1
|
Wang X, Zhang C, Zhao G, Yang K, Tao L. Obesity and lipid metabolism in the development of osteoporosis (Review). Int J Mol Med 2024; 54:61. [PMID: 38818830 PMCID: PMC11188977 DOI: 10.3892/ijmm.2024.5385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 04/10/2024] [Indexed: 06/01/2024] Open
Abstract
Osteoporosis is a common bone metabolic disease that causes a heavy social burden and seriously threatens life. Improving osteogenic capacity is necessary to correct bone mass loss in the treatment of osteoporosis. Osteoblasts are derived from the differentiation of bone marrow mesenchymal stem cells, a process that opposes adipogenic differentiation. The peroxisome proliferator‑activated receptor γ and Wnt/β‑catenin signaling pathways mediate the mutual regulation of osteogenesis and adipogenesis. Lipid substances play an important role in the occurrence and development of osteoporosis. The content and proportion of lipids modulate the activity of immunocytes, mainly macrophages, and the secretion of inflammatory factors, such as IL‑1, IL‑6 and TNF‑α. These inflammatory effectors increase the activity and promote the differentiation of osteoclasts, which leads to bone imbalance and stronger bone resorption. Obesity also decreases the activity of antioxidases and leads to oxidative stress, thereby inhibiting osteogenesis. The present review starts by examining the bidirectional differentiation of BM‑MSCs, describes in detail the mechanism by which lipids affect bone metabolism, and discusses the regulatory role of inflammation and oxidative stress in this process. The review concludes that a reasonable adjustment of the content and proportion of lipids, and the alleviation of inflammatory storms and oxidative damage induced by lipid imbalances, will improve bone mass and treat osteoporosis.
Collapse
Affiliation(s)
- Xiaochuan Wang
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Chi Zhang
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Guang Zhao
- Department of Orthopedics, Fourth Hospital of China Medical University, Shenyang, Liaoning 110165, P.R. China
| | - Keda Yang
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Lin Tao
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
2
|
González-Sánchez GD, Granados-López AJ, López-Hernández Y, Robles MJG, López JA. miRNAs as Interconnectors between Obesity and Cancer. Noncoding RNA 2024; 10:24. [PMID: 38668382 PMCID: PMC11055034 DOI: 10.3390/ncrna10020024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/21/2024] [Accepted: 04/04/2024] [Indexed: 04/29/2024] Open
Abstract
Obesity and cancer are a concern of global interest. It is proven that obesity may trigger the development or progression of some types of cancer; however, the connection by non-coding RNAs has not been totally explored. In the present review, we discuss miRNAs and lncRNAs dysregulation involved in obesity and some cancers, shedding light on how these conditions may exacerbate one another through the dysregulation of ncRNAs. lncRNAs have been reported as regulating microRNAs. An in silico investigation of lncRNA and miRNA interplay is presented. Our investigation revealed 44 upregulated and 49 downregulated lncRNAs in obesity and cancer, respectively. miR-375, miR-494-3p, miR-1908, and miR-196 were found interacting with 1, 4, 4 and 4 lncRNAs, respectively, which are involved in PPARγ cell signaling regulation. Additionally, miR-130 was found to be downregulated in obesity and reported as modulating 5 lncRNAs controlling PPARγ cell signaling. Similarly, miR-128-3p and miR-143 were found to be downregulated in obesity and cancer, interacting with 5 and 4 lncRNAs, respectively, associated with MAPK cell signaling modulation. The delicate balance between miRNA and lncRNA expression emerges as a critical determinant in the development of obesity-associated cancers, presenting these molecules as promising biomarkers. However, additional and deeper studies are needed to reach solid conclusions about obesity and cancer connection by ncRNAs.
Collapse
Affiliation(s)
- Grecia Denisse González-Sánchez
- Doctorate in Biosciences, University Center of Los Altos, University of Guadalajara, Tepatitlán de Morelos C.P. 47620, Mexico;
| | - Angelica Judith Granados-López
- Laboratory of microRNAs and Cancer, Academic Unit of Biological Sciences, Autonomous University of Zacatecas “Francisco García Salinas”, Zacatecas C.P. 98066, Mexico;
| | - Yamilé López-Hernández
- Laboratory of Proteomics and Metabolomics, Cátedras-CONACYT, Academic Unit of Biological Sciences, Autonomous University of Zacatecas “Francisco García Salinas”, Zacatecas C.P. 98066, Mexico;
| | - Mayra Judith García Robles
- Biotechnology Department of the Polytechnic, University of Zacatecas, Fresnillo, Zacatecas C.P. 99059, Mexico
| | - Jesús Adrián López
- Laboratory of microRNAs and Cancer, Academic Unit of Biological Sciences, Autonomous University of Zacatecas “Francisco García Salinas”, Zacatecas C.P. 98066, Mexico;
| |
Collapse
|
3
|
Desgrouas C, Thalheim T, Cerino M, Badens C, Bonello-Palot N. Perilipin 1: a systematic review on its functions on lipid metabolism and atherosclerosis in mice and humans. Cardiovasc Res 2024; 120:237-248. [PMID: 38214891 DOI: 10.1093/cvr/cvae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/12/2023] [Accepted: 10/27/2023] [Indexed: 01/13/2024] Open
Abstract
The function of perilipin 1 in human metabolism was recently highlighted by the description of PLIN1 variants associated with various pathologies. These include severe familial partial lipodystrophy and early onset acute coronary syndrome. Additionally, certain variants have been reported to have a protective effect on cardiovascular diseases. The role of this protein remains controversial in mice and variant interpretation in humans is still conflicting. This literature review has two primary objectives (i) to clarify the function of the PLIN1 gene in lipid metabolism and atherosclerosis by examining functional studies performed in cells (adipocytes) and mice and (ii) to understand the impact of PLIN1 variants identified in humans based on the variant's location within the protein and the type of variant (missense or frameshift). To achieve these objectives, we conducted an extensive analysis of the relevant literature on perilipin 1, its function in cellular models and mice, and the consequences of its mutations in humans. We also utilized bioinformatics tools and consulted the Human Genetics Cardiovascular Disease Knowledge Portal to enhance the pathogenicity assessment of PLIN1 missense variants.
Collapse
Affiliation(s)
- Camille Desgrouas
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, Faculte de médecine, 27 Bd Jean Moulin 13005 Marseille, France
| | - Tabea Thalheim
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, Faculte de médecine, 27 Bd Jean Moulin 13005 Marseille, France
| | - Mathieu Cerino
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, Faculte de médecine, 27 Bd Jean Moulin 13005 Marseille, France
- AP-HM, Service de Biochimie, Hôpital de la Timone 264 rue Saint Pierre 13005 Marseille, France
| | - Catherine Badens
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, Faculte de médecine, 27 Bd Jean Moulin 13005 Marseille, France
- AP-HM, Service de Biochimie, Hôpital de la Timone 264 rue Saint Pierre 13005 Marseille, France
- Département de Génétique Médicale, APHM, Hôpital Timone Enfants, Hôpital de la Timone 264 rue Saint Pierre 13005 Marseille, France
| | - Nathalie Bonello-Palot
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, Faculte de médecine, 27 Bd Jean Moulin 13005 Marseille, France
- Département de Génétique Médicale, APHM, Hôpital Timone Enfants, Hôpital de la Timone 264 rue Saint Pierre 13005 Marseille, France
| |
Collapse
|
4
|
Yi X, Wan X, Khan MA, Sun X, Wang Z, Chen K, Peng L. Expression Analysis of circRNAs in Human Adipogenesis. Diabetes Metab Syndr Obes 2024; 17:45-54. [PMID: 38192493 PMCID: PMC10771721 DOI: 10.2147/dmso.s381603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/12/2023] [Indexed: 01/10/2024] Open
Abstract
Purpose Adipogenesis is one of the major pathways for generating obesity or overweight that can cause a range of metabolic disorders. Circular RNAs (circRNAs), a specific type of RNAs, have a significant influence on metabolic disorders. This study aims to find differentially expressed circRNAs (DECs) during human subcutaneous adipose tissue (SATs) adipogenesis. Patients and Methods The human adipose tissue-derived stromal cells (hADSCs) were isolated from human SATs (n = 3), and then induced into adipocytes. Total RNAs were extracted from hADSCs and adipocytes, and he DECs were detected using circRNA microarray. The GO and KEGG pathways of DECs were analyzed by bioinformatic methods, and partial DECs were further validated by quantitative polymerase chain reaction (qPCR). Results Our study detected a total of 1987 DECs, among which, 1134 were found upregulated and 853 were downregulated. GO analysis showed that the upregulated DECs have catalytic activity in intracellular organelle and cytoplasms, whereas downregulated DECs are enriched in organelle lumen, and are involved in positive regulation of developmental process. In addition, pathway results demonstrated that upregulated DECs are involved in platinum drug resistance and cellular senescence, and downregulated DECs are enriched in proteoglycans in cancer and focal adhesion pathway. Two circRNAs, namely has_circ_0001600 and has_circ_0001947 were validated to be significantly upregulated in adipocytes compared to hADSCs. Conclusion Our study explored DECs between hADSCs derived from SATs and adipocytes, and report that two circRNAs named has_circ_0001600 and has_circ_0001947 might be important factors involved in human adipogenesis, however, the molecular mechanism should be further explored.
Collapse
Affiliation(s)
- Xuan Yi
- Department of Endocrinology, The Third Xiangya Hospital of Central South University, Changsha, People’s Republic of China
| | - Xinxing Wan
- Department of Endocrinology, The Third Xiangya Hospital of Central South University, Changsha, People’s Republic of China
| | - Md Asaduzzaman Khan
- Research Division, Nature Study Society of Bangladesh, Dhaka, 1000, Bangladesh
- Pulmonary Department, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, 02118, USA
| | - Xiaoying Sun
- Department of Endocrinology, The Third Xiangya Hospital of Central South University, Changsha, People’s Republic of China
| | - Zhouqi Wang
- Department of Endocrinology, The Third Xiangya Hospital of Central South University, Changsha, People’s Republic of China
| | - Ke Chen
- Department of Endocrinology, The Third Xiangya Hospital of Central South University, Changsha, People’s Republic of China
| | - Lin Peng
- Department of Nephrology, The First Hospital of Changsha, Changsha, People’s Republic of China
| |
Collapse
|
5
|
Luo M, Wang L, Xiao C, Zhou M, Li M, Li H. miR136 regulates proliferation and differentiation of small tail han sheep preadipocytes. Adipocyte 2023; 12:2173966. [PMID: 36722834 PMCID: PMC9928478 DOI: 10.1080/21623945.2023.2173966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Low meat performance is the defect of Small Tail Han sheep. Intramuscular fat affects meat quality and largely determined by adipogenesis. In previous study, miR136 was showed one of differentially expressed microRNAs between preadipocytes and mature adipocytes of Small Tail Han sheep but its role in adipogenesis is still not elucidated. Here, we investigated the effect of miR136 on adipogenesis and the underlying mechanism. qPCR data showed that miR136 level increased with preadipocytes proliferation while declined with preadipocytes differentiation. Moreover, miR136 mimics blocked lipid droplet formation, reduced lipid content and triglyceride accumulation while miR136 inhibitor showed the opposite effects, revealing that miR136 promoted preadipocytes proliferation but inhibited preadipocytes differentiation. Bioinformatics and biochemical validation manifested that PPARGC1B was a target of miR136. Furthermore, miR136 mimics decreased PPARγ and C/EBPα expression accompanied by PPARGC1B expression descending. Reverse effects were observed with miR136 inhibitor. Besides, overexpression of miR136 elevated IGF1 expression. Collectively, our data first exhibited a regulatory role of miR136 in adipogenesis, which is promoting preadipocytes proliferation through elevating IGF1 expression while inhibiting preadipocytes differentiation through targeting PPARGC1B and further declined PPARγ and C/EBPα expression. The modulation of PPARGC1B by miR136 may provide a new potential target for increasing intramuscular fat.
Collapse
Affiliation(s)
- Man Luo
- Metabolic Disease Research Center, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China,Department of Obstetrics and Gynecology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China,School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Lin Wang
- Metabolic Disease Research Center, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Cheng Xiao
- Institute of Animal Biotechnology, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Mengsi Zhou
- Department of Obstetrics and Gynecology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Minghui Li
- Department of Obstetrics and Gynecology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Hongjuan Li
- Department of Obstetrics and Gynecology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China,CONTACT Hongjuan Li Department of Obstetrics and Gynecology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, 16 Tongbai North Road, Zhengzhou450001, China
| |
Collapse
|
6
|
Khalifeh M, Santos RD, Oskuee RK, Badiee A, Aghaee-Bakhtiari SH, Sahebkar A. A novel regulatory facet for hypertriglyceridemia: The role of microRNAs in the regulation of triglyceride-rich lipoprotein biosynthesis. Prog Lipid Res 2023; 89:101197. [PMID: 36400247 DOI: 10.1016/j.plipres.2022.101197] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 11/17/2022]
Abstract
Atherosclerotic cardiovascular disease (ASCVD) is one of the major leading global causes of death. Genetic and epidemiological studies strongly support the causal association between triacylglycerol-rich lipoproteins (TAGRL) and atherogenesis, even in statin-treated patients. Recent genetic evidence has clarified that variants in several key genes implicated in TAGRL metabolism are strongly linked to the increased ASCVD risk. There are several triacylglycerol-lowering agents; however, new therapeutic options are in development, among which are miRNA-based therapeutic approaches. MicroRNAs (miRNAs) are small non-coding RNAs (18-25 nucleotides) that negatively modulate gene expression through translational repression or degradation of target mRNAs, thereby reducing the levels of functional genes. MiRNAs play a crucial role in the development of hypertriglyceridemia as several miRNAs are dysregulated in both synthesis and clearance of TAGRL particles. MiRNA-based therapies in ASCVD have not yet been applied in human trials but are attractive. This review provides a concise overview of current interventions for hypertriglyceridemia and the development of novel miRNA and siRNA-based drugs. We summarize the miRNAs involved in the regulation of key genes in the TAGRLs synthesis pathway, which has gained attention as a novel target for therapeutic applications in CVD.
Collapse
Affiliation(s)
- Masoumeh Khalifeh
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Raul D Santos
- Lipid Clinic Heart Institute (Incor), University of São Paulo, Medical School Hospital, São Paulo, Brazil
| | - Reza Kazemi Oskuee
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Badiee
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Centre, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; School of Medicine, The University of Western Australia, Perth, Australia; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
7
|
Zhou J, Liu L, Wu P, Zhao L, Wu Y. Identification and characterization of non-coding RNA networks in infected macrophages revealing the pathogenesis of F. nucleatum-associated diseases. BMC Genomics 2022; 23:826. [PMID: 36513974 DOI: 10.1186/s12864-022-09052-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND F. nucleatum, as an important periodontal pathogen, is not only closely associated with the development of periodontitis, but also implicated in systemic diseases. Macrophages may act as an important mediator in the pathogenic process of F. nucleatum infection. As non-coding RNAs (ncRNAs) have attracted extensive attention as important epigenetic regulatory mechanisms recently, we focus on the competing endogenous RNA (ceRNA) regulatory networks to elucidate the pathogenesis of F. nucleatum-associated diseases. RESULTS We screen abnormally expressed mRNAs, miRNAs, lncRNAs and circRNAs in macrophages after F. nucleatum infection via the whole transcriptome sequencing technology, including 375 mRNAs, 5 miRNAs, 64 lncRNAs, and 180 circRNAs. The accuracy of RNA-seq and microRNA-seq result was further verified by qRT-PCR analysis. GO and KEGG analysis show that the differentially expressed genes were mainly involved in MAPK pathway, Toll-like receptor pathway, NF-κB pathway and apoptosis. KEGG disease analysis reveals that they were closely involved in immune system diseases, cardiovascular disease, cancers, inflammatory bowel disease (IBD) et al. We constructed the underlying lncRNA/circRNA-miRNA-mRNA networks to understand their interaction based on the correlation analysis between the differentially expressed RNAs, and then screen the core non-coding RNAs. In which, AKT2 is controlled by hsa_circ_0078617, hsa_circ_0069227, hsa_circ_0084089, lncRNA NUP210, lncRNA ABCB9, lncRNA DIXDC1, lncRNA ATXN1 and lncRNA XLOC_237387 through miR-150-5p; hsa_circ_0001165, hsa_circ_0008460, hsa_circ_0001118, lncRNA XLOC_237387 and lncRNA ATXN1 were identified as the ceRNAs of hsa-miR-146a-3p and thereby indirectly modulating the expression of MITF. CONCLUSIONS Our data identified promising candidate ncRNAs responsible for regulating immune response in the F. nucleatum-associated diseases, offering new insights regarding the pathogenic mechanism of this pathogen.
Collapse
Affiliation(s)
- Jieyu Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lin Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Peiyao Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lei Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China. .,Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Yafei Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China. .,Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
8
|
Zhang H, Cao S, Xu Y, Sun X, Fei M, Jing Q, Xu X, Tang J, Niu B, Li C. Landscape of immune infiltration in entorhinal cortex of patients with Alzheimerʼs disease. Front Pharmacol 2022; 13:941656. [PMID: 36249779 PMCID: PMC9557331 DOI: 10.3389/fphar.2022.941656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Alzheimer’s disease (AD) is one of the most common neurodegenerative diseases and manifests as progressive memory loss and cognitive dysfunction. Neuroinflammation plays an important role in the development of Alzheimer’s disease and anti-inflammatory drugs reduce the risk of the disease. However, the immune microenvironment in the brains of patients with Alzheimer’s disease remains unclear, and the mechanisms by which anti-inflammatory drugs improve Alzheimer’s disease have not been clearly elucidated. This study aimed to provide an overview of the immune cell composition in the entorhinal cortex of patients with Alzheimer’s disease based on the transcriptomes and signature genes of different immune cells and to explore potential therapeutic targets based on the relevance of drug targets. Transcriptomics data from the entorhinal cortex tissue, derived from GSE118553, were used to support our study. We compared the immune-related differentially expressed genes (irDEGs) between patients and controls by using the limma R package. The difference in immune cell composition between patients and controls was detected via the xCell algorithm based on the marker genes in immune cells. The correlation between marker genes and immune cells and the interaction between genes and drug targets were evaluated to explore potential therapeutic target genes and drugs. There were 81 irDEGs between patients and controls that participated in several immune-related pathways. xCell analysis showed that most lymphocyte scores decreased in Alzheimer’s disease, including CD4+ Tc, CD4+ Te, Th1, natural killer (NK), natural killer T (NKT), pro-B cells, eosinophils, and regulatory T cells, except for Th2 cells. In contrast, most myeloid cell scores increased in patients, except in dendritic cells. They included basophils, mast cells, plasma cells, and macrophages. Correlation analysis suggested that 37 genes were associated with these cells involved in innate immunity, of which eight genes were drug targets. Taken together, these results delineate the profile of the immune components of the entorhinal cortex in Alzheimer’s diseases, providing a new perspective on the development and treatment of Alzheimer’s disease.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai, China
- Translational Research Institute of Brain and Brain-like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Clinical Research Center for Anesthesiology and Perioperative Medicine, Tongji University, Shanghai, China
- Department of Anesthesiology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Silu Cao
- Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai, China
- Translational Research Institute of Brain and Brain-like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Clinical Research Center for Anesthesiology and Perioperative Medicine, Tongji University, Shanghai, China
- Department of Anesthesiology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yaru Xu
- Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai, China
- Translational Research Institute of Brain and Brain-like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Clinical Research Center for Anesthesiology and Perioperative Medicine, Tongji University, Shanghai, China
- Department of Anesthesiology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiaoru Sun
- Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai, China
- Translational Research Institute of Brain and Brain-like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Clinical Research Center for Anesthesiology and Perioperative Medicine, Tongji University, Shanghai, China
| | - Miaomiao Fei
- Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai, China
- Translational Research Institute of Brain and Brain-like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Clinical Research Center for Anesthesiology and Perioperative Medicine, Tongji University, Shanghai, China
| | - Qi Jing
- Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai, China
- Translational Research Institute of Brain and Brain-like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Clinical Research Center for Anesthesiology and Perioperative Medicine, Tongji University, Shanghai, China
- Department of Anesthesiology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiaodong Xu
- Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai, China
- Translational Research Institute of Brain and Brain-like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Clinical Research Center for Anesthesiology and Perioperative Medicine, Tongji University, Shanghai, China
- Department of Anesthesiology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jinxuan Tang
- Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai, China
- Translational Research Institute of Brain and Brain-like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Clinical Research Center for Anesthesiology and Perioperative Medicine, Tongji University, Shanghai, China
| | - Bing Niu
- School of Life Sciences, Shanghai University, Shanghai, China
- *Correspondence: Bing Niu, ; Cheng Li,
| | - Cheng Li
- Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai, China
- Translational Research Institute of Brain and Brain-like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Clinical Research Center for Anesthesiology and Perioperative Medicine, Tongji University, Shanghai, China
- *Correspondence: Bing Niu, ; Cheng Li,
| |
Collapse
|
9
|
Ramírez AE, Gil-Jaramillo N, Tapias MA, González-Giraldo Y, Pinzón A, Puentes-Rozo PJ, Aristizábal-Pachón AF, González J. MicroRNA: A Linking between Astrocyte Dysfunction, Mild Cognitive Impairment, and Neurodegenerative Diseases. Life (Basel) 2022; 12:life12091439. [PMID: 36143475 PMCID: PMC9505027 DOI: 10.3390/life12091439] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/10/2022] [Accepted: 09/13/2022] [Indexed: 12/06/2022] Open
Abstract
Simple Summary Neurodegenerative diseases are complex neurological disorders with a high incidence worldwide in older people, increasing hospital visits and requiring expensive treatments. As a precursor phase of neurodegenerative diseases, cognitive impairment needs to be studied to understand the factors that influence its development and improve patients’ quality of life. The present review compiles possible factors and biomarkers for diagnosing mild cognitive impairment based on the most recent studies involving miRNAs. These molecules can direct the gene expression in multiple cells, affecting their behavior under certain conditions, such as stressing factors. This review encourages further research into biomarkers that identify cognitive impairment in cellular models such as astrocytes, which are brain cells capable of maintaining the optimal conditions for the central nervous system functioning. Abstract The importance of miRNAs in cellular processes and their dysregulation has taken significant importance in understanding different pathologies. Due to the constant increase in the prevalence of neurodegenerative diseases (ND) worldwide and their economic impact, mild cognitive impairment (MCI), considered a prodromal phase, is a logical starting point to study this public health problem. Multiple studies have established the importance of miRNAs in MCI, including astrocyte regulation during stressful conditions. Additionally, the protection mechanisms exerted by astrocytes against some damage in the central nervous system (CNS) lead to astrocytic reactivation, in which a differential expression of miRNAs has been shown. Nevertheless, excessive reactivation can cause neurodegeneration, and a clear pattern defining the equilibrium point between a neuroprotective or detrimental astrocytic phenotype is unknown. Therefore, the miRNA expression has gained significant attention to understand the maintenance of brain balance and improve the diagnosis and treatment at earlier stages in the ND. Here, we provide a comprehensive review of the emerging role of miRNAs in cellular processes that contribute to the loss of cognitive function, including lipotoxicity, which can induce chronic inflammation, also considering the fundamental role of astrocytes in brain homeostasis.
Collapse
Affiliation(s)
- Angelica E. Ramírez
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - Natalia Gil-Jaramillo
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - María Alejandra Tapias
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - Yeimy González-Giraldo
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - Andrés Pinzón
- Laboratorio de Bioinformática y Biología de Sistemas, Universidad Nacional de Colombia, Bogotá 111321, Colombia
| | - Pedro J. Puentes-Rozo
- Grupo de Neurociencias del Caribe, Unidad de Neurociencias Cognitivas, Universidad Simón Bolívar, Barranquilla 080002, Colombia
- Grupo de Neurociencias del Caribe, Universidad del Atlántico, Barranquilla 080007, Colombia
| | | | - Janneth González
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
- Correspondence:
| |
Collapse
|
10
|
Latorre J, Aroca A, Fernández-Real JM, Romero LC, Moreno-Navarrete JM. The Combined Partial Knockdown of CBS and MPST Genes Induces Inflammation, Impairs Adipocyte Function-Related Gene Expression and Disrupts Protein Persulfidation in Human Adipocytes. Antioxidants (Basel) 2022; 11:antiox11061095. [PMID: 35739994 PMCID: PMC9220337 DOI: 10.3390/antiox11061095] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 11/18/2022] Open
Abstract
Recent studies in mice and humans demonstrated the relevance of H2S synthesising enzymes, such as CTH, CBS, and MPST, in the physiology of adipose tissue and the differentiation of preadipocyte into adipocytes. Here, our objective was to investigate the combined role of CTH, CBS, and MPST in the preservation of adipocyte protein persulfidation and adipogenesis. Combined partial CTH, CBS, and MPST gene knockdown was achieved treating fully human adipocytes with siRNAs against these transcripts (siRNA_MIX). Adipocyte protein persulfidation was analyzed using label-free quantitative mass spectrometry coupled with a dimedone-switch method for protein labeling and purification. Proteomic analysis quantified 216 proteins with statistically different levels of persulfidation in KD cells compared to control adipocytes. In fully differentiated adipocytes, CBS and MPST mRNA and protein levels were abundant, while CTH expression was very low. It is noteworthy that siRNA_MIX administration resulted in a significant decrease in CBS and MPST expression, without impacting on CTH. The combined partial knockdown of the CBS and MPST genes resulted in reduced cellular sulfide levels in parallel to decreased expression of relevant genes for adipocyte biology, including adipogenesis, mitochondrial biogenesis, and lipogenesis, but increased proinflammatory- and senescence-related genes. It should be noted that the combined partial knockdown of CBS and MPST genes also led to a significant disruption in the persulfidation pattern of the adipocyte proteins. Although among the less persulfidated proteins, we identified several relevant proteins for adipocyte adipogenesis and function, among the most persulfidated, key mediators of adipocyte inflammation and dysfunction as well as some proteins that might play a positive role in adipogenesis were found. In conclusion, the current study indicates that the combined partial elimination of CBS and MPST (but not CTH) in adipocytes affects the expression of genes related to the maintenance of adipocyte function and promotes inflammation, possibly by altering the pattern of protein persulfidation in these cells, suggesting that these enzymes were required for the functional maintenance of adipocytes.
Collapse
Affiliation(s)
- Jessica Latorre
- Department of Diabetes, Endocrinology and Nutrition, Institut d’Investigació Biomèdica de Girona (IdIBGi), 17190 Salt, Spain; (J.L.); (J.M.F.-R.)
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn, CB06/03/010), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Angeles Aroca
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones and Universidad de Sevilla, 41092 Seville, Spain; (A.A.); (L.C.R.)
| | - José Manuel Fernández-Real
- Department of Diabetes, Endocrinology and Nutrition, Institut d’Investigació Biomèdica de Girona (IdIBGi), 17190 Salt, Spain; (J.L.); (J.M.F.-R.)
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn, CB06/03/010), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Medicine, Universitat de Girona, 17003 Girona, Spain
| | - Luis C. Romero
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones and Universidad de Sevilla, 41092 Seville, Spain; (A.A.); (L.C.R.)
| | - José María Moreno-Navarrete
- Department of Diabetes, Endocrinology and Nutrition, Institut d’Investigació Biomèdica de Girona (IdIBGi), 17190 Salt, Spain; (J.L.); (J.M.F.-R.)
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn, CB06/03/010), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-872-987087 (ext. 70)
| |
Collapse
|
11
|
Shen J, Wu Y, Ruan W, Zhu F, Duan S. miR-1908 Dysregulation in Human Cancers. Front Oncol 2022; 12:857743. [PMID: 35463352 PMCID: PMC9021824 DOI: 10.3389/fonc.2022.857743] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/11/2022] [Indexed: 01/19/2023] Open
Abstract
MiR-1908 is a miRNA located in the intron of the fatty acid desaturase 1 (FADS1) gene. The expression level of miR-1908 is abnormal in many diseases such as cancer. miR-1908 can inhibit the expression of at least 27 target genes by binding to the 3’ untranslated region (3’ UTR) of target genes. miR-1908 is involved in the biological processes of cell proliferation, cell differentiation, cell apoptosis, cancer cell invasion, and metastasis. The expression of miR-1908 is regulated by 11 factors, including lncRNA HOTTIP, adipokines (TNF-α, leptin, and resistin), NF-κB, free fatty acid (FFA), cholesterol, stearoyl-CoA desaturase (SCD1), immune-related transcription factors (STAT1, RB1, and IRF1). The expression of miR-1908 is also affected by the anticancer drug OSW-1, growth hormone (GH), and the anticonvulsant drug sodium valproate. In addition, the aberrant expression of miR-1908 is also related to the prognosis of a variety of cancers, including non-small cell lung cancer (NSCLC), ovarian cancer (OC), breast cancer, cervical cancer, glioma, high-grade serous ovarian carcinoma (HGSOC), osteosarcoma, etc. This article summarizes the abnormal expression pattern of miR-1908 in various diseases and its molecular regulation mechanisms. Our work will provide potential hints and direction for future miR-1908-related research.
Collapse
Affiliation(s)
- Jinze Shen
- Department of Clinical Medicine, Zhejiang University City College School of Medicine, Hangzhou, China
| | - Yuchen Wu
- Department of Clinical Medicine, The First School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Wenjing Ruan
- Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Feng Zhu
- Department of Clinical Medicine, Zhejiang University City College School of Medicine, Hangzhou, China
| | - Shiwei Duan
- Department of Clinical Medicine, Zhejiang University City College School of Medicine, Hangzhou, China
| |
Collapse
|
12
|
Wang S, Shao W, Gao Y, Zhao H, Du D. Diagnostic and Prognostic Significance of miR-675-3p in Patients With Atherosclerosis. Clin Appl Thromb Hemost 2021; 27:10760296211024754. [PMID: 34320871 PMCID: PMC8327005 DOI: 10.1177/10760296211024754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
In recent years, a rising number of studies have confirmed that microRNA (miRNA)
plays a prominent role in the early diagnosis and prognostic value assessment of
cardiovascular diseases. The current study was conducted to examine the
expression of miR-675-3p in atherosclerosis (AS) patients and to evaluate its
clinical diagnosis and prognostic value. 110 AS patients and 70 healthy controls
were included in the study. Serum miR-675-3p levels were detected by
quantitative real-time PCR (qRT-PCR). The clinical diagnostic significance of
serum miR-675-3p in AS patients were investigated by the receiver operating
characteristic (ROC) curve. The correlation between miRNA and carotid
intima-media thickness (CIMT) was analyzed by the Spearman correlation
coefficient. The prognostic significance of serum miR-675-3p was evaluated by
the Kaplan-Meier method and Cox regression analysis. The patient’s serum
miR-675-3p was significantly increased than the healthy individuals
(P < 0.05). An increase of carotid intima-media
thickness (CIMT) was positively correlated with the promotion of serum
miR-675-3p levels. The area under the ROC curve (AUC) was 0.918, with high
sensitivity and specificity. miR-675-3p is a key independent predictor of
cardiovascular adverse events in AS patients (HR = 5.375, 95%CI = 1.590-18.170,
P = 0.007), and patients with elevated miR-675-3p were more
likely to have cardiovascular adverse events (log-rank P =
0.030). Increased miR-675-3p can be used as a potential marker for the diagnosis
of AS, and was associated with the poor prognosis of AS.
Collapse
Affiliation(s)
- Shuangquan Wang
- Department of Neurosurgery, Binzhou Medical University Hospital, Binzhou, Shandong, People's Republic of China
| | - Wei Shao
- Department of Neurosurgery, Binzhou Medical University Hospital, Binzhou, Shandong, People's Republic of China
| | - Yang Gao
- Department of Neurosurgery, Binzhou Medical University Hospital, Binzhou, Shandong, People's Republic of China
| | - Hongwei Zhao
- Department of Neurosurgery, Binzhou Medical University Hospital, Binzhou, Shandong, People's Republic of China
| | - Deyong Du
- Department of Neurosurgery, Binzhou Medical University Hospital, Binzhou, Shandong, People's Republic of China
| |
Collapse
|
13
|
Yi X, Wu P, Liu J, He S, Gong Y, Xiong J, Xu X, Li W. Candidate kinases for adipogenesis and osteoblastogenesis from human bone marrow mesenchymal stem cells. Mol Omics 2021; 17:790-795. [PMID: 34318850 DOI: 10.1039/d1mo00160d] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Adipogenesis and osteoblastogenesis (adipo-osteoblastogenesis) are closely related processes involving with the phosphorylation of numerous cytoplasmic proteins and key transcription factors. Despite the recognition of the importance of protein phosphorylation in adipo-osteoblastocyte biology, relatively little is known about the specific kinases for adipo-osteoblastogenesis. Here, we constructed the comprehensive gene transcriptional landscapes of kinases at 3, 5, and 7 days during adipo-osteoblastogenesis from human bone marrow mesenchymal stem cells (hMSCs). We identified forty-four and eight significant DEGs (differentially expressed genes) separately for adipo-osteoblastogenesis. Five significant DEGs, namely CAMK2A, NEK10, PAK3, PRKG2, and PTK2B, were simultaneously shared by adipo-osteoblastogenic anecdotes. Using a lentivirus system, we confirmed that PTK2B (non-receptor protein tyrosine kinase 2 beta) simultaneously inhibited adipo-osteoblastogenesis through RNAi assays, and PRKG2 (protein kinase cGMP-dependent 2) facilitated adipogenesis and weakened osteoblastogenesis. The only certainty was that the identified candidate significant DEGs encoding kinases responsible for protein phosphorylation, especially PTK2B and PRKG2, were the potential molecular switches of cell fate determination for hMSCs. This study would provide novel study targets for hMSC differentiation and potential clues for the therapy of the adipo-osteoblastogenic balance-derived disorders.
Collapse
Affiliation(s)
- Xia Yi
- Jiangxi Provincial Key Laboratory of Systems Biomedicine, Jiujiang University, 17 Lufeng Road, Jiujiang 332000, China.
| | - Ping Wu
- Jiangxi Provincial Key Laboratory of Systems Biomedicine, Jiujiang University, 17 Lufeng Road, Jiujiang 332000, China.
| | - Jianyun Liu
- Jiangxi Provincial Key Laboratory of Systems Biomedicine, Jiujiang University, 17 Lufeng Road, Jiujiang 332000, China.
| | - Shan He
- Jiangxi Provincial Key Laboratory of Systems Biomedicine, Jiujiang University, 17 Lufeng Road, Jiujiang 332000, China.
| | - Ying Gong
- Jiangxi Provincial Key Laboratory of Systems Biomedicine, Jiujiang University, 17 Lufeng Road, Jiujiang 332000, China.
| | - Jianjun Xiong
- Jiangxi Provincial Key Laboratory of Systems Biomedicine, Jiujiang University, 17 Lufeng Road, Jiujiang 332000, China.
| | - Xiaoyuan Xu
- Jiangxi Provincial Key Laboratory of Systems Biomedicine, Jiujiang University, 17 Lufeng Road, Jiujiang 332000, China.
| | - Weidong Li
- Jiangxi Provincial Key Laboratory of Systems Biomedicine, Jiujiang University, 17 Lufeng Road, Jiujiang 332000, China.
| |
Collapse
|
14
|
Li ZK, Gao LF, Zhu XA, Xiang DK. LncRNA HOXA-AS3 Promotes the Progression of Pulmonary Arterial Hypertension through Mediation of miR-675-3p/PDE5A Axis. Biochem Genet 2021; 59:1158-1172. [PMID: 33687636 DOI: 10.1007/s10528-021-10053-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 02/19/2021] [Indexed: 11/25/2022]
Abstract
Pulmonary arterial hypertension (PAH) seriously threatens the elder people. Long non-coding RNAs (lncRNAs) are involved in multiple diseases. However, the study of the lncRNAs in the occurrence of PAH is just beginning. For this, we sought to explore the biological function of lncRNA HOXA cluster antisense RNA 3 (HOXA-AS3) in PAH. Hypoxia (HYP) was used to mimic in vitro model of PAH. Gene and protein expressions in cells were detected by q-PCR and Western blotting, respectively. In addition, cell proliferation and viability were tested by CCK-8 and MTT assay. Cell apoptosis was measured by flow cytometry. Wound healing was used to detect cell migration. Furthermore, the connection of HOXA-AS3, miR-675-3p, and phosphodiesterase 5A (PDE5A) was verified by dual-luciferase report assay. HOXA-AS3 and PDE5A were upregulated in human pulmonary artery smooth muscle cells (HPASMCs) in the presence of HYP, while miR-675-3p was downregulated. Moreover, knockdown of HOXA-AS3 suppressed the growth and migration of HPASMCs, but induced the apoptosis. Overexpression of miR-675-3p achieved the same effect. MiR-675-3p inhibitor or overexpression of PDE5A notably reversed the inhibitory effect of HOXA-AS3 knockdown on PAH. Finally, HOXA-AS3 could sponge miR-675-3p, and PDE5A was directly targeted by miR-675-3p. HOXA-AS3 increased the development of PAH via regulation of miR-675-3p/PDE5 axis, which could be the potential biomarker for treatment of PAH.
Collapse
Affiliation(s)
- Zhong-Kui Li
- Department of Cardiovascular Surgery, Guizhou Provincial People's Hospital, No.83, East Zhongshan Road, Guiyang, 550002, Guizhou Province, People's Republic of China
| | - Lu-Fang Gao
- Department of Cardiovascular Surgery, Guizhou Provincial People's Hospital, No.83, East Zhongshan Road, Guiyang, 550002, Guizhou Province, People's Republic of China
| | - Xi-An Zhu
- Department of Cardiovascular Surgery, Guizhou Provincial People's Hospital, No.83, East Zhongshan Road, Guiyang, 550002, Guizhou Province, People's Republic of China
| | - Dao-Kang Xiang
- Department of Cardiovascular Surgery, Guizhou Provincial People's Hospital, No.83, East Zhongshan Road, Guiyang, 550002, Guizhou Province, People's Republic of China.
| |
Collapse
|
15
|
Chen W, Ji L, Wei Z, Yang C, Chang S, Zhang Y, Nie K, Jiang L, Deng Y. miR-146a-3p suppressed the differentiation of hAMSCs into Schwann cells via inhibiting the expression of ERBB2. Cell Tissue Res 2021; 384:99-112. [PMID: 33447879 PMCID: PMC8016804 DOI: 10.1007/s00441-020-03320-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 10/12/2020] [Indexed: 02/07/2023]
Abstract
Human amniotic mesenchymal stem cells (hAMSCs) can be differentiated into Schwann-cell-like cells (SCLCs) in vitro. However, the underlying mechanism of cell differentiation remains unclear. In this study, we explored the phenotype and multipotency of hAMSCs, which were differentiated into SCLCs, and the expression of nerve repair-related Schwann markers, such as S100 calcium binding protein B (S-100), TNF receptor superfamily member 1B (P75), and glial fibrillary acidic protein (GFAP) were observed to be significantly increased. The secreted functional neurotrophic factors, like brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), and neurotrophin-3 (NT-3), were determined and also increased with the differentiation time. Moreover, miR-146a-3p, which significantly decreased during the differentiation of hAMSCs into SCLCs, was selected by miRNA-sequence analysis. Further molecular mechanism studies showed that Erb-B2 receptor tyrosine kinase 2 (ERBB2) was an effective target of miR-146a-3p and that miR-146a-3p down-regulated ERBB2 expression by binding to the 3'-UTR of ERBB2. The expression of miR-146a-3p markedly decreased, while the mRNA levels of ERBB2 increased with the differentiation time. The results showed that down-regulating miR-146a-3p could promote SC lineage differentiation and suggested that miR-146a-3p negatively regulated the Schwann-like phenotype differentiation of hAMSCs by targeting ERBB2. The results will be helpful to establish a deeper understanding of the underlying mechanisms and find novel strategies for cell therapy.
Collapse
Affiliation(s)
- Wei Chen
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical College, 149 Dalian Road, Guizhou, Zunyi, China
| | - Linlin Ji
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical College, 149 Dalian Road, Guizhou, Zunyi, China
| | - Zairong Wei
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical College, 149 Dalian Road, Guizhou, Zunyi, China.
| | - Chenglan Yang
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical College, 149 Dalian Road, Guizhou, Zunyi, China
| | - Shusen Chang
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical College, 149 Dalian Road, Guizhou, Zunyi, China
| | - Yucheng Zhang
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical College, 149 Dalian Road, Guizhou, Zunyi, China
| | - Kaiyu Nie
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical College, 149 Dalian Road, Guizhou, Zunyi, China
| | - Lingli Jiang
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical College, 149 Dalian Road, Guizhou, Zunyi, China
| | - Yurong Deng
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical College, 149 Dalian Road, Guizhou, Zunyi, China
| |
Collapse
|
16
|
Pant R, Firmal P, Shah VK, Alam A, Chattopadhyay S. Epigenetic Regulation of Adipogenesis in Development of Metabolic Syndrome. Front Cell Dev Biol 2021; 8:619888. [PMID: 33511131 PMCID: PMC7835429 DOI: 10.3389/fcell.2020.619888] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/14/2020] [Indexed: 12/12/2022] Open
Abstract
Obesity is one of the biggest public health concerns identified by an increase in adipose tissue mass as a result of adipocyte hypertrophy and hyperplasia. Pertaining to the importance of adipose tissue in various biological processes, any alteration in its function results in impaired metabolic health. In this review, we discuss how adipose tissue maintains the metabolic health through secretion of various adipokines and inflammatory mediators and how its dysfunction leads to the development of severe metabolic disorders and influences cancer progression. Impairment in the adipocyte function occurs due to individuals' genetics and/or environmental factor(s) that largely affect the epigenetic profile leading to altered gene expression and onset of obesity in adults. Moreover, several crucial aspects of adipose biology, including the regulation of different transcription factors, are controlled by epigenetic events. Therefore, understanding the intricacies of adipogenesis is crucial for recognizing its relevance in underlying disease conditions and identifying the therapeutic interventions for obesity and metabolic syndrome.
Collapse
Affiliation(s)
- Richa Pant
- National Centre for Cell Science, SP Pune University Campus, Pune, India
| | - Priyanka Firmal
- National Centre for Cell Science, SP Pune University Campus, Pune, India
| | - Vibhuti Kumar Shah
- National Centre for Cell Science, SP Pune University Campus, Pune, India
| | - Aftab Alam
- Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Samit Chattopadhyay
- National Centre for Cell Science, SP Pune University Campus, Pune, India.,Department of Biological Sciences, BITS Pilani, Goa, India
| |
Collapse
|
17
|
Chen F, Ye X, Jiang H, Zhu G, Miao S. MicroRNA-151 Attenuates Apoptosis of Endothelial Cells Induced by Oxidized Low-density Lipoprotein by Targeting Interleukin-17A (IL-17A). J Cardiovasc Transl Res 2020; 14:400-408. [PMID: 32975761 DOI: 10.1007/s12265-020-10065-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/27/2020] [Indexed: 12/20/2022]
Abstract
Apoptosis of endothelial cells plays an important role in atherosclerosis (AS). MicroRNAs (miRNAs) have been confirmed to participate in the process of endothelial cell apoptosis. The main purpose of this study was to investigate the mechanism of miR-151 and interleukin-17A (IL-17A) in apoptosis of atherosclerotic endothelial cells. The expression levels of miR-151 in human aortic endothelial cells (HAEC) after Ox-LDL treatment were detected by qRT-PCR. The expression levels of IL-17A were detected by qRT-PCR and Western blot. The effects of miR-151 and IL-17A on the apoptosis rate were detected by flow cytometry. The relationship between miR-151 and IL-17A was assessed by bioinformatics analysis and luciferase assay. The expression levels of miR-151 in HAEC after Ox-LDL treatment were reduced, and the expression of IL-17A was upregulated. MiR-151 and si-IL-17A inhibited the apoptosis rate of aortic endothelial cells treated by Ox-LDL. MiR-151 and si-IL-17A reduced the expression levels of c-caspase-9, c-caspase-3, and BAX proteins in Ox-LDL-treated HAEC and increased the expression levels of Bcl-2. MiR-151 inhibited the apoptosis of endothelial cells in AS, and IL-17A was a new target for miR-151. Our findings provided a potential treatment for atherosclerosis in the treatment of AS. Graphical abstract.
Collapse
Affiliation(s)
- Fanfeng Chen
- Department of Vascular Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou City, 325015, Zhejiang Province, People's Republic of China
| | - Xiaoning Ye
- The First Clinical Medical Institute, Wenzhou Medical University, Wenzhou City, 325015, Zhejiang Province, People's Republic of China
| | - Haote Jiang
- The First Clinical Medical Institute, Wenzhou Medical University, Wenzhou City, 325015, Zhejiang Province, People's Republic of China
| | - Guanxia Zhu
- Department of Oncology, The First Clinical Medical College of Wenzhou Medical University, Wenzhou City, 325015, Zhejiang Province, People's Republic of China
| | - Shouliang Miao
- Department of Radiology, The First Affiliated Hospital, Wenzhou Medical University, Nanbaixiang Street, Ouhai District, Wenzhou City, 325015, Zhejiang Province, People's Republic of China.
| |
Collapse
|
18
|
Robert AW, Marcon BH, Dallagiovanna B, Shigunov P. Adipogenesis, Osteogenesis, and Chondrogenesis of Human Mesenchymal Stem/Stromal Cells: A Comparative Transcriptome Approach. Front Cell Dev Biol 2020; 8:561. [PMID: 32733882 PMCID: PMC7362937 DOI: 10.3389/fcell.2020.00561] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/12/2020] [Indexed: 12/20/2022] Open
Abstract
Adipogenesis, osteogenesis and chondrogenesis of human mesenchymal stem/stromal cells (MSC) are complex and highly regulated processes. Over the years, several studies have focused on understanding the mechanisms involved in the MSC commitment to the osteogenic, adipogenic and/or chondrogenic phenotypes. High-throughput methodologies have been used to investigate the gene expression profile during differentiation. Association of data analysis of mRNAs, microRNAs, circular RNAs and long non-coding RNAs, obtained at different time points over these processes, are important to depict the complexity of differentiation. This review will discuss the results that were highlighted in transcriptome analyses of MSC undergoing adipogenic, osteogenic and chondrogenic differentiation. The focus is to shed light on key molecules, main signaling pathways and biological processes related to different time points of adipogenesis, osteogenesis and chondrogenesis.
Collapse
Affiliation(s)
- Anny W Robert
- Instituto Carlos Chagas - Fiocruz Paraná, Curitiba, Brazil
| | - Bruna H Marcon
- Instituto Carlos Chagas - Fiocruz Paraná, Curitiba, Brazil
| | | | | |
Collapse
|
19
|
Mir BA, Reyer H, Komolka K, Ponsuksili S, Kühn C, Maak S. Differentially Expressed miRNA-Gene Targets Related to Intramuscular Fat in Musculus Longissimus Dorsi of Charolais × Holstein F 2-Crossbred Bulls. Genes (Basel) 2020; 11:genes11060700. [PMID: 32630492 PMCID: PMC7348786 DOI: 10.3390/genes11060700] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 12/12/2022] Open
Abstract
Intramuscular fat (IMF) is a meat quality indicator associated with taste and juiciness. IMF deposition, influenced by genetic and non-genetic factors, occurs through a transcriptionally coordinated process of adipogenesis. MicroRNAs (miRNAs) are transcriptional regulators of vital biological processes, including lipid metabolism and adipogenesis. However, in bovines, limited data on miRNA profiling and association with divergent intramuscular fat content, regulated exclusively by genetic parameters, have been reported. Here, a microarray experiment was performed to identify and characterize the miRNA expression pattern in the Musculus longissimus dorsi of F2-cross (Charolais × German Holstein) bulls with high and low IMF. A total of 38 differentially expressed miRNAs (DE miRNAs), including 33 upregulated and 5 downregulated (corrected p-value ≤ 0.05, FC ≥ ±1.2), were reported. Among DE miRNAs, the upregulated miRNAs miR-105a/b, miR-695, miR-1193, miR-1284, miR-1287-5p, miR-3128, miR-3178, miR-3910, miR-4443, miR-4445 and miR-4745, and the downregulated miRNAs miR-877-5p, miR-4487 and miR-4706 were identified as novel fat deposition regulators. DE miRNAs were further analyzed, along with previously identified differentially expressed genes (DEGs) from the same samples and predicted target genes, using multiple bioinformatic approaches, including target prediction tools and co-expression networks, as well as Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment. We identified DE miRNAs and their gene targets associated with bovine intramuscular adipogenesis, and we provide a basis for further functional investigations.
Collapse
Affiliation(s)
- Bilal Ahmad Mir
- Institute of Muscle Biology and Growth, Leibniz Institute for Farm Animal Biology (FBN), D-18196 Dummerstorf, Germany; (K.K.); (S.M.)
- Correspondence: ; Tel.: +49-38208-68885
| | - Henry Reyer
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), D-18196 Dummerstorf, Germany; (H.R.); (S.P.); (C.K.)
| | - Katrin Komolka
- Institute of Muscle Biology and Growth, Leibniz Institute for Farm Animal Biology (FBN), D-18196 Dummerstorf, Germany; (K.K.); (S.M.)
| | - Siriluck Ponsuksili
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), D-18196 Dummerstorf, Germany; (H.R.); (S.P.); (C.K.)
| | - Christa Kühn
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), D-18196 Dummerstorf, Germany; (H.R.); (S.P.); (C.K.)
| | - Steffen Maak
- Institute of Muscle Biology and Growth, Leibniz Institute for Farm Animal Biology (FBN), D-18196 Dummerstorf, Germany; (K.K.); (S.M.)
| |
Collapse
|
20
|
Liu Z, Deng Y, Li T, Zhu F, Zhou X, He Y. The opposite functions of miR-24 in the osteogenesis and adipogenesis of adipose-derived mesenchymal stem cells are mediated by the HOXB7/β-catenin complex. FASEB J 2020; 34:9034-9050. [PMID: 32413244 DOI: 10.1096/fj.202000006rr] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 04/07/2020] [Accepted: 04/09/2020] [Indexed: 12/28/2022]
Abstract
Adipose-derived mesenchymal stem cells (ADMSCs) used in combination with nanoparticles or scaffolds represent promising candidates for bone engineering. Compared to bone marrow-derived MSCs (BMMSCs), ADMSCs show a relatively low capacity for osteogenesis. In the current study, miR-24 was identified as an osteogenesis- and adipogenesis-related miRNA that performs opposing roles (inhibition in osteogenesis and promotion in adipogenesis) during these two differentiation processes. Through bioinformatics analysis and luciferase reporter assays, homeobox protein Hox-B7 (HOXB7) was identified as a potential novel downstream target of miR-24 that contains a miR-24 binding site in the 3'-UTR of its mRNA. Overexpression of HOXB7 could partly halt the inhibitory effect of miR-24 on osteogenesis, and downregulation of HOXB7 could also partly suppress the positive effect of miR-24 on adipogenesis. Furthermore, immunoprecipitation experiments found that HOXB7 and β-catenin formed a functional complex that acted as an essential modulator during osteogenesis and adipogenesis of ADMSCs. After transfecting ADMSCs with an MSNs-PEI-miR-24 agomir or antagomir and loading the cells onto gelatin-chitosan scaffolds, the compounds were assessed for their abilities to repair the critical-sized calvarial defects in rats. Comprehensive evaluation, including micro-CT, sequential fluorescent labeling, and immunohistochemistry analysis, revealed that silencing miR-24 distinctly promoted in vivo bone remolding, whereas overexpression of miR-24 significantly repressed bone formation. Taken together, our findings demonstrated opposite roles for the miR-24/HOXB7/β-catenin signaling pathway in the osteogenesis and adipogenesis of ADMSCs, which may provide a novel mechanism for determining the balance between these two biological processes.
Collapse
Affiliation(s)
- Zhonglong Liu
- Department of Oral Maxillofacial & Head and Neck Oncology, Shanghai Ninth People's Hospital Affiliated to, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center of Stomatology, Shanghai, China
| | - Yiwen Deng
- Department of Oral Mucosal Diseases, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, National Clinical Research Center of Stomatology, Shanghai, China
| | - Tao Li
- Department of Orthopedics, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fengshuo Zhu
- Department of Oral Maxillofacial & Head and Neck Oncology, Shanghai Ninth People's Hospital Affiliated to, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center of Stomatology, Shanghai, China
| | - Xiaojun Zhou
- Department of Orthopedics, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yue He
- Department of Oral Maxillofacial & Head and Neck Oncology, Shanghai Ninth People's Hospital Affiliated to, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center of Stomatology, Shanghai, China
| |
Collapse
|
21
|
Sun W, Sun X, Chu W, Yu S, Dong F, Xu G. CircRNA expression profiles in human visceral preadipocytes and adipocytes. Mol Med Rep 2019; 21:815-821. [PMID: 31974620 PMCID: PMC6947878 DOI: 10.3892/mmr.2019.10886] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 11/08/2019] [Indexed: 12/27/2022] Open
Abstract
Circular RNAs (circRNAs) regulate several physiological and pathological processes, but their role in visceral lipid deposition has not been explored. In the present study, human preadipocytes from visceral fat tissue (HPA-v) were induced to form adipocytes, and the circRNA expression profiles in HPA-v and adipocytes were detected using circRNA microarrays. The microarray data revealed that 2,215 and 1,865 circRNAs were significantly up- and downregulated, respectively, in adipocytes compared with HPA-v. Moreover, the parental genes of differentially expressed circRNAs were associated with fatty acid metabolism based on Kyoto Encyclopedia of Genes and Genomes analysis. Three circRNAs (hsa_circ_0136134, hsa_circ_0017650, and hsa-circRNA9227-1) were selected for quantitative PCR (qPCR) validation, and the qPCR results were consistent with the microarray results. Furthermore, MiRanda software was used to predict the microRNAs (miRNAs) potentially targeting the top 10 up- and downregulated circRNAs, and 14 miRNAs with more than two miRNA response elements targeting these circRNAs. This is the first study of the expression profiles of circRNAs in HPA-v and adipocytes and may suggest potential therapeutic targets for the visceral obesity.
Collapse
Affiliation(s)
- Wenxing Sun
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu 226019, P.R. China
| | - Xuecheng Sun
- Department of Trauma Surgery, Weifang People's Hospital, Weifang, Shandong 26100, P.R. China
| | - Weiwei Chu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat‑sen University, Guangzhou, Guangdong 510275, P.R. China
| | - Shigang Yu
- Engineering Research Center of Sichuan Province Higher School of Local Chicken Breeds Industrialization in Southern Sichuan, College of Life Science, Leshan Normal University, Leshan, Sichuan 614000, P.R. China
| | - Fulu Dong
- Laboratory of Nuclear Receptors and Cancer Research, Center for Basic Medical Research, Medical College, Nantong University, Nantong, Jiangsu 226019, P.R. China
| | - Guangfei Xu
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu 226019, P.R. China
| |
Collapse
|
22
|
Holly JMP, Biernacka K, Perks CM. The Neglected Insulin: IGF-II, a Metabolic Regulator with Implications for Diabetes, Obesity, and Cancer. Cells 2019; 8:cells8101207. [PMID: 31590432 PMCID: PMC6829378 DOI: 10.3390/cells8101207] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 09/30/2019] [Accepted: 10/01/2019] [Indexed: 02/07/2023] Open
Abstract
When originally discovered, one of the initial observations was that, when all of the insulin peptide was depleted from serum, the vast majority of the insulin activity remained and this was due to a single additional peptide, IGF-II. The IGF-II gene is adjacent to the insulin gene, which is a result of gene duplication, but has evolved to be considerably more complicated. It was one of the first genes recognised to be imprinted and expressed in a parent-of-origin specific manner. The gene codes for IGF-II mRNA, but, in addition, also codes for antisense RNA, long non-coding RNA, and several micro RNA. Recent evidence suggests that each of these have important independent roles in metabolic regulation. It has also become clear that an alternatively spliced form of the insulin receptor may be the principle IGF-II receptor. These recent discoveries have important implications for metabolic disorders and also for cancer, for which there is renewed acknowledgement of the importance of metabolic reprogramming.
Collapse
Affiliation(s)
- Jeff M P Holly
- Department of Translational Health Science, Bristol Medical School, Faculty of Health Sciences, University of Bristol, Learning & Research Building, Southmead Hospital, Bristol, BS10 5NB, UK.
| | - Kalina Biernacka
- Department of Translational Health Science, Bristol Medical School, Faculty of Health Sciences, University of Bristol, Learning & Research Building, Southmead Hospital, Bristol, BS10 5NB, UK
| | - Claire M Perks
- Department of Translational Health Science, Bristol Medical School, Faculty of Health Sciences, University of Bristol, Learning & Research Building, Southmead Hospital, Bristol, BS10 5NB, UK
| |
Collapse
|