1
|
Chen YP, Chen C, Wu H, He Q, Wu J, Yao JY, Chen F. Bamboo vinegar powder: Unveiling its antioxidant and antifungal efficacy through bioactive compound analysis and mechanistic insights. Food Chem 2025; 470:142718. [PMID: 39764885 DOI: 10.1016/j.foodchem.2024.142718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 11/14/2024] [Accepted: 12/29/2024] [Indexed: 01/29/2025]
Abstract
Bamboo vinegar has been applied in livestock and fisheries as food additives. In this study, the antioxidant and antifungal properties of bamboo vinegar powder extract (BVPE) and its bioactive compounds were explored. BVPE exhibited significant free radical scavenging activity against DPPH and ABTS radicals, along with notable antifungal effects against Aspergillus terreus and Paecilomyces variotii. LC-MS/MS analysis identified several bioactive compounds, including 1,2,3-trihydroxybenzene, 4-methylcatechol, 3,4-dihydroxyhydrocinnamic acid, and hydroquinone, exhibiting strong antioxidant capacities. Moreover, eight abundant compounds revealed significant antifungal activity, with 4-methylcatechol and 4-methylbenzoic acid displaying potent effects. Notably, 4-methylbenzoic acid, with low cytotoxicity, was assessed for its antifungal mechanism through RNA-seq analysis, suggesting involvement of the shikimate pathway. Molecular docking analysis indicated that 4-methylbenzoic acid could potentially disrupt the shikimate pathway by interacting with key enzymes. Overall, BVPE holds promise as a natural antioxidant and antifungal agent, with particular emphasis on the potential therapeutic role of 4-methylbenzoic acid.
Collapse
Affiliation(s)
- Yu-Pei Chen
- Department of Public Health and Medical Technology, Xiamen Medical College, Xiamen 361023, Fujian, China; Engineering Research Center of Natural Cosmeceuticals College of Fujian Province, Xiamen Medical College, Xiamen 361023, Fujian, China; School of Public Health, Fujian Medical University, Fuzhou, Fujian Province, China.
| | - Chuansheng Chen
- Department of Public Health and Medical Technology, Xiamen Medical College, Xiamen 361023, Fujian, China
| | - Hongtan Wu
- Department of Public Health and Medical Technology, Xiamen Medical College, Xiamen 361023, Fujian, China; Engineering Research Center of Natural Cosmeceuticals College of Fujian Province, Xiamen Medical College, Xiamen 361023, Fujian, China
| | - Qi He
- School of Public Health, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Jinxiong Wu
- Department of Public Health and Medical Technology, Xiamen Medical College, Xiamen 361023, Fujian, China
| | - Jeng-Yuan Yao
- School of Public Health, Fujian Medical University, Fuzhou, Fujian Province, China; Department of Basic Medicine, Xiamen Medical College, Xiamen 361023, Fujian, China
| | - Fangfang Chen
- Department of Public Health and Medical Technology, Xiamen Medical College, Xiamen 361023, Fujian, China; Engineering Research Center of Natural Cosmeceuticals College of Fujian Province, Xiamen Medical College, Xiamen 361023, Fujian, China.
| |
Collapse
|
2
|
Dai S, Long Y, Xiao J, Wang Y, Wang X, Shao P, Huang M, Xu Y, Liu F, Tang Y, Xu X, Wu X, Zheng Y, Mo J, Yang J, Huang J, Wu R. A comprehensive metabolomic and lipidomic study of olanzapine in the treatment of first-episode schizophrenia. Asian J Psychiatr 2025; 105:104387. [PMID: 40015078 DOI: 10.1016/j.ajp.2025.104387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/21/2025] [Accepted: 02/02/2025] [Indexed: 03/01/2025]
Abstract
BACKGROUND Despite advances in research, critical gaps remain in understanding the molecular mechanisms of antipsychotic medications such as olanzapine. This study investigated the molecular pathways by which olanzapine exerts its therapeutic effects and causes metabolic side effects by analyzing changes in the serum metabolic and lipid profiles of patients with first-episode schizophrenia. METHODS Clinical symptoms were assessed using the Positive and Negative Symptom Scale (PANSS) in 43 patients with first-episode schizophrenia. Body mass index (BMI) and fasting glucose (GLU) and tetraplex lipids levels were measured before and after treatment. Changes in patient serum metabolic and lipid profiles before and after treatment were examined. Correlation analysis was used to identify differential metabolites and lipid molecules that were significantly associated with changes in clinical symptoms and metabolic side-effect indicators. RESULTS After 8 weeks of olanzapine treatment, there was a significant decrease in all PANSS scores and a significant increase in BMI and GLU, total cholesterol, and low-density lipoprotein cholesterol levels in patients with first-episode schizophrenia. Metabolomic and lipidomic analyses identified 70 metabolites and 67 lipids in the serum that changed significantly after treatment. Correlation analysis revealed that the clinical symptom changes in the patients before and after treatment were significantly associated with 11 metabolites (most related to inflammation and oxidative stress), while the metabolic side-effect indicators were significantly associated with 14 lipid molecules. CONCLUSIONS Olanzapine may improve psychotic symptoms by modulating inflammation and oxidative stress-related metabolites; however, olanzapine may also cause metabolic disturbances by affecting lipid metabolic pathways.
Collapse
Affiliation(s)
- Si Dai
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Yujun Long
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Jingmei Xiao
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Ying Wang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Xiaoyi Wang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Ping Shao
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Manli Huang
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, China
| | - Yifeng Xu
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200000, China
| | - Fang Liu
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650000, China
| | - Yanqing Tang
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang, Liaoning 110000, China
| | - Xijia Xu
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Brain Hospital, Nanjing, Jiangsu 210000, China
| | - Xiaoli Wu
- Department of Psychiatry, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510000, China
| | - Yingjun Zheng
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510000, China
| | - Jianzhong Mo
- Department of Psychiatry, Changsha County Third Hospital, Changsha, Hunan 410100, China
| | - Jin Yang
- Department of Psychiatry,The Second People's Hospital of Dali Bai Autonomous Prefecture, Dali, Yunnan 671000, China
| | - Jing Huang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Department of Psychiatry, The Third Peoples Hospital of Tongren, Tongren, Guizhou 554300, China.
| | - Rerong Wu
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China.
| |
Collapse
|
3
|
Zeng R, Zhang Y, Shi S, Long X, Zhang H, Wang M, Shi J, Jiang Y, Chen B. Study on the mechanism of Panax notoginseng-Salvia miltiorrhiza herb pair on invigorating blood circulation and eliminating blood stasis by blocking the conversion of arachidonic acid to prostaglandin. J Nat Med 2024; 78:411-426. [PMID: 38261160 DOI: 10.1007/s11418-023-01773-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/10/2023] [Indexed: 01/24/2024]
Abstract
We combined untargeted and targeted metabolomics to explore the mechanism of blood circulation and blood stasis activation in the traditional Chinese herb pair Panax notoginseng-Salvia miltiorrhiza (PS). In this study, the right hind limb of SD rats was struck by a 1 kg weight, causing traumatic blood stasis (TBS) model, then the rats were gavaged with PS (at ratios of 1:0, 0:1, 3:1, 1:1, and 1:3) for 5 consecutive days. At the end of treatment, blood samples were collected for blood rheology and metabolomics analysis, and muscle tissues of injured limbs were used for HE staining and q-PCR analysis. The results showed that different ratios of PS reduced swelling and improved stasis and blood viscosity in the injured limbs of rats, and intervened in metabolism by modulating 11, 11, 17, 15, and 13 differential metabolites, respectively. The PS (3:1) shows the best treatment effect and the most differential metabolites regression. Targeted metabolomics shows that PS (3:1) can increase the content of AA, and reduce the content of PGF2-α by down-regulating the expression of enzymes Ptgs1 and Cbrl12 and up-regulating the expression of enzyme Hpgd. These results suggested that the PS herb pair exerts its blood stasis activating effects by blocking the conversion of arachidonic acid to prostaglandins.
Collapse
Affiliation(s)
- Rui Zeng
- Affiliated Hospital of Integrative Medicine, Nanjing University of Traditional Chinese Medicine, 100 Shizi Street, Nanjing, 210028, China
- Key Research Laboratory of Chinese Medicine Release System, National Institute of Traditional Chinese Medicine, 100 Shizi Street, Nanjing, 210028, China
| | - Yuefan Zhang
- Affiliated Hospital of Integrative Medicine, Nanjing University of Traditional Chinese Medicine, 100 Shizi Street, Nanjing, 210028, China
- Key Research Laboratory of Chinese Medicine Release System, National Institute of Traditional Chinese Medicine, 100 Shizi Street, Nanjing, 210028, China
| | - Shengtong Shi
- Affiliated Hospital of Integrative Medicine, Nanjing University of Traditional Chinese Medicine, 100 Shizi Street, Nanjing, 210028, China
- Key Research Laboratory of Chinese Medicine Release System, National Institute of Traditional Chinese Medicine, 100 Shizi Street, Nanjing, 210028, China
| | - Xianqin Long
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210036, China
| | - Haixia Zhang
- Department of Pharmacy, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, China
| | - Min Wang
- Department of Pharmacy, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, China
| | - Jianfeng Shi
- Affiliated Hospital of Integrative Medicine, Nanjing University of Traditional Chinese Medicine, 100 Shizi Street, Nanjing, 210028, China
| | - Ye Jiang
- Affiliated Hospital of Integrative Medicine, Nanjing University of Traditional Chinese Medicine, 100 Shizi Street, Nanjing, 210028, China
| | - Bin Chen
- Affiliated Hospital of Integrative Medicine, Nanjing University of Traditional Chinese Medicine, 100 Shizi Street, Nanjing, 210028, China.
- Key Research Laboratory of Chinese Medicine Release System, National Institute of Traditional Chinese Medicine, 100 Shizi Street, Nanjing, 210028, China.
| |
Collapse
|
4
|
Montecino-Garrido H, Sepúlveda M, Méndez D, Monroy-Cárdenas M, Alfaro S, González-Avendaño M, Caballero J, Urra FA, Araya-Maturana R, Fuentes E. Assessing mitochondria-targeted acyl hydroquinones on the mitochondrial platelet function and cytotoxic activity: Role of the linker length. Free Radic Biol Med 2023; 208:26-36. [PMID: 37516371 DOI: 10.1016/j.freeradbiomed.2023.07.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/10/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
INTRODUCTION The use of triphenylphosphonium cation (TPP+) linked to phenolic compounds by alkyl chains has a significant relevance as a mitochondrial delivery strategy in biomedicine because it affects mitochondrial bioenergetics in models of noncommunicable diseases such as cancer and cardiovascular-related conditions. Studies indicate that a long alkyl chain (10-12 carbon) increases the mitochondrial accumulation of TPP+-linked drugs. In contrast, other studies show that these compounds are consistently toxic to micromolar concentrations (as observed in platelets). In the present study, we evaluated the in vitro effect of three series of triphenylphosphonium-linked acyl hydroquinones derivates on the metabolism and function of human platelets using 3-9 carbons for the alkyl linker. Those were assessed to determine the role of the length of the alkyl chain linker on platelet toxicity. METHODS Human platelets were exposed in vitro to different concentrations (2-40 μM) of every compound; cellular viability, phosphatidylserine exposition, mitochondrial membrane potential (ΔΨm), intracellular calcium release, and intracellular ROS generation were assessed by flow cytometry. An in silico energetic profile was generated with Umbrella sampling molecular dynamics (MD). RESULTS AND CONCLUSIONS There was an increase in cytotoxic activity directly related to the length of the acyl chain and lipophilicity, as seen by three techniques, and this was consistent with a decrease in ΔΨm. The in silico energetic profiles point out that the permeability of the mitochondrial membrane may be involved in the cytotoxicity of phosphonium salts. This information may be relevant for the design of new TPP+ -based drugs with a safe cardiovascular profile.
Collapse
Affiliation(s)
- Héctor Montecino-Garrido
- Thrombosis and Healthy Aging Research Center, MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics (ACT210097), Medical Technology School, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Universidad de Talca, Talca, Chile
| | - Magdalena Sepúlveda
- Thrombosis and Healthy Aging Research Center, MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics (ACT210097), Medical Technology School, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Universidad de Talca, Talca, Chile
| | - Diego Méndez
- Thrombosis and Healthy Aging Research Center, MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics (ACT210097), Medical Technology School, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Universidad de Talca, Talca, Chile
| | - Matías Monroy-Cárdenas
- Instituto de Química de Recursos Naturales, MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Universidad de Talca, Talca, Chile
| | - Sergio Alfaro
- Centro de Bioinformática, Simulación y Modelado (CBSM), Facultad de Ingeniería, Universidad de Talca, Talca, 3460000, Chile
| | - Mariela González-Avendaño
- Centro de Bioinformática, Simulación y Modelado (CBSM), Facultad de Ingeniería, Universidad de Talca, Talca, 3460000, Chile
| | - Julio Caballero
- Centro de Bioinformática, Simulación y Modelado (CBSM), Facultad de Ingeniería, Universidad de Talca, Talca, 3460000, Chile
| | - Félix A Urra
- Laboratory of Metabolic Plasticity and Bioenergetics, Program of Molecular and Clinical Pharmacology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Santiago, Chile
| | - Ramiro Araya-Maturana
- Instituto de Química de Recursos Naturales, MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Universidad de Talca, Talca, Chile.
| | - Eduardo Fuentes
- Thrombosis and Healthy Aging Research Center, MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics (ACT210097), Medical Technology School, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Universidad de Talca, Talca, Chile.
| |
Collapse
|
5
|
Xu T, Gao H, Rojas OJ, Dai H. Silver Nanoparticle-Embedded Conductive Hydrogels for Electrochemical Sensing of Hydroquinone. Polymers (Basel) 2023; 15:polym15112424. [PMID: 37299223 DOI: 10.3390/polym15112424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/16/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
In this work, a conductive hydrogel was successfully synthesized, taking advantage of the high number density of active amino and hydroxyl groups in carboxymethyl chitosan and sodium carboxymethyl cellulose. These biopolymers were effectively coupled via hydrogen bonding with the nitrogen atoms of the heterocyclic rings of conductive polypyrrole. The inclusion of another biobased polymer, sodium lignosulfonate (LS), was effective to achieve highly efficient adsorption and in-situ reduction of silver ions, leading to silver nanoparticles that were embedded in the hydrogel network and used to further improve the electro-catalytic efficiency of the system. Doping of the system in the pre-gelled state led to hydrogels that could be easily attached to the electrodes. The as-prepared silver nanoparticle-embedded conductive hydrogel electrode exhibited excellent electro-catalytic activity towards hydroquinone (HQ) present in a buffer solution. At the optimum conditions, the oxidation current density peak of HQ was linear over the 0.1-100 μM concentration range, with a detection limit as low as 0.12 μM (signal-to-noise of 3). The relative standard deviation of the anodic peak current intensity was 1.37% for eight different electrodes. After one week of storage in a 0.1 M Tris-HCl buffer solution at 4 °C, the anodic peak current intensity was 93.4% of the initial current intensity. In addition, this sensor showed no interference activity, while the addition of 30 μM CC, RS, or 1 mM of different inorganic ions does not have a significant impact on the test results, enabling HQ quantification in actual water samples.
Collapse
Affiliation(s)
- Tingting Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
- Bioproducts Institute, Departments of Chemical and Biological Engineering, Chemistry and Wood Science, The University of British Columbia, 2360 East Mall, Vancouver, BC V6T 1Z3, Canada
| | - Huanli Gao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Orlando J Rojas
- Bioproducts Institute, Departments of Chemical and Biological Engineering, Chemistry and Wood Science, The University of British Columbia, 2360 East Mall, Vancouver, BC V6T 1Z3, Canada
| | - Hongqi Dai
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
6
|
Zhang Z, Yi G, Li P, Wang X, Wang X, Zhang C, Zhang Y, Sun Q. Eu/GO/PbO2 composite based anode for highly efficient electrochemical oxidation of hydroquinone. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
7
|
Fofana S, Delporte C, Calvo Esposito R, Ouédraogo M, Van Antwerpen P, Guissou IP, Semdé R, Mathieu V. In Vitro Antioxidant and Anticancer Properties of Various E. senegalensis Extracts. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27082583. [PMID: 35458781 PMCID: PMC9025838 DOI: 10.3390/molecules27082583] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 12/18/2022]
Abstract
Although Erythrina senegalensis is a plant widely used in traditional medicine in sub-Saharan Africa, its biological properties have been poorly investigated to date. We first characterized by conventional reactions the composition of several stem bark extracts and evaluated in acellular and cellular assays their pro- or antioxidant properties supported by their high phenolic and flavonoid content, particularly with the methanolic extract. The pro- or antioxidant effects observed did not correlate with their IC50 concentrations against five cancer cell lines determined by MTT assay. Indeed, the CH2Cl2 extract and its ethyl acetate (EtOAc) subfraction appeared more potent although they harbored lower pro- or antioxidant effects. Nevertheless, at equipotent concentration, both extracts induced ER- and mitochondria-derived vacuoles observed by fluorescent microscopy that further led to non-apoptotic cell death. LC coupled to high resolution MS investigations have been performed to identify chemical compounds of the extracts. These investigations highlighted the presence of compounds formerly isolated from E. senegalensis including senegalensein that could be retrieved only in the EtOAc subfraction but also thirteen other compounds, such as 16:3-Glc-stigmasterol and hexadecanoic acid, whose anticancer properties have been previously reported. Nineteen other compounds remain to be identified. In conclusion, E. senegalensis appeared rich in compounds with antioxidant and anticancer properties, supporting its use in traditional practice and its status as a species of interest for further investigations in anticancer drug research.
Collapse
Affiliation(s)
- Souleymane Fofana
- Laboratory of Drug Sciences, Higher Institute of Health Sciences (INSSA), Nazi BONI University, Bobo-Dioulasso 01 P.O. Box 1091, Burkina Faso;
| | - Cédric Delporte
- RD3—Pharmacognosy, Bioanalysis and Drug Discovery Unit and Analytical Platform, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium; (C.D.); (P.V.A.)
| | - Rafaèle Calvo Esposito
- Protein Chemistry Unit, Department of General Chemistry I, Faculty of Medicine, Université Libre de Bruxelles, Campus Erasme (CP 609), Route de Lennik, 1070 Brussels, Belgium;
- Department of Pharmacotherapy and Pharmaceuticals, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium
| | - Moussa Ouédraogo
- Laboratory of Drug Development (LADME), Center of Training, Research and Expertises of Pharmaceutical Sciences (CEA-CFOREM), Training and Research Unit, Health Sciences, Joseph KI-ZERBO University, Ouagadougou 03 P.O. Box 7021, Burkina Faso; (M.O.); (R.S.)
| | - Pierre Van Antwerpen
- RD3—Pharmacognosy, Bioanalysis and Drug Discovery Unit and Analytical Platform, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium; (C.D.); (P.V.A.)
| | - Innocent Pierre Guissou
- Faculty of Health Sciences, Saint Thomas d’Aquin University, Ouagadougou 06 P.O. Box 10212, Burkina Faso;
| | - Rasmané Semdé
- Laboratory of Drug Development (LADME), Center of Training, Research and Expertises of Pharmaceutical Sciences (CEA-CFOREM), Training and Research Unit, Health Sciences, Joseph KI-ZERBO University, Ouagadougou 03 P.O. Box 7021, Burkina Faso; (M.O.); (R.S.)
| | - Véronique Mathieu
- Department of Pharmacotherapy and Pharmaceuticals, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium
- ULB Cancer Research Center, Université libre de Bruxelles (ULB), 1050 Brussels, Belgium
- Correspondence: ; Tel.: +32-478-31-73-88
| |
Collapse
|
8
|
Omar A, Arken A, Wali A, Gao Y, Aisa HA, Yili A. Effect of phenolic compound-protein covalent conjugation on the physicochemical, anti-inflammatory, and antioxidant activities of silk sericin. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
9
|
Qian J, Liu XR, Li Q, Wang B, Lin KW, Deng T, Huang QF, Xu SQ, Wang HF, Wu XX, Li N, Yi Y, Peng JC, Huang Y. Anthrahydroquinone-2,6-disulfonate alleviates paraquat-induced kidney injury via the apelin-APJ pathway in rats. Asian Pac J Trop Biomed 2022. [DOI: 10.4103/2221-1691.350181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
10
|
Electrochemical oxidation of hydroquinone using Eu-doped PbO2 electrodes: Electrode characterization, influencing factors and degradation pathways. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115493] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Anti-Platelet Aggregation and Anti-Cyclooxygenase Activities for a Range of Coffee Extracts ( Coffea arabica). Molecules 2020; 26:molecules26010010. [PMID: 33375091 PMCID: PMC7792775 DOI: 10.3390/molecules26010010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 01/24/2023] Open
Abstract
Coffee is rich in caffeine (CF), chlorogenic acid (CGA) and phenolics. Differing types of coffee beverages and brewing procedures may result in differences in total phenolic contents (TPC) and biological activities. Inflammation and increases of platelet activation and aggregation can lead to thrombosis. We focused on determining the chemical composition, antioxidant activity and inhibitory effects on agonist-induced platelet aggregation and cyclooxygenase (COX) of coffee beverages in relation to their preparation method. We prepared instant coffee and brewed coffee beverages using drip, espresso, and boiling techniques. Coffee extracts were assayed for their CF and CGA contents using HPLC, TPC using colorimetry, platelet aggregation with an aggregometer, and COX activity using ELISA. The findings have shown all coffee extracts, except the decaffeinated types, contained nearly equal amounts of CF, CGA, and TPC. Inhibitory effects of coffee extracts on platelet aggregation differed depending on the activation pathways induced by different agonists. All espresso, drip and boiled coffee extracts caused dose dependent inhibition of platelet aggregation induced by ADP, collagen, epinephrine, and arachidonic acid (ARA). The most marked inhibition was seen at low doses of collagen or ARA. Espresso and drip extracts inhibited collagen-induced platelet aggregation more than purified caffeine or CGA. Espresso, boiled and drip coffee extracts were also a more potent inhibitors of COX-1 and COX-2 than purified caffeine or CGA. We conclude that inhibition of platelet aggregation and COX-1 and COX-2 may contribute to anti-platelet and anti-inflammatory effects of espresso and drip coffee extracts.
Collapse
|
12
|
Méndez D, Donoso-Bustamante V, Pablo Millas-Vargas J, Pessoa-Mahana H, Araya-Maturana R, Fuentes E. Synthesis and pharmacological evaluation of acylhydroquinone derivatives as potent antiplatelet agents. Biochem Pharmacol 2020; 183:114341. [PMID: 33197432 DOI: 10.1016/j.bcp.2020.114341] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 12/20/2022]
Abstract
Platelets are the smallest blood cells, and their activation (platelet cohesion or aggregation) at sites of vascular injury is essential for thrombus formation. Since the use of antiplatelet therapy is an unsolved problem, there are now focused and innovative efforts to develop novel antiplatelet compounds. In this context, we assessed the antiplatelet effect of an acylhydroquinone series, synthesized by Fries rearrangement under microwave irradiation, evaluating the effect of diverse acyl chain lengths, their chlorinated derivatives, and their dimethylated derivatives both in the aromatic ring and also the effect of the introduction of a bromine atom at the terminus of the acyl chain. Findings from a primary screening of cytotoxic activity on platelets by lactate dehydrogenase assay identified 19 non-toxic compounds from the 27 acylhydroquinones evaluated. A large number of them showed IC50 values less than 10 µM acting against specific pathways of platelet aggregation. The highest activity was obtained with compound 38, it exhibited sub-micromolar IC50 of 0.98 ± 0.40, 1.10 ± 0.26, 3.98 ± 0.46, 6.79 ± 3.02 and 42.01 ± 3.48 µM against convulxin-, collagen-, TRAP-6-, PMA- and arachidonic acid-induced platelet aggregation, respectively. It also inhibited P-selectin and granulophysin expression. We demonstrated that the antiplatelet mechanism of compound 38 was through a decrease in a central target in human platelet activation as in mitochondrial function, and this could modulate a lower response of platelets to activating agonists. The results of this study show that the chemical space around ortho-carbonyl hydroquinone moiety is a rich source of biologically active compounds, signaling that the acylhydroquinone scaffold has a promising role in antiplatelet drug research.
Collapse
Affiliation(s)
- Diego Méndez
- Thrombosis Research Center, Medical Technology School, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Universidad de Talca, Talca, Chile
| | | | | | - Hernán Pessoa-Mahana
- Departamento de Química Orgánica y Fisicoquímica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Chile
| | | | - Eduardo Fuentes
- Thrombosis Research Center, Medical Technology School, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Universidad de Talca, Talca, Chile.
| |
Collapse
|
13
|
Gomathinayagam R, Ha JH, Jayaraman M, Song YS, Isidoro C, Dhanasekaran DN. Chemopreventive and Anticancer Effects of Thymoquinone: Cellular and Molecular Targets. J Cancer Prev 2020; 25:136-151. [PMID: 33033708 PMCID: PMC7523033 DOI: 10.15430/jcp.2020.25.3.136] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 12/11/2022] Open
Abstract
Thymoquinone (TQ) is a bioactive component derived from the seeds of Nigella sativa that are commonly as black cumin. Evidences indicate that the medicinal properties of TQ have been recognized for more than 2000 years. TQ has been shown to possess potent chemopreventive properties that include anti-inflammatory and anti-neoplastic activities. Recent studies have unraveled the multiple mechanisms through which TQ exerts its chemopreventive and anticancer activity in different cancer cells in a contextual manner. The present review aims to provide a brief compendium on the molecular mechanisms through which TQ inhibits signaling pathways underlying cancer genesis, progression, and metastasis.
Collapse
Affiliation(s)
- Rohini Gomathinayagam
- Stephenson Cancer Center, Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Ji Hee Ha
- Stephenson Cancer Center, Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Muralidharan Jayaraman
- Stephenson Cancer Center, Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Yong Sang Song
- Department of Obstetrics and Gynecology, Cancer Research Institute, College of Medicine, Seoul National University, Seoul, Korea
| | - Ciro Isidoro
- Laboratory of Molecular Pathology and NanoBioImaging, Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Danny N Dhanasekaran
- Stephenson Cancer Center, Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
14
|
Monroy-Cárdenas M, Méndez D, Trostchansky A, Martínez-Cifuentes M, Araya-Maturana R, Fuentes E. Synthesis and Biological Evaluation of Thio-Derivatives of 2-Hydroxy-1,4-Naphthoquinone (Lawsone) as Novel Antiplatelet Agents. Front Chem 2020; 8:533. [PMID: 32850615 PMCID: PMC7417813 DOI: 10.3389/fchem.2020.00533] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 05/25/2020] [Indexed: 12/21/2022] Open
Abstract
We designed and synthesized in water, using conventional heating and microwave irradiation, new thio-derivatives of 2-hydroxy-1,4-naphthoquinone, a naturally occurring pigment known as lawsone or hennotannic acid, thus improving their antiplatelet activity with relevance to their potential future use in thrombus formation treatment. The structure-activity relationship showed that the thiophenyl moiety enhances the antiplatelet activity. Moreover, the position and nature of the substituent at the phenyl ring have a key effect on the observed biological activity. Compound 4 (2-((4-bromophenyl)thio)-3-hydroxynaphthalene-1,4-dione) was the most active derivative, presenting IC50 values for platelet aggregation inhibition of 15.03 ± 1.52 μM for TRAP-6, and 5.58 ± 1.01 μM for collagen. Importantly, no cytotoxicity was observed. Finally, we discussed the structure-activity relationships of these new lawsone thio-derivatives on inhibition of TRAP-6- and collagen-induced platelet aggregation.
Collapse
Affiliation(s)
- Matías Monroy-Cárdenas
- Instituto de Química de Recursos Naturales, Programa de Investigación Asociativa en Cáncer Gástrico (PIA-CG), Universidad de Talca, Talca, Chile
| | - Diego Méndez
- Department of Clinical Biochemistry and Immunohaematology, Thrombosis Research Center, Medical Technology School, Faculty of Health Sciences, Universidad de Talca, Talca, Chile
| | - Andrés Trostchansky
- Departamento de Bioquimica and Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Maximiliano Martínez-Cifuentes
- Centro Integrativo de Biología y Química Aplicada (CIBQA), Escuela de Tecnología Médica, Facultad de Salud, Universidad Bernardo O'Higgins, Santiago, Chile
| | - Ramiro Araya-Maturana
- Instituto de Química de Recursos Naturales, Programa de Investigación Asociativa en Cáncer Gástrico (PIA-CG), Universidad de Talca, Talca, Chile
| | - Eduardo Fuentes
- Department of Clinical Biochemistry and Immunohaematology, Thrombosis Research Center, Medical Technology School, Faculty of Health Sciences, Universidad de Talca, Talca, Chile
| |
Collapse
|
15
|
Méndez D, Urra FA, Millas-Vargas JP, Alarcón M, Rodríguez-Lavado J, Palomo I, Trostchansky A, Araya-Maturana R, Fuentes E. Synthesis of antiplatelet ortho-carbonyl hydroquinones with differential action on platelet aggregation stimulated by collagen or TRAP-6. Eur J Med Chem 2020; 192:112187. [PMID: 32155530 DOI: 10.1016/j.ejmech.2020.112187] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/23/2020] [Accepted: 02/24/2020] [Indexed: 02/07/2023]
Abstract
Cardiovascular diseases are the leading cause of death in the world. Platelets have a major role in cardiovascular events as they bind to the damaged endothelium activating and forming thrombi. Although some hydroquinone scaffold-containing compounds have known antiplatelet activities, currently there is a lack of evidence on the antiplatelet activity of hydroquinones carrying electron attractor groups. In this work, we evaluate the antiplatelet effect of a series of ortho-carbonyl hydroquinone derivatives on cytotoxicity and function of human platelets, using collagen and thrombin receptor activator peptide 6 (TRAP-6) as agonists. Our structure-activity relationship study shows that gem-diethyl/methyl substitutions and the addition/modifications of the third ring of ortho-carbonyl hydroquinone scaffold influence on the selective index (IC50 TRAP-6/IC50 Collagen) and the inhibitory capacity of platelet aggregation. Compounds 3 and 8 inhibit agonist-induced platelet aggregation in a non-competitive manner with IC50 values of 1.77 ± 2.09 μM (collagen) and 11.88 ± 4.59 μM (TRAP-6), respectively and show no cytotoxicity. Both compounds do not affect intracellular calcium levels and mitochondrial bioenergetics. Consistently, they reduce the expression of P-selectin, activation of glycoprotein IIb/IIIa, and release of adenosine triphosphate and CD63 from platelet. Our findings may be used for further development of new drugs in platelet-related thrombosis diseases.
Collapse
Affiliation(s)
- Diego Méndez
- Thrombosis Research Center, Medical Technology School, Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Universidad de Talca, Talca, Chile
| | - Félix A Urra
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile; Network for Snake Venom Research and Drug Discovery, Santiago, Chile.
| | - Juan Pablo Millas-Vargas
- Instituto de Química de Recursos Naturales, Programa de Investigación Asociativa en Cáncer Gástrico (PIA-CG), Universidad de Talca, Talca, Chile
| | - Marcelo Alarcón
- Thrombosis Research Center, Medical Technology School, Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Universidad de Talca, Talca, Chile
| | - Julio Rodríguez-Lavado
- Departamento de Química Orgánica y Fisicoquímica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Iván Palomo
- Thrombosis Research Center, Medical Technology School, Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Universidad de Talca, Talca, Chile
| | - Andrés Trostchansky
- Departamento de Bioquímica and Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Ramiro Araya-Maturana
- Thrombosis Research Center, Medical Technology School, Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Universidad de Talca, Talca, Chile; Instituto de Química de Recursos Naturales, Programa de Investigación Asociativa en Cáncer Gástrico (PIA-CG), Universidad de Talca, Talca, Chile; Network for Snake Venom Research and Drug Discovery, Santiago, Chile.
| | - Eduardo Fuentes
- Thrombosis Research Center, Medical Technology School, Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Universidad de Talca, Talca, Chile.
| |
Collapse
|
16
|
Chang MC, Chang HH, Hsieh WC, Huang WL, Lian YC, Jeng PY, Wang YL, Yeung SY, Jeng JH. Effects of transforming growth factor-β1 on plasminogen activation in stem cells from the apical papilla: role of activating receptor-like kinase 5/Smad2 and mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) signalling. Int Endod J 2020; 53:647-659. [PMID: 31955434 DOI: 10.1111/iej.13266] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 01/13/2020] [Indexed: 12/16/2022]
Abstract
AIM To study the effects of TGF-β1 on the plasminogen activation (PA) system of stem cells from the apical papilla (SCAP) and its signalling. METHODOLOGY SCAP cells were isolated from the apical papilla of immature permanent teeth extracted for orthodontic reasons. They were exposed to various concentration of TGF-β1 with/without pretreatment and coincubation by SB431542 (ALK/Smad2/3 inhibitor), or U0126 (MEK/ERK inhibitor). MTT assay, Western blotting and enzyme-linked immunosorbent assay (ELISA) were used to detect their effects on cell viability, and the protein expression of plasminogen activator inhibitor-1 (PAI-1), urokinase-type plasminogen activator (uPA), uPA receptor (uPAR) and their secretion. The paired Student's t-test was used for statistical analysis. RESULTS TGF-β1 significantly stimulated PAI-1 and soluble uPAR (suPAR) secretion of SCAP cells (P < 0.05), whereas uPA secretion was inhibited. Accordingly, TGF-β1 induced both PAI-1 and uPAR protein expression of SCAP cells. SB431542 (an ALK5/Smad2/3 inhibitor) pretreatment and coincubation prevented the TGF-β1-induced PAI-1 and uPAR of SCAP. U0126 attenuated the TGF-β1-induced expression/secretion of uPAR, but not PAI-1 in SCAP. SB431542 reversed the TGF-β1-induced decline of uPA. CONCLUSIONS TGF-β1 may affect the repair/regeneration activities of SCAP via differential increase or decrease of PAI-1, uPA and uPAR. These effects induced by TGF-β1 are associated with ALK5/Smad2/3 and MEK/ERK activation. Elucidation the signalling pathways and effects of TGF-β1 is useful for treatment of immature teeth with open apex by revascularization/revitalization procedures and tissue repair/regeneration.
Collapse
Affiliation(s)
- M C Chang
- Biomedical Science Team and Research Center for Industry of Human Ecology, Chang Gung University of Science and Technology, Taoyuan City, Taiwan.,Department of Dentistry, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - H H Chang
- Laboratory of Dental Pharmacology, Toxicology and Material Biocompatibility, Graduate Institute of Clinical Dentistry, National Taiwan University Medical College, Taipei, Taiwan.,Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - W C Hsieh
- Laboratory of Dental Pharmacology, Toxicology and Material Biocompatibility, Graduate Institute of Clinical Dentistry, National Taiwan University Medical College, Taipei, Taiwan.,Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - W L Huang
- Department of Dentistry, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Y C Lian
- Department of Dentistry, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - P Y Jeng
- Laboratory of Dental Pharmacology, Toxicology and Material Biocompatibility, Graduate Institute of Clinical Dentistry, National Taiwan University Medical College, Taipei, Taiwan.,Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - Y L Wang
- Laboratory of Dental Pharmacology, Toxicology and Material Biocompatibility, Graduate Institute of Clinical Dentistry, National Taiwan University Medical College, Taipei, Taiwan.,Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - S Y Yeung
- Department of Dentistry, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - J H Jeng
- Laboratory of Dental Pharmacology, Toxicology and Material Biocompatibility, Graduate Institute of Clinical Dentistry, National Taiwan University Medical College, Taipei, Taiwan.,Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
17
|
Chang HH, Shih WC, Wang YL, Tsai YL, Chen YJ, Chang MC, Jeng JH. Cytotoxicity and genotoxicity of DMABEE, a co-photoinitiator of resin polymerization, on CHO-K1 cells: Role of redox and carboxylesterase. J Biomed Mater Res B Appl Biomater 2019; 108:2088-2098. [PMID: 31880385 DOI: 10.1002/jbm.b.34547] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 10/19/2019] [Accepted: 12/08/2019] [Indexed: 01/04/2023]
Abstract
The 4-dimethylaminobenzoic acid ethyl ester (DMABEE) is an important co-initiator for resin polymerization in dental resinous materials. As a radical forming chemical with high lipophilicity, the genotoxicity and cytotoxicity of DMABEE deserve prudent investigation. In this study, we found that DMABEE reduced the viability and proliferation of Chinese hamster ovary (CHO-K1) cells in a dose-dependent manner, and altered cell morphology at higher concentrations. G0/G1 cell cycle arrest was induced by DMABEE at 0.25-0.75 mM, and cell proportion of sub-G0/G1 phase was significantly elevated at 1 mM while cell apoptosis was observed. Genotoxic effect was noted when cells were treated by 0.1 mM DMABEE, as revealed by increase of micronucleus formation. Reactive oxygen species overproduction was observed as cells treated with 0.75 and 1 mM, while elevation of intracellular glutathione was noticeable since 0.1 mM. Contrary to our expectation, pretreatment by N-acetyl-l-cysteine enhanced the toxicity of DMABEE on CHO-K1 cells. Catalase mildly reduced the toxic effect and carboxylesterase showed obvious ability to reverse the toxicity of DMABEE. These findings highlight the mechanism of DMABEE toxicity and provide clues for safety improvement of its application in clinical dental treatment.
Collapse
Affiliation(s)
- Hsiao-Hua Chang
- Department of Endodontics, School of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - Wen-Chih Shih
- Department of Endodontics, School of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - Yin-Lin Wang
- Department of Endodontics, School of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - Yi-Ling Tsai
- Department of Endodontics, School of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - Yi-Jane Chen
- Department of Endodontics, School of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - Mei-Chi Chang
- Biomedical Science Team, Chang Gung University of Science and Technology, Taoyuan, Taiwan
- Department of Dentistry, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Jiiang-Huei Jeng
- Department of Endodontics, School of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
18
|
Chang MC, Pan YH, Wu HL, Lu YJ, Liao WC, Yeh CY, Lee JJ, Jeng JH. Stimulation of MMP-9 of oral epithelial cells by areca nut extract is related to TGF-β/Smad2-dependent and -independent pathways and prevented by betel leaf extract, hydroxychavicol and melatonin. Aging (Albany NY) 2019; 11:11624-11639. [PMID: 31831717 PMCID: PMC6932916 DOI: 10.18632/aging.102565] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 11/20/2019] [Indexed: 04/13/2023]
Abstract
BACKGROUND There are 200-600 million betel quid (BQ) chewers in the world. BQ increases oral cancer risk. Matrix metalloproteinase-9 (MMP-9) is responsible for matrix degradation, cancer invasion and metastasis. Whether areca nut extract (ANE), a BQ component, stimulates MMP-9 secretion, and the related signaling pathways awaits investigation. RESULTS ANE (but not arecoline) stimulated MMP-9 production of gingival keratinocytes and SAS cancer epithelial cells. ANE stimulated TGF-β1, p-Smad2, and p-TAK1 protein expression. ANE-induced MMP-9 production/expression in SAS cells can be attenuated by SB431542 (ALK5/Smad2 inhibitor), 5Z-7-Oxozeaenol (TAK1 inhibitor), catalase, PD153035 (EGFR tyrosine kinase inhibitor), AG490 (JAK inhibitor), U0126 (MEK/ERK inhibitor), LY294002 (PI3K/Akt inhibitor), betel leaf (PBL) extract, and hydroxychavicol (HC, a PBL component), and melatonin, but not by aspirin. CONCLUSIONS AN components contribute to oral carcinogenesis by stimulating MMP-9 secretion, thus enhancing tumor invasion/metastasis. These events are related to reactive oxygen species, TGF-β1, Smad2-dependent and -independent signaling, but not COX. These signaling molecules can be biomarkers of BQ carcinogenesis. PBL, HC and melatonin and other targeting therapy can be used for oral cancer treatment. METHODS ANE-induced MMP-9 expression/secretion of oral epithelial cells and related TGF-β1, Smad-dependent and -independent signaling were studied by MTT assay, RT-PCR, western blotting, immunofluorescent staining, and ELISA.
Collapse
Affiliation(s)
- Mei-Chi Chang
- Chang-Gung University of Science and Technology, Kwei-Shan, Taoyuan, Taiwan
- Department of Dentistry, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Yu-Hwa Pan
- Department of Dentistry, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Hsyueh-Liang Wu
- Department of Chemistry, National Taiwan Normal University, Taipei, Taiwan
| | - Yi-Jie Lu
- Graduate Institute of Oral Biology, National Taiwan University Medical College, Taipei, Taiwan
| | - Wan-Chuen Liao
- School of Dentistry, National Taiwan University Medical College, and Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - Chien-Yang Yeh
- School of Dentistry, National Taiwan University Medical College, and Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - Jang-Jaer Lee
- School of Dentistry, National Taiwan University Medical College, and Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - Jiiang-Huei Jeng
- School of Dentistry, National Taiwan University Medical College, and Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|