Open
Abstract
IL-1 family member IL-33 exerts a variety of immune activating and regulating properties and has recently been proposed as a prognostic biomarker for cancer diseases, although its precise role in tumor immunity is unclear. Here we analyzed in vitro conditions influencing the function of IL-33 as an alarmin and a co-factor for the activity of cytotoxic CD8+ T cells in order to explain the widely discussed promiscuous behavior of IL-33 in vivo. Circulating IL-33 detected in the serum of healthy human volunteers was biologically inactive. Additionally, bioactivity of exogenous recombinant IL-33 was significantly reduced in plasma, suggesting local effects of IL-33, and inactivation in blood. Limited availability of nutrients in tissue causes necrosis and thus favors release of IL-33, which-as described before-leads to a locally high expression of the cytokine. The harsh conditions however influence T cell fitness and their responsiveness to stimuli. Nutrient deprivation and pharmacological inhibition of mTOR mediated a distinctive phenotype characterized by expression of IL-33 receptor ST2L on isolated CD8+ T cells, downregulation of CD8, a transitional CD45RAlowROlow phenotype and high expression of secondary lymphoid organ chemokine receptor CCR7. Under nutrient deprivation, IL-33 inhibited an IL-12 induced increase in granzyme B protein expression and increased expression of GATA3 and FOXP3 mRNA. IL-33 enhanced the TCR-dependent activation of CD8+ T cells and co-stimulated the IL-12/TCR-dependent expression of IFNγ. Respectively, GATA3 and FOXP3 mRNA were not regulated during TCR-dependent activation. TCR-dependent stimulation of PBMC, but not LPS, initiated mRNA expression of soluble IL-33 decoy receptor sST2, a control mechanism limiting IL-33 bioactivity to avoid uncontrolled inflammation. Our findings contribute to the understanding of the compartment-specific activity of IL-33. Furthermore, we newly describe conditions, which promote an IL-33-dependent induction of pro- or anti-inflammatory activity in CD8+ T cells during nutrient deprivation.
Collapse
Affiliation(s)
- Caroline Dreis
- pharmazentrum Frankfurt/ZAFES, Institute of Pharmacology and Toxicology, Hospital of the Goethe University, Frankfurt am Main, Germany
| | - Florian M. Ottenlinger
- pharmazentrum Frankfurt/ZAFES, Institute of Pharmacology and Toxicology, Hospital of the Goethe University, Frankfurt am Main, Germany
| | - Mateusz Putyrski
- Project Group Translational Medicine and Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Frankfurt am Main, Germany
| | - Andreas Ernst
- Project Group Translational Medicine and Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Frankfurt am Main, Germany
- Institute of Clinical Pharmacology, Goethe-University, Frankfurt am Main, Germany
| | - Meik Huhn
- pharmazentrum Frankfurt/ZAFES, Institute of Pharmacology and Toxicology, Hospital of the Goethe University, Frankfurt am Main, Germany
| | - Katrin G. Schmidt
- pharmazentrum Frankfurt/ZAFES, Institute of Pharmacology and Toxicology, Hospital of the Goethe University, Frankfurt am Main, Germany
| | - Josef M. Pfeilschifter
- pharmazentrum Frankfurt/ZAFES, Institute of Pharmacology and Toxicology, Hospital of the Goethe University, Frankfurt am Main, Germany
| | - Heinfried H. Radeke
- pharmazentrum Frankfurt/ZAFES, Institute of Pharmacology and Toxicology, Hospital of the Goethe University, Frankfurt am Main, Germany
| |
Collapse
|