1
|
Bell AM, Robinson JT. The rotating magnetocaloric effect as a potential mechanism for natural magnetic senses. PLoS One 2019; 14:e0222401. [PMID: 31574085 PMCID: PMC6773214 DOI: 10.1371/journal.pone.0222401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 08/28/2019] [Indexed: 12/01/2022] Open
Abstract
Many animals are able to sense the earth’s magnetic field, including varieties of arthropods and members of all major vertebrate groups. While the existence of this magnetic sense is widely accepted, the mechanism of action remains unknown. Building from recent work on synthetic magnetoreceptors, we propose a new model for natural magnetosensation based on the rotating magnetocaloric effect (RME), which predicts that heat generated by magnetic nanoparticles may allow animals to detect features of the earth’s magnetic field. Using this model, we identify the conditions for the RME to produce physiological signals in response to the earth’s magnetic field and suggest experiments to distinguish between candidate mechanisms of magnetoreception.
Collapse
Affiliation(s)
- A. Martin Bell
- Applied Physics Program, Rice University, Houston, Texas, United States of America
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas, United States of America
| | - Jacob T. Robinson
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas, United States of America
- Department of Bioengineering, Rice University, Houston, Texas, United States of America
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
2
|
Rask-Andersen H, Liu W, Erixon E, Kinnefors A, Pfaller K, Schrott-Fischer A, Glueckert R. Human cochlea: anatomical characteristics and their relevance for cochlear implantation. Anat Rec (Hoboken) 2012; 295:1791-811. [PMID: 23044521 DOI: 10.1002/ar.22599] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 07/24/2012] [Indexed: 01/08/2023]
Abstract
This is a review of the anatomical characteristics of human cochlea and the importance of variations in this anatomy to the process of cochlear implantation (CI). Studies of the human cochlea are essential to better comprehend the physiology and pathology of man's hearing. The human cochlea is difficult to explore due to its vulnerability and bordering capsule. Inner ear tissue undergoes quick autolytic changes making investigations of autopsy material difficult, even though excellent results have been presented over time. Important issues today are novel inner ear therapies including CI and new approaches for inner ear pharmacological treatments. Inner ear surgery is now a reality, and technical advancements in the design of electrode arrays and surgical approaches allow preservation of remaining structure/function in most cases. Surgeons should aim to conserve cochlear structures for future potential stem cell and gene therapies. Renewal interest of round window approaches necessitates further acquaintance of this complex anatomy and its variations. Rough cochleostomy drilling at the intricate "hook" region can generate intracochlear bone-dust-inducing fibrosis and new bone formation, which could negatively influence auditory nerve responses at a later time point. Here, we present macro- and microanatomic investigations of the human cochlea viewing the extensive anatomic variations that influence electrode insertion. In addition, electron microscopic (TEM and SEM) and immunohistochemical results, based on specimens removed at surgeries for life-threatening petroclival meningioma and some well-preserved postmortal tissues, are displayed. These give us new information about structure as well as protein and molecular expression in man. Our aim was not to formulate a complete description of the complex human anatomy but to focus on aspects clinically relevant for electric stimulation, predominantly, the sensory targets, and how surgical atraumaticity best could be reached.
Collapse
Affiliation(s)
- Helge Rask-Andersen
- Department of Otolaryngology, Uppsala University Hospital, 75185 Uppsala, Sweden.
| | | | | | | | | | | | | |
Collapse
|
3
|
Li X, Surguchev A, Bian S, Navaratnam D, Santos-Sacchi J. Extracellular chloride regulation of Kv2.1, contributor to the major outward Kv current in mammalian outer hair cells. Am J Physiol Cell Physiol 2011; 302:C296-306. [PMID: 21940671 DOI: 10.1152/ajpcell.00177.2011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Outer hair cells (OHC) function as both receptors and effectors in providing a boost to auditory reception. Amplification is driven by the motor protein prestin, which is under anionic control. Interestingly, we now find that the major, 4-AP-sensitive, outward K(+) current of the OHC (I(K)) is also sensitive to Cl(-), although, in contrast to prestin, extracellularly. I(K) is inhibited by reducing extracellular Cl(-) levels, with a linear dependence of 0.4%/mM. Other voltage-dependent K(+) (Kv) channel conductances in supporting cells, such as Hensen and Deiters' cells, are not affected by reduced extracellular Cl(-). To elucidate the molecular basis of this Cl(-)-sensitive I(K), we looked at potential molecular candidates based on Cl(-) sensitivity and/or similarities in kinetics. For I(K), we identified three different Ca(2+)-independent components of I(K) based on the time constant of inactivation: a fast, transient outward current, a rapidly activating, slowly inactivating current (Ik(1)), and a slowly inactivating current (Ik(2)). Extracellular Cl(-) differentially affects these components. Because the inactivation time constants of Ik(1) and Ik(2) are similar to those of Kv1.5 and Kv2.1, we transiently transfected these constructs into CHO cells and found that low extracellular Cl(-) inhibited both channels with linear current reductions of 0.38%/mM and 0.49%/mM, respectively. We also tested heterologously expressed Slick and Slack conductances, two intracellularly Cl(-)-sensitive K(+) channels, but found no extracellular Cl(-) sensitivity. The Cl(-) sensitivity of Kv2.1 and its robust expression within OHCs verified by single-cell RT-PCR indicate that these channels underlie the OHC's extracellular Cl(-) sensitivity.
Collapse
Affiliation(s)
- Xiantao Li
- Department of Surgery (Otolaryngology), YaleUniversity School of Medicine, New Haven, Connecticut 06511, USA
| | | | | | | | | |
Collapse
|
4
|
Onset coding is degraded in auditory nerve fibers from mutant mice lacking synaptic ribbons. J Neurosci 2010; 30:7587-97. [PMID: 20519533 DOI: 10.1523/jneurosci.0389-10.2010] [Citation(s) in RCA: 156] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Synaptic ribbons, found at the presynaptic membrane of sensory cells in both ear and eye, have been implicated in the vesicle-pool dynamics of synaptic transmission. To elucidate ribbon function, we characterized the response properties of single auditory nerve fibers in mice lacking Bassoon, a scaffolding protein involved in anchoring ribbons to the membrane. In bassoon mutants, immunohistochemistry showed that fewer than 3% of the hair cells' afferent synapses retained anchored ribbons. Auditory nerve fibers from mutants had normal threshold, dynamic range, and postonset adaptation in response to tone bursts, and they were able to phase lock with normal precision to amplitude-modulated tones. However, spontaneous and sound-evoked discharge rates were reduced, and the reliability of spikes, particularly at stimulus onset, was significantly degraded as shown by an increased variance of first-spike latencies. Modeling based on in vitro studies of normal and mutant hair cells links these findings to reduced release rates at the synapse. The degradation of response reliability in these mutants suggests that the ribbon and/or Bassoon normally facilitate high rates of exocytosis and that its absence significantly compromises the temporal resolving power of the auditory system.
Collapse
|
5
|
Wei D, Jin Z, Järlebark L, Scarfone E, Ulfendahl M. Survival, synaptogenesis, and regeneration of adult mouse spiral ganglion neurons in vitro. Dev Neurobiol 2007; 67:108-22. [PMID: 17443776 DOI: 10.1002/dneu.20336] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The inner ear spiral ganglion is populated by bipolar neurons connecting the peripheral sensory receptors, the hair cells, with central neurons in auditory brain stem nuclei. Hearing impairment is often a consequence of hair cell death, e.g., from acoustic trauma. When deprived of their peripheral targets, the spiral ganglion neurons (SGNs) progressively degenerate. For effective clinical treatment using cochlear prostheses, it is essential to maintain the SGN population. To investigate their survival dependence, synaptogenesis, and regenerative capacity, adult mouse SGNs were separated from hair cells and studied in vitro in the presence of various neurotrophins and growth factors. Coadministration of fibroblast growth factor 2 (FGF-2) and glial cell line-derived neurotrophic factor (GDNF) provided support for long-term survival, while FGF-2 alone could strongly promote neurite regeneration. Fibroblast growth factor receptor FGFR-3-IIIc was found to upregulate and translocate to the nucleus in surviving SGNs. Surviving SGNs formed contacts with other SGNs after they were deprived of the signals from the hair cells. In coculture experiments, neurites extending from SGNs projected toward hair cells. Interestingly, adult mouse spiral ganglion cells could carry out both symmetric and asymmetric cell division and give rise to new neurons. The authors propose that a combination of FGF-2 and GDNF could be an efficient route for clinical intervention of secondary degeneration of SGNs. The authors also demonstrate that the adult mammalian inner ear retains progenitor cells, which could commit neurogenesis.
Collapse
Affiliation(s)
- Dongguang Wei
- Center for Hearing and Communication Research, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
6
|
Wei D, Jin Z, Järlebark L, Scarfone E, Ulfendahl M. Survival, synaptogenesis, and regeneration of adult mouse spiral ganglion neuronsin vitro. ACTA ACUST UNITED AC 2007. [DOI: 10.1002/neu.20336] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
7
|
Christopher Kirk E, Smith DW. Protection from acoustic trauma is not a primary function of the medial olivocochlear efferent system. J Assoc Res Otolaryngol 2003; 4:445-65. [PMID: 12784134 PMCID: PMC3202749 DOI: 10.1007/s10162-002-3013-y] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2002] [Accepted: 03/26/2003] [Indexed: 11/29/2022] Open
Abstract
The medial olivocochlear (MOC) efferent system is an important component of an active mechanical outer hair cell system in mammals. An extensive neurophysiological literature demonstrates that the MOC system attenuates the response of the cochlea to sound by reducing the gain of the outer hair cell mechanical response to stimulation. Despite a growing understanding of MOC physiology, the biological role of the MOC system in mammalian audition remains uncertain. Some evidence suggests that the MOC system functions in a protective role by acting to reduce receptor damage during intense acoustic exposure. For the MOC system to have evolved as a protective mechanism, however, the inner ears of mammals must be exposed to potentially damaging sources of noise that can elicit MOC-mediated protective effects under natural conditions. In this review, we evaluate the possibility that the MOC system evolved to protect the inner ear from naturally occurring environmental noise. Our survey of nonanthropogenic noise levels shows that while sustained sources of broadband noise are found in nearly all natural acoustic environments, frequency-averaged ambient noise levels in these environments rarely exceed 70 dB SPL. Similarly, sources reporting ambient noise spectra in natural acoustic environments suggest that noise levels within narrow frequency bands are typically low in intensity (<40 dB SPL). Only in rare instances (e.g., during frog choruses) are ambient noise levels sustained at moderately high intensities (~70-90 dB SPL). By contrast, all experiments in which an MOC-mediated protective effect was demonstrated used much higher sound intensities to traumatize the cochlea (100-150 dB SPL). This substantial difference between natural ambient noise levels and the experimental conditions necessary to evoke MOC-mediated protection suggests that even the noisiest natural acoustic environments are not sufficiently intense to have selected for the evolution of the MOC system as a protective mechanism. Furthermore, although relatively intense noise environments do exist in nature, they are insufficiently distributed to account for the widespread distribution of the MOC system in mammals. The paucity of high-intensity noise and the near ubiquity of low-level noise in natural environments supports the hypothesis that the MOC system evolved as a mechanism for "unmasking" biologically significant acoustic stimuli by reducing the response of the cochlea to simultaneous low-level noise. This suggested role enjoys widespread experimental support.
Collapse
Affiliation(s)
- E. Christopher Kirk
- Department of Biological Anthropology and Anatomy, Duke University Medical Center, Durham, NC 27710, USA
| | - David W. Smith
- Hearing Research Laboratories, Division of Otolaryngology–Head and Neck Surgery, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
8
|
Lenzi D, Crum J, Ellisman MH, Roberts WM. Depolarization redistributes synaptic membrane and creates a gradient of vesicles on the synaptic body at a ribbon synapse. Neuron 2002; 36:649-59. [PMID: 12441054 DOI: 10.1016/s0896-6273(02)01025-5] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
We used electron tomography of frog saccular hair cells to reconstruct presynaptic ultrastructure at synapses specialized for sustained transmitter release. Synaptic vesicles at inhibited synapses were abundant in the cytoplasm and covered the synaptic body at high density. Continuous maximal stimulation depleted 73% of the vesicles within 800 nm of the synapse, with a concomitant increase in surface area of intracellular cisterns and plasmalemmal infoldings. Docked vesicles were depleted 60%-80% regardless of their distance from the active zone. Vesicles on the synaptic body were depleted primarily in the hemisphere facing the plasmalemma, creating a gradient of vesicles on its surface. We conclude that formation of new synaptic vesicles from cisterns is rate limiting in the vesicle cycle.
Collapse
Affiliation(s)
- David Lenzi
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | | | | | | |
Collapse
|
9
|
Thiers FA, Burgess BJ, Nadol JB. Prevalence and ultrastructural morphology of axosomatic synapses on spiral ganglion cells in humans of different ages. Hear Res 2000; 150:119-31. [PMID: 11077197 DOI: 10.1016/s0378-5955(00)00193-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Axosomatic synapses were found on human spiral ganglion cells (HSGCs). Ultrastructural characterization and calculation of the prevalence of these synapses were performed by electron microscopic semi-serial sections of both type I and type II HSGCs, in specimens from subjects of ages 1 day, 14 days, 21 years and 51 years. Synapses on type I HSGCs were extremely rare. In contrast, axosomatic synapses were present on approximately 50% of type II HSGCs of a young adult. This prevalence seemed to vary by age. Thus, no synapses were found in a 1-day old neonate, few in a 14-day old, and on approximately 15% of the type II SGCs from a 51-year old specimen. The origin of the nerve fibers synapsing on the type II HSGCs could not be determined. In view of the fact that some of the fibers projected from the intraganglionic spiral bundle, which is known to contain olivocochlear efferents, these fibers may represent an efferent pathway to the spiral ganglion. However, since there was morphological evidence of more than one type of nerve fiber synapsing on type II HSGCs, other neural origins must be considered. Although the physiological function of these synapses is unknown, they may mediate pre-synaptic neural modulation of the type II HSGCs at the level of the spiral ganglion.
Collapse
Affiliation(s)
- F A Thiers
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA
| | | | | |
Collapse
|
10
|
|
11
|
Abdala C, Ma E, Sininger YS. Maturation of medial efferent system function in humans. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 1999; 105:2392-2402. [PMID: 10212420 DOI: 10.1121/1.426844] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Otoacoustic emissions are typically reduced in amplitude when broadband noise is presented to the contralateral ear. This contralateral suppression is attributed to activation of the medial olivocochlear system, which has an inhibitory effect on outer hair-cell activity. By studying the effects of contralateral noise on cochlear output at different stages of auditory maturation in human neonates, it is possible to describe the timecourse for development of medial efferent system function in humans. The present study recorded 2 f1-f2 distortion product otoacoustic emissions (DPOAE) in human adults, term and premature neonates at three f2 frequencies: 1500, 3000, and 6000 Hz, using fixed primary tone frequency ratio (f2/f1 = 1.2) and level separation (10 dB, L1 > L2). Average DPOAE growth functions were recorded with and without contralateral broadband noise. Results indicate that contralateral suppression of DPOAEs is absent at 6000 Hz, but present at 1500 and 3000 Hz for all ages. However, DPOAE amplitude from premature neonates was not altered by noise in an adult-like manner; in this age group, DPOAE amplitude was equally likely to by suppressed or enhanced by noise presented contralaterally. Contralateral enhancement may reflect a temporary stage of immaturity in outer hair cell-medial efferent fiber synapses just prior to term birth.
Collapse
Affiliation(s)
- C Abdala
- House Ear Institute, Children's Auditory Research and Evaluation Center, Los Angeles, California 90057, USA.
| | | | | |
Collapse
|
12
|
Abstract
We used electron tomography to map the three-dimensional architecture of the ribbon-class afferent synapses in frog saccular hair cells. The synaptic body (SB) at each synapse was nearly spherical (468 +/- 65 nm diameter; mean +/- SD) and was covered by a monolayer of synaptic vesicles (34.3 nm diameter; 8.8% coefficient of variation), many of them tethered to it by approximately 20-nm-long filaments, at an average density of 55% of close-packed (376 +/- 133 vesicles per SB). These vesicles could support approximately 900 msec of exocytosis at the reported maximal rate, which the cells can sustain for at least 2 sec, suggesting that replenishment of vesicles on the SB is not rate limiting. Consistent with this interpretation, prolonged K+ depolarization did not deplete vesicles on the SB. The monolayer of SB-associated vesicles remained after cell lysis in the presence of 4 mM Ca2+, indicating that the association is tight and Ca2+-resistant. The space between the SB and the plasma membrane contained numerous vesicles, many of which ( approximately 32 per synapse) were in contact with the plasma membrane. This number of docked vesicles could support maximal exocytosis for at most approximately 70 msec. Additional docked vesicles were seen within a few hundred nanometers of the synapse and occasionally at greater distances. The presence of omega profiles on the plasma membrane around active zones, in the same locations as coated pits and coated vesicles labeled with an extracellular marker, suggests that local membrane recycling may contribute to the three- to 14-fold greater abundance of vesicles in the cytoplasm (not associated with the SB) near synapses than in nonsynaptic regions.
Collapse
|
13
|
Sobkowicz HM, Slapnick SM, Nitecka LM, August BK. Compound synapses within the GABAergic innervation of the auditory inner hair cells in the adolescent mouse. J Comp Neurol 1997; 377:423-42. [PMID: 8989656 DOI: 10.1002/(sici)1096-9861(19970120)377:3<423::aid-cne9>3.0.co;2-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Ultrastructural investigation of the gamma-aminobutyric acid (GABA) component of the inner spiral bundle in adolescent mice revealed a pathway of glutamic acid decarboxylase (GAD)-positive and -negative fibers and vesiculated endings that contact inner hair cells and their afferents through a complex of axosomatic and axodendritic synapses. Ultrastructural details were investigated by using conventional electron microscopy. Several synaptic arrangements were observed: Main axosomatic synapses form between vesiculated endings and individual or adjoining inner hair cells (interreceptor synapses). Spinous synapses form on long, spinelike processes that protrude from inner hair cells to reach distant efferent endings. The efferent endings associate with inner hair cells and their synaptic afferents through compound synapses-serial, "converging," and triadic-otherwise characteristic of sensory relay nuclei. Serial synapses form by the sequential presynaptic alignment of the efferent-->receptor-->afferent components. Converging synapses result from the simultaneous apposition of a receptor ribbon synapse and a presynaptic efferent terminal on a recipient afferent dendrite. Triadic synapses comprise a vesiculated efferent ending in contact with an inner hair cell and with its synaptic afferent. Additionally, efferent endings may form simple axodendritic and axoaxonal synapses with GAD-negative vesiculated endings. The combination of different synaptic arrangements leads to short chains of compound synapses. It is assumed that these synaptic patterns seen in the adolescent mouse represent adult synaptology. The patterns of synaptic connectivity suggest an integrative role for the GABA/GAD lateral efferent system, and imply its involvement in the pre- and postsynaptic modulation of auditory signals.
Collapse
Affiliation(s)
- H M Sobkowicz
- Department of Neurology, University of Wisconsin, Madison 53706, USA.
| | | | | | | |
Collapse
|
14
|
Knipper M, Zimmermann U, Rohbock K, Köpschall I, Zenner HP. Synaptophysin and GAP-43 proteins in efferent fibers of the inner ear during postnatal development. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1995; 89:73-86. [PMID: 8575095 DOI: 10.1016/0165-3806(95)00113-r] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A rearrangement of afferent and efferent fibers occurs in the postnatal development of the inner ear. Growth and synaptogenesis was explored during this critical period by immunohistochemically monitoring the expression of GAP-43 and synaptophysin. Both proteins were colocalized in efferent fibers beyond postnatal day 3 (pn3). Two distinct synaptophysin- and GAP-43-positive fibers innervated different parts of inner hair cells in the first and second postnatal weeks, respectively. GAP-43-positive efferents projecting to outer hair cells upregulated synaptophysin with base to apex gradient between postnatal day 5 and postnatal day 14. In efferents projecting to outer hair cells GAP-43 was downregulated about 6 days beyond synaptogenesis. In efferents projecting to inner hair cells, however, GAP-43 remained upregulated even beyond pn18, indicating continuous synapse replacement of this fiber type. Both proteins thus improved as excellent markers for growth and synaptogenesis of distinct postnatal efferent fibers.
Collapse
Affiliation(s)
- M Knipper
- ENT-Department, University of Tübingen, Germany
| | | | | | | | | |
Collapse
|
15
|
Abstract
Many features of cochlear anatomy vary systematically radially and longitudinally within the organ of Corti. There is limited evidence that along the longitudinal axis of the cochlea the thickness of the subsurface cisternal system in the outer hair cells (OHCs) changes. Similarly a radial gradient may exist. The thickness of the subsurface cisternal system in OHCs was measured in gerbils to determine if there are differences between the three rows of OHCs and in OHCs in different locations along the length of the organ of Corti. The results suggest that there is a longitudinal as well as a radial gradient of subsurface cisternal system thickness. These gradients are the inverse to those for efferent innervation of OHCs. It is possible that these differences may contribute to the increased susceptibility to trauma and ototoxic compounds characteristic of the innermost and basalmost OHCs.
Collapse
Affiliation(s)
- C Lutz
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, KY 40292, USA
| | | |
Collapse
|
16
|
Sobkowicz HM, Slapnick SM, August BK. Presynaptic fibres of spiral neurons and reciprocal synapses in the organ of Corti in culture. JOURNAL OF NEUROCYTOLOGY 1993; 22:979-93. [PMID: 8301328 DOI: 10.1007/bf01218355] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Isolated segments of the newborn mouse organ of Corti were explanted together with the spiral ganglion components. Within the innervation provided by the spiral neurons, we observed presynaptic vesiculated nerve endings that form reciprocal ribbon-afferent/efferent synapses with inner hair cells. These intracochlear presynaptic fibres are characteristically located between adjoining inner hair cells, on the modiolar side, low and close to the supporting cells. The presynaptic fibres display different modes of synaptic connectivity, forming repetitive reciprocal synapses on single inner hair cells or on adjoining hair cells, or connecting adjoining inner hair cells through simultaneous efferent synapses. Many presynaptic fibres exhibit a distinctive ultrastructure: defined clusters of synaptic vesicles, dense core vesicles, coated vesicles, and mitochondria. These organelles occur focally at the synaptic sites; beyond the efferent synaptic specializations, the endings appear quite nondescript and afferent-like. We believe that the reciprocal synapses, although observed in cultures of the organ of Corti, represent real intracochlear synaptic arrangements providing a feedback mechanism between the primary sensory receptors and a special class of spiral ganglion cells that have yet to be recognized in the organ in situ.
Collapse
Affiliation(s)
- H M Sobkowicz
- Department of Neurology, University of Wisconsin, Madison 53706
| | | | | |
Collapse
|
17
|
Abstract
Unlike the organ of Corti in mammals, the avian basilar papilla has no distinct populations of hair cells. Instead, there is a continuous change between the extreme forms (tall hair cells = THC, and short hair cells = SHC). The hair-cell innervation pattern is complicated, there being no simple gradient between THC (mainly innervated by afferent fibers) and SHC (mainly innervated by efferent fibers). In the basal half of the papilla, SHC have only efferent innervation. The lack of afferent innervation indicates that the function of basal SHC is restricted to the basilar papilla itself, perhaps modifying its mechanical properties.
Collapse
Affiliation(s)
- F P Fischer
- Institut für Zoologie, Technische Universität München, Garching, FRG
| |
Collapse
|
18
|
Affiliation(s)
- S L Cochran
- Department of Life Sciences, Indiana State University, Terre Haute 47809
| |
Collapse
|
19
|
Webster DB. An Overview of Mammalian Auditory Pathways with an Emphasis on Humans. THE MAMMALIAN AUDITORY PATHWAY: NEUROANATOMY 1992. [DOI: 10.1007/978-1-4612-4416-5_1] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
20
|
Dieler R, Shehata-Dieler WE, Brownell WE. Concomitant salicylate-induced alterations of outer hair cell subsurface cisternae and electromotility. JOURNAL OF NEUROCYTOLOGY 1991; 20:637-53. [PMID: 1940979 DOI: 10.1007/bf01187066] [Citation(s) in RCA: 111] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Isolated cochlear outer hair cells undergo rapid, force-generating length changes in response to electrical stimulation. The cellular mechanism responsible for electromotility and its structural substrate is not yet known. Salicylates reduce and block electromotility in vitro. Therefore, we exposed isolated outer hair cells from the guinea pig cochlea to various doses of sodium salicylate and evaluated both ultrastructural changes and responses to electrical stimulation. Following salicylate superfusion, the subsurface cisternae showed dilatation, vesiculation and a deviation from their normal, unfenestrated, axial orientation below the plasma membrane. These changes were time and dose dependent and reversible over a time course of about 30 min. Electromotility was blocked and showed recovery following the same time course as the salicylate-induced reversible structural changes. These results indicate that intact, unfenestrated subsurface cisternae are required for the optimal generation of electrically-induced motility in mammalian outer hair cells.
Collapse
Affiliation(s)
- R Dieler
- Department of Otolaryngology, Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2196
| | | | | |
Collapse
|