1
|
Zhao X, Mei Z, Li H, Wu Y, Pan L, Cao Y. Genome-wide association study and candidate gene analysis of reproductive traits in Yili geese. Poult Sci 2025; 104:105127. [PMID: 40203614 DOI: 10.1016/j.psj.2025.105127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/22/2025] [Accepted: 04/02/2025] [Indexed: 04/11/2025] Open
Abstract
Reproductive traits are important economic traits in goose production, and geese's reproductive ability directly affects goose farms' economic benefits. In this study, we selected 240 Yili females goose in the egg-laying stage to construct a test population and measured the individual egg-laying performance and hatching performance of Yili females goose. Based on the above phenotypic data, we conducted genome-wide linkage analysis for five indicators of reproductive traits of Yili geese (egg-laying capacity, fertilization rate, hatching rate, egg weight, and egg shape) to screen candidate genes. Genome-wide association analysis of reproductive traits in Yili geese was performed by resequencing, and a total of 1 single nucleotide polymorphism (SNP) were screened for significant association with hatchability, 34 SNPs were screened for potential association with egg production, egg weight, egg shape, and fertilisation rate, and 35 candidate genes were screened for association with egg production, egg weight, egg shape and fertilization rate in the vicinity of these loci across the whole genome. 35 candidate genes were screened near these loci. Through bioinformatics analysis, genes such as carbonic anhydrase 2 (CA2), very low density lipoprotein receptor (VLDLR), HMG-box transcription factor 1 (HBP1), and transient receptor potential cation channel subfamily M member 5 (TRPM5) were obtained to be closely related to calcium deposition, follicular development, embryonic development, and estrogen secretion level. These genes can be used as candidate genes affecting the reproductive performance of Yili geese. This study provides a reference basis for further analysis of the molecular regulation mechanism of goose reproductive performance and enriches the theory of genetic regulation of goose reproductive performance.
Collapse
Affiliation(s)
- Xiaoyu Zhao
- College of Animal Scienc, Xinjiang Agricultural University, Urumqi, PR China
| | - Zhiyong Mei
- College of Animal Scienc, Xinjiang Agricultural University, Urumqi, PR China
| | - Haiying Li
- College of Animal Scienc, Xinjiang Agricultural University, Urumqi, PR China.
| | - Yingping Wu
- College of Animal Scienc, Xinjiang Agricultural University, Urumqi, PR China
| | - Lu Pan
- College of Animal Scienc, Xinjiang Agricultural University, Urumqi, PR China
| | - Yan Cao
- College of Animal Scienc, Xinjiang Agricultural University, Urumqi, PR China
| |
Collapse
|
2
|
Ahamad S, Saquib M, Hussain MK, Bhat SA. Targeting Wnt signaling pathway with small-molecule therapeutics for treating osteoporosis. Bioorg Chem 2025; 156:108195. [PMID: 39864370 DOI: 10.1016/j.bioorg.2025.108195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/29/2024] [Accepted: 01/17/2025] [Indexed: 01/28/2025]
Abstract
Small molecules are emerging as potential candidates for treating osteoporosis by activating canonical Wnt signaling. These candidates work either by inhibiting DKK-1, sclerostin, SFRP-1, NOTUM, and S1P lyase or by preventing β-catenin degradation through inhibition of GSK-3β, or by targeting Dvl-CXXC5 and axin/β-catenin interactions. While many of these anti-osteoporotic small molecules are in preclinical development, the paucity of FDA-approved small molecules, or promising candidates, that have progressed to clinical trials for treating bone disorders through this mechanism poses a challenge. Despite advancements in computer-aided drug design, it is rarely employed for designing Wnt signaling activators to treat osteoporosis, and high-throughput screen (HTS) remains the primary method for discovering initial hits. Acknowledging the promising therapeutic potential of these compounds in addressing bone diseases, this review underscores the need for further mechanistic elucidation to enhance our understanding of their applications. Additionally, caution must be exercised in the design of small molecule-based Wnt activators due to their association with oncological risks.
Collapse
Affiliation(s)
- Shakir Ahamad
- Department of Chemistry, Aligarh Muslim University Aligarh 202002 India.
| | - Mohammad Saquib
- Department of Chemistry, University of Allahabad, Prayagraj (Allahabad) 211002, UP, India; Department of Chemistry, G. R. P. B. Degree College, P. R. S. University, Prayagraj (Allahabad) 211010, UP, India
| | | | - Shahnawaz Ali Bhat
- Department of Zoology, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
3
|
Nasme F, Behera J, Tyagi P, Debnath N, Falcone JC, Tyagi N. The potential link between the development of Alzheimer's disease and osteoporosis. Biogerontology 2025; 26:43. [PMID: 39832071 DOI: 10.1007/s10522-024-10181-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 12/28/2024] [Indexed: 01/22/2025]
Abstract
Alzheimer's disease (AD) and osteoporosis (OP) pose distinct but interconnected health challenges, both significantly impacting the aging population. AD, a neurodegenerative disorder characterized by memory impairment and cognitive decline, is primarily associated with the accumulation of abnormally folded amyloid beta (Aβ) peptides and neurofibrillary tangles in the brain. OP, a skeletal disorder marked by low bone mineral density, involves dysregulation of bone remodeling and is associated with an increased risk of fractures. Recent studies have revealed an intriguing link between AD and OP, highlighting shared pathological features indicative of common regulatory pathophysiological pathways. In this article, we elucidate the signaling mechanisms that regulate the pathology of AD and OP and offer insights into the intricate network of factors contributing to these conditions. We also examine the role of bone-derived factors in the progression of AD, underscoring the plausibility of bidirectional communication between the brain and the skeletal system. The presence of amyloid plaques in the brain of individuals with AD is akin to the accumulation of brain Aβ in vascular dementia, pointing towards the need for further investigation of shared molecular mechanisms. Moreover, we discuss the role of bone-derived microRNAs that may regulate the pathological progression of AD, providing a novel perspective on the role of skeletal factors in neurodegenerative diseases. The insights presented here should help researchers engaged in exploring innovative therapeutic approaches targeting both neurodegenerative and skeletal disorders in aging populations.
Collapse
Affiliation(s)
- Fariha Nasme
- Department of Physiology, School of Medicine, University of Louisville, Louisville, KY, 40202, USA
| | - Jyotirmaya Behera
- Division of Immunology, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Prisha Tyagi
- Department of Physiology, School of Medicine, University of Louisville, Louisville, KY, 40202, USA
| | - Nabendu Debnath
- Centre for Molecular Biology, Central University of Jammu, Rahya-Suchani (Bagla) Samba, Jammu, Jammu & Kashmir, 181143, India
| | - Jeff C Falcone
- Department of Physiology, School of Medicine, University of Louisville, Louisville, KY, 40202, USA
| | - Neetu Tyagi
- Department of Physiology, School of Medicine, University of Louisville, Louisville, KY, 40202, USA.
| |
Collapse
|
4
|
Abdullah Sani N, Kamaruddin NA, Soelaiman IN, Pang KL, Chin KY, Ramli ESM. Palm Tocotrienol Activates the Wnt3a/β-Catenin Signaling Pathway, Protecting MC3T3-E1 Osteoblasts from Cellular Damage Caused by Dexamethasone and Promoting Bone Formation. Biomedicines 2025; 13:243. [PMID: 39857826 PMCID: PMC11762645 DOI: 10.3390/biomedicines13010243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/15/2025] [Accepted: 01/18/2025] [Indexed: 01/27/2025] Open
Abstract
Background and aim: Prolonged glucocorticoid (GC) treatment increases oxidative stress, triggers apoptosis of osteoblasts, and contributes to osteoporosis. Tocotrienol, as an antioxidant, could protect the osteoblasts and preserve bone quality under glucocorticoid treatment. From this study, we aimed to determine the effects of tocotrienol on MC3T3-E1 murine pre-osteoblastic cells treated with GC. Methods: MC3T3-E1 cells were exposed to dexamethasone (150 µM), with or without palm tocotrienol (PTT; 0.25, 0.5, and 1 µg/mL). Cell viability was measured by the MTS assay. Alizarin Red staining was performed to detect calcium deposits. Cellular alkaline phosphatase activity was measured to evaluate osteogenic activity. The expression of osteoblastic differentiation markers was measured by an enzyme-linked immunoassay. Results: Enhanced matrix mineralization was observed in the cells treated with 0.5 µg/mL PTT, especially on day 18 (p < 0.05). The expression of Wnt3a, β-catenin, collagen 1α1, alkaline phosphatase, osteocalcin, low-density lipoprotein receptor-related protein 6, and runt-related transcription factor-2 were significantly increased in the PTT-treated groups compared to the vehicle control group, especially at 0.5 µg/mL of PTT (p < 0.05) and on day 6 of treatment. Conclusions: PTT maintains the osteogenic activity of the dexamethasone-treated osteoblasts by promoting their differentiation.
Collapse
Affiliation(s)
- Norfarahin Abdullah Sani
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (N.A.S.); (N.A.K.)
| | - Nur Aqilah Kamaruddin
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (N.A.S.); (N.A.K.)
| | - Ima Nirwana Soelaiman
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (I.N.S.); (K.-L.P.); (K.-Y.C.)
| | - Kok-Lun Pang
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (I.N.S.); (K.-L.P.); (K.-Y.C.)
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Subang Jaya 46150, Malaysia
| | - Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (I.N.S.); (K.-L.P.); (K.-Y.C.)
| | - Elvy Suhana Mohd Ramli
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (N.A.S.); (N.A.K.)
| |
Collapse
|
5
|
Yuan Q, Wang Y, Hu S, Cai Z, Jiang L, Huang Y. Role of microRNA in Diabetic Osteoporosis. Mol Biotechnol 2024:10.1007/s12033-024-01316-1. [PMID: 39609335 DOI: 10.1007/s12033-024-01316-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/25/2024] [Indexed: 11/30/2024]
Abstract
Diabetic osteoporosis (DOP), a complication associated with diabetes mellitus (DM), is a metabolic bone disorder characterized by a reduction in bone mass per unit volume, impaired bone tissue microarchitecture, heightened bone fragility, and increased susceptibility to fractures. Individuals with diabetes exhibit a significantly greater incidence of osteoporosis and related fractures than those without diabetes. These fractures present a significant challenge in terms of the healing process and can result in severe consequences, including fatalities. MicroRNAs (miRNAs), a class of noncoding RNAs, play a pivotal role in numerous human diseases and are implicated in the pathogenesis of DOP. This review initially elucidates the essential role of miRNAs in the pathogenesis of DOP. Next, we emphasize the potential significance of miRNAs as valuable biomarkers for diagnosing DOP and predicting DOP-related fractures. Furthermore, we explore the involvement of miRNAs in managing DOP through various pathways, including conventional pharmaceutical interventions and exercise therapy. Importantly, miRNAs exhibit potential as targeted therapeutic agents for effectively treating DOP. Finally, we highlight the use of novel materials and exosomes for miRNA delivery, which has significant advantages in the treatment of DOP and overcomes the limitations associated with miRNA delivery.
Collapse
Affiliation(s)
- Qiong Yuan
- Department of Transfusion, The Affiliated Hospital, Southwest Medical University, Taiping Road 25#, Jiang Yang District, Luzhou, 646000, Sichuan, China
- Department of Transfusion, Zigong First People's Hospital, Zigong, 643000, China
| | - Yuhan Wang
- Department of Clinical Laboratory, Luzhou Longmatan District People's Hospital, Luzhou, 646000, China
| | - Shan Hu
- Department of Transfusion, Guanghan People's Hospital, Deyang, 618300, China
| | - Zhi Cai
- Department of Transfusion, The Affiliated Hospital, Southwest Medical University, Taiping Road 25#, Jiang Yang District, Luzhou, 646000, Sichuan, China
| | - Ling Jiang
- Department of Transfusion, The Affiliated Hospital, Southwest Medical University, Taiping Road 25#, Jiang Yang District, Luzhou, 646000, Sichuan, China
| | - Yuanshuai Huang
- Department of Transfusion, The Affiliated Hospital, Southwest Medical University, Taiping Road 25#, Jiang Yang District, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
6
|
Wang K. The potential therapeutic role of curcumin in osteoporosis treatment: based on multiple signaling pathways. Front Pharmacol 2024; 15:1446536. [PMID: 39175539 PMCID: PMC11338871 DOI: 10.3389/fphar.2024.1446536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 07/29/2024] [Indexed: 08/24/2024] Open
Abstract
Osteoporosis is a common chronic metabolic bone disease caused by disturbances in normal bone metabolism and an imbalance between osteoblasts and osteoclasts. Osteoporosis is characterized by a decrease in bone mass and bone density, leading to increased bone fragility. Osteoporosis is usually treated with medications and surgical methods, but these methods often produce certain side effects. Therefore, the use of traditional herbal ingredients for the treatment of osteoporosis has become a focus of attention and a hot topic in recent years. Curcumin, widely distributed among herbs such as turmeric, tulip, and curcuma longa, contains phenolic, terpenoid, and flavonoid components. Modern pharmacological studies have confirmed that curcumin has a variety of functions including antioxidant and anti-inflammatory properties. In addition, curcumin positively regulates the differentiation and promotes the proliferation of osteoblasts, which play a crucial role in bone formation. Multiple studies have shown that curcumin is effective in the treatment of osteoporosis as it interacts with a variety of signaling pathway targets, thereby interfering with the formation of osteoblasts and osteoclasts and regulating the development of osteoporosis. This review summarized the key signaling pathways and their mechanisms of action of curcumin in the prevention and treatment of osteoporosis and analyzed their characteristics and their relationship with osteoporosis and curcumin. This not only proves the medicinal value of curcumin as a traditional herbal ingredient but also further elucidates the molecular mechanism of curcumin's anti-osteoporosis effect, providing new perspectives for the prevention and treatment of osteoporosis through multiple pathways.
Collapse
Affiliation(s)
- Keyu Wang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| |
Collapse
|
7
|
Yan J, Wang Z, Xian L, Wang D, Chen Y, Bai J, Liu HJ. Periostin Promotes the Proliferation, Differentiation and Mineralization of Osteoblasts from Ovariectomized Rats. Horm Metab Res 2024; 56:526-535. [PMID: 38307091 DOI: 10.1055/a-2238-2553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2024]
Abstract
Perimenopausal period causes a significant amount of bone loss, which results in primary osteoporosis (OP). The Periostin (Postn) may play important roles in the pathogenesis of OP after ovariectomized (OVX) rats. To identify the roles of Postn in the bone marrow mesenchymal stem cell derived osteoblasts (BMSC-OB) in OVX rats, we investigated the expression of Wnt/β-catenin signaling pathways in BMSC-OB and the effects of Postn on bone formation by development of BMSC-OB cultures. Twenty-four female Sprague-Dawley rats at 6 months were randomized into 3 groups: sham-operated (SHAM) group, OVX group and OVX+Postn group. The rats were killed after 3 months, and their bilateral femora and tibiae were collected for BMSC-OB culture, Micro-CT Analysis, Bone Histomorphometric Measurement, Transmission Electron Microscopy and Immunohistochemistry Staining. The dose/time-dependent effects of Postn on the proliferation, differentiation and mineralization of BMSC-OB and the expression of osteoblastic markers were measured in in vitro experiments. We found increased Postn increased bone mass, promoted bone formation of trabeculae, Wnt signaling and the osteogenic activity in osteoblasts in sublesional femur. Postn have the function to enhance cell proliferation, differentiation and mineralization at a proper concentration and incubation time. Interestingly, in BMSC-OB from OVX rats treated with the different dose of Postn, the osteoblastic markers expression and Wnt/β-catenin signaling pathways were significantly promoted. The direct effect of Postn may lead to inhibit excessive bone resorption and increase bone formation through the Wnt/β-catenin signaling pathways after OVX. Postn may play a very important role in the pathogenesis of OP after OVX.
Collapse
Affiliation(s)
- Jun Yan
- Department of Orthopaedic Surgery, Liaocheng People's Hospital, Liaocheng City, China
| | - Zidong Wang
- Department of Orthopaedic Surgery, Liaocheng People's Hospital, Liaocheng City, China
| | - Li Xian
- School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Dawei Wang
- Department of Orthopaedic Surgery, Liaocheng People's Hospital, Liaocheng City, China
| | - Yunzhen Chen
- Department of Spine, Qilu Hospital of Shandong University, Jinan, China
| | - Jie Bai
- Department of Endocrinology, Liaocheng People's Hospital, Liaocheng City, China
| | - Hai-Juan Liu
- Department of Endocrinology, Liaocheng People's Hospital, Liaocheng City, China
| |
Collapse
|
8
|
Ali M, Kim YS. A comprehensive review and advanced biomolecule-based therapies for osteoporosis. J Adv Res 2024:S2090-1232(24)00215-7. [PMID: 38810908 DOI: 10.1016/j.jare.2024.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 05/31/2024] Open
Abstract
BACKGROUND The prevalence of osteoporosis (OP) on a global scale is significantly elevated that causes life threatening issues. The potential of groundbreaking biomolecular therapeutics in the field of OP is highly encouraging. The administration of biomolecular agents has the potential to mitigate the process of bone demineralization while concurrently augmenting the regenerative capacity of bone tissue, thereby facilitating a personalized therapeutic approach. Biomolecules-based therapies showed promising results in term of bone mass protection and restoration in OP. AIM OF REVIEW We summarized the recent biomolecular therapies with notable progress in clinical, demonstrating the potential to transform illness management. These treatments frequently utilize different biomolecule based strategies. Biomolecular therapeutics has a targeted character, which results in heightened specificity and less off-target effects, ultimately leading to increased patient outcomes. These aspects have the capacity to greatly enhance the management of OP, thus resulting in a major enhancement in the quality of life encountered by individuals affected by this condition.
Collapse
Affiliation(s)
- Maqsood Ali
- Department of Microbiology, College of Medicine, Soonchunhyang University, Cheonan, Chungnam 31151, Republic of Korea
| | - Yong-Sik Kim
- Department of Microbiology, College of Medicine, Soonchunhyang University, Cheonan, Chungnam 31151, Republic of Korea; Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan, Chungnam 31151, Republic of Korea.
| |
Collapse
|
9
|
兰 元, 余 丽, 胡 芝, 邹 淑. [Research Progress in the Regulatory Role of circRNA-miRNA Network in Bone Remodeling]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2024; 55:263-272. [PMID: 38645873 PMCID: PMC11026875 DOI: 10.12182/20240360301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Indexed: 04/23/2024]
Abstract
The dynamic balance between bone formation and bone resorption is a critical process of bone remodeling. The imbalance of bone formation and bone resorption is closely associated with the occurrence and development of various bone-related diseases. Under both physiological and pathological conditions, non-coding RNAs (ncRNAs) play a crucial regulatory role in protein expression through either inhibiting mRNAs translation or promoting mRNAs degradation. Circular RNAs (circRNAs) are a type of non-linear ncRNAs that can resist the degradation of RNA exonucleases. There is accumulating evidence suggesting that circRNAs and microRNAs (miRNAs) serve as critical regulators of bone remodeling through their direct or indirect regulation of the expression of osteogenesis-related genes. Additionally, recent studies have revealed the involvement of the circRNAs-miRNAs regulatory network in the process by which mesenchymal stem cells (MSCs) differentiate towards the osteoblasts (OB) lineage and the process by which bone marrow-derived macrophages (BMDM) differentiate towards osteoclasts (OC). The circRNA-miRNA network plays an important regulatory role in the osteoblastic-osteoclastic balance of bone remodeling. Therefore, a thorough understanding of the circRNA-miRNA regulatory mechanisms will contribute to a better understanding of the regulatory mechanisms of the balance between osteoblastic and osteoclastic activities in the process of bone remodeling and the diagnosis and treatment of related diseases. Herein, we reviewed the functions of circRNA and microRNA. We also reviewed their roles in and the mechanisms of the circRNA-miRNA regulatory network in the process of bone remodeling. This review provides references and ideas for further research on the regulation of bone remodeling and the prevention and treatment of bone-related diseases.
Collapse
Affiliation(s)
- 元辰 兰
- 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 正畸科 (成都 610041)State Key Laboratory of Oral Disease and National Clinical Research Center for Oral Diseases and Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - 丽媛 余
- 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 正畸科 (成都 610041)State Key Laboratory of Oral Disease and National Clinical Research Center for Oral Diseases and Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - 芝爱 胡
- 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 正畸科 (成都 610041)State Key Laboratory of Oral Disease and National Clinical Research Center for Oral Diseases and Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - 淑娟 邹
- 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 正畸科 (成都 610041)State Key Laboratory of Oral Disease and National Clinical Research Center for Oral Diseases and Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
10
|
Zhou L, Zhai G, Tian G. CRIF1 attenuates doxorubicin-mediated mitochondrial dysfunction and myocardial senescence via regulating PXDN. Aging (Albany NY) 2024; 16:5567-5580. [PMID: 38517371 PMCID: PMC11006484 DOI: 10.18632/aging.205664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/03/2024] [Indexed: 03/23/2024]
Abstract
BACKGROUND CR6-interacting factor 1 (CRIF1), a multifunctional protein that affects mitochondrial function and cell senescence, plays a regulatory role in heart-related diseases. However, whether CRIF1 participates in myocardial senescence by regulating mitochondrial function remains unclear. METHODS Doxorubicin (DOX)-induced C57BL/6 mice to construct mouse myocardial senescence model, and the myocardial function indicators including lactate dehydrogenase (LDH) and Creatine kinase isoform MB (CK-MB) were assessed. The expression of CRIF1 was detected by western blot. Myocardial pathological changes were examined by transthoracic echocardiography and haematoxylin and eosin (H&E) staining. Cell senescence was detected by SA-β-gal staining. JC-1 staining was used to detect mitochondrial membrane potential. Biochemical kits were used to examine oxidative stress-related factors. Additionally, AC16 cardiomyocytes were treated with DOX to mimic the cellular senescence model in vitro. Cell activity was detected by cell counting kit-8 (CCK-8) assay. Co-immunoprecipitation (CO-IP) was used to verify the relationship between CRIF1 and peroxidasin (PXDN). RESULTS The CRIF1 expression was significantly decreased in DOX-induced senescent mice and AC16 cells. Overexpression of CRIF1 significantly ameliorated DOX-induced myocardial dysfunction and myocardial senescence. Additionally, CRIF1 overexpression attenuated DOX-induced oxidative stress and myocardial mitochondrial dysfunction. Consistently, CRIF1 overexpression also inhibited DOX-induced oxidative stress and senescence in AC16 cells. Moreover, CRIF1 was verified to bind to PXDN and inhibited PXDN expression. The inhibitory effects of CRIF1 overexpression on DOX-induced oxidative stress and senescence in AC16 cells were partly abolished by PXDN expression. CONCLUSIONS CRIF1 plays a protective role against DOX-caused mitochondrial dysfunction and myocardial senescence partly through downregulating PXDN.
Collapse
Affiliation(s)
- Lina Zhou
- Department of Geriatrics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, Liaoning, China
| | - Guilan Zhai
- Department of Geriatrics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, Liaoning, China
| | - Ge Tian
- Department of Cardiology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, Liaoning, China
| |
Collapse
|
11
|
El-Mahroky SM, Nageeb MM, Hemead DA, Abd Allah EG. Agomelatine alleviates steroid-induced osteoporosis by targeting SIRT1/RANKL/FOXO1/OPG signalling in rats. Clin Exp Pharmacol Physiol 2024; 51:e13832. [PMID: 37950568 DOI: 10.1111/1440-1681.13832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/04/2023] [Accepted: 10/12/2023] [Indexed: 11/12/2023]
Abstract
One of the major contributors to secondary osteoporosis is long-term glucocorticoid usage. Clinically used antidepressant agomelatine also has anti-inflammatory properties. Our research aimed to inspect the probable defensive effect of agomelatine against steroid-promoted osteoporosis. There were four groups of rats; group I had saline as a negative control; rats of group II had dexamethasone (0.6 mg/kg, s.c.), twice weekly for 12 weeks; rats of group III had agomelatine (40 mg/kg/day, orally), as a positive control, daily for 12 weeks; and rats of group IV had dexamethasone + agomelatine in the same previous doses combined for 12 weeks. Finally, biochemical as well as histopathological changes were evaluated and dexamethasone treatment caused osteoporosis, as evidenced by discontinuous thin cancellous bone trabeculae, minor fissures and fractures, irregular eroded endosteal surface with elevated alkaline phosphate, tartarate resistant acid phosphate (TRACP) and osteocalcin levels. Osteoprotegerin (OPG), calcium, and phosphorus levels decreased with disturbed receptor activator of nuclear factor κ B ligand (RANKL), forkhead box O1 (FOXO1), and silent information regulator 1 (SIRT1) protein expression. However, treatment with agomelatine restored the normal levels of biochemical parameters to a great extent, supported by SIRT activation with an improvement in histopathological changes. Here, we concluded that agomelatine ameliorates steroid-induced osteoporosis through a SIRT1/RANKL/FOXO1/OPG-dependent pathway.
Collapse
Affiliation(s)
- Samaa M El-Mahroky
- Lecturer of Medical Histology and Cell Biology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Mahitab M Nageeb
- Lecturer of Clinical Pharmacology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Dalia A Hemead
- Lecturer of Physiology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Enas G Abd Allah
- Lecturer of Medical Histology and Cell Biology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
12
|
Basak S, Hridayanka KSN, Duttaroy AK. Bioactives and their roles in bone metabolism of osteoarthritis: evidence and mechanisms on gut-bone axis. Front Immunol 2024; 14:1323233. [PMID: 38235147 PMCID: PMC10792057 DOI: 10.3389/fimmu.2023.1323233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/11/2023] [Indexed: 01/19/2024] Open
Abstract
Bioactives significantly modify and maintain human health. Available data suggest that Bioactives might play a beneficial role in chronic inflammatory diseases. Although promised, defining their mechanisms and opting to weigh their benefits and limitations is imperative. Detailed mechanisms by which critical Bioactives, including probiotics and prebiotics such as dietary lipids (DHA, EPA, alpha LA), vitamin D, polysaccharides (fructooligosaccharide), polyphenols (curcumin, resveratrol, and capsaicin) potentially modulate inflammation and bone metabolism is limited. Certain dietary bioactive significantly impact the gut microbiota, immune system, and pain response via the gut-immune-bone axis. This narrative review highlights a recent update on mechanistic evidence that bioactive is demonstrated demonstrated to reduce osteoarthritis pathophysiology.
Collapse
Affiliation(s)
- Sanjay Basak
- Molecular Biology Division, National Institute of Nutrition, Indian Council of Medical Research, Hyderabad, India
| | - Kota Sri Naga Hridayanka
- Molecular Biology Division, National Institute of Nutrition, Indian Council of Medical Research, Hyderabad, India
| | - Asim K. Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
13
|
Palanisami DR, Prabhu S, Kanwar S, Savant S. Pathodynamics. Indian J Orthop 2023; 57:55-61. [PMID: 38107801 PMCID: PMC10721575 DOI: 10.1007/s43465-023-01042-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/31/2023] [Indexed: 12/19/2023]
Abstract
Osteoporosis and osteoporosis-related fractures in the aging population are becoming a health care problem and a burden on health service resources available. Osteoporosis is a systemic skeletal disorder that results from an imbalance in bone remodeling, leading to a reduction in bone strength with microarchitectural disruption and skeletal fragility, increasing fracture susceptibility. Osteoporosis is considered a well-known metabolic bone disorder. Although its prevalence is more commonly seen in women than men, it is eventually seen in both genders. In the elderly population, there is an increase in disability and mortality due to osteoporotic fractures.
Collapse
|
14
|
Deng C, Ye C, Liao X, Zhou F, Shi Y, Zhong H, Huang J. KMT2A maintains stemness of gastric cancer cells through regulating Wnt/β-catenin signaling-activated transcriptional factor KLF11. Open Med (Wars) 2023; 18:20230764. [PMID: 38025523 PMCID: PMC10655684 DOI: 10.1515/med-2023-0764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 12/01/2023] Open
Abstract
The molecular mechanisms of epigenetic regulation in gastric cancer development are not yet well established. In this study, we demonstrated that KMT2A was highly expressed in gastric cancer and associated with poor outcomes of patients and revealed that KMT2A was significantly associated with stemness and increased nuclear β-catenin in gastric cancer. Mechanistically, KMT2A activated the translocation of β-catenin into the nucleus of gastric cancer cells, and then, β-catenin served as a coactivator of KLF11, which promoted the expression of specific gastric cancer stemness-related molecules, including SOX2 and FOXM1. Together, KMT2A is an important epigenetic regulator of gastric cancer stemness, which provides a novel insight to the potential application of targeting against KMT2A in treating gastric cancer.
Collapse
Affiliation(s)
- Chongwen Deng
- Department of General Surgery, Loudi Central Hospital, No. 51, Changqing Middle Street, Loudi, 417000, People’s Republic of China
| | - Chunhua Ye
- Department of General Surgery, Loudi Central Hospital, Loudi, 417000, People’s Republic of China
| | - Xiwang Liao
- Department of General Surgery, Loudi Central Hospital, Loudi, 417000, People’s Republic of China
| | - Fuyin Zhou
- Department of General Surgery, Loudi Central Hospital, Loudi, 417000, People’s Republic of China
| | - Youxiong Shi
- Department of General Surgery, Loudi Central Hospital, Loudi, 417000, People’s Republic of China
| | - Hong Zhong
- Department of General Surgery, Loudi Central Hospital, Loudi, 417000, People’s Republic of China
| | - Junbiao Huang
- Department of General Surgery, Loudi Central Hospital, Loudi, 417000, People’s Republic of China
| |
Collapse
|
15
|
Xi Y, Shen J, Li X, Bao Y, Zhao T, Li B, Zhang X, Wang J, Bao Y, Gao J, Xie Z, Wang Q, Luo Q, Shi H, Li Z, Qin D. Regulatory Effects of Quercetin on Bone Homeostasis: Research Updates and Future Perspectives. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2023; 51:2077-2094. [PMID: 37815494 DOI: 10.1142/s0192415x23500891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
The imbalance of bone homeostasis has become a major public medical problem amid the background of an aging population, which is closely related to the occurrence of osteoporosis, osteoarthritis, and fractures. Presently, most drugs used in the clinical treatment of bone homeostasis imbalance are bisphosphonates, calcitonin, estrogen receptor modulators, and biological agents that inhibit bone resorption or parathyroid hormone analogs that promote bone formation. However, there are many adverse reactions. Therefore, it is necessary to explore potential drugs. Quercetin, as a flavonol compound with various biological activities, is widely distributed in plants. Studies have found that quercetin can regulate bone homeostasis through multiple pathways and targets. An in-depth exploration of the pharmacological mechanism of quercetin is of great significance for the development of new drugs. This review discusses the therapeutic mechanisms of quercetin on bone homeostasis, such as regulating the expression of long non-coding RNA, signaling pathways of bone metabolism, various types of programmed cell death, bone nutrients supply pathways, anti-oxidative stress, anti-inflammation, and activation of Sirtuins. We also summarize recent progress in improving quercetin bioavailability and propose some issues worth paying attention to, which may help guide future research efforts.
Collapse
Affiliation(s)
- Yujiang Xi
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine Kunming, Yunnan 650500, P. R. China
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, P. R. China
- Open and Shared Public Science and Technology Service Platform, Traditional Chinese Medicine Science and Technology Resources in Yunnan, Kunming, Yunnan 650500, P. R. China
| | - Jiayan Shen
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine Kunming, Yunnan 650500, P. R. China
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, P. R. China
- Open and Shared Public Science and Technology Service Platform, Traditional Chinese Medicine Science and Technology Resources in Yunnan, Kunming, Yunnan 650500, P. R. China
| | - Xiahuang Li
- The People's Hospital of Mengzi, The Affiliated Hospital of Yunnan University of Chinese Medicine, Mengzi, Yunnan 661100, P. R. China
| | - Yi Bao
- Department of Rehabilitation Medicine, The Affiliated Hospital of Yunnan University, Kunming, Yunnan 650021, P. R. China
| | - Ting Zhao
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, P. R. China
| | - Bo Li
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, P. R. China
| | - Xiaoyu Zhang
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, P. R. China
| | - Jian Wang
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, P. R. China
| | - Yanyuan Bao
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, P. R. China
| | - Jiamei Gao
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, P. R. China
| | - Zhaohu Xie
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine Kunming, Yunnan 650500, P. R. China
| | - Qi Wang
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, P. R. China
| | - Qiu Luo
- Department of Rehabilitation Medicine, The Affiliated Hospital of Yunnan University, Kunming, Yunnan 650021, P. R. China
| | - Hongling Shi
- Department of Rehabilitation Medicine, The Third People's Hospital of Yunnan Province, Kunming, Yunnan 650011, P. R. China
| | - Zhaofu Li
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine Kunming, Yunnan 650500, P. R. China
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, P. R. China
| | - Dongdong Qin
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine Kunming, Yunnan 650500, P. R. China
- Open and Shared Public Science and Technology Service Platform, Traditional Chinese Medicine Science and Technology Resources in Yunnan, Kunming, Yunnan 650500, P. R. China
| |
Collapse
|
16
|
Yalaev BI, Khusainova RI. Epigenetic regulation of bone remodeling and its role in the pathogenesis of primary osteoporosis. Vavilovskii Zhurnal Genet Selektsii 2023; 27:401-410. [PMID: 37465189 PMCID: PMC10350859 DOI: 10.18699/vjgb-23-48] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/02/2022] [Accepted: 12/02/2022] [Indexed: 07/20/2023] Open
Abstract
Discovery of molecular mechanisms of primary osteoporosis development is fundamental to understand the pathogenesis of musculoskeletal diseases in general and for identifying key links in the genetic and epigenetic regulation of bone remodelling genes. The number of identified molecular genetic markers for osteoporosis is increasing but there is a need to describe their functional interactions. These interactions have been determined to be associated with the control of expression of a number of transcription factors and the differentiation of mesenchymal stem cells through the pathway of osteoblastogenesis or adipogenesis, and monocytic precursors through the pathway of osteoclastogenesis. The results of epigenetic studies have significantly increased the understanding of the role of post-translational modifications of histones, DNA methylation and RNA interference in the osteoporosis pathogenesis and in bone remodelling. However, the knowledge should be systematised and generalised according to the results of research on the role of epigenetic modifiers in the development of osteoporosis, and the influence of each epigenetic mechanism on the individual links of bone remodelling during ontogenesis of humans in general, including the elderly, should be described. Understanding which mechanisms and systems are involved in the development of this nosology is of interest for the development of targeted therapies, as the possibility of using microRNAs to regulate genes is now being considered. Systematisation of these data is important to investigate the differences in epigenetic marker arrays by race and ethnicity. The review article analyses references to relevant reviews and original articles, classifies information on current advances in the study of epigenetic mechanisms in osteoporosis and reviews the results of studies of epigenetic mechanisms on individual links of bone remodelling.
Collapse
Affiliation(s)
- B I Yalaev
- Institute of Biochemistry and Genetics - Subdivision of the Ufa Federal Research Center of the Russian Academy of Sciences, Ufa, Russia Saint Petersburg State University, St. Petersburg, Russia
| | - R I Khusainova
- Institute of Biochemistry and Genetics - Subdivision of the Ufa Federal Research Center of the Russian Academy of Sciences, Ufa, Russia Saint Petersburg State University, St. Petersburg, Russia Ufa University of Science and Technology, Ufa, Russia
| |
Collapse
|
17
|
Mei J, Hu H, Ding H, Huang Y, Zhang W, Chen X, Fang X. Investigating the causal relationship between ankylosing spondylitis and osteoporosis in the European population: a bidirectional Mendelian randomization study. Front Immunol 2023; 14:1163258. [PMID: 37359532 PMCID: PMC10285397 DOI: 10.3389/fimmu.2023.1163258] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023] Open
Abstract
Background Ankylosing Spondylitis (AS) is an inflammatory condition affecting the spine, which may lead to complications such as osteoporosis (OP). Many observational studies have demonstrated a close relationship with strong evidence between OP and AS. The combination of AS and OP is already an indisputable fact, but the exact mechanism of AS complicated with OP is unclear. To better prevent and treat OP in patients with AS, it is necessary to understand the specific mechanism of OP in these patients. In addition, there is a study showing that OP is a risk factor for AS, but the causal relationship between them is not yet clear. Therefore, we conducted a bidirectional Mendelian randomization (MR) analysis to determine whether there is a direct causal effect between AS and OP and to investigate the co-inherited genetic information between the two. Methods Bone mineral density (BMD) was used as a phenotype for OP. The AS dataset was taken from the IGAS consortium and included people of European ancestry (9,069 cases and 13,578 controls). BMD datasets were obtained from the GEFOS consortium, a large GWAS meta-analysis study, and the UK Biobank and were categorized based on site (total body (TB): 56,284 cases; lumbar spine (LS): 28,498 cases; femoral neck (FN): 32,735 cases; forearm (FA): 8,143 cases; and heel: 265,627 cases) and age (0-15: 11,807 cases; 15-30: 4,180 cases; 30-45: 10,062 cases; 45-60: 18,062 cases; and over 60: 22,504 cases).To obtain the casual estimates, the inverse variant weighted (IVW) method was mainly used due to its good statistical power and robustness. The presence of heterogeneity was evaluated using Cochran's Q test. Pleiotropy was assessed utilizing MR-Egger regression and MR-pleiotropy residual sum and outlier (MR-PRESSO). Results Generally, there were no significant causal associations between genetically predicted AS and decreased BMD levels. The results of MR-Egger regression, Weighted Median, and Weighted Mode methods were consistent with those of the IVW method. However, there was a sign of a connection between genetically elevated BMD levels and a decreased risk of AS (Heel-BMD: OR = 0.879, 95% CI: 0.795-0.971, P = 0.012; Total-BMD: OR = 0.948, 95% CI: 0.907-0.990, P = 0.017; LS-BMD: OR = 0.919, 95% CI: 0.861-0.980, P = 0.010). The results were confirmed to be reliable by sensitivity analysis. Conclusion This MR study found that the causal association between genetic liability to AS and the risk of OP or lower BMD in the European population was not evident, which highlights the second effect (e.g., mechanical reasons such as limited movement) of AS on OP. However, genetically predicted decreased BMD/OP is a risk factor for AS with a causal relationship, implying that patients with OP should be aware of the potential risk of developing AS. Moreover, OP and AS share similar pathogenesis and pathways.
Collapse
Affiliation(s)
- Jian Mei
- Department of Orthopaedic Surgery, Fujian Provincial Institute of Orthopedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Department of Orthopedic Surgery, Experimental Orthopedics, Centre for Medical Biotechnology (ZMB), University of Regensburg, Regensburg, Germany
- Department of Orthopaedic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Hongxin Hu
- Department of Orthopaedic Surgery, Fujian Provincial Institute of Orthopedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Department of Orthopaedics, Affiliated Hospital of Putian University, Putian, China
- Department of Orthopaedic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Haiqi Ding
- Department of Orthopaedic Surgery, Fujian Provincial Institute of Orthopedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Department of Orthopaedic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Ying Huang
- Department of Orthopaedic Surgery, Fujian Provincial Institute of Orthopedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Department of Orthopaedic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Wenming Zhang
- Department of Orthopaedic Surgery, Fujian Provincial Institute of Orthopedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Department of Orthopaedic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Xiaoqing Chen
- Department of Orthopedic Surgery, Quanzhou First Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Xinyu Fang
- Department of Orthopaedic Surgery, Fujian Provincial Institute of Orthopedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Department of Orthopaedic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| |
Collapse
|
18
|
Paramasivam S, Perumal SS. Methanolic extract of O.umbellata L. exhibits anti-osteoporotic effect via promoting osteoblast proliferation in MG-63 cells and inhibiting osteoclastogenesis in RANKL-stimulated RAW 264.7 cells. JOURNAL OF ETHNOPHARMACOLOGY 2023:116641. [PMID: 37236379 DOI: 10.1016/j.jep.2023.116641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 05/04/2023] [Accepted: 05/14/2023] [Indexed: 05/28/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Oldenlandia umbellataL., belonging to the Rubiaceae family, is an annual plant possessing anti-inflammatory and antipyretic, anti-nociceptive, anti-bacterial, anti-helminthic, antioxidant and hepatoprotective activities and used in traditional medicine to treat inflammation and respiratory diseases. AIM OF THE STUDY The present study aims to evaluate the anti-osteoporotic effect of Methanolic extract of O.umbellata in MG-63 cells and RANKL-stimulated RAW 264.7 cells. MATERIALS AND METHODS The methanolic extract from the aerial parts of O.umbellata was subjected to metabolite profiling. The anti-osteoporotic effect of MOU was assessed in MG-63 cells and RANKL-stimulated RAW 264.7 cells. In MG-63 cells, the proliferative effect of MOU was evaluated using MTT assay, ALP assay, Alizarin red staining, ELISA and western blot. Similarly, the anti-osteoclastogenic effect of MOU was assessed in RANKL-stimulated RAW 264.7 cells via MTT, TRAP staining and western blot. RESULTS LC-MS metabolite profiling showed the presence of 59 phytoconstituents including scandoside, scandoside methyl ester, deacetylasperuloside, asperulosidic acid, and cedrelopsin in MOU. In MG-63 cells, MOU has increased the proliferation of osteoblast cells and ALP activity, thereby increasing bone mineralization. ELISA results showed increased levels of osteogenic markers such as osteocalcin and osteopontin in the culture media. Western blot analysis showed inhibition of GSK3β protein expression and increased the expression levels of β-catenin, Runx-2, col 1 and osterix, promoting osteoblast differentiation. In RANKL-stimulated RAW 264.7 cells, MOU did not elicit any significant cytotoxicity; instead, it suppressed the osteoclastogenesis reducing the osteoclast number. MOU has reduced TRAP activity in a dose-dependent manner. MOU inhibited the TRAF6, NFATc1, c-Jun, C-fos and cathepsin K expression, thereby inhibiting osteoclast formation. CONCLUSION In conclusion, MOU promoted osteoblast differentiation via inhibiting GSK3β and activating Wnt/β catenin signalling and its transcription factors, including β catenin, Runx2 and Osterix. Similarly, MOU inhibited osteoclast formation by inhibiting the expression of TRAF6, NFATc1, c-Jun, C-fos and cathepsin K in RANK-RANKL signalling. Finally, it can be emphasised that O.umbellata is a potential source of therapeutic leads for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Sivasakthi Paramasivam
- Department of Pharmaceutical Technology, University College of Engineering, Anna University (BIT Campus), Tiruchirappalli, 620 024, Tamil Nadu, India
| | - Senthamil Selvan Perumal
- Department of Pharmaceutical Technology, University College of Engineering, Anna University (BIT Campus), Tiruchirappalli, 620 024, Tamil Nadu, India.
| |
Collapse
|
19
|
Li X, Wang ZY, Ren N, Wei ZY, Hu WW, Gu JM, Zhang ZL, Yu XT, Wang C. Identifying therapeutic biomarkers of zoledronic acid by metabolomics. Front Pharmacol 2023; 14:1084453. [PMID: 37180703 PMCID: PMC10166846 DOI: 10.3389/fphar.2023.1084453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 04/07/2023] [Indexed: 05/16/2023] Open
Abstract
Zoledronic acid (ZOL) is a potent antiresorptive agent that increases bone mineral density (BMD) and reduces fracture risk in postmenopausal osteoporosis (PMOP). The anti-osteoporotic effect of ZOL is determined by annual BMD measurement. In most cases, bone turnover markers function as early indicators of therapeutic response, but they fail to reflect long-term effects. We used untargeted metabolomics to characterize time-dependent metabolic shifts in response to ZOL and to screen potential therapeutic markers. In addition, bone marrow RNA-seq was performed to support plasma metabolic profiling. Sixty rats were assigned to sham-operated group (SHAM, n = 21) and ovariectomy group (OVX, n = 39) and received sham operation or bilateral ovariectomy, respectively. After modeling and verification, rats in the OVX group were further divided into normal saline group (NS, n = 15) and ZOL group (ZA, n = 18). Three doses of 100 μg/kg ZOL were administrated to the ZA group every 2 weeks to simulate 3-year ZOL therapy in PMOP. An equal volume of saline was administered to the SHAM and NS groups. Plasma samples were collected at five time points for metabolic profiling. At the end of the study, selected rats were euthanatized for bone marrow RNA-seq. A total number of 163 compound were identified as differential metabolites between the ZA and NS groups, including mevalonate, a critical molecule in target pathway of ZOL. In addition, prolyl hydroxyproline (PHP), leucyl hydroxyproline (LHP), 4-vinylphenol sulfate (4-VPS) were identified as differential metabolites throughout the study. Moreover, 4-VPS negatively correlated with increased vertebral BMD after ZOL administration as time-series analysis revealed. Bone marrow RNA-seq showed that the PI3K-AKT signaling pathway was significantly associated with ZOL-mediated changes in expression (adjusted-p = 0.018). In conclusion, mevalonate, PHP, LHP, and 4-VPS are candidate therapeutic markers of ZOL. The pharmacological effect of ZOL likely occurs through inhibition of the PI3K-AKT signaling pathway.
Collapse
Affiliation(s)
- Xiang Li
- Department of Osteoporosis and Bone Diseases, Shanghai Clinical Research Center of Bone Disease, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zi-Yuan Wang
- Department of Osteoporosis and Bone Diseases, Shanghai Clinical Research Center of Bone Disease, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Na Ren
- Department of Osteoporosis and Bone Diseases, Shanghai Clinical Research Center of Bone Disease, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhan-Ying Wei
- Department of Osteoporosis and Bone Diseases, Shanghai Clinical Research Center of Bone Disease, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei-Wei Hu
- Department of Osteoporosis and Bone Diseases, Shanghai Clinical Research Center of Bone Disease, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie-Mei Gu
- Department of Osteoporosis and Bone Diseases, Shanghai Clinical Research Center of Bone Disease, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhen-Lin Zhang
- Department of Osteoporosis and Bone Diseases, Shanghai Clinical Research Center of Bone Disease, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiang-Tian Yu
- Clinical Research Center, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chun Wang
- Department of Osteoporosis and Bone Diseases, Shanghai Clinical Research Center of Bone Disease, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
20
|
Xu K, Zhang L, Yu N, Ren Z, Wang T, Zhang Y, Zhao X, Yu T. Effects of advanced glycation end products (AGEs) on the differentiation potential of primary stem cells: a systematic review. Stem Cell Res Ther 2023; 14:74. [PMID: 37038234 PMCID: PMC10088298 DOI: 10.1186/s13287-023-03324-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 03/27/2023] [Indexed: 04/12/2023] Open
Abstract
The formation and accumulation of advanced glycation end products (AGEs) have been associated with aging and the development, or worsening, of many degenerative diseases, such as atherosclerosis, chronic kidney disease, and diabetes. AGEs can accumulate in a variety of cells and tissues, and organs in the body, which in turn induces oxidative stress and inflammatory responses and adversely affects human health. In addition, under abnormal pathological conditions, AGEs create conditions that are not conducive to stem cell differentiation. Moreover, an accumulation of AGEs can affect the differentiation of stem cells. This, in turn, leads to impaired tissue repair and further aggravation of diabetic complications. Therefore, this systematic review clearly outlines the effects of AGEs on cell differentiation of various types of primary isolated stem cells and summarizes the possible regulatory mechanisms and interventions. Our study is expected to reveal the mechanism of tissue damage caused by the diabetic microenvironment from a cellular and molecular point of view and provide new ideas for treating complications caused by diabetes.
Collapse
Affiliation(s)
- Kuishuai Xu
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Liang Zhang
- Department of Abdominal Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Ning Yu
- Department of Abdominal Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Zhongkai Ren
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Tianrui Wang
- Department of Traumatology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Yingze Zhang
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Xia Zhao
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China.
| | - Tengbo Yu
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China.
| |
Collapse
|
21
|
Progress of Wnt Signaling Pathway in Osteoporosis. Biomolecules 2023; 13:biom13030483. [PMID: 36979418 PMCID: PMC10046187 DOI: 10.3390/biom13030483] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
Osteoporosis, one of the serious health diseases, involves bone mass loss, bone density diminishing, and degeneration of bone microstructure, which is accompanied by a tendency toward bone fragility and a predisposition to fracture. More than 200 million people worldwide suffer from osteoporosis, and the cost of treating osteoporotic fractures is expected to reach at least $25 billion by 2025. The generation and development of osteoporosis are regulated by genetic factors and regulatory factors such as TGF-β, BMP, and FGF through multiple pathways, including the Wnt signaling pathway, the Notch signaling pathway, and the MAPK signaling pathway. Among them, the Wnt signaling pathway is one of the most important pathways. It is not only involved in bone development and metabolism but also in the differentiation and proliferation of chondrocytes, mesenchymal stem cells, osteoclasts, and osteoblasts. Dkk-1 and SOST are Wnt inhibitory proteins that can inhibit the activation of the canonical Wnt signaling pathway and block the proliferation and differentiation of osteoblasts. Therefore, they may serve as potential targets for the treatment of osteoporosis. In this review, we analyzed the mechanisms of Wnt proteins, β-catenin, and signaling molecules in the process of signal transduction and summarized the relationship between the Wnt signaling pathway and bone-related cells. We hope to attract attention to the role of the Wnt signaling pathway in osteoporosis and offer new perspectives and approaches to making a diagnosis and giving treatment for osteoporosis.
Collapse
|
22
|
Lungu O, Toscani D, Burroughs-Garcia J, Giuliani N. The Metabolic Features of Osteoblasts: Implications for Multiple Myeloma (MM) Bone Disease. Int J Mol Sci 2023; 24:ijms24054893. [PMID: 36902326 PMCID: PMC10003241 DOI: 10.3390/ijms24054893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
The study of osteoblast (OB) metabolism has recently received increased attention due to the considerable amount of energy used during the bone remodeling process. In addition to glucose, the main nutrient for the osteoblast lineages, recent data highlight the importance of amino acid and fatty acid metabolism in providing the fuel necessary for the proper functioning of OBs. Among the amino acids, it has been reported that OBs are largely dependent on glutamine (Gln) for their differentiation and activity. In this review, we describe the main metabolic pathways governing OBs' fate and functions, both in physiological and pathological malignant conditions. In particular, we focus on multiple myeloma (MM) bone disease, which is characterized by a severe imbalance in OB differentiation due to the presence of malignant plasma cells into the bone microenvironment. Here, we describe the most important metabolic alterations involved in the inhibition of OB formation and activity in MM patients.
Collapse
Affiliation(s)
- Oxana Lungu
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Denise Toscani
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | | | - Nicola Giuliani
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
- Hematology, Azienda Ospedaliero-Universitaria di Parma, 43126 Parma, Italy
- Correspondence:
| |
Collapse
|
23
|
Helaehil JV, Helaehil LV, Alves LF, Huang B, Santamaria-Jr M, Bartolo P, Caetano GF. Electrical Stimulation Therapy and HA/TCP Composite Scaffolds Modulate the Wnt Pathways in Bone Regeneration of Critical-Sized Defects. BIOENGINEERING (BASEL, SWITZERLAND) 2023; 10:bioengineering10010075. [PMID: 36671647 PMCID: PMC9854456 DOI: 10.3390/bioengineering10010075] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/16/2022] [Accepted: 12/29/2022] [Indexed: 01/11/2023]
Abstract
Critical bone defects are the most difficult challenges in the area of tissue repair. Polycaprolactone (PCL) scaffolds, associated with hydroxyapatite (HA) and tricalcium phosphate (TCP), are reported to have an enhanced bioactivity. Moreover, the use of electrical stimulation (ES) has overcome the lack of bioelectricity at the bone defect site and compensated the endogenous electrical signals. Such treatments could modulate cells and tissue signaling pathways. However, there is no study investigating the effects of ES and bioceramic composite scaffolds on bone tissue formation, particularly in the view of cell signaling pathway. This study aims to investigate the application of HA/TCP composite scaffolds and ES and their effects on the Wingless-related integration site (Wnt) pathway in critical bone repair. Critical bone defects (25 mm2) were performed in rats, which were divided into four groups: PCL, PCL + ES, HA/TCP and HA/TCP + ES. The scaffolds were grafted at the defect site and applied with the ES application twice a week using 10 µA of current for 5 min. Bone samples were collected for histomorphometry, immunohistochemistry and molecular analysis. At the Wnt canonical pathway, HA/TCP and HA/TCP + ES groups showed higher Wnt1 and β-catenin gene expression levels, especially HA/TCP. Moreover, HA/TCP + ES presented higher Runx2, Osterix and Bmp-2 levels. At the Wnt non-canonical pathway, HA/TCP group showed higher voltage-gated calcium channel (Vgcc), calmodulin-dependent protein kinase II, and Wnt5a genes expression, while HA/TCP + ES presented higher protein expression of VGCC and calmodulin (CaM) at the same period. The decrease in sclerostin and osteopontin genes expressions and the lower bone sialoprotein II in the HA/TCP + ES group may be related to the early bone remodeling. This study shows that the use of ES modulated the Wnt pathways and accelerated the osteogenesis with improved tissue maturation.
Collapse
Affiliation(s)
- Júlia Venturini Helaehil
- Graduate Program in Biomedical Sciences, University Center of Hermínio Ometto Foundation, FHO, Araras 13607-339, Brazil
| | - Luiza Venturini Helaehil
- Graduate Program in Biomedical Sciences, University Center of Hermínio Ometto Foundation, FHO, Araras 13607-339, Brazil
| | - Laryssa Fernanda Alves
- Graduate Program in Biomedical Sciences, University Center of Hermínio Ometto Foundation, FHO, Araras 13607-339, Brazil
| | - Boyang Huang
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Milton Santamaria-Jr
- Graduate Program in Biomedical Sciences, University Center of Hermínio Ometto Foundation, FHO, Araras 13607-339, Brazil
- Graduate Program of Orthodontics, University Center of Hermínio Ometto Foundation, FHO, Araras 13607-339, Brazil
| | - Paulo Bartolo
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore
- Correspondence: (P.B.); (G.F.C.)
| | - Guilherme Ferreira Caetano
- Graduate Program in Biomedical Sciences, University Center of Hermínio Ometto Foundation, FHO, Araras 13607-339, Brazil
- Graduate Program of Orthodontics, University Center of Hermínio Ometto Foundation, FHO, Araras 13607-339, Brazil
- Division of Dermatology, Department of Internal Medicine, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo 05508-060, Brazil
- Correspondence: (P.B.); (G.F.C.)
| |
Collapse
|
24
|
Kunioka CT, Manso MC, Carvalho M. Association between Environmental Cadmium Exposure and Osteoporosis Risk in Postmenopausal Women: A Systematic Review and Meta-Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 20:485. [PMID: 36612804 PMCID: PMC9820024 DOI: 10.3390/ijerph20010485] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Osteoporosis is a common and serious health issue among postmenopausal women. We conducted a systematic review and meta-analysis study to determine whether environmental exposure to cadmium (Cd) is a risk factor for postmenopausal osteoporosis. A PROSPERO-registered review of the literature was performed on studies evaluating the relationship between urinary Cd (UCd) concentration, an indicator of long-term Cd exposure, and bone mineral density or osteoporosis in women aged 50 years and older. PubMed, Embase, Science Direct, Web of Science, and B-on databases were searched for articles published between 2008 and 2021. The association between UCd levels and osteoporosis risk was assessed by pooled odds ratio (OR) and 95% confidence interval (CI) using random-effect models. Ten cross-sectional studies were included in the qualitative analysis, of which five were used for meta-analysis. We separately assessed the risk of osteoporosis in women exposed to Cd at low environmental levels (n = 5895; UCd ≥ 0.5 μg/g creatinine versus UCd < 0.5 μg/g creatinine) and high environmental levels (n = 1864; UCd ≥ 5 μg/g creatinine versus UCd < 5 μg/g creatinine). The pooled OR for postmenopausal osteoporosis was 1.95 (95% CI: 1.39−2.73, p < 0.001) in the low exposure level group and 1.99 (95% CI: 1.04−3.82, p = 0.040) in the high exposure level group. This study indicates that environmental Cd exposure, even at low levels, may be a risk factor for osteoporosis in postmenopausal women. Further research based on prospective studies is needed to validate these findings.
Collapse
Affiliation(s)
- Carlos Tadashi Kunioka
- FP-I3ID, FP-BHS, University Fernando Pessoa, 4249-004 Porto, Portugal
- Western Paraná State University (UNIOESTE), Cascavel 85819-110, Paraná, Brazil
| | - Maria Conceição Manso
- FP-I3ID, FP-BHS, University Fernando Pessoa, 4249-004 Porto, Portugal
- Faculty of Health Sciences, University Fernando Pessoa, 4200-150 Porto, Portugal
- LAQV, REQUIMTE, University of Porto, 4050-313 Porto, Portugal
| | - Márcia Carvalho
- FP-I3ID, FP-BHS, University Fernando Pessoa, 4249-004 Porto, Portugal
- Faculty of Health Sciences, University Fernando Pessoa, 4200-150 Porto, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- UCIBIO-REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
25
|
Ma X, Hu X, Zhu Y, Jin H, Hu G, Ding L, Ning S. Sesamol inhibits proliferation, migration and invasion of triple negative breast cancer via inactivating Wnt/β-catenin signaling. Biochem Pharmacol 2022; 206:115299. [PMID: 36244446 DOI: 10.1016/j.bcp.2022.115299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/06/2022] [Accepted: 10/06/2022] [Indexed: 12/13/2022]
Abstract
Triple negative breast cancer (TNBC), a particularly aggressive breast cancer subtype without estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor 2 (HER2) expression, possesses highly invasive capacity, uncontrolled proliferative phenotype and poor clinical prognosis. Sesamol enriched in sesame seeds has been widely reported as a metabolic modulator due to its anti-aging, anti-hepatotoxic and cardio-protective properties. In this study, we found that sesamol significantly inhibited proliferation, migration and invasion of TNBC cells via attenuating PCNA, CyclinD1 expression and reversion of epithelial-mesenchymal transition (EMT) characterized by increased epithelial marker E-cadherin and decreased mesenchymal marker N-cadherin, Vimentin, Snail expression. Moreover, sesamol inactivated Wnt/β-catenin signaling and Wnt agonist 1 AMBMP application reversed the inhibition of proliferation, migration and invasion of TNBC by sesamol administration. Subsequently, our data showed that sesamol induced Wnt inhibitory factor 1 (WIF1), an endogenous inhibitor of Wnt/β-catenin pathway, expression and WIF1 artificial knockdown abrogated the inactivation of Wnt/β-catenin signaling by sesamol exposure in TNBC cells. And we found that promoter region de-methylation was responsible for WIF1 up-regulation by sesamol administration. Finally, with the xenograft assay using nude mice, we also found that sesamol inhibited proliferation and metastasis of TNBC via WIF1-induced inactivation of Wnt/β-catenin signaling in vivo. Collectively, these data added novel understandings and evidences to the anti-cancer properties of sesamol.
Collapse
Affiliation(s)
- Xiao Ma
- Preventive Care Department, Jinhua Maternity and Child Health Care Hospital, Jinhua 321000, Zhejiang Province, China
| | - Xiaoling Hu
- Department of Clinical Nutrition, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, Zhejiang Province, China
| | - Yijia Zhu
- Department of Clinical Nutrition, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, Zhejiang Province, China
| | - Huixian Jin
- Department of Clinical Nutrition, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, Zhejiang Province, China
| | - Guifen Hu
- Department of Clinical Nutrition, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, Zhejiang Province, China
| | - Linchao Ding
- Department of Scientific Research, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, Zhejiang Province, China.
| | - Shilong Ning
- Department of Clinical Nutrition, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, Zhejiang Province, China.
| |
Collapse
|
26
|
Elsayyad NME, Gomaa I, Salem MA, Amer R, El-Laithy HM. Efficient lung-targeted delivery of risedronate sodium/vitamin D3 conjugated PAMAM-G5 dendrimers for managing osteoporosis: Pharmacodynamics, molecular pathways and metabolomics considerations. Life Sci 2022; 309:121001. [PMID: 36174709 DOI: 10.1016/j.lfs.2022.121001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/18/2022] [Accepted: 09/22/2022] [Indexed: 10/31/2022]
Abstract
AIMS This study aims at formulating combined delivery of Risedronate sodium (RIS) and Vitamin D3 (VITD3) for augmented therapeutic outcome against osteoporosis (OP) using deep lung targeted PAMAM-G5-NH2 dendrimers to minimize RIS gastrointestinal side effects and enhance both drugs bioavailability through absorption from the alveoli directly to the blood. METHODS RIS-PAMAM-G5-NH2, VITD3-PAMAM-G5-NH2, and RIS/VITD3-PAMAM-G5-NH2 were prepared and evaluated in vitro for particle size (PS), zeta potential (ZP), %loading efficiency (%LE), morphology and FTIR. The efficacy of the RIS/VITD3-PAMAM-G5-NH2 compared to oral RIS was evaluated in OP-induced rats by comparing serum calcium, phosphorus, and computed bone mineral density (BMD) pre- and post-treatment. Additionally, a comprehensive metabolomics and molecular pathways approach was applied to find serum potential biomarkers for diagnosis and to evaluate the efficacy of inhaled RIS/VITD3-PAMAM-G5-NH2. KEY FINDINGS RIS/VITD3-PAMAM-G5-NH2 was successfully prepared with a %LE of 92.4 ± 6.7 % (RIS) and 83.2 ± 4.4 % (VIT-D3) and a PS of 252.8 ± 34.1 adequate deep lung delivery. RIS/VITD3-PAMAM-G5-NH2 inhalation therapy was able to restore serum calcium, phosphorus, and BMD close to normal levels after 21 days of treatment in OP-induced rats. The WNT-signalling pathway and changes in the metabolite levels recovered to approximately normal levels upon treatment. Moreover, histone acetylation of the WNT-1 gene and miR-148a-3p interference proved to play a role in the regulation of the WNT-signalling pathway during OP progression and treatment. SIGNIFICANCE Pulmonary delivery of RIS/VITD3-PAMAM-G5-NH2 offers superior treatment for OP treatment compared to the oral route. Molecular and Metabolic pathways offer a key indicator of OP diagnosis and progression.
Collapse
Affiliation(s)
- Nihal Mohamed Elmahdy Elsayyad
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA) University, 6th of October, Giza 12451, Egypt.
| | - Iman Gomaa
- Department of Biological Sciences, Faculty of Science, Galala University (GU), New Galala City 43511, Egypt
| | - Mohamed A Salem
- Department of Pharmacognosy and Natural Products, Faculty of Pharmacy, Menoufia University, Gamal Abd El Nasr st., Shibin Elkom, 32511 Menoufia, Egypt
| | - Reham Amer
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA) University, 6th of October, Giza 12451, Egypt; Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Al-Azhar University, Youssef Abbas St. of Mostafa Elnahas, 6th District, Nasr City, Cairo 11751, Egypt
| | - Hanan M El-Laithy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA) University, 6th of October, Giza 12451, Egypt; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini street, Cairo 11562, Egypt
| |
Collapse
|
27
|
Cai H, Guo H, Deng Y, Jiang J, Liu S, He W, Jian H. RRM2 regulates osteogenesis of mouse embryo fibroblasts via the Wnt/β‑catenin signaling pathway. Exp Ther Med 2022; 24:605. [PMID: 36160885 PMCID: PMC9468855 DOI: 10.3892/etm.2022.11542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 07/13/2022] [Indexed: 11/06/2022] Open
Abstract
Osteoporosis is a widespread bone metabolic disease characterized by reduced bone mass and bone microstructure deterioration. Ribonucleotide reductase M2 (RRM2) is a key enzyme in DNA synthesis and repair. The present study investigated the effect of RRM2 on osteogenesis of mouse embryo fibroblasts (MEFs) and its molecular mechanism. Bioinformatics analysis revealed that RRM2 expression was increased during osteogenesis of MEFs triggered by bone morphogenetic protein 9. Subsequently, MEFs were used as a mesenchymal stem cell model and osteogenic inducing medium was used to induce osteogenic differentiation. RRM2 protein expression was measured by western blotting during osteogenic differentiation induction of MEFs. RRM2 levels in MEFs were upregulated and downregulated by RRM2-overexpressing recombinant adenovirus and small interfering RNA-RRM2, respectively. Bone formation markers (RUNX family transcription factor 2, osterix, distal-less homeobox 5, collagen type I α1 chain, osteopontin and osteocalcin) were detected by reverse transcription-quantitative (RT-q) PCR and alkaline phosphatase (ALP) and Alizarin Red S staining were examined. The protein expression levels of β-catenin and the ratio of phosphorylated (p-)GSK-3β to GSK-3β were detected by western blotting and the RNA expression of downstream related target genes (β-catenin, axis inhibition protein 2 (AXIN2), transcription factor 7 like 2, lymphoid enhancer binding factor 1, c-MYC and Cyclin D1) in the Wnt/β-catenin signaling pathway was measured by RT-qPCR. RRM2 protein expression increased as the osteogenic differentiation induction period was extended. RRM2 overexpression increased osteogenic marker RNA expression, ALP activity, bone mineralization, the protein expression levels of β-catenin, the ratio of p-GSK-3β to GSK-3β and the RNA expression of downstream related target genes in the Wnt/β-catenin signaling pathway, whereas RRM2 knockdown had the opposite effect. The findings of the present study revealed that RRM2 overexpression enhanced osteogenic differentiation, while RRM2 knockdown reduced osteogenic differentiation. RRM2 may regulate osteogenic differentiation of MEFs via the canonical Wnt/β-catenin signaling pathway, providing a possible therapeutic target for osteoporosis.
Collapse
Affiliation(s)
- Haijun Cai
- Department of Emergency, The Second Affiliated Hospital, Chongqing Medical University, Yuzhong, Chongqing 400010, P.R. China
| | - Hui Guo
- Department of Emergency, The Second Affiliated Hospital, Chongqing Medical University, Yuzhong, Chongqing 400010, P.R. China
| | - Yixuan Deng
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Yuzhong, Chongqing 400016, P.R. China
| | - Jinhai Jiang
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Yuzhong, Chongqing 400016, P.R. China
| | - Siyuan Liu
- Department of Orthopedics, The Second Affiliated Hospital, Chongqing Medical University, Yuzhong, Chongqing 400010, P.R. China
| | - Wenge He
- Department of Orthopedics, The Second Affiliated Hospital, Chongqing Medical University, Yuzhong, Chongqing 400010, P.R. China
| | - Huagang Jian
- Department of Emergency, The Second Affiliated Hospital, Chongqing Medical University, Yuzhong, Chongqing 400010, P.R. China
| |
Collapse
|
28
|
Li L, Li A, Zhu L, Gan L, Zuo L. Roxadustat promotes osteoblast differentiation and prevents estrogen deficiency-induced bone loss by stabilizing HIF-1α and activating the Wnt/β-catenin signaling pathway. J Orthop Surg Res 2022; 17:286. [PMID: 35597989 PMCID: PMC9124388 DOI: 10.1186/s13018-022-03162-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/03/2022] [Indexed: 02/08/2023] Open
Abstract
Background Osteoporosis is a very common skeletal disorder that increases the risk of fractures. However, the treatment of osteoporosis is challenging. Hypoxia-inducible factor-1α (HIF-1α) plays an important role in bone metabolism. Roxadustat is a novel HIF stabilizer, and its effects on bone metabolism remain unknown. This study aimed to investigate the effects of roxadustat on osteoblast differentiation and bone remodeling in an ovariectomized (OVX) rat model. Methods In vitro, primary mouse calvarial osteoblasts were treated with roxadustat. Alkaline phosphatase (ALP) activity and extracellular matrix mineralization were assessed. The mRNA and protein expression levels of osteogenic markers were detected. The effects of roxadustat on the HIF-1α and Wnt/β-catenin pathways were evaluated. Furthermore, osteoblast differentiation was assessed again after HIF-1α expression knockdown or inhibition of the Wnt/β-catenin pathway. In vivo, roxadustat was administered orally to OVX rats for 12 weeks. Then, bone histomorphometric analysis was performed. The protein expression levels of the osteogenic markers HIF-1α and β-catenin in bone tissue were detected. Results In vitro, roxadustat significantly increased ALP staining intensity, enhanced matrix mineralization and upregulated the expression of osteogenic markers at the mRNA and protein levels in osteoblasts compared with the control group. Roxadustat activated the HIF-1α and Wnt/β-catenin pathways. HIF-1α knockdown or Wnt/β-catenin pathway inhibition significantly attenuated roxadustat-promoted osteoblast differentiation. In vivo, roxadustat administration improved bone microarchitecture deterioration and alleviated bone loss in OVX rats by promoting bone formation and inhibiting bone resorption. Roxadustat upregulated the protein expression levels of the osteogenic markers, HIF-1α and β-catenin in the bone tissue of OVX rats. Conclusion Roxadustat promoted osteoblast differentiation and prevented bone loss in OVX rats. The use of roxadustat may be a new promising strategy to treat osteoporosis. Supplementary Information The online version contains supplementary material available at 10.1186/s13018-022-03162-w.
Collapse
Affiliation(s)
- Luyao Li
- Department of Nephrology, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing, 100044, China
| | - Afang Li
- Department of Nephrology, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing, 100044, China
| | - Li Zhu
- Department of Nephrology, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing, 100044, China
| | - Liangying Gan
- Department of Nephrology, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing, 100044, China
| | - Li Zuo
- Department of Nephrology, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing, 100044, China.
| |
Collapse
|
29
|
MicroRNAs and osteosarcoma: Potential targets for inhibiting metastasis and increasing chemosensitivity. Biochem Pharmacol 2022; 201:115094. [PMID: 35588853 DOI: 10.1016/j.bcp.2022.115094] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 12/12/2022]
Abstract
Osteosarcoma (OS) is the third most common cancer in young adults after lymphoma and brain cancer. Metastasis, like other cellular events, is dependent on signaling pathways; a series of changes in some proteins and signaling pathways pave the way for OS cells to invade and migrate. Ezrin, TGF-β, Notch, RUNX2, matrix metalloproteinases (MMPs), Wnt/β-catenin, and phosphoinositide 3-kinase (PI3K)/AKT are among the most important of these proteins and signaling pathways. Despite the improvements in treating OS, the overall survival of patients suffering from the metastatic disease has not experienced any significant change after surgical treatments and chemotherapy and 5-years overall survival in patients with metastatic OS is about 20%. Studies have shown that overexpression or inhibition of some microRNAs (miRNAs) has significant effects in limiting the invasion and migration of OS cells. The results of these studies highlight the potential of the clinical application of some miRNA mimics and miRNA inhibitors (antagomiRs) to inhibit OS metastasis in the future. In addition, some studies have shown that miRNAs are associated with the most important drug resistance mechanisms in OS, and some miRNAs are highly effective targets to increase chemosensitivity. The results of these studies suggest that miRNA mimics and antagomiRs may be helpful to increase the efficacy of conventional chemotherapy drugs in the treatment of metastatic OS. In this article, we discussed the role of various signaling pathways and the involved miRNAs in the metastasis of OS, attempting to provide a comprehensive review of the literature on OS metastasis and chemosensitivity.
Collapse
|
30
|
Zhang F, Attarilar S, Xie K, Han C, Huang K, Lan C, Wang C, Yang C, Wang L, Mozafari M, Li K, Liu J, Tang Y. Carfilzomib alleviated osteoporosis by targeting PSME1/2 to activate Wnt/β-catenin signaling. Mol Cell Endocrinol 2022; 540:111520. [PMID: 34838695 DOI: 10.1016/j.mce.2021.111520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 11/21/2021] [Accepted: 11/23/2021] [Indexed: 12/14/2022]
Abstract
Osteoporosis (OP) is characterized by decreased bone mineral density and impaired bone strength. Carfilzomib (CFZ) is a new-generation proteasome inhibitor and has been found to affect bone metabolism. However, the effect and mechanism of CFZ on OP has not been investigated systematically. In this study, we found that protein levels of proteasome activator subunit 1/2 (PSME1/2) increased in OP, and accumulated mostly in osteoblasts and osteoclasts. Treatment with PSME1/2 recombinant protein inhibited osteogenesis and promoted osteoclast formation in vitro. Also, PSME1/2 inhibited the expression of β-catenin protein, resulting in limitation of Wnt/β-catenin signaling. CFZ inhibited PSME1 and PSME2 proteasome activities and increased β-catenin protein level, resulting in the translocation of β-catenin to the nucleus and activation of canonical Wnt/β-catenin signaling, further promoting osteogenesis and inhibiting osteoclastic differentiation. In vivo, we conducted ovariectomy (OVX) to create a model of OVX-induced postmenopausal OP in mice. When analyzed by micro-CT scanning, enhancement of bone mineral density, bone volume, trabecular number, and thickness was seen in the CFZ-treated mice. Also, we noticed increased osteogenesis and decreased osteoclastogenesis, diminished expression of PSME1 and PSME2 and activated Wnt/β-catenin signaling in bone sections from OP mice treated with CFZ. Overall, our data indicated that PSME1/2 may serve as new targets for the treatment of OP, and targeting PSME1/2 with CFZ provides a candidate therapeutic molecule for postmenopausal OP.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Orthopaedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi Key Laboratory of basic and translational research of Bone and Joint Degenerative Diseases, Guangxi Biomedical Materials Engineering Research Center for Bone and Joint Degenerative Diseases, Baise, 533000, Guangxi, China; Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Shokouh Attarilar
- State Key Laboratory of Metal Matrix Composites, School of Material Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Kegong Xie
- Department of Orthopaedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi Key Laboratory of basic and translational research of Bone and Joint Degenerative Diseases, Guangxi Biomedical Materials Engineering Research Center for Bone and Joint Degenerative Diseases, Baise, 533000, Guangxi, China; Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Chao Han
- Department of Orthopaedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi Key Laboratory of basic and translational research of Bone and Joint Degenerative Diseases, Guangxi Biomedical Materials Engineering Research Center for Bone and Joint Degenerative Diseases, Baise, 533000, Guangxi, China; Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Ke Huang
- Department of Orthopaedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi Key Laboratory of basic and translational research of Bone and Joint Degenerative Diseases, Guangxi Biomedical Materials Engineering Research Center for Bone and Joint Degenerative Diseases, Baise, 533000, Guangxi, China; Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Changgong Lan
- Department of Orthopaedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi Key Laboratory of basic and translational research of Bone and Joint Degenerative Diseases, Guangxi Biomedical Materials Engineering Research Center for Bone and Joint Degenerative Diseases, Baise, 533000, Guangxi, China; Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Chong Wang
- School of Mechanical Engineering, Dongguan University of Technology, Dongguan, Guangdong, 523808, China
| | - Chengliang Yang
- Department of Orthopaedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi Key Laboratory of basic and translational research of Bone and Joint Degenerative Diseases, Guangxi Biomedical Materials Engineering Research Center for Bone and Joint Degenerative Diseases, Baise, 533000, Guangxi, China; Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Liqiang Wang
- State Key Laboratory of Metal Matrix Composites, School of Material Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Masoud Mozafari
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Kai Li
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510000, China.
| | - Jia Liu
- Department of Orthopaedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi Key Laboratory of basic and translational research of Bone and Joint Degenerative Diseases, Guangxi Biomedical Materials Engineering Research Center for Bone and Joint Degenerative Diseases, Baise, 533000, Guangxi, China; Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China.
| | - Yujin Tang
- Department of Orthopaedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi Key Laboratory of basic and translational research of Bone and Joint Degenerative Diseases, Guangxi Biomedical Materials Engineering Research Center for Bone and Joint Degenerative Diseases, Baise, 533000, Guangxi, China; Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China.
| |
Collapse
|
31
|
Ciancia S, van Rijn RR, Högler W, Appelman-Dijkstra NM, Boot AM, Sas TCJ, Renes JS. Osteoporosis in children and adolescents: when to suspect and how to diagnose it. Eur J Pediatr 2022; 181:2549-2561. [PMID: 35384509 PMCID: PMC9192469 DOI: 10.1007/s00431-022-04455-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 02/07/2023]
Abstract
UNLABELLED Early recognition of osteoporosis in children and adolescents is important in order to establish an appropriate diagnosis of the underlying condition and to initiate treatment if necessary. In this review, we present the diagnostic work-up, and its pitfalls, of pediatric patients suspected of osteoporosis including a careful collection of the medical and personal history, a complete physical examination, biochemical data, molecular genetics, and imaging techniques. The most recent and relevant literature has been reviewed to offer a broad overview on the topic. Genetic and acquired pediatric bone disorders are relatively common and cause substantial morbidity. In recent years, there has been significant progress in the understanding of the genetic and molecular mechanistic basis of bone fragility and in the identification of acquired causes of osteoporosis in children. Specifically, drugs that can negatively impact bone health (e.g. steroids) and immobilization related to acute and chronic diseases (e.g. Duchenne muscular dystrophy) represent major risk factors for the development of secondary osteoporosis and therefore an indication to screen for bone mineral density and vertebral fractures. Long-term studies in children chronically treated with steroids have resulted in the development of systematic approaches to diagnose and manage pediatric osteoporosis. CONCLUSIONS Osteoporosis in children requires consultation with and/or referral to a pediatric bone specialist. This is particularly relevant since children possess the unique ability for spontaneous and medication-assisted recovery, including reshaping of vertebral fractures. As such, pediatricians have an opportunity to improve bone mass accrual and musculoskeletal health in osteoporotic children. WHAT IS KNOWN • Both genetic and acquired pediatric disorders can compromise bone health and predispose to fractures early in life. • The identification of children at risk of osteoporosis is essential to make a timely diagnosis and start the treatment, if necessary. WHAT IS NEW • Pediatricians have an opportunity to improve bone mass accrual and musculoskeletal health in osteoporotic children and children at risk of osteoporosis. • We offer an extensive but concise overview about the risk factors for osteoporosis and the diagnostic work-up (and its pitfalls) of pediatric patients suspected of osteoporosis.
Collapse
Affiliation(s)
- Silvia Ciancia
- Department of Pediatrics, Subdivision of Endocrinology, Erasmus University Medical Center, Sophia Children's Hospital, Rotterdam, The Netherlands.
| | - Rick R. van Rijn
- grid.7177.60000000084992262Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Wolfgang Högler
- grid.9970.70000 0001 1941 5140Department of Paediatrics and Adolescent Medicine, Johannes Kepler University Linz, Linz, Austria
| | - Natasha M. Appelman-Dijkstra
- grid.10419.3d0000000089452978Department of Internal Medicine, Subdivision of Endocrinology, Center for Bone Quality, Leiden University Medical Center, Leiden, The Netherlands
| | - Annemieke M. Boot
- grid.4830.f0000 0004 0407 1981Department of Pediatrics, Subdivision of Endocrinology, University Medical Center Groningen, Beatrix Children’s Hospital, University of Groningen, Groningen, The Netherlands
| | - Theo C. J. Sas
- grid.416135.40000 0004 0649 0805Department of Pediatrics, Subdivision of Endocrinology, Erasmus University Medical Center, Sophia Children’s Hospital, Rotterdam, The Netherlands ,Diabeter, Center for Pediatric and Adult Diabetes Care and Research, Rotterdam, The Netherlands
| | - Judith S. Renes
- grid.416135.40000 0004 0649 0805Department of Pediatrics, Subdivision of Endocrinology, Erasmus University Medical Center, Sophia Children’s Hospital, Rotterdam, The Netherlands
| |
Collapse
|
32
|
Zhu M, Yin P, Hu F, Jiang J, Yin L, Li Y, Wang S. Integrating genome-wide association and transcriptome prediction model identifies novel target genes for osteoporosis. Osteoporos Int 2021; 32:2493-2503. [PMID: 34142171 PMCID: PMC8608767 DOI: 10.1007/s00198-021-06024-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 05/31/2021] [Indexed: 12/12/2022]
Abstract
UNLABELLED In this study, we integrated large-scale GWAS summary data and used the predicted transcriptome-wide association study method to discover novel genes associated with osteoporosis. We identified 204 candidate genes, which provide novel clues for understanding the genetic mechanism of osteoporosis and indicate potential therapeutic targets. INTRODUCTION Osteoporosis is a highly polygenetic disease characterized by low bone mass and deterioration of the bone microarchitecture. Our objective was to discover novel candidate genes associated with osteoporosis. METHODS To identify potential causal genes of the associated loci, we investigated trait-gene expression associations using the transcriptome-wide association study (TWAS) method. This method directly imputes gene expression effects from genome-wide association study (GWAS) data using a statistical prediction model trained on GTEx reference transcriptome data. We then performed a colocalization analysis to evaluate the posterior probability of biological patterns: associations characterized by a single causal variant or multiple distinct causal variants. Finally, a functional enrichment analysis of gene sets was performed using the VarElect and CluePedia tools, which assess the causal relationships between genes and a disease and search for potential gene's functional pathways. The osteoporosis-associated genes were further confirmed based on the differentially expressed genes profiled from mRNA expression data of bone tissue. RESULTS Our analysis identified 204 candidate genes, including 154 genes that have been previously associated with osteoporosis, 50 genes that have not been previously discovered. A biological function analysis found that 20 of the candidate genes were directly associated with osteoporosis. Further analysis of multiple gene expression profiles showed that 15 genes were differentially expressed in patients with osteoporosis. Among these, SLC11A2, MAP2K5, NFATC4, and HSP90B1 were enriched in four pathways, namely, mineral absorption pathway, MAPK signaling pathway, Wnt signaling pathway, and PI3K-Akt signaling pathway, which indicates a causal relationship with the occurrence of osteoporosis. CONCLUSIONS We demonstrated that transcriptome fine-mapping identifies more osteoporosis-related genes and provides key insight into the development of novel targeted therapeutics for the treatment of osteoporosis.
Collapse
Affiliation(s)
- M Zhu
- Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - P Yin
- Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - F Hu
- Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - J Jiang
- Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - L Yin
- Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Y Li
- AnLan AI, Shenzhen, China
| | - S Wang
- Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
33
|
Chen G, Wang S, Long C, Wang Z, Chen X, Tang W, He X, Bao Z, Tan B, Lu WW, Li Z, Yang D, Xiao G, Peng S. PiRNA-63049 inhibits bone formation through Wnt/β-catenin signaling pathway. Int J Biol Sci 2021; 17:4409-4425. [PMID: 34803507 PMCID: PMC8579447 DOI: 10.7150/ijbs.64533] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 10/13/2021] [Indexed: 12/16/2022] Open
Abstract
Bone remodeling is a dynamic process between bone formation mediated by osteoblasts and bone resorption mediated by osteoclasts. Disrupted bone remodeling is a key factor in postmenopausal osteoporosis, a metabolic disorder characterized by deteriorated bone microarchitecture and increased risk of fracture. Recent studies have shown that piwi-binding RNA (piRNA) is involved in the pathogenesis of certain diseases at the post-transcriptional level. Here, we analyzed piRNA-63049 (piR-63049), which may play an essential role in bone remodeling. The expression of piR-63049 significantly increased in both bone tissues and plasma of osteoporotic rats and postmenopausal osteoporotic patients. Overexpressing piR-63049 could inhibit the osteoblastogenesis of bone marrow stromal cells (BMSCs) while knocking down piR-63049 could promote the osteoblastogenesis of BMSCs through the Wnt2b/β-catenin signaling pathway. Moreover, knocking-down piR-63049 (piR-63049-antagonist) in vivo could attenuate the bone loss in ovariectomized rats by promoting bone formation. Taken together, the current study shows that piR-63049 inhibits bone formation through the Wnt2b/β-catenin signaling pathway. This novel piRNA may be a potential target to increase bone formation in bone loss disorders such as postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Gaoyang Chen
- Department of Spine Surgery, the Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen Key Laboratory of Musculoskeletal Tissue Reconstruction and Function Restoration, Shenzhen 518020, China.,The First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - Shang Wang
- Department of Spine Surgery, the Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen Key Laboratory of Musculoskeletal Tissue Reconstruction and Function Restoration, Shenzhen 518020, China.,The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518055, China
| | - Canling Long
- Department of Spine Surgery, the Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen Key Laboratory of Musculoskeletal Tissue Reconstruction and Function Restoration, Shenzhen 518020, China.,The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhenmin Wang
- Department of Spine Surgery, the Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen Key Laboratory of Musculoskeletal Tissue Reconstruction and Function Restoration, Shenzhen 518020, China.,The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xin Chen
- Department of Spine Surgery, the Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen Key Laboratory of Musculoskeletal Tissue Reconstruction and Function Restoration, Shenzhen 518020, China.,The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wanze Tang
- The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiaoqin He
- Department of Spine Surgery, the Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen Key Laboratory of Musculoskeletal Tissue Reconstruction and Function Restoration, Shenzhen 518020, China.,The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhiteng Bao
- Department of Spine Surgery, the Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen Key Laboratory of Musculoskeletal Tissue Reconstruction and Function Restoration, Shenzhen 518020, China.,The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518055, China
| | - Baoyu Tan
- Department of Spine Surgery, the Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen Key Laboratory of Musculoskeletal Tissue Reconstruction and Function Restoration, Shenzhen 518020, China.,The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518055, China
| | - William W Lu
- Department of Orthopaedic and Traumatology, The University of Hong Kong, Hong Kong, 999077 China
| | - Zhizhong Li
- The First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - Dazhi Yang
- Department of Spine Surgery, the Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen Key Laboratory of Musculoskeletal Tissue Reconstruction and Function Restoration, Shenzhen 518020, China.,The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518055, China
| | - Guozhi Xiao
- School of Medicine, Southern University of Science and Technology, Guangdong, Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Shenzhen 518055, China
| | - Songlin Peng
- Department of Spine Surgery, the Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen Key Laboratory of Musculoskeletal Tissue Reconstruction and Function Restoration, Shenzhen 518020, China.,The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
34
|
Huang W, Wu Y, Qiao M, Xie Z, Cen X, Huang X, Zhao Z. CircRNA-miRNA networks in regulating bone disease. J Cell Physiol 2021; 237:1225-1244. [PMID: 34796958 DOI: 10.1002/jcp.30625] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/21/2021] [Accepted: 10/26/2021] [Indexed: 02/05/2023]
Abstract
Circular RNA (circRNA) is a class of endogenous noncoding RNA (ncRNA), presenting as a special covalent closed loop without a 5' cap or 3' tail, maintaining resistance to RNA exonuclease and keeping high stability. Although lowly expressed in most situations, circRNA makes an active difference in regulating physiological or pathological processes by modulating gene expression by regulation of transcription, protein, and miRNA functions through various mechanisms in particular tissues. Recent studies have demonstrated the roles of the miRNA-circRNA network in the development of several bone diseases such as osteoporosis, a multiple-mechanism disease resulting from defective bone quality and low bone mass, osteoarthritis, whose main pathomechanism is inflammation and articular cartilage degradation, as well as osteosarcoma, known as one of the most common bone cancers. However, the specific mechanism of how circRNA along with miRNA influences those diseases is not well documented, showing potential for the development of new therapies for those bone diseases.
Collapse
Affiliation(s)
- Wei Huang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Yongyao Wu
- State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - MingXin Qiao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Zhuojun Xie
- State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Xiao Cen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Xinqi Huang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|
35
|
Abstract
Endometriosis, characterized by macroscopic lesions in the ovaries, is a serious problem for women who desire conception. Damage to the ovarian cortex is inevitable when lesions are removed via surgery, which finally decreases the ovarian reserve, thereby accelerating the transition to the menopausal state. Soon after cessation of ovarian function, in addition to climacteric symptoms, dyslipidemia and osteopenia are known to occur in women aged >50 years. Epidemiologically, there are sex-related differences in the frequencies of dyslipidemia, hypertension, and osteoporosis. Females are more susceptible to these diseases, prevention of which is important for healthy life expectancy. Dyslipidemia and hypertension are associated with the progression of arteriosclerosis, and arteriosclerotic changes in the large and middle blood vessels are one of the main causes of myocardial and cerebral infarctions. Osteoporosis is associated with aberrant fractures in the spine and hip, which may confine the patients to the bed for long durations. Bone resorption is accelerated by activated osteoclasts, and rapid bone remodeling reduces bone mineral density. Resveratrol, a plant-derived molecule that promotes the function and expression of the sirtuin, SIRT1, has been attracting attention, and many reports have shown that resveratrol might exert cardiovascular protective effects. Preclinical reports also indicate that it can prevent bone loss and endometriosis. In this review, I have described the possible protective effects of resveratrol against arteriosclerosis, osteoporosis, and endometriosis because of its wide-ranging functions, including anti-inflammatory and antioxidative stress functions. As ovarian function inevitably declines after 40 years, intake of resveratrol can be beneficial for women with endometriosis aged <40 years.
Collapse
|
36
|
Li SS, He SH, Xie PY, Li W, Zhang XX, Li TF, Li DF. Recent Progresses in the Treatment of Osteoporosis. Front Pharmacol 2021; 12:717065. [PMID: 34366868 PMCID: PMC8339209 DOI: 10.3389/fphar.2021.717065] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 07/12/2021] [Indexed: 12/23/2022] Open
Abstract
Osteoporosis (OP) is a chronic bone disease characterized by aberrant microstructure and macrostructure of bone, leading to reduced bone mass and increased risk of fragile fractures. Anti-resorptive drugs, especially, bisphosphonates, are currently the treatment of choice in most developing countries. However, they do have limitations and adverse effects, which, to some extent, helped the development of anabolic drugs such as teriparatide and romosozumab. In patients with high or very high risk for fracture, sequential or combined therapies may be considered with the initial drugs being anabolic agents. Great endeavors have been made to find next generation drugs with maximal efficacy and minimal toxicity, and improved understanding of the role of different signaling pathways and their crosstalk in the pathogenesis of OP may help achieve this goal. Our review focused on recent progress with regards to the drug development by modification of Wnt pathway, while other pathways/molecules were also discussed briefly. In addition, new observations made in recent years in bone biology were summarized and discussed for the treatment of OP.
Collapse
Affiliation(s)
- Shan-Shan Li
- Department of Rheumatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shi-Hao He
- Department of Rheumatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Peng-Yu Xie
- Department of Rheumatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wei Li
- Department of Rheumatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xin-Xin Zhang
- Department of Rheumatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tian-Fang Li
- Department of Rheumatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dai-Feng Li
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Department of Magnetic Resonance Imaging, Henan Key Laboratory of Functional Magnetic Resonance Imaging and Molecular Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
37
|
Yu XH, Yang YQ, Cao RR, Cai MK, Zhang L, Deng FY, Lei SF. Rheumatoid arthritis and osteoporosis: Shared genetic effect, pleiotropy and causality. Hum Mol Genet 2021; 30:1932-1940. [PMID: 34132789 DOI: 10.1093/hmg/ddab158] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 12/25/2022] Open
Abstract
Rheumatoid arthritis (RA) is associated with increased localized and generalized bone loss, but the complex genetic mechanism between them is still unknown. By leveraging large-scale genome-wide association studies (GWASs) summary statistics and individual-level datasets (i.e. UK Biobank), a series of genetic approaches were conducted. Linkage disequilibrium score regression (LDSC) reveals a shared genetic correlation between RA and estimated bone mineral density (eBMD) (rg = -0.059, p = 0.005). The PLACO analysis has identified 74 lead (8 novel) pleiotropic loci that could be mapped to 99 genes, the genetic functions of which reveal the possible mechanism underlying RA and osteoporosis. In European, genetic risk score (GRS) and comprehensive mendelian randomization (MR) were utilized to evaluate the causal association between RA and osteoporosis in European and Asiany. The increase in GRS of RA could lead to a decrease of eBMD (beta = -0.008, p = 3.77E-6) and a higher risk of facture [odds ratio (OR) = 1.012, p = 0.044]. MR analysis identified that genetically determined RA was causally associated with eBMD (beta = -0.021, p = 4.14E-05) and fracture risk (OR = 1.036, and p = 0.004). Similar results were also observed in Asian that osteoporosis risk could be causally increased by RA (OR = 1.130, p = 1.04E-03) as well as antibodies against citrullinated proteins (ACPA)-positive RA (OR = 1.083, p = 0.015). Overall, our study reveals complex genetic mechanism between RA and osteoporosis and provides strong evidence for crucial role of RA in pathogenesis of osteoporosis.
Collapse
Affiliation(s)
- Xing-Hao Yu
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, 199 Renai Road, Suzhou, Jiangsu 215123, P. R. China
| | - Yi-Qun Yang
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, 199 Renai Road, Suzhou, Jiangsu 215123, P. R. China
| | - Rong-Rong Cao
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, 199 Renai Road, Suzhou, Jiangsu 215123, P. R. China
| | - Mu-Kun Cai
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, 199 Renai Road, Suzhou, Jiangsu 215123, P. R. China
| | - Lei Zhang
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, 199 Renai Road, Suzhou, Jiangsu 215123, P. R. China
| | - Fei-Yan Deng
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, 199 Renai Road, Suzhou, Jiangsu 215123, P. R. China
| | - Shu-Feng Lei
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, 199 Renai Road, Suzhou, Jiangsu 215123, P. R. China
| |
Collapse
|
38
|
Extracellular Vesicles: Potential Mediators of Psychosocial Stress Contribution to Osteoporosis? Int J Mol Sci 2021; 22:ijms22115846. [PMID: 34072559 PMCID: PMC8199340 DOI: 10.3390/ijms22115846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/23/2021] [Accepted: 05/26/2021] [Indexed: 02/08/2023] Open
Abstract
Osteoporosis is characterized by low bone mass and damage to the bone tissue’s microarchitecture, leading to increased fracture risk. Several studies have provided evidence for associations between psychosocial stress and osteoporosis through various pathways, including the hypothalamic-pituitary-adrenocortical axis, the sympathetic nervous system, and other endocrine factors. As psychosocial stress provokes oxidative cellular stress with consequences for mitochondrial function and cell signaling (e.g., gene expression, inflammation), it is of interest whether extracellular vesicles (EVs) may be a relevant biomarker in this context or act by transporting substances. EVs are intercellular communicators, transfer substances encapsulated in them, modify the phenotype and function of target cells, mediate cell-cell communication, and, therefore, have critical applications in disease progression and clinical diagnosis and therapy. This review summarizes the characteristics of EVs, their role in stress and osteoporosis, and their benefit as biological markers. We demonstrate that EVs are potential mediators of psychosocial stress and osteoporosis and may be beneficial in innovative research settings.
Collapse
|
39
|
Xu YH, Sun YC, Liu J, Li HX, Huang CY, Pang YY, Wu T, Hu X. Serum Pharmacochemistry Analysis Combined with Network Pharmacology Approach to Investigate the Antiosteoporosis Effect of Xianlinggubao Capsule in vivo. PHARMACEUTICAL FRONTS 2021. [DOI: 10.1055/s-0041-1726301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
AbstractXianlinggubao capsule (XLGB) is a traditional Chinese medicine multi-component herbal prescription and has been widely used in osteoporosis (OP) treatment. However, the underlying anti-OP mechanisms of XLGB have not been fully studied. In this study, an ovariectomized rat model of OP was established. The OP rats were orally administrated with XLGB, and then the main absorbed components in serum sample were assessed based on liquid chromatography-tandem mass spectrometry (LC-MS/MS). Subsequently, the potential anti-OP markers in XLGB were screened based on a network pharmacology strategy. Molecular docking analysis was used for confirmation. LC-MS showed 22 absorbed components in the serum sample of OP rat with XLGB treatment. Network pharmacology and pathway analysis suggested 19 potential anti-OP markers in XLGB. According to molecular docking process, most of the potential markers displayed strong interactions with the 22 absorbed components mentioned above. Besides, an absorbed component–potential marker–pathway network was further established. In conclusion, our data suggested the possible mechanisms for XLGB in OP treatment, in which the “multicomponents, multitargets, and multipathways” participated. Our article provided possible direction for drug discovery in OP and could help for exploring novel application of XLGB in clinical setting.
Collapse
Affiliation(s)
- Yun-Hui Xu
- State Key Lab. of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, People's Republic of China
| | - Yi-Chun Sun
- Sinopharm Group Tongjitang (Guizhou) Pharmaceutical Co., Ltd., Guiyang, People's Republic of China
- Guangdong Efong Pharmaceutical Co., Ltd, Guangzhou, People's Republic of China
| | - Jie Liu
- State Key Lab. of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, People's Republic of China
| | - Hui-Xin Li
- Sinopharm Group Tongjitang (Guizhou) Pharmaceutical Co., Ltd., Guiyang, People's Republic of China
| | - Chun-Yue Huang
- State Key Lab. of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, People's Republic of China
| | - Yuan-Yuan Pang
- Sinopharm Group Tongjitang (Guizhou) Pharmaceutical Co., Ltd., Guiyang, People's Republic of China
| | - Tong Wu
- State Key Lab. of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, People's Republic of China
| | - Xiao Hu
- State Key Lab. of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, People's Republic of China
- Sinopharm Group Tongjitang (Guizhou) Pharmaceutical Co., Ltd., Guiyang, People's Republic of China
| |
Collapse
|
40
|
Sun Q, Liu S, Feng J, Kang Y, Zhou Y, Guo S. Current Status of MicroRNAs that Target the Wnt Signaling Pathway in Regulation of Osteogenesis and Bone Metabolism: A Review. Med Sci Monit 2021; 27:e929510. [PMID: 33828067 PMCID: PMC8043416 DOI: 10.12659/msm.929510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The directional differentiation of bone mesenchymal stem cells (BMSCs) is regulated by a variety of transcription factors and intracellular signaling pathways. In the past, it was thought that the directional differentiation of BMSCs was related to transforming growth factors, such as bone morphogenetic protein (BMP) and MAPK pathway. However, in recent years, some scholars have pointed out that the Wnt signaling pathway, which is a necessary complex network of protein interactions for biological growth and development, takes a significant role in this process and plays a major part in regulating the development of osteoblasts by exerting signal transduction into cells. Also, they have proved the Wnt protein therapeutic truly have positive effects on the viability and osteogenic capacity of bone graft. Recent studies have shown that microRNAs (miRNAs) play an important regulatory role in this process. MiRNAs such as miRNA-218, miRNA-335, miRNA-29, microRNA-30 and other miRNAs exert negative or positive effects on some crucial molecules in the Wnt/β-catenin pathway, which in turn affect bone metabolism and osteopathy. Thus, miRNAs have been suggested as therapeutic targets for some metabolic bone diseases. This article aims to provide an update on the current status of microRNAs that target the Wnt signaling pathway in the regulation of osteogenesis and bone metabolism and includes a discussion of future areas of research, which can be a theoretical basis for bone metabolism-related diseases.
Collapse
Affiliation(s)
- Qiang Sun
- Department of Plastic Surgery, The First Hopital of China Medical University, Shenyang, Liaoning, China (mainland)
| | - Siyu Liu
- Department of Plastic Surgery, The First Hopital of China Medical University, Shenyang, Liaoning, China (mainland)
| | - Jingyi Feng
- Department of Plastic Surgery, The First Hopital of China Medical University, Shenyang, Liaoning, China (mainland)
| | - Yue Kang
- Department of Plastic Surgery, The First Hopital of China Medical University, Shenyang, Liaoning, China (mainland)
| | - You Zhou
- Department of Plastic Surgery, The First Hopital of China Medical University, Shenyang, Liaoning, China (mainland)
| | - Shu Guo
- Department of Plastic Surgery, The First Hopital of China Medical University, Shenyang, Liaoning, China (mainland)
| |
Collapse
|
41
|
Peng C, Liu F, Su KJ, Lin X, Song YQ, Shen J, Hu SD, Chen QC, Yuan HH, Li WX, Zeng CP, Deng HW, Lou HL. Enhanced Identification of Novel Potential Variants for Appendicular Lean Mass by Leveraging Pleiotropy With Bone Mineral Density. Front Immunol 2021; 12:643894. [PMID: 33889153 PMCID: PMC8056257 DOI: 10.3389/fimmu.2021.643894] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 03/09/2021] [Indexed: 11/22/2022] Open
Abstract
Strong relationships have been found between appendicular lean mass (ALM) and bone mineral density (BMD). It may be due to a shared genetic basis, termed pleiotropy. By leveraging the pleiotropy with BMD, the aim of this study was to detect more potential genetic variants for ALM. Using the conditional false discovery rate (cFDR) methodology, a combined analysis of the summary statistics of two large independent genome wide association studies (GWAS) of ALM (n = 73,420) and BMD (n = 10,414) was conducted. Strong pleiotropic enrichment and 26 novel potential pleiotropic SNPs were found for ALM and BMD. We identified 156 SNPs for ALM (cFDR <0.05), of which 74 were replicates of previous GWASs and 82 were novel SNPs potentially-associated with ALM. Eleven genes annotated by 31 novel SNPs (13 pleiotropic and 18 ALM specific) were partially validated in a gene expression assay. Functional enrichment analysis indicated that genes corresponding to the novel potential SNPs were enriched in GO terms and/or KEGG pathways that played important roles in muscle development and/or BMD metabolism (adjP <0.05). In protein–protein interaction analysis, rich interactions were demonstrated among the proteins produced by the corresponding genes. In conclusion, the present study, as in other recent studies we have conducted, demonstrated superior efficiency and reliability of the cFDR methodology for enhanced detection of trait-associated genetic variants. Our findings shed novel insight into the genetic variability of ALM in addition to the shared genetic basis underlying ALM and BMD.
Collapse
Affiliation(s)
- Cheng Peng
- Department of Geriatrics, National Key Clinical Specialty, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Feng Liu
- Department of Geriatrics, National Key Clinical Specialty, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Kuan-Jui Su
- Center for Bioinformatics and Genomics, Department of Global Biostatistics and Data Science, Tulane University, New Orleans, LA, United States
| | - Xu Lin
- Shunde Hospital of Southern Medical University (The First People's Hospital of Shunde), Foshan City, China
| | - Yu-Qian Song
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Jie Shen
- Shunde Hospital of Southern Medical University (The First People's Hospital of Shunde), Foshan City, China
| | - Shi-Di Hu
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Qiao-Cong Chen
- Department of Geriatrics, National Key Clinical Specialty, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Hui-Hui Yuan
- Department of Geriatrics, National Key Clinical Specialty, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Wen-Xi Li
- Department of Geriatrics, National Key Clinical Specialty, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Chun-Ping Zeng
- Department of Endocrinology and Metabolism, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hong-Wen Deng
- Center for Bioinformatics and Genomics, Department of Global Biostatistics and Data Science, Tulane University, New Orleans, LA, United States
| | - Hui-Ling Lou
- Department of Geriatrics, National Key Clinical Specialty, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|
42
|
De Martinis M, Sirufo MM, Ginaldi L. Osteoporosis: Current and Emerging Therapies Targeted to Immunological Checkpoints. Curr Med Chem 2021; 27:6356-6372. [PMID: 31362684 PMCID: PMC8206194 DOI: 10.2174/0929867326666190730113123] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 07/12/2019] [Accepted: 07/17/2019] [Indexed: 12/17/2022]
Abstract
Osteoporosis is a skeletal pathology characterized by compromised bone strength leading to increased risk of fracture, mainly the spine and hip fractures. Osteoporosis affects more than 200 million people worldwide and because of the skeletal fractures it causes, represents a major cause of morbidity, disability and mortality in older people. Recently, the new discoveries of osteoimmunology have clarified many of the pathogenetic mechanisms of osteoporosis, helping to identify new immunological targets for its treatment opening the way for new and effective therapies with biological drugs. Currently, there are basically two monoclonal antibodies for osteoporosis therapy: denosumab and romosozumab. Here, we focus on the modern approach to the osteoporosis management and in particular, on current and developing biologic drugs targeted to new immunological checkpoints, in the landscape of osteoimmunology.
Collapse
Affiliation(s)
- Massimo De Martinis
- Department of Life, Health, & Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Maria Maddalena Sirufo
- Department of Life, Health, & Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Lia Ginaldi
- Department of Life, Health, & Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
43
|
Shao JL, Li H, Zhang XR, Zhang X, Li ZZ, Jiao GL, Sun GD. Identification of Serum Exosomal MicroRNA Expression Profiling in Menopausal Females with Osteoporosis by High-throughput Sequencing. Curr Med Sci 2021; 40:1161-1169. [PMID: 33428145 DOI: 10.1007/s11596-020-2306-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 08/07/2020] [Indexed: 02/07/2023]
Abstract
Estrogen deficiency, which mainly occurs in postmenopausal women, is a primary reason for osteoporosis in clinical diagnosis. However, the molecular regulation of osteoporosis in menopausal females is still not adequately explained in the literature, with the diagnosis and treatment for osteoporosis being limited. Herein, exosomal microRNAs (miRNAs) were used to evaluate their diagnosis and prediction effects in menopausal females with osteoporosis. In this study, 6 menopausal females without osteoporosis and 12 menopausal females with osteoporosis were enrolled. The serum exosomes were isolated, and the miRNA expression was detected by miRNA high-throughput sequencing. Exosomal miRNA effects were analyzed by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses. The miRNA-targeted genes were evaluated by Targetscan 7.2 and the protein-protein interactions (PPI) by STRING. Hub genes were analyzed by the CytoHubba app of Cytoscape. The results showed that 191 aberrant miRNAs were found in the group of menopausal females with osteoporosis, including 72 upregulated miRNAs and 121 downregulated miRNAs. Aberrant miRNAs were involved in many signaling pathways, such as the Wnt, MAPK, and Hippo pathways. Based on PPI network analysis, FBXL3, FBXL13, COPS2, UBE2D3, DCUN1D1, DCUN1D4, CUL3, FBXO22, ASB6, and COMMD2 were the 10 most notable genes in the PPI network. In conclusion, aberrant serum exosomal miRNAs were associated with an altered risk of osteoporosis in menopausal females and may act as potential biomarkers for the prediction of risk of osteoporosis in menopausal females.
Collapse
Affiliation(s)
- Jian-Li Shao
- Department of Orthopedics and Traumatology, First Affiliated Hospital, Jinan University, Guangzhou, 510632, China.
| | - Heng Li
- Department of Orthopedics, Central People's Hospital of Zhanjiang, Zhanjiang, 524045, China
| | - Xiao-Rong Zhang
- Department of Orthopedics and Traumatology, First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| | - Xia Zhang
- Department of Ultrasound, Mental Hospital of Civil Affairs Bureau, Guangzhou, 510632, China.
| | - Zhi-Zhong Li
- Department of Orthopedics and Traumatology, First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| | - Gen-Long Jiao
- Department of Orthopedics and Traumatology, First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| | - Guo-Dong Sun
- Department of Orthopedics and Traumatology, First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
44
|
Yang X, Li Y, Liu X, He W, Huang Q, Feng Q. Nanoparticles and their effects on differentiation of mesenchymal stem cells. BIOMATERIALS TRANSLATIONAL 2020; 1:58-68. [PMID: 35837661 PMCID: PMC9255818 DOI: 10.3877/cma.j.issn.2096-112x.2020.01.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/30/2020] [Accepted: 08/21/2020] [Indexed: 11/12/2022]
Abstract
Over the past decades, advancements in nanoscience and nanotechnology have resulted in numerous nanomedicine platforms. Various nanoparticles, which exhibit many unique properties, play increasingly important roles in the field of biomedicine to realize the potential of nanomedicine. Due to the capacity of self-renewal and multilineage mesenchymal differentiation, mesenchymal stem cells (MSCs) have been widely used in the area of regenerative medicine and in clinical applications due to their potential to differentiate into various lineages. There are several factors that impact the differentiation of MSCs into different lineages. Many types of biomaterials such as polymers, ceramics, and metals are commonly applied in tissue engineering and regenerative therapies, and they are continuously refined over time. In recent years, along with the rapid development of nanotechnology and nanomedicine, nanoparticles have been playing more and more important roles in the fields of biomedicine and bioengineering. The combined use of nanoparticles and MSCs in biomedicine requires greater knowledge of the effects of nanoparticles on MSCs. This review focuses on the effects of four inorganic or metallic nanoparticles (hydroxyapatite, silica, silver, and calcium carbonate), which are widely used as biomaterials, on the osteogenic and adipogenic differentiation of MSCs. In this review, the cytotoxicity of these four nanoparticles, their effects on osteogenic/adipogenic differentiation of MSCs and the signalling pathways or transcription factors involved are summarized. In addition, the chemical composition, size, shape, surface area, surface charge and surface chemistry of nanoparticles, have been reported to impact cellular behaviours. In this review, we particularly emphasize the influence of their size on cellular responses. We envision our review will provide a theoretical basis for the combined application of MSCs and nanoparticles in biomedicine.
Collapse
Affiliation(s)
- Xing Yang
- China Institute of Marine Technology and Economy, Beijing, China,School of Materials Science and Engineering, Tsinghua University, Beijing, China
| | - Yuanyuan Li
- Department of Stomatology, Shengli Oilfield Central Hospital, Dongying, Shandong Province, China
| | - Xujie Liu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong Province, China
| | - Wei He
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, China
| | - Qianli Huang
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan Province, China
| | - Qingling Feng
- School of Materials Science and Engineering, Tsinghua University, Beijing, China,Corresponding author: Qingling Feng,
| |
Collapse
|
45
|
Culibrk RA, Hahn MS. The Role of Chronic Inflammatory Bone and Joint Disorders in the Pathogenesis and Progression of Alzheimer's Disease. Front Aging Neurosci 2020; 12:583884. [PMID: 33364931 PMCID: PMC7750365 DOI: 10.3389/fnagi.2020.583884] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 11/06/2020] [Indexed: 12/12/2022] Open
Abstract
Late-onset Alzheimer's Disease (LOAD) is a devastating neurodegenerative disorder that causes significant cognitive debilitation in tens of millions of patients worldwide. Throughout disease progression, abnormal secretase activity results in the aberrant cleavage and subsequent aggregation of neurotoxic Aβ plaques in the cerebral extracellular space and hyperphosphorylation and destabilization of structural tau proteins surrounding neuronal microtubules. Both pathologies ultimately incite the propagation of a disease-associated subset of microglia-the principle immune cells of the brain-characterized by preferentially pro-inflammatory cytokine secretion and inhibited AD substrate uptake capacity, which further contribute to neuronal degeneration. For decades, chronic neuroinflammation has been identified as one of the cardinal pathophysiological driving features of AD; however, despite a number of works postulating the underlying mechanisms of inflammation-mediated neurodegeneration, its pathogenesis and relation to the inception of cognitive impairment remain obscure. Moreover, the limited clinical success of treatments targeting specific pathological features in the central nervous system (CNS) illustrates the need to investigate alternative, more holistic approaches for ameliorating AD outcomes. Accumulating evidence suggests significant interplay between peripheral immune activity and blood-brain barrier permeability, microglial activation and proliferation, and AD-related cognitive decline. In this work, we review a narrow but significant subset of chronic peripheral inflammatory conditions, describe how these pathologies are associated with the preponderance of neuroinflammation, and posit that we may exploit peripheral immune processes to design interventional, preventative therapies for LOAD. We then provide a comprehensive overview of notable treatment paradigms that have demonstrated considerable merit toward treating these disorders.
Collapse
Affiliation(s)
| | - Mariah S. Hahn
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States
| |
Collapse
|
46
|
Shang Q, Shen G, Chen G, Zhang Z, Yu X, Zhao W, Zhang P, Chen H, Tang K, Yu F, Tang J, Liang D, Jiang X, Ren H. The emerging role of miR-128 in musculoskeletal diseases. J Cell Physiol 2020; 236:4231-4243. [PMID: 33241566 DOI: 10.1002/jcp.30179] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 10/24/2020] [Accepted: 11/13/2020] [Indexed: 12/17/2022]
Abstract
MicroRNA-128 (miR-128) is associated with cell proliferation, differentiation, migration, apoptosis, and survival. Genetic analysis studies have demonstrated that miR-128 participates in bone metabolism, which involves bone marrow-derived mesenchymal stem cells, osteoblasts, osteoclasts, and adipocytes. miR-128 also participates in regeneration of skeletal muscles by targeting myoblast-associated proteins. The deregulation of miR-128 could lead to a series of musculoskeletal diseases. In this review, we discuss recent findings of miR-128 in relation to bone metabolism and muscle regeneration to determine its potential therapeutic effects in musculoskeletal diseases, and to propose directions for future research in this significant field.
Collapse
Affiliation(s)
- Qi Shang
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Gengyang Shen
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guifeng Chen
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhida Zhang
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiang Yu
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenhua Zhao
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Peng Zhang
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Honglin Chen
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Kai Tang
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fuyong Yu
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jingjing Tang
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - De Liang
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaobing Jiang
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hui Ren
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
47
|
Gao Y, Patil S, Qian A. The Role of MicroRNAs in Bone Metabolism and Disease. Int J Mol Sci 2020; 21:ijms21176081. [PMID: 32846921 PMCID: PMC7503277 DOI: 10.3390/ijms21176081] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 07/26/2020] [Accepted: 07/28/2020] [Indexed: 02/07/2023] Open
Abstract
Bone metabolism is an intricate process involving various bone cells, signaling pathways, cytokines, hormones, growth factors, etc., and the slightest deviation can result in various bone disorders including osteoporosis, arthropathy, and avascular necrosis of femoral head. Osteoporosis is one of the most prevalent disorders affecting the skeleton, which is characterized by low bone mass and bone mineral density caused by the disruption in the balanced process of bone formation and bone resorption. The current pharmaceutical treatments such as bisphosphonates, selective estrogen receptor modulator, calcitonin, teriparatide, etc., could decrease the risk of fractures but have side-effects that have limited their long term applications. MicroRNAs (miRNAs) are one of many non-coding RNAs. These are single-stranded with a length of 19–25 nucleotides and can influence various cellular processes and play an important role in various diseases. Therefore, in this article, we review the different functions of different miRNA in bone metabolism and osteoporosis to understand their mechanism of action for the development of possible therapeutics.
Collapse
Affiliation(s)
- Yongguang Gao
- Laboratory for Bone Metabolism, Xi’an Key Laboratory of Special Medicine and Health Engineering, Key Laboratory for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China; (Y.G.); (S.P.)
- Department of Chemistry, Tangshan Normal University, Tangshan 063000, China
| | - Suryaji Patil
- Laboratory for Bone Metabolism, Xi’an Key Laboratory of Special Medicine and Health Engineering, Key Laboratory for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China; (Y.G.); (S.P.)
| | - Airong Qian
- Laboratory for Bone Metabolism, Xi’an Key Laboratory of Special Medicine and Health Engineering, Key Laboratory for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China; (Y.G.); (S.P.)
- Correspondence: ; Tel.: +86-135-7210-8260
| |
Collapse
|
48
|
Sun H, Hu H, Xu X, Tao T, Liang Z. Key miRNAs associated with memory and learning disorder upon exposure to sevoflurane determined by RNA sequencing. Mol Med Rep 2020; 22:1567-1575. [PMID: 32626949 PMCID: PMC7339763 DOI: 10.3892/mmr.2020.11199] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 04/15/2020] [Indexed: 12/12/2022] Open
Abstract
The study aimed to identify differentially expressed microRNAs (miRNAs/miRs) and explore the mechanisms governing impaired memory and learning ability in developing brains exposed to sevoflurane. A total of six 7‑day‑old male ICR mice were randomly assigned into the sevoflurane anesthesia group (treated with 2.4% sevoflurane) or control group (treated with normal saline solution at the same dose). After 14 days, the mice were subjected to a Morris water maze experiment. Then, the animals were sacrificed and hippocampus tissues were isolated. RNAs in hippocampus tissues were sequenced and the differential miRNA expression profiles were identified by a bioinformatics approach. The learning and memory function of mice were significantly affected by sevoflurane exposure. A total of 18 miRNAs were found to be significantly affected by sevoflurane administration. Their target genes clustered into different functional groups, such as 'dephosphorylation', 'vesicle localization' and the 'Wnt signaling pathway'. miR‑101b‑3p was closely related with 'chromatin binding' and 'protein serine/threonine kinase activity'. The most represented pathways for miRNAs included 'neuroactive ligand‑receptor interaction' (miR‑1187), 'long‑term depression' (miR‑425‑5p), 'FoxO signaling pathway' (miR‑425‑5p) and the 'neurotrophin signaling pathway' (miR‑467a‑3p). miR‑467a‑3p (degree=89), miR‑101b‑3p (degree=59), and miR‑1187 (degree=51) were the hub nodes in the miRNA regulatory network. The Wnt signaling pathway, miR‑467a‑3p, miR‑1187 and miR‑101b‑3p may be therapeutic targets for preventing cognitive impairments induced by sevoflurane.
Collapse
Affiliation(s)
- Huaqin Sun
- Department of Anesthesiology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Hongyi Hu
- Department of Anesthesiology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Xiaoping Xu
- Laboratory Animal Research Center/Institute of Comparative Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Tao Tao
- Department of Anesthesiology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Zhehao Liang
- Department of Ultrasound, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| |
Collapse
|
49
|
Li C, Huang Q, Yang R, Guo X, Dai Y, Zeng J, Zeng Y, Tao L, Li X, Zhou H, Wang Q. Targeted next generation sequencing of nine osteoporosis-related genes in the Wnt signaling pathway among Chinese postmenopausal women. Endocrine 2020; 68:669-678. [PMID: 32147773 DOI: 10.1007/s12020-020-02248-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 02/26/2020] [Indexed: 12/18/2022]
Abstract
PURPOSE This study aimed to explore the association between low-frequency and rare variants of Wnt signaling genes and postmenopausal osteoporosis (OP) by the next generation sequencing (NGS) technology. METHODS We performed targeted NGS of nine Wnt signaling genes in 400 Chinese postmenopausal women, including 226 cases with decreased bone mineral density (BMD) and 174 controls with normal values. Proxy External Controls Association Test (ProxECAT) and logistic regression analysis were performed by data from internal cases (n = 226) and Genome Aggregation Database (gnomAD) East Asian controls (n = 9435). RESULTS The genomic region of interest (ROI) of 94 functional low-frequency and rare variants was associated with OP risk (P < 0.05). The LGR6 gene was associated significantly with OP risk and BMD measurements (BMD, T-score and Z-score) (adjusted-P < 0.05) after adjusting for confounders. The allele A of rs199693693 (K82N) in LRP6 and G of novel variant 1: 202287949 (R840G) in LGR6 were associated with higher BMD, T-score, and Z-score (all adjusted-P < 0.05). ProxECAT showed that LGR4 was significantly different between the internal cases and the external controls (all adjusted-P < 0.05). Logistic regression analysis revealed that the allele G of rs765778410 (T645A) (OR = 26.16, 95% CI: 4.36-156.95, adjusted-P value = 0.026) in LGR6 and A of rs61370283 (L987M) (OR = 15.39, 95% CI: 2.98-79.55, adjusted-P value = 0.037) in LRP5 were associated with increased risk of postmenopausal OP. CONCLUSION The LGR4 and LGR6 genes and four potential functional rare variants associate with postmenopausal OP risk. These results highlight the significance of rare functional variants in postmenopausal OP genetics and provide new insights into the potential mutations in this field.
Collapse
Affiliation(s)
- Can Li
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Qin Huang
- Department of Rehabilitation Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Rui Yang
- Department of Health Checkup, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Xiaodong Guo
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Yu Dai
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Junchao Zeng
- Department of Health Checkup, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Yun Zeng
- Wuhan No.1 Hospital, 430030, Wuhan, China
| | - Lailin Tao
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Xiaolong Li
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Haolong Zhou
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Qi Wang
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China.
| |
Collapse
|
50
|
Corre I, Verrecchia F, Crenn V, Redini F, Trichet V. The Osteosarcoma Microenvironment: A Complex But Targetable Ecosystem. Cells 2020; 9:cells9040976. [PMID: 32326444 PMCID: PMC7226971 DOI: 10.3390/cells9040976] [Citation(s) in RCA: 289] [Impact Index Per Article: 57.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/06/2020] [Accepted: 04/11/2020] [Indexed: 01/08/2023] Open
Abstract
Osteosarcomas are the most frequent primary bone sarcomas, affecting mainly children, adolescents, and young adults, and with a second peak of incidence in elderly individuals. The current therapeutic management, a combined regimen of poly-chemotherapy and surgery, still remains largely insufficient, as patient survival has not improved in recent decades. Osteosarcomas are very heterogeneous tumors, both at the intra- and inter-tumor level, with no identified driver mutation. Consequently, efforts to improve treatments using targeted therapies have faced this lack of specific osteosarcoma targets. Nevertheless, these tumors are inextricably linked to their local microenvironment, composed of bone, stromal, vascular and immune cells and the osteosarcoma microenvironment is now considered to be essential and supportive for growth and dissemination. This review describes the different actors of the osteosarcoma microenvironment and gives an overview of the past, current, and future strategies of therapy targeting this complex ecosystem, with a focus on the role of extracellular vesicles and on the emergence of multi-kinase inhibitors.
Collapse
Affiliation(s)
- Isabelle Corre
- INSERM, Nantes University, UMR1238 Phy-Os “Bone Sarcomas and Remodeling of Calcified Tissues”, F-44035 Nantes, France
- CNRS GDR3697 MicroNit, F-37044 Tours, France
- Correspondence: (I.C.); (V.T.)
| | - Franck Verrecchia
- INSERM, Nantes University, UMR1238 Phy-Os “Bone Sarcomas and Remodeling of Calcified Tissues”, F-44035 Nantes, France
| | - Vincent Crenn
- INSERM, Nantes University, UMR1238 Phy-Os “Bone Sarcomas and Remodeling of Calcified Tissues”, F-44035 Nantes, France
- Department of Orthopedic, Nantes Hospital, CHU Hotel-Dieu, F-44035 Nantes, France
| | - Francoise Redini
- INSERM, Nantes University, UMR1238 Phy-Os “Bone Sarcomas and Remodeling of Calcified Tissues”, F-44035 Nantes, France
| | - Valérie Trichet
- INSERM, Nantes University, UMR1238 Phy-Os “Bone Sarcomas and Remodeling of Calcified Tissues”, F-44035 Nantes, France
- CNRS GDR3697 MicroNit, F-37044 Tours, France
- Correspondence: (I.C.); (V.T.)
| |
Collapse
|