1
|
Thomas SJ, Ghosh B, Wang Z, Yang M, Nong J, Severa J, Wright MC, Zhong Y, Lepore AC. Hepatocyte Growth Factor Delivery to Injured Cervical Spinal Cord Using an Engineered Biomaterial Protects Respiratory Neural Circuitry and Preserves Functional Diaphragm Innervation. J Neurotrauma 2024. [PMID: 39078323 DOI: 10.1089/neu.2024.0084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024] Open
Abstract
A major portion of spinal cord injury (SCI) cases occur in the cervical region, where essential components of the respiratory neural circuitry are located. Phrenic motor neurons (PhMNs) housed at cervical spinal cord level C3-C5 directly innervate the diaphragm, and SCI-induced damage to these cells severely impairs respiratory function. In this study, we tested a biomaterial-based approach aimed at preserving this critical phrenic motor circuitry after cervical SCI by locally delivering hepatocyte growth factor (HGF). HGF is a potent mitogen that promotes survival, proliferation, migration, repair, and regeneration of a number of different cell and tissue types in response to injury. We developed a hydrogel-based HGF delivery system that can be injected into the intrathecal space for local delivery of high levels of HGF without damaging the spinal cord. Implantation of HGF hydrogel after unilateral C5 contusion-type SCI in rats preserved diaphragm function, as assessed by in vivo recordings of both compound muscle action potentials and inspiratory electromyography amplitudes. HGF hydrogel also preserved PhMN innervation of the diaphragm, as assessed by both retrograde PhMN tracing and detailed neuromuscular junction morphological analysis. Furthermore, HGF hydrogel significantly decreased lesion size and degeneration of cervical motor neuron cell bodies, as well as reduced levels surrounding the injury site of scar-associated chondroitin sulfate proteoglycan molecules that limit axon growth capacity. Our findings demonstrate that local biomaterial-based delivery of HGF hydrogel to injured cervical spinal cord is an effective strategy for preserving respiratory circuitry and diaphragm function.
Collapse
Affiliation(s)
- Samantha J Thomas
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Biswarup Ghosh
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Zhicheng Wang
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania, USA
| | - Mengxi Yang
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania, USA
| | - Jia Nong
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania, USA
| | - Jenna Severa
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Megan C Wright
- Department of Biology, Arcadia University, Glenside, Pennsylvania, USA
| | - Yinghui Zhong
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania, USA
| | - Angelo C Lepore
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
2
|
Li Q, Yang Z, Wang K, Chen Z, Shen H. Suppression of microglial Ccl2 reduces neuropathic pain associated with chronic spinal compression. Front Immunol 2023; 14:1191188. [PMID: 37497210 PMCID: PMC10366611 DOI: 10.3389/fimmu.2023.1191188] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/11/2023] [Indexed: 07/28/2023] Open
Abstract
Introduction Chronic spinal compression is a common complication of spinal cord injury (SCI), which can lead to spinal stenosis or herniated discs. The ensuing neuropathic pain is often associated with the activation of microglia. In this investigation, our objective was to explore whether modifying the levels of chemokine (C-C motif) ligand 2 (Ccl2) in microglia could alleviate neuropathic pain resulting from chronic spinal compression. Methods We used a public database to look for major altered gene associated in a SCI model established in rats. We then employed adeno-associated virus (AAV) vectors, expressing siRNA for the identified significantly altered gene under a microglia-specific TMEM119 promoter. We also tested the impact of this treatment in microglia in vivo on the severity of chronic spinal compression and associated pain using a ttw mouse model for progressive spinal compression. Results We identified chemokine (C-C motif) ligand 2 (Ccl2) as the primary gene altered in microglia within a rat SCI model, utilizing a public database. Microglial Ccl2 levels were then found to be significantly elevated in disc specimens from SCI patients diagnosed with chronic spinal compression and strongly correlated with the Thompson classification of the degeneration level and pain score. Depletion of Ccl2 in microglia-specific TMEM119 promoter were developed to transfect mouse microglia in vitro, resulting in a proinflammatory to anti-inflammatory phenotypic adaption. In vivo depletion of Ccl2 in microglia mitigated the severity of chronic spinal compression and related pain in ttw mice, likely due to significant changes in pain-associated cytokines and factors. Conclusion Disc microglia expressing high levels of Ccl2 may contribute to chronic spinal compression and SCI-associated pain. Therapeutically targeting Ccl2 in microglia could offer a potential avenue for treating chronic spinal compression and SCI-associated pain.
Collapse
Affiliation(s)
- Quan Li
- Department of Spine Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zongde Yang
- Department of Spine Surgery, Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Kun Wang
- Department of Spine Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhi Chen
- Department of Spine Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hongxing Shen
- Department of Spine Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
3
|
Vangansewinkel T, Lemmens S, Tiane A, Geurts N, Dooley D, Vanmierlo T, Pejler G, Hendrix S. Therapeutic administration of mouse mast cell protease 6 improves functional recovery after traumatic spinal cord injury in mice by promoting remyelination and reducing glial scar formation. FASEB J 2023; 37:e22939. [PMID: 37130013 DOI: 10.1096/fj.202201942rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 04/06/2023] [Accepted: 04/14/2023] [Indexed: 05/03/2023]
Abstract
Traumatic spinal cord injury (SCI) most often leads to permanent paralysis due to the inability of axons to regenerate in the adult mammalian central nervous system (CNS). In the past, we have shown that mast cells (MCs) improve the functional outcome after SCI by suppressing scar tissue formation at the lesion site via mouse mast cell protease 6 (mMCP6). In this study, we investigated whether recombinant mMCP6 can be used therapeutically to improve the functional outcome after SCI. Therefore, we applied mMCP6 locally via an intrathecal catheter in the subacute phase after a spinal cord hemisection injury in mice. Our findings showed that hind limb motor function was significantly improved in mice that received recombinant mMCP6 compared with the vehicle-treated group. In contrast to our previous findings in mMCP6 knockout mice, the lesion size and expression levels of the scar components fibronectin, laminin, and axon-growth-inhibitory chondroitin sulfate proteoglycans were not affected by the treatment with recombinant mMCP6. Surprisingly, no difference in infiltration of CD4+ T cells and reactivity of Iba-1+ microglia/macrophages at the lesion site was observed between the mMCP6-treated mice and control mice. Additionally, local protein levels of the pro- and anti-inflammatory mediators IL-1β, IL-2, IL-4, IL-6, IL-10, TNF-α, IFNγ, and MCP-1 were comparable between the two treatment groups, indicating that locally applied mMCP6 did not affect inflammatory processes after injury. However, the increase in locomotor performance in mMCP6-treated mice was accompanied by reduced demyelination and astrogliosis in the perilesional area after SCI. Consistently, we found that TNF-α/IL-1β-astrocyte activation was decreased and that oligodendrocyte precursor cell (OPC) differentiation was increased after recombinant mMCP6 treatment in vitro. Mechanistically, this suggests effects of mMCP6 on reducing astrogliosis and improving (re)myelination in the spinal cord after injury. In conclusion, these data show for the first time that recombinant mMCP6 is therapeutically active in enhancing recovery after SCI.
Collapse
Affiliation(s)
- Tim Vangansewinkel
- Cardio and Organ Systems, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
- VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Stefanie Lemmens
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Assia Tiane
- Department of Neuroscience, Faculty of Medicine and Life Sciences, Biomedical Research Institute, Hasselt University, Hasselt, Belgium
- Department Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
- University MS Center (UMSC) Hasselt-Pelt, Hasselt, Belgium
| | - Nathalie Geurts
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Dearbhaile Dooley
- School of Medicine, Health Sciences Centre, University College Dublin, Belfield, Ireland
- UCD Conway Institute of Biomolecular & Biomedical Research University College Dublin, Belfield, Ireland
| | - Tim Vanmierlo
- Department of Neuroscience, Faculty of Medicine and Life Sciences, Biomedical Research Institute, Hasselt University, Hasselt, Belgium
- Department Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
- University MS Center (UMSC) Hasselt-Pelt, Hasselt, Belgium
| | - Gunnar Pejler
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Sven Hendrix
- Institute for Translational Medicine, Medical School Hamburg, Hamburg, Germany
| |
Collapse
|
4
|
Nakajima T, Takeda S, Ito Y, Oyama A, Takami Y, Takeya Y, Yamamoto K, Sugimoto K, Shimizu H, Shimamura M, Rakugi H, Morishita R. A novel chronic dural port platform for continuous collection of cerebrospinal fluid and intrathecal drug delivery in free-moving mice. Fluids Barriers CNS 2022; 19:31. [PMID: 35505336 PMCID: PMC9066940 DOI: 10.1186/s12987-022-00331-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/19/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Cerebrospinal fluid (CSF) provides a close representation of pathophysiological changes occurring in the central nervous system (CNS); therefore, it has been employed in pathogenesis research and biomarker development for CNS disorders. CSF obtained from valid mouse models relevant to CNS disorders can be an important resource for successful biomarker and drug development. However, the limited volume of CSF that can be collected from tiny intrathecal spaces and the technical difficulties involved in CSF sampling has been a bottleneck that has hindered the detailed analysis of CSF in mouse models. METHODS We developed a novel chronic dural port (CDP) method without cannulation for CSF collection of mice. This method enables easy and repeated access to the intrathecal space in a free-moving, unanesthetized mouse, thereby enabling continuous long-term CSF collection with minimal tissue damage and providing a large volume of high-quality CSF from a single mouse. When combined with chemical biosensors, the CDP method allows for real-time monitoring of the dynamic changes in neurochemicals in the CSF at a one-second temporal resolution in free-moving mice. Moreover, the CDP can serve as a direct access point for the intrathecal injection of CSF tracers and drugs. RESULTS We established a CDP implantation and continuous CSF collection protocol. The CSF collected using CDP was not contaminated with blood and maintained physiological concentrations of basic electrolytes and proteins. The CDP method did not affect mouse's physiological behavior or induce tissue damage, thereby enabling a stable CSF collection for up to four weeks. The spatio-temporal distribution of CSF tracers delivered using CDP revealed that CSF metabolism in different brain areas is dynamic. The direct intrathecal delivery of centrally acting drugs using CDP enabled real-time behavioral assessments in free-moving mice. CONCLUSIONS The CDP method enables the collection of a large volume of high-quality CSF and direct intrathecal drug administration with real-time behavioral assessment in free-moving mice. Combined with animal models relevant to CNS disorders, this method provides a unique and valuable platform for biomarker and therapeutic drug research.
Collapse
Affiliation(s)
- Tsuneo Nakajima
- grid.136593.b0000 0004 0373 3971Department of Geriatric and General Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871 Japan
| | - Shuko Takeda
- grid.136593.b0000 0004 0373 3971Department of Clinical Gene Therapy, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871 Japan ,Osaka Psychiatric Research Center, Osaka Psychiatric Medical Center, Hirakata, Osaka 573- 0022 Japan
| | - Yuki Ito
- grid.136593.b0000 0004 0373 3971Department of Clinical Gene Therapy, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871 Japan ,Osaka Psychiatric Research Center, Osaka Psychiatric Medical Center, Hirakata, Osaka 573- 0022 Japan
| | - Akane Oyama
- grid.136593.b0000 0004 0373 3971Department of Geriatric and General Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871 Japan ,Osaka Psychiatric Research Center, Osaka Psychiatric Medical Center, Hirakata, Osaka 573- 0022 Japan
| | - Yoichi Takami
- grid.136593.b0000 0004 0373 3971Department of Geriatric and General Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871 Japan
| | - Yasushi Takeya
- grid.136593.b0000 0004 0373 3971Department of Geriatric and General Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871 Japan ,grid.136593.b0000 0004 0373 3971Department of Clinical Nursing Division of Health Sciences Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871 Japan
| | - Koichi Yamamoto
- grid.136593.b0000 0004 0373 3971Department of Geriatric and General Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871 Japan
| | - Ken Sugimoto
- grid.136593.b0000 0004 0373 3971Department of Geriatric and General Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871 Japan ,grid.415086.e0000 0001 1014 2000General and Geriatric Medicine, Kawasaki Medical School General Medical Center, Okayama, 700-8505 Japan
| | - Hideo Shimizu
- grid.136593.b0000 0004 0373 3971Department of Clinical Gene Therapy, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871 Japan ,grid.412378.b0000 0001 1088 0812Department of Internal Medicine, Osaka Dental University, Hirakata, Osaka 573-1121 Japan
| | - Munehisa Shimamura
- grid.136593.b0000 0004 0373 3971Department of Neurology, Department of Health Development and Medicine, Osaka University, Suita, Osaka 565-0871 Japan
| | - Hiromi Rakugi
- grid.136593.b0000 0004 0373 3971Department of Geriatric and General Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871 Japan
| | - Ryuichi Morishita
- grid.136593.b0000 0004 0373 3971Department of Clinical Gene Therapy, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871 Japan
| |
Collapse
|
5
|
Liu ZH, Huang YC, Kuo CY, Chuang CC, Chen CC, Chen NY, Yip PK, Chen JP. Co-Delivery of Docosahexaenoic Acid and Brain-Derived Neurotropic Factor from Electrospun Aligned Core-Shell Fibrous Membranes in Treatment of Spinal Cord Injury. Pharmaceutics 2022; 14:321. [PMID: 35214053 PMCID: PMC8880006 DOI: 10.3390/pharmaceutics14020321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 12/21/2022] Open
Abstract
To restore lost functions while repairing the neuronal structure after spinal cord injury (SCI), pharmacological interventions with multiple therapeutic agents will be a more effective modality given the complex pathophysiology of acute SCI. Toward this end, we prepared electrospun membranes containing aligned core-shell fibers with a polylactic acid (PLA) shell, and docosahexaenoic acid (DHA) or a brain-derived neurotropic factor (BDNF) in the core. The controlled release of both pro-regenerative agents is expected to provide combinatory treatment efficacy for effective neurogenesis, while aligned fiber topography is expected to guide directional neurite extension. The in vitro release study indicates that both DHA and BDNF could be released continuously from the electrospun membrane for up to 50 days, while aligned microfibers guide the neurite extension of primary cortical neurons along the fiber axis. Furthermore, the PLA/DHA/BDNF core-shell fibrous membrane (CSFM) provides a significantly higher neurite outgrowth length from the neuron cells than the PLA/DHA CSFM. This is supported by the upregulation of genes associated with neuroprotection and neuroplasticity from RT-PCR analysis. From an in vivo study by implanting a drug-loaded CSFM into the injury site of a rat suffering from SCI with a cervical hemisection, the co-delivery of DHA and BDNF from a PLA/DHA/BDNF CSFM could significantly improve neurological function recovery from behavioral assessment, as well as provide neuroprotection and promote neuroplasticity changes in recovered neuronal tissue from histological analysis.
Collapse
Affiliation(s)
- Zhuo-Hao Liu
- Department of Neurosurgery, Chang Gung Memorial Hospital, Linkou, Chang Gung University School of Medicine, Kwei-San, Taoyuan 33305, Taiwan; (Z.-H.L.); (Y.-C.H.); (C.-C.C.); (C.-C.C.)
| | - Yin-Cheng Huang
- Department of Neurosurgery, Chang Gung Memorial Hospital, Linkou, Chang Gung University School of Medicine, Kwei-San, Taoyuan 33305, Taiwan; (Z.-H.L.); (Y.-C.H.); (C.-C.C.); (C.-C.C.)
| | - Chang-Yi Kuo
- Department of Chemical and Materials and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan;
| | - Chi-Cheng Chuang
- Department of Neurosurgery, Chang Gung Memorial Hospital, Linkou, Chang Gung University School of Medicine, Kwei-San, Taoyuan 33305, Taiwan; (Z.-H.L.); (Y.-C.H.); (C.-C.C.); (C.-C.C.)
| | - Ching-Chang Chen
- Department of Neurosurgery, Chang Gung Memorial Hospital, Linkou, Chang Gung University School of Medicine, Kwei-San, Taoyuan 33305, Taiwan; (Z.-H.L.); (Y.-C.H.); (C.-C.C.); (C.-C.C.)
| | - Nan-Yu Chen
- Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou, Chang Gung University School of Medicine, Kwei-San, Taoyuan 33305, Taiwan;
| | - Ping K. Yip
- Centre for Neuroscience, Surgery & Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK;
| | - Jyh-Ping Chen
- Department of Chemical and Materials and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan;
- Department of Plastic and Reconstructive Surgery and Craniofacial Research Center, Chang Gung Memorial Hospital, Linkou, Kwei-San, Taoyuan 33305, Taiwan
- Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33302, Taiwan
- Department of Materials Engineering, Ming Chi University of Technology, Tai-Shan, New Taipei City 24301, Taiwan
| |
Collapse
|
6
|
Intrathecal implantation surgical considerations in rodents; a review. J Neurosci Methods 2021; 363:109327. [PMID: 34418443 DOI: 10.1016/j.jneumeth.2021.109327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 07/16/2021] [Accepted: 08/16/2021] [Indexed: 11/20/2022]
Abstract
Intrathecal access in humans is a routine clinical intervention. However, intrathecal access is limited to drug delivery purposes in rodents, and intrathecal implantation is not a common surgical practice. Preclinically, we have successfully adopted different intrathecal implantation surgical methods for different implant materials in rodents. However, employing the appropriate intrathecal implantation method is a challenging process for surgeons, which includes several steps such as preoperative evaluations and postoperative care. The aim of this review is to define and compare the major documented surgical approaches applicable for intrathecal implantation in rodents along with the associated side effects, as well as highlighting the critical preoperative and postoperative considerations. Overall, this review will provide surgeons with the principles of intrathecal implantation approaches applicable for different implant materials.
Collapse
|
7
|
Barker KE, Lecznar AJ, Schumacher JM, Morris JS, Gutstein HB. Subanalgesic morphine doses augment fentanyl analgesia by interacting with delta opioid receptors in male rats. J Neurosci Res 2021; 100:149-164. [PMID: 34520585 DOI: 10.1002/jnr.24944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 08/05/2021] [Indexed: 12/12/2022]
Abstract
Opioids are commonly used for the treatment of postoperative and post-traumatic pain; however, their therapeutic effectiveness is limited by undesirable and life-threatening side effects. Researchers have long attempted to develop opioid co-administration therapies that enhance analgesia, but the complexity of opioid analgesia and our incomplete mechanistic understanding has made this a daunting task. We discovered that subanalgesic morphine doses (100 ng/kg-10 µg/kg) augmented the acute analgesic effect of fentanyl (20 µg/kg) following subcutaneous drug co-administration to male rats. In addition, administration of equivalent drug ratios to naïve rat spinal cord membranes induced a twofold increase in G protein activation. The rate of GTP hydrolysis remained unchanged. We demonstrated that these behavioral and biochemical effects were mediated by the delta opioid receptor (DOP). Subanalgesic doses of the DOP-selective agonist SNC80 also augmented the acute analgesic effect of fentanyl. Furthermore, co-administration of the DOP antagonist naltrindole with both fentanyl-morphine and fentanyl-SNC80 combinations prevented augmentation of both analgesia and G protein activation. The mu opioid receptor (MOP) antagonist cyprodime did not block augmentation. Confocal microscopy of the substantia gelatinosa of rats treated with fentanyl, subanalgesic morphine, or this combination showed that changes in MOP internalization did not account for augmentation effects. Together, these findings suggest that augmentation of fentanyl analgesia by subanalgesic morphine is mediated by increased G protein activation resulting from a synergistic interaction between or heterodimerization of MOPs and DOPs. This finding is of great therapeutic significance because it suggests a strategy for the development of DOP-selective ligands that can enhance the therapeutic index of clinically used MOP drugs.
Collapse
Affiliation(s)
- Katherine E Barker
- Department of Anesthesiology, The University of Texas - MD Anderson Cancer Center, Houston, TX, USA
| | - Alynn J Lecznar
- Department of Anesthesiology, The University of Texas - MD Anderson Cancer Center, Houston, TX, USA
| | - Jill M Schumacher
- Department of Genetics, The University of Texas - MD Anderson Cancer Center, Houston, TX, USA
| | - Jeffrey S Morris
- Biostatistics Division, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA, USA
| | - Howard B Gutstein
- Anesthesiology Institute, Allegheny Health Network, Pittsburgh, PA, USA
| |
Collapse
|
8
|
Ehsanipour A, Sathialingam M, Rad LM, de Rutte J, Bierman RD, Liang J, Xiao W, Di Carlo D, Seidlits SK. Injectable, macroporous scaffolds for delivery of therapeutic genes to the injured spinal cord. APL Bioeng 2021; 5:016104. [PMID: 33728392 PMCID: PMC7946441 DOI: 10.1063/5.0035291] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 02/03/2021] [Indexed: 02/06/2023] Open
Abstract
Biomaterials are being developed as therapeutics for spinal cord injury (SCI) that can stabilize and bridge acute lesions and mediate the delivery of transgenes, providing a localized and sustained reservoir of regenerative factors. For clinical use, direct injection of biomaterial scaffolds is preferred to enable conformation to unique lesions and minimize tissue damage. While an interconnected network of cell-sized macropores is necessary for rapid host cell infiltration into-and thus integration of host tissue with-implanted scaffolds, injectable biomaterials have generally suffered from a lack of control over the macrostructure. As genetic vectors have short lifetimes in vivo, rapid host cell infiltration into scaffolds is a prerequisite for efficient biomaterial-mediated delivery of transgenes. We present scaffolds that can be injected and assembled in situ from hyaluronic acid (HA)-based, spherical microparticles to form scaffolds with a network of macropores (∼10 μm). The results demonstrate that addition of regularly sized macropores to traditional hydrogel scaffolds, which have nanopores (∼10 nm), significantly increases the expression of locally delivered transgene to the spinal cord after a thoracic injury. Maximal cell and axon infiltration into scaffolds was observed in scaffolds with more regularly sized macropores. The delivery of lentiviral vectors encoding the brain-derived neurotrophic factor (BDNF), but not neurotrophin-3, from these scaffolds further increased total numbers and myelination of infiltrating axons. Modest improvements to the hindlimb function were observed with BDNF delivery. The results demonstrate the utility of macroporous and injectable HA scaffolds as a platform for localized gene therapies after SCI.
Collapse
Affiliation(s)
- Arshia Ehsanipour
- Department of Bioengineering, University of California, Los Angeles, California 90095, USA
| | - Mayilone Sathialingam
- Department of Bioengineering, University of California, Los Angeles, California 90095, USA
| | - Laila M Rad
- Department of Bioengineering, University of California, Los Angeles, California 90095, USA
| | - Joseph de Rutte
- Department of Bioengineering, University of California, Los Angeles, California 90095, USA
| | - Rebecca D Bierman
- Department of Bioengineering, University of California, Los Angeles, California 90095, USA
| | - Jesse Liang
- Department of Bioengineering, University of California, Los Angeles, California 90095, USA
| | - Weikun Xiao
- Department of Bioengineering, University of California, Los Angeles, California 90095, USA
| | | | | |
Collapse
|
9
|
Silva D, Sousa R, Salgado A. Hydrogels as delivery systems for spinal cord injury regeneration. Mater Today Bio 2021; 9:100093. [PMID: 33665602 PMCID: PMC7905359 DOI: 10.1016/j.mtbio.2021.100093] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 01/04/2023] Open
Abstract
Spinal cord injury is extremely debilitating, both at physiological and psychological levels, changing completely the patient's lifestyle. The introduction of biomaterials has opened a new window to develop a therapeutic approach to induce regeneration after injury due to similarities with extracellular matrix. Particularly, hydrogels have the ability to support axonal growth and endogenous regeneration. Moreover, they can also act as potential matrixes in which to load and deliver therapeutic agents at injury site. In this review, we highlight some important characteristics to be considered when designing hydrogels as delivery systems (DS), such as rheology, mesh size, swelling, degradation, gelation temperature and surface charge. Additionally, affinity-based release systems, incorporation of nanoparticles, or ion-mediated interactions are also pondered. Overall, hydrogel DS aim to promote a sustained, controlled and prolonged release at injury site, allowing a targeted oriented action of the therapeutic agent that will be used.
Collapse
Affiliation(s)
- D. Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- ICVS/3B's—PT Government Associate Laboratory, 4710-057/4805-017, Braga/Guimarães, Portugal
- Stemmatters, Biotecnologia e Medicina Regenerativa SA, 4805-017, Guimarães, Portugal
| | - R.A. Sousa
- Stemmatters, Biotecnologia e Medicina Regenerativa SA, 4805-017, Guimarães, Portugal
| | - A.J. Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- ICVS/3B's—PT Government Associate Laboratory, 4710-057/4805-017, Braga/Guimarães, Portugal
| |
Collapse
|
10
|
O'Hare Doig RL, Santhakumar S, Fehily B, Raja S, Solomon T, Bartlett CA, Fitzgerald M, Hodgetts SI. Acute Cellular and Functional Changes With a Combinatorial Treatment of Ion Channel Inhibitors Following Spinal Cord Injury. Front Mol Neurosci 2020; 13:85. [PMID: 32670018 PMCID: PMC7331598 DOI: 10.3389/fnmol.2020.00085] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 04/24/2020] [Indexed: 01/12/2023] Open
Abstract
Reducing the extent of secondary degeneration following spinal cord injury (SCI) is necessary to preserve function, but treatment options have thus far been limited. A combination of the ion channel inhibitors Lomerizine (Lom), YM872 and oxATP, to inhibit voltage-gated Ca2+ channels, Ca2+ permeable AMPA receptors, and purinergic P2X7 receptors respectively, effectively limits secondary consequences of injury in in vitro and in vivo models of CNS injury. Here, we investigated the efficacy of these inhibitors in a clinically relevant model of SCI. Fischer (F344) rats were subjected to a moderate (150 kD) contusive SCI at thoracic level T10 and assessed at 2 weeks or 10 weeks post-injury. Lom was delivered orally twice daily and YM872 and oxATP were delivered via osmotic mini-pump implanted at the time of SCI until 2 weeks following injury. Open field locomotion analysis revealed that treatment with the three inhibitors in combination improved the rate of functional recovery of the hind limb (compared to controls) as early as 1-day post-injury, with beneficial effects persisting to 14 days post-injury, while all three inhibitors were present. At 2 weeks following combinatorial treatment, the functional improvement was associated with significantly decreased cyst size, increased immunoreactivity of β-III tubulin+ve axons, myelin basic protein, and reduced lipid peroxidation by-products, and increased CC1+ve oligodendrocytes and NG2+ve/PDGFα+ve oligodendrocyte progenitor cell densities, compared to vehicle-treated SCI animals. The combination of Lom, oxATP, and YM872 shows preclinical promise for control of secondary degeneration following SCI, and further investigation of long-term sustained treatment is warranted.
Collapse
Affiliation(s)
- Ryan L O'Hare Doig
- Experimental and Regenerative Neurosciences, School of Biological Sciences, The University of Western Australia, Crawley, WA, Australia.,Experimental and Regenerative Neurosciences, School of Human Sciences, The University of Western Australia, Crawley, WA, Australia.,Neil Sachse Centre for Spinal Cord Research, South Australian Health and Medical Research Institute, Adelaide, SA, Australia.,Adelaide Spinal Research Group, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Sreya Santhakumar
- Experimental and Regenerative Neurosciences, School of Human Sciences, The University of Western Australia, Crawley, WA, Australia.,Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
| | - Brooke Fehily
- Experimental and Regenerative Neurosciences, School of Biological Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Sushmitha Raja
- Experimental and Regenerative Neurosciences, School of Biological Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Tanya Solomon
- Experimental and Regenerative Neurosciences, School of Biological Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Carole A Bartlett
- Experimental and Regenerative Neurosciences, School of Biological Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Melinda Fitzgerald
- Experimental and Regenerative Neurosciences, School of Biological Sciences, The University of Western Australia, Crawley, WA, Australia.,Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia.,Curtin Health Innovation Research Institute, Curtin University, Nedlands, WA, Australia
| | - Stuart I Hodgetts
- Experimental and Regenerative Neurosciences, School of Human Sciences, The University of Western Australia, Crawley, WA, Australia.,Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
| |
Collapse
|
11
|
The effect of Matrigel as scaffold material for neural stem cell transplantation for treating spinal cord injury. Sci Rep 2020; 10:2576. [PMID: 32054865 PMCID: PMC7018993 DOI: 10.1038/s41598-020-59148-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 01/24/2020] [Indexed: 11/09/2022] Open
Abstract
Traumatic injury to the spinal cord causes permanent loss of function and major personal, social, and economic problems. Cell-based delivery strategies is a promising approach for treating spinal cord injury (SCI). However, the inhospitable microenvironment in the injured spinal cord results in poor cell survival and uncontrolled differentiation of the transplanted stem cells. The combination of a scaffold with cells has been developed with a tendency for achieving greater survival and integration with the host tissue. We investigated the effect of Matrigel combined with neural stem cells (NSCs) in vitro and in vivo. We compared the effect of different types of scaffold on the survival and differentiation of brain-derived NSCs in an in vitro culture. Subsequently, NSCs were transplanted subcutaneously into nude mice to detect graft survival and differentiation in vivo. Finally, phosphate-buffered saline (PBS), Matrigel alone, or Matrigel seeded with NSCs was injected into 48 subacute, clinically relevant rat models of SCI (16 rats per group). Matrigel supported cell survival and differentiation efficiently in vitro and in vivo. SCI rats transplanted with NSCs in Matrigel showed improved behavioral recovery and neuronal and reactive astrocyte marker expression levels compared to PBS- or Matrigel-transplanted rats. Functional repair and neuronal and reactive astrocyte marker expression was slightly improved in the Matrigel-alone group relative to the PBS group, but not statistically significantly. These data suggest that Matrigel is a promising scaffold material for cell transplantation to the injured spinal cord.
Collapse
|
12
|
郑 燕, 蒋 猛, 李 长, 余 壁, 潘 春, 周 望, 史 鹏, 黄 鹏, 何 耀, 廖 生. [Comparison of different methods for drug delivery via the lumbar spinal subarachnoid space in rats]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2019; 39:1246-1252. [PMID: 31801716 PMCID: PMC6867941 DOI: 10.12122/j.issn.1673-4254.2019.10.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To compare 3 commonly used methods for drug delivery via the lumbar spinal subarachnoid space in rats. METHODS We compared the effects of 3 methods for drug delivery via the lumbar spinal subarachnoid space in Sprague Dawley rats, namely acute needle puncture, chronic catheterization via laminectomy, and non-laminectomized catheterization. Body weight changes of the rats were measured, and their general and neurological conditions were assessed after the surgeries. The motor function of the rats was examined using rota rod test both before and after the surgeries. Nociceptive tests were performed to assess nociception of the rats. HE staining was used to examine local inflammation caused by the surgeries in the lumbar spinal cord tissue, and lidocaine paralysis detection and toluidine blue dye assay were used to confirm the precision of drug delivery using the 3 methods. RESULTS Both needle puncture and catheterization via laminectomy resulted in a relatively low success rate of surgery and caused neurological abnormalities, severe motor dysfunction, hyperalgesia, allodynia and local inflammation. Catheterization without laminectomy had the highest success rate of surgery, and induced only mild agitation, slight cerebral spinal fluid leakage, mild sensory and motor abnormalities, and minimum pathology in the lumbar spinal cord. Catheterization without laminectomy produced less detectable effects on the behaviors in the rats and was well tolerated compared to the other two methods with also higher precision of drug delivery. CONCLUSIONS Catheterization without laminectomy is a safe, accurate and effective approach to lumbar drug delivery in rats.
Collapse
Affiliation(s)
- 燕平 郑
- 湖北省中西医结合医院老年病科,湖北 武汉 430015Department of Geratology, Hubei Provincial Hospital of Integrated Chinese and Western Medicine, Wuhan 430015, China
| | - 猛 蒋
- 南方医科大学南方医院急诊外科,广东 广州 510515Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 长丽 李
- 湖北省中西医结合医院老年病科,湖北 武汉 430015Department of Geratology, Hubei Provincial Hospital of Integrated Chinese and Western Medicine, Wuhan 430015, China
| | - 壁湘 余
- 南方医科大学南方医院急诊外科,广东 广州 510515Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 春球 潘
- 南方医科大学南方医院急诊外科,广东 广州 510515Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 望梅 周
- 南方医科大学南方医院急诊外科,广东 广州 510515Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 鹏伟 史
- 南方医科大学南方医院急诊外科,广东 广州 510515Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 鹏 黄
- 南方医科大学南方医院急诊外科,广东 广州 510515Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 耀全 何
- 南方医科大学南方医院急诊外科,广东 广州 510515Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 生武 廖
- 南方医科大学南方医院急诊外科,广东 广州 510515Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
13
|
Abstract
Intrathecal baclofen therapy is a well-established technique for spasticity management. This article briefly reviews the pharmacology of intrathecal baclofen as well as customary approach for utilization of this targeted drug delivery concept. Following these descriptions, four unusual presentations will be described, including the need for initial trialing, patient-directed boluses during chronic intrathecal baclofen therapy, use of medications other than baclofen for intrathecal therapy in spastic patients, and intraventricular baclofen delivery. These hypothetical cases are provided in an effort to expand the use of targeted drug delivery to larger population of spastic patients.
Collapse
Affiliation(s)
- Michael Saulino
- MossRehab, 60 Township Line Road, Elkins Park, PA 19027, USA; Department of Rehabilitation Medicine, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
14
|
Liu NJ, Storman EM, Gintzler AR. Pharmacological Modulation of Endogenous Opioid Activity to Attenuate Neuropathic Pain in Rats. THE JOURNAL OF PAIN 2018; 20:235-243. [PMID: 30366152 DOI: 10.1016/j.jpain.2018.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/12/2018] [Accepted: 10/17/2018] [Indexed: 12/23/2022]
Abstract
We showed previously that spinal metabotropic glutamate receptor 1 (mGluR1) signaling suppresses or facilitates (depending on the stage of estrous cycle) analgesic responsiveness to intrathecal endomorphin 2, a highly mu-opioid receptor-selective endogenous opioid. Spinal endomorphin 2 antinociception is suppressed during diestrus by mGluR1 when it is activated by membrane estrogen receptor alpha (mERα) and is facilitated during proestrus when mGluR1 is activated by glutamate. In the current study, we tested the hypothesis that in female rats subjected to spinal nerve ligation (SNL), the inhibition of spinal estrogen synthesis or blockade of spinal mERα/mGluR1 would be antiallodynic during diestrus, whereas during proestrus, mGluR1 blockade would worsen the mechanical allodynia. As postulated, following SNL, aromatase inhibition or mERα/mGluR1 blockade during diestrus markedly lessened the mechanical allodynia. This was observed only on the paw ipsilateral to SNL and was eliminated by naloxone, implicating endogenous opioid mediation. In contrast, during proestrus, mGluR1 blockade worsened the SNL-induced mechanical allodynia of the ipsilateral paw. Findings suggest menstrual cycle stage-specific drug targets for and the putative clinical utility of harnessing endogenous opioids for chronic pain management in women, as well as the value of, if not the necessity for, considering menstrual cycle stage in clinical trials thereof. PERSPECTIVE: Intrathecal treatments that enhance spinal endomorphin 2 analgesic responsiveness under basal conditions lessen mechanical allodynia in a chronic pain model. Findings provide a foundation for developing drugs that harness endogenous opioid antinociception for chronic pain relief, lessening the need for exogenous opioids and thus prescription opioid abuse.
Collapse
Affiliation(s)
- Nai-Jiang Liu
- Department of Obstetrics and Gynecology, State University of New York, Downstate Medical Center, Brooklyn, New York
| | - Emiliya M Storman
- Department of Obstetrics and Gynecology, State University of New York, Downstate Medical Center, Brooklyn, New York
| | - Alan R Gintzler
- Department of Obstetrics and Gynecology, State University of New York, Downstate Medical Center, Brooklyn, New York..
| |
Collapse
|
15
|
Park J, Decker JT, Smith DR, Cummings BJ, Anderson AJ, Shea LD. Reducing inflammation through delivery of lentivirus encoding for anti-inflammatory cytokines attenuates neuropathic pain after spinal cord injury. J Control Release 2018; 290:88-101. [PMID: 30296461 DOI: 10.1016/j.jconrel.2018.10.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 09/26/2018] [Accepted: 10/03/2018] [Indexed: 01/21/2023]
Abstract
Recently, many clinical trials have challenged the efficacy of current therapeutics for neuropathic pain after spinal cord injury (SCI) due to their life-threatening side-effects including addictions. Growing evidence suggests that persistent inflammatory responses after primary SCI lead to an imbalance between anti-inflammation and pro-inflammation, resulting in pathogenesis and maintenance of neuropathic pain. Conversely, a variety of data suggest that inflammation contributes to regeneration. Herein, we investigated long-term local immunomodulation using anti-inflammatory cytokine IL-10 or IL-4-encoding lentivirus delivered from multichannel bridges. Multichannel bridges provide guidance for axonal outgrowth and act as delivery vehicles. Anti-inflammatory cytokines were hypothesized to modulate the pro-nociceptive inflammatory niche and promote axonal regeneration, leading to neuropathic pain attenuation. Gene expression analyses demonstrated that IL-10 and IL-4 decreased pro-nociceptive genes expression versus control. Moreover, these factors resulted in an increased number of pro-regenerative macrophages and restoration of normal nociceptors expression pattern. Furthermore, the combination of bridges with anti-inflammatory cytokines significantly alleviated both mechanical and thermal hypersensitivity relative to control and promoted axonal regeneration. Collectively, these studies highlight that immunomodulatory strategies target multiple barriers to decrease secondary inflammation and attenuate neuropathic pain after SCI.
Collapse
Affiliation(s)
- Jonghyuck Park
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Joseph T Decker
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Dominique R Smith
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Brian J Cummings
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA; Department of Physical Medicine and Rehabilitation, University of California, Irvine, CA, USA
| | - Aileen J Anderson
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA; Department of Physical Medicine and Rehabilitation, University of California, Irvine, CA, USA
| | - Lonnie D Shea
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
16
|
Park J, Decker JT, Margul DJ, Smith DR, Cummings BJ, Anderson AJ, Shea LD. Local Immunomodulation with Anti-inflammatory Cytokine-Encoding Lentivirus Enhances Functional Recovery after Spinal Cord Injury. Mol Ther 2018; 26:1756-1770. [PMID: 29778523 PMCID: PMC6037204 DOI: 10.1016/j.ymthe.2018.04.022] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 04/20/2018] [Accepted: 04/23/2018] [Indexed: 12/18/2022] Open
Abstract
Trauma to the spinal cord and associated secondary inflammation can lead to permanent loss of sensory and motor function below the injury level, with the resulting environment serving as a barrier that limits regeneration. In this study, we investigate the localized expression of anti-inflammatory cytokines IL-10 and IL-4 via lentiviral transduction in multichannel bridges. Porous multichannel bridges provide physical guidance for axonal outgrowth with the cytokines hypothesized to modulate the neuroinflammatory microenvironment and enhance axonal regeneration. Gene expression analyses indicated that induced IL-10 and IL-4 expression decreased expression of pro-inflammatory genes and increased pro-regenerative genes relative to control. Moreover, these factors led to increased numbers of axons and myelination, with approximately 45% of axons myelinated and the number of oligodendrocyte myelinated axons significantly increased by 3- to 4-fold. Furthermore, the combination of a bridge with IL-10 and IL-4 expression improved locomotor function after injury to an average score of 6 relative to an average score of 3 for injury alone. Collectively, these studies highlight the potential for localized immunomodulation to decrease secondary inflammation and enhance regeneration that may have numerous applications.
Collapse
Affiliation(s)
- Jonghyuck Park
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48105, USA
| | - Joseph T Decker
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48105, USA
| | - Daniel J Margul
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48105, USA; Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Dominique R Smith
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48105, USA
| | - Brian J Cummings
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA 92697, USA
| | - Aileen J Anderson
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA 92697, USA
| | - Lonnie D Shea
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48105, USA; Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48105, USA.
| |
Collapse
|
17
|
Raspa A, Bolla E, Cuscona C, Gelain F. Feasible stabilization of chondroitinase abc enables reduced astrogliosis in a chronic model of spinal cord injury. CNS Neurosci Ther 2018; 25:86-100. [PMID: 29855151 DOI: 10.1111/cns.12984] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 05/03/2018] [Accepted: 05/04/2018] [Indexed: 11/30/2022] Open
Abstract
AIMS Usually, spinal cord injury (SCI) develops into a glial scar containing extracellular matrix molecules including chondroitin sulfate proteoglycans (CSPGs). Chondroitinase ABC (ChABC), from Proteus vulgaris degrading the glycosaminoglycan (GAG) side chains of CSPGs, offers the opportunity to improve the final outcome of SCI. However, ChABC usage is limited by its thermal instability, requiring protein structure modifications, consecutive injections at the lesion site, or implantation of infusion pumps. METHODS Aiming at more feasible strategy to preserve ChABC catalytic activity, we assessed various stabilizing agents in different solutions and demonstrated, via a spectrophotometric protocol, that the 2.5 mol/L Sucrose solution best stabilized ChABC as far as 14 days in vitro. RESULTS ChABC activity was improved in both stabilizing and diluted solutions at +37°C, that is, mimicking their usage in vivo. We also verified the safety of the proposed aqueous sucrose solution in terms of viability/cytotoxicity of mouse neural stem cells (NSCs) in both proliferating and differentiating conditions in vitro. Furthermore, we showed that a single intraspinal treatment with ChABC and sucrose reduced reactive gliosis at the injury site in chronic contusive SCI in rats and slightly enhanced their locomotor recovery. CONCLUSION Usage of aqueous sucrose solutions may be a feasible strategy, in combination with rehabilitation, to ameliorate ChABC-based treatments to promote the regeneration of central nervous system injuries.
Collapse
Affiliation(s)
- Andrea Raspa
- Opera di San Pio da Pietrelcina, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG), Italy
| | - Edoardo Bolla
- Center for Nanomedicine and Tissue Engineering (CNTE), A.O. Ospedale Niguarda Cà Granda, Piazza dell'Ospedale Maggiore, Milan, Italy
| | - Claudia Cuscona
- Center for Nanomedicine and Tissue Engineering (CNTE), A.O. Ospedale Niguarda Cà Granda, Piazza dell'Ospedale Maggiore, Milan, Italy
| | - Fabrizio Gelain
- Opera di San Pio da Pietrelcina, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG), Italy.,Center for Nanomedicine and Tissue Engineering (CNTE), A.O. Ospedale Niguarda Cà Granda, Piazza dell'Ospedale Maggiore, Milan, Italy
| |
Collapse
|
18
|
Estrogens synthesized and acting within a spinal oligomer suppress spinal endomorphin 2 antinociception: ebb and flow over the rat reproductive cycle. Pain 2018; 158:1903-1914. [PMID: 28902684 DOI: 10.1097/j.pain.0000000000000991] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The magnitude of antinociception elicited by intrathecal endomorphin 2 (EM2), an endogenous mu-opioid receptor (MOR) ligand, varies across the rat estrous cycle. We now report that phasic changes in analgesic responsiveness to spinal EM2 result from plastic interactions within a novel membrane-bound oligomer containing estrogen receptors (mERs), aromatase (aka estrogen synthase), metabotropic glutamate receptor 1 (mGluR1), and MOR. During diestrus, spinal mERs, activated by locally synthesized estrogens, act with mGluR1 to suppress spinal EM2/MOR antinociception. The emergence of robust spinal EM2 antinociception during proestrus results from the loss of mER-mGluR1 suppression, a consequence of altered interactions within the oligomer. The chemical pairing of aromatase with mERs within the oligomer containing MOR and mGluR1 allows estrogens to function as intracellular messengers whose synthesis and actions are confined to the same signaling oligomer. This form of estrogenic signaling, which we term "oligocrine," enables discrete, highly compartmentalized estrogen/mER-mGluR1 signaling to regulate MOR-mediated antinociception induced by EM2. Finally, spinal neurons were observed not only to coexpress MOR, mERα, aromatase, and mGluR1 but also be apposed by EM2 varicosities. This suggests that modulation of spinal analgesic responsiveness to exogenous EM2 likely reflects changes in its endogenous analgesic activity. Analogous suppression of spinal EM2 antinociception in women (eg, around menses, comparable with diestrus in rats) as well as the (pathological) inability to transition out of that suppressed state at other menstrual cycle stages could underlie, at least in part, the much greater prevalence and severity of chronic pain in women than men.
Collapse
|
19
|
Santhosh KT, Alizadeh A, Karimi-Abdolrezaee S. Design and optimization of PLGA microparticles for controlled and local delivery of Neuregulin-1 in traumatic spinal cord injury. J Control Release 2017; 261:147-162. [PMID: 28668379 DOI: 10.1016/j.jconrel.2017.06.030] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 06/21/2017] [Accepted: 06/27/2017] [Indexed: 12/17/2022]
Abstract
Spinal cord injury (SCI) results in significant tissue damage that underlies functional impairments. Pharmacological interventions to confer neuroprotection and promote cell replacement are essential for SCI repair. We previously reported that Neuregulin-1 (Nrg-1) is acutely and permanently downregulated after SCI. Nrg-1 is a critical growth factor for differentiation of neural precursor cells (NPCs) into myelinating oligodendrocytes. We showed that intrathecal delivery of Nrg-1 enhances oligodendrocyte replacement following SCI. While an effective delivery system, intrathecal and systemic administration of growth factors with diverse biological targets may pose adverse off-target effects. Here, we have developed and optimized an injectable biodegradable poly(lactic-co-glycolic acid) (PLGA) microparticles system for sustained and prolonged intraspinal delivery of Nrg-1 in SCI. Recombinant human Nrg-1β1 peptide was encapsulated into PLGA microparticles. Optimal Nrg-1 release rate and duration were achieved by manipulating the porosity and size of PLGA particles. Our in vitro analysis showed a direct correlation between particle size and porosity with Nrg-1 release rate, while Nrg-1 loading efficiency in PLGA microparticles was inversely correlated with particle porosity. In SCI, local intraspinal injection of PLGA-Nrg-1 microparticles maintained significantly higher tissue levels of Nrg-1 for a long-term duration compared to Nrg-1 delivered intrathecally by osmotic pumps. Bioactivity of Nrg-1 in PLGA microparticles was verified by promoting oligodendrocyte differentiation of NPCs in vitro, and preservation of oligodendrocytes and axons in SCI. PLGA-Nrg-1 also attenuated neuroinflammation and glial scarring following SCI. We show, for the first time, the feasibility, efficacy and safety of PLGA microparticle system for local and controlled administration of Nrg-1 in SCI.
Collapse
Affiliation(s)
- Kallivalappil T Santhosh
- Regenerative Medicine Program, Department of Physiology and Pathophysiology, Spinal Cord Research Centre, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Arsalan Alizadeh
- Regenerative Medicine Program, Department of Physiology and Pathophysiology, Spinal Cord Research Centre, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Soheila Karimi-Abdolrezaee
- Regenerative Medicine Program, Department of Physiology and Pathophysiology, Spinal Cord Research Centre, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
20
|
Cook DJ, Nguyen C, Chun HN, L Llorente I, Chiu AS, Machnicki M, Zarembinski TI, Carmichael ST. Hydrogel-delivered brain-derived neurotrophic factor promotes tissue repair and recovery after stroke. J Cereb Blood Flow Metab 2017; 37:1030-1045. [PMID: 27174996 PMCID: PMC5363479 DOI: 10.1177/0271678x16649964] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 11/20/2015] [Accepted: 03/20/2016] [Indexed: 11/15/2022]
Abstract
Stroke is the leading cause of adult disability. Systemic delivery of candidate neural repair therapies is limited by the blood-brain barrier and off-target effects. We tested a bioengineering approach for local depot release of BDNF from the infarct cavity for neural repair in chronic periods after stroke. The brain release levels of a hyaluronic acid hydrogel + BDNF were tested in several stroke models in mouse (strains C57Bl/6, DBA) and non-human primate ( Macaca fascicularis) and tracked with MRI. The behavioral recovery effects of hydrogel + BDNF and the effects on tissue repair outcomes were determined. Hydrogel-delivered BDNF diffuses from the stroke cavity into peri-infarct tissue over 3 weeks in two mouse stroke models, compared with 1 week for direct BDNF injection. Hydrogel delivery of BDNF promotes recovery of motor function. Mapping of motor system connections indicates that hydrogel-BDNF induces axonal sprouting within existing cortical and cortico-striatal systems. Pharmacogenetic studies show that hydrogel-BDNF induces the initial migration of immature neurons into the peri-infarct cortex and their long-term survival. In chronic stroke in the non-human primate, hydrogel-released BDNF can be detected up to 2 cm from the infarct, a distance relevant to human functional recovery in stroke. The hydrogel can be tracked by MRI in mouse and primate.
Collapse
Affiliation(s)
- Douglas J Cook
- Department of Surgery, Division of Neurosurgery, Kingston General Hospital, Kingston, Canada
| | - Cynthia Nguyen
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, USA
| | - Hyun N Chun
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, USA
| | - Irene L Llorente
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, USA
| | - Abraham S Chiu
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, USA
| | - Michal Machnicki
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, USA
| | | | - S Thomas Carmichael
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, USA
| |
Collapse
|
21
|
Iyer NR, Wilems TS, Sakiyama-Elbert SE. Stem cells for spinal cord injury: Strategies to inform differentiation and transplantation. Biotechnol Bioeng 2017; 114:245-259. [PMID: 27531038 PMCID: PMC5642909 DOI: 10.1002/bit.26074] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 06/20/2016] [Accepted: 08/07/2016] [Indexed: 12/13/2022]
Abstract
The complex pathology of spinal cord injury (SCI), involving a cascade of secondary events and the formation of inhibitory barriers, hampers regeneration across the lesion site and often results in irreversible loss of motor function. The limited regenerative capacity of endogenous cells after SCI has led to a focus on the development of cell therapies that can confer both neuroprotective and neuroregenerative benefits. Stem cells have emerged as a candidate cell source because of their ability to self-renew and differentiate into a multitude of specialized cell types. While ethical and safety concerns impeded the use of stem cells in the past, advances in isolation and differentiation methods have largely mitigated these issues. A confluence of work in stem cell biology, genetics, and developmental neurobiology has informed the directed differentiation of specific spinal cell types. After transplantation, these stem cell-derived populations can replace lost cells, provide trophic support, remyelinate surviving axons, and form relay circuits that contribute to functional recovery. Further refinement of stem cell differentiation and transplantation methods, including combinatorial strategies that involve biomaterial scaffolds and drug delivery, is critical as stem cell-based treatments enter clinical trials. Biotechnol. Bioeng. 2017;114: 245-259. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Nisha R Iyer
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W Dean Keeton St., Stop C0800 BME 3.314, Austin, Texas 78712
| | - Thomas S Wilems
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W Dean Keeton St., Stop C0800 BME 3.314, Austin, Texas 78712
| | - Shelly E Sakiyama-Elbert
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W Dean Keeton St., Stop C0800 BME 3.314, Austin, Texas 78712
| |
Collapse
|
22
|
Ordikhani F, Sheth S, Zustiak SP. Polymeric particle-mediated molecular therapies to treat spinal cord injury. Int J Pharm 2017; 516:71-81. [DOI: 10.1016/j.ijpharm.2016.11.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 11/03/2016] [Accepted: 11/08/2016] [Indexed: 11/26/2022]
|
23
|
Abstract
Systemic application of therapeutics to the CNS tissue often results in subtherapeutic drug levels, because of restricted and selective penetration through the blood-brain barrier (BBB). Here, we give a detailed description of a standardized technique for intrathecal drug delivery in rodents, analogous to the technique used in humans. The intrathecal drug delivery method bypasses the BBB and thereby offers key advantages over oral or intravenous administration, such as maximized local drug doses with minimal systemic side effects. We describe how to deliver antibodies or drugs over several days or weeks from a s.c. minipump and a fine catheter inserted into the subdural space over the spinal cord (20 min operative time) or into the cisterna magna (10 min operative time). Drug levels can be sampled by quick and minimally invasive cerebrospinal fluid (CSF) collection from the cisterna magna (5 min procedure time). These techniques enable targeted application of any compound to the CNS for therapeutic studies in a wide range of CNS disease rodent models. Basic surgery skills are helpful for carrying out the procedures described in this protocol.
Collapse
|
24
|
Dumont CM, Margul DJ, Shea LD. Tissue Engineering Approaches to Modulate the Inflammatory Milieu following Spinal Cord Injury. Cells Tissues Organs 2016; 202:52-66. [PMID: 27701152 PMCID: PMC5067186 DOI: 10.1159/000446646] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2016] [Indexed: 12/11/2022] Open
Abstract
Tissue engineering strategies have shown promise in promoting healing and regeneration after spinal cord injury (SCI); however, these strategies are limited by inflammation and the immune response. Infiltration of cells of the innate and adaptive immune responses and the inflammation that follows cause secondary damage adjacent to the injury, increased scarring, and a potently inhibitory environment for the regeneration of damaged neurons. While the inflammation that ensues is typically associated with limited regeneration, the immune response is a crucial element in the closing of the blood-brain barrier, minimizing the spread of injury, and initiating healing. This review summarizes the strategies that have been developed to modulate the immune response towards an anti-inflammatory environment that is permissive to the regeneration of neurons, glia, and parenchyma. We focus on the use of biomaterials, biologically active molecules, gene therapy, nanoparticles, and stem cells to modulate the immune response, and illustrate concepts for future therapies. Current clinical treatments for SCI are limited to systemic hypothermia or methylprednisolone, which both act by systemically mitigating the effects of immune response but have marginal efficacy. Herein, we discuss emerging research strategies to further enhance these clinical treatments by directly targeting specific aspects of the immune response.
Collapse
Affiliation(s)
- Courtney. M. Dumont
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48105, USA
| | - Daniel J. Margul
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48105, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Lonnie. D. Shea
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48105, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48105, USA
| |
Collapse
|
25
|
Elliott Donaghue I, Tator CH, Shoichet MS. Local Delivery of Neurotrophin-3 and Anti-NogoA Promotes Repair After Spinal Cord Injury. Tissue Eng Part A 2016; 22:733-41. [PMID: 27056081 DOI: 10.1089/ten.tea.2015.0471] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Tissue and functional repair after spinal cord injury (SCI) continue to elude researchers. Neurotrophin-3 (NT-3) and anti-NogoA have been shown to promote axonal regeneration in animal models of SCI; however, localized and sustained delivery to the central nervous system (CNS) remains a critical challenge for these and other macromolecular therapeutics. An injectable drug delivery system (DDS) has previously been developed, which can provide safe local delivery to the spinal cord. This DDS, composed of poly(lactic-co-glycolic acid) (PLGA) nanoparticles (nps) dispersed in a hyaluronan methylcellulose hydrogel, was adapted for the tunable bioactive delivery of NT-3 and anti-NogoA. Furthermore, the combined delivery of NT-3 and anti-NogoA from the DDS in an impact/compression model of SCI increases axon density and improves locomotor function. The benefits of this np/hydrogel DDS observed for NT-3 and anti-NogoA demonstrate the utility of the DDS as a local delivery strategy for protein therapeutics to the CNS.
Collapse
Affiliation(s)
- Irja Elliott Donaghue
- 1 Department of Chemical Engineering and Applied Chemistry, University of Toronto , Toronto, Canada .,2 Institute of Biomaterials and Biomedical Engineering, University of Toronto , Toronto, Canada
| | - Charles H Tator
- 3 Division of Genetics and Development, Toronto Western Research Institute, University of Toronto , Toronto, Canada .,4 Krembil Neuroscience Centre, Toronto Western Hospital, University Health Network , Toronto, Canada .,5 Division of Neurosurgery, Department of Surgery, University of Toronto , Toronto, Canada
| | - Molly S Shoichet
- 1 Department of Chemical Engineering and Applied Chemistry, University of Toronto , Toronto, Canada .,2 Institute of Biomaterials and Biomedical Engineering, University of Toronto , Toronto, Canada .,6 Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, Canada
| |
Collapse
|
26
|
Zhao P, Hill M, Liu S, Chen L, Bangalore L, Waxman SG, Tan AM. Dendritic spine remodeling following early and late Rac1 inhibition after spinal cord injury: evidence for a pain biomarker. J Neurophysiol 2016; 115:2893-910. [PMID: 26936986 DOI: 10.1152/jn.01057.2015] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 03/01/2016] [Indexed: 12/15/2022] Open
Abstract
Neuropathic pain is a significant complication following spinal cord injury (SCI) with few effective treatments. Drug development for neuropathic pain often fails because preclinical studies do not always translate well to clinical conditions. Identification of biological characteristics predictive of disease state or drug responsiveness could facilitate more effective clinical translation. Emerging evidence indicates a strong correlation between dendritic spine dysgenesis and neuropathic pain. Because dendritic spines are located on dorsal horn neurons within the spinal cord nociceptive system, dendritic spine remodeling provides a unique opportunity to understand sensory dysfunction after SCI. In this study, we provide support for the postulate that dendritic spine profiles can serve as biomarkers for neuropathic pain. We show that dendritic spine profiles after SCI change to a dysgenic state that is characteristic of neuropathic pain in a Rac1-dependent manner. Suppression of the dysgenic state through inhibition of Rac1 activity is accompanied by attenuation of neuropathic pain. Both dendritic spine dysgenesis and neuropathic pain return when inhibition of Rac1 activity is lifted. These findings suggest the utility of dendritic spines as structural biomarkers for neuropathic pain.
Collapse
Affiliation(s)
- Peng Zhao
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut; and Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| | - Myriam Hill
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut; and Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| | - Shujun Liu
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut; and Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| | - Lubin Chen
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut; and Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| | - Lakshmi Bangalore
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut; and Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| | - Stephen G Waxman
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut; and Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| | - Andrew M Tan
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut; and Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| |
Collapse
|
27
|
Wilems TS, Pardieck J, Iyer N, Sakiyama-Elbert SE. Combination therapy of stem cell derived neural progenitors and drug delivery of anti-inhibitory molecules for spinal cord injury. Acta Biomater 2015; 28:23-32. [PMID: 26384702 DOI: 10.1016/j.actbio.2015.09.018] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 08/28/2015] [Accepted: 09/15/2015] [Indexed: 12/31/2022]
Abstract
Regeneration of lost synaptic connections following spinal cord injury (SCI) is limited by local ischemia, cell death, and an excitotoxic environment, which leads to the development of an inhibitory glial scar surrounding a cystic cavity. While a variety of single therapy interventions provide incremental improvements to functional recovery after SCI, they are limited; a multifactorial approach that combines several single therapies may provide a better chance of overcoming the multitude of obstacles to recovery. To this end, fibrin scaffolds were modified to provide sustained delivery of neurotrophic factors and anti-inhibitory molecules, as well as encapsulation of embryonic stem cell-derived progenitor motor neurons (pMNs). In vitro characterization of this combination scaffold confirmed that pMN viability was unaffected by culture alongside sustained delivery systems. When transplanted into a rat sub-acute SCI model, fibrin scaffolds containing growth factors (GFs), anti-inhibitory molecules without pMNs, or pMNs with GFs had lower chondroitin sulfate proteoglycan levels compared to scaffolds containing anti-inhibitory molecules with pMNs. Scaffolds containing pMNs, but not anti-inhibitory molecules, showed survival, differentiation into neuronal cell types, axonal extension in the transplant area, and the ability to integrate into host tissue. However, the combination of pMNs with sustained-delivery of anti-inhibitory molecules led to reduced cell survival and increased macrophage infiltration. While combination therapies retain potential for effective treatment of SCI, further work is needed to improve cell survival and to limit inflammation. STATEMENT OF SIGNIFICANCE Spinal cord injury (SCI) creates a highly complex inhibitory environment with a multitude of obstacles that limit recovery. Many therapeutic options have been developed to overcome single obstacles, but single therapies typically only lead to limited functional improvement. Therefore combination therapies may improve recovery by targeting several inhibitory obstacles simultaneously. The present study used biomaterial scaffolds to combine the sustained release of anti-inhibitory molecules and growth factors with cell transplantation of highly purified progenitor motor neurons. This expands upon previously established biomaterial scaffolds by supporting surviving cells, limiting inhibition from the extracellular environment, and replenishing lost cell populations. We show that while promising, certain combinations may exacerbate negative side-effects instead of augmenting positive features.
Collapse
|
28
|
Siebert JR, Eade AM, Osterhout DJ. Biomaterial Approaches to Enhancing Neurorestoration after Spinal Cord Injury: Strategies for Overcoming Inherent Biological Obstacles. BIOMED RESEARCH INTERNATIONAL 2015; 2015:752572. [PMID: 26491685 PMCID: PMC4600545 DOI: 10.1155/2015/752572] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 07/22/2015] [Indexed: 01/14/2023]
Abstract
While advances in technology and medicine have improved both longevity and quality of life in patients living with a spinal cord injury, restoration of full motor function is not often achieved. This is due to the failure of repair and regeneration of neuronal connections in the spinal cord after injury. In this review, the complicated nature of spinal cord injury is described, noting the numerous cellular and molecular events that occur in the central nervous system following a traumatic lesion. In short, postinjury tissue changes create a complex and dynamic environment that is highly inhibitory to the process of neural regeneration. Strategies for repair are outlined with a particular focus on the important role of biomaterials in designing a therapeutic treatment that can overcome this inhibitory environment. The importance of considering the inherent biological response of the central nervous system to both injury and subsequent therapeutic interventions is highlighted as a key consideration for all attempts at improving functional recovery.
Collapse
Affiliation(s)
- Justin R. Siebert
- Lake Erie College of Osteopathic Medicine at Seton Hill, Greensburg, PA 15601, USA
| | - Amber M. Eade
- Lake Erie College of Osteopathic Medicine at Seton Hill, Greensburg, PA 15601, USA
| | - Donna J. Osterhout
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| |
Collapse
|
29
|
Wilems TS, Sakiyama-Elbert SE. Sustained dual drug delivery of anti-inhibitory molecules for treatment of spinal cord injury. J Control Release 2015; 213:103-111. [PMID: 26122130 PMCID: PMC4691576 DOI: 10.1016/j.jconrel.2015.06.031] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 06/05/2015] [Accepted: 06/23/2015] [Indexed: 11/25/2022]
Abstract
Myelin-associated inhibitors (MAIs) and chondroitin sulfate proteoglycans (CSPGs) are major contributors to axon growth inhibition following spinal cord injury and limit functional recovery. The NEP1-40 peptide competitively binds the Nogo receptor and partially blocks inhibition from MAIs, while chondroitinase ABC (ChABC) enzymatically digests CSPGs, which are upregulated at the site of injury. In vitro studies showed that the combination of ChABC and NEP1-40 increased neurite extension compared to either treatment alone when dissociated embryonic dorsal root ganglia were seeded onto inhibitory substrates containing both MAIs and CSPGs. Furthermore, the ability to provide sustained delivery of biologically active ChABC and NEP1-40 from biomaterial scaffolds was achieved by loading ChABC into lipid microtubes and NEP1-40 into poly (lactic-co-glycolic acid) (PLGA) microspheres, obviating the need for invasive intrathecal pumps or catheters. Fibrin scaffolds embedded with the drug delivery systems (PLGA microspheres and lipid microtubes) were capable of releasing active ChABC for up to one week and active NEP1-40 for over two weeks in vitro. In addition, the loaded drug delivery systems in fibrin scaffolds decreased CSPG deposition and development of a glial scar, while also increasing axon growth after spinal cord injury in vivo. Therefore, the sustained, local delivery of ChABC and NEP1-40 within the injured spinal cord may block both myelin and CSPG-associated inhibition and allow for improved axon growth.
Collapse
Affiliation(s)
- Thomas S Wilems
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63130, United States
| | - Shelly E Sakiyama-Elbert
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63130, United States.
| |
Collapse
|
30
|
Kabu S, Gao Y, Kwon BK, Labhasetwar V. Drug delivery, cell-based therapies, and tissue engineering approaches for spinal cord injury. J Control Release 2015; 219:141-154. [PMID: 26343846 DOI: 10.1016/j.jconrel.2015.08.060] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 08/23/2015] [Accepted: 08/31/2015] [Indexed: 12/28/2022]
Abstract
Spinal cord injury (SCI) results in devastating neurological and pathological consequences, causing major dysfunction to the motor, sensory, and autonomic systems. The primary traumatic injury to the spinal cord triggers a cascade of acute and chronic degenerative events, leading to further secondary injury. Many therapeutic strategies have been developed to potentially intervene in these progressive neurodegenerative events and minimize secondary damage to the spinal cord. Additionally, significant efforts have been directed toward regenerative therapies that may facilitate neuronal repair and establish connectivity across the injury site. Despite the promise that these approaches have shown in preclinical animal models of SCI, challenges with respect to successful clinical translation still remain. The factors that could have contributed to failure include important biologic and physiologic differences between the preclinical models and the human condition, study designs that do not mirror clinical reality, discrepancies in dosing and the timing of therapeutic interventions, and dose-limiting toxicity. With a better understanding of the pathobiology of events following acute SCI, developing integrated approaches aimed at preventing secondary damage and also facilitating neuroregenerative recovery is possible and hopefully will lead to effective treatments for this devastating injury. The focus of this review is to highlight the progress that has been made in drug therapies and delivery systems, and also cell-based and tissue engineering approaches for SCI.
Collapse
Affiliation(s)
- Shushi Kabu
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Yue Gao
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Brian K Kwon
- Department of Orthopaedics, International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC, Canada V5Z 1M9
| | - Vinod Labhasetwar
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| |
Collapse
|
31
|
Click-crosslinked injectable hyaluronic acid hydrogel is safe and biocompatible in the intrathecal space for ultimate use in regenerative strategies of the injured spinal cord. Methods 2015; 84:60-9. [PMID: 25846399 DOI: 10.1016/j.ymeth.2015.03.023] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 03/26/2015] [Indexed: 12/18/2022] Open
Abstract
Traumatic spinal cord injury (SCI) causes damage and degeneration at and around the lesion site resulting in a loss of function. SCI presents a complex regenerative problem due to the multiple aspects of growth inhibition and the heterogeneity in size, shape and extent of injury. Currently, there is no widely accepted treatment strategy available and delivering biomolecules to the central nervous system remains a challenge. With a view towards achieving local release, we designed a hydrogel that can be injected into the intrathecal space. Here we describe the synthesis and characterization of a click-crosslinked hyaluronic acid hydrogel and demonstrate controlled in vitro release of bioactive brain derived neurotrophic factor. Importantly, we demonstrate that this new hydrogel is both biocompatible in the intrathecal space based on immunohistochemistry of the host tissue response and safe based on behavioral analysis of locomotor function.
Collapse
|
32
|
Chen B, He J, Yang H, Zhang Q, Zhang L, Zhang X, Xie E, Liu C, Zhang R, Wang Y, Huang L, Hao D. Repair of spinal cord injury by implantation of bFGF-incorporated HEMA-MOETACL hydrogel in rats. Sci Rep 2015; 5:9017. [PMID: 25761585 PMCID: PMC7365325 DOI: 10.1038/srep09017] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 01/29/2015] [Indexed: 12/21/2022] Open
Abstract
There is no effective strategy for the treatment of spinal cord injury (SCI). An appropriate combination of hydrogel materials and neurotrophic factor therapy is currently thought to be a promising approach. In this study, we performed experiments to evaluate the synergic effect of implanting hydroxyl ethyl methacrylate [2-(methacryloyloxy)ethyl] trimethylammonium chloride (HEMA-MOETACL) hydrogel incorporated with basic fibroblast growth factor (bFGF) into the site of surgically induced SCI. Prior to implantation, the combined hydrogel was surrounded by an acellular vascular matrix. Sprague-Dawley rats underwent complete spinal cord transection at the T-9 level, followed by implantation of bFGF/HEMA-MOETACL 5 days after transection surgery. Our results showed that the bFGF/HEMA-MOETACL transplant provided a scaffold for the ingrowth of regenerating tissue eight weeks after implantation. Furthermore, this newly designed implant promoted both nerve tissue regeneration and functional recovery following SCI. These results indicate that HEMA-MOETACL hydrogel is a promising scaffold for intrathecal, localized and sustained delivery of bFGF to the injured spinal cord and provide evidence for the possibility that this approach may have clinical applications in the treatment of SCI.
Collapse
Affiliation(s)
- Bo Chen
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, 710054, China
| | - Jianyu He
- Department of Pharmacology, Xi'an Jiaotong University College of Medicine, Xi'an, 710061, China
| | - Hao Yang
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, 710054, China
| | - Qian Zhang
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, 710054, China
| | - Lingling Zhang
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, 710054, China
| | - Xian Zhang
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an, 710126, China
| | - En Xie
- Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, 710054, China
| | - Cuicui Liu
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, 710054, China
| | - Rui Zhang
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, 710054, China
| | - Yi Wang
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, 710054, China
| | - Linhong Huang
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, 710054, China
| | - Dingjun Hao
- Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, 710054, China
| |
Collapse
|
33
|
Thomas AM, Palma JL, Shea LD. Sponge-mediated lentivirus delivery to acute and chronic spinal cord injuries. J Control Release 2015; 204:1-10. [PMID: 25724274 DOI: 10.1016/j.jconrel.2015.02.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 02/17/2015] [Accepted: 02/21/2015] [Indexed: 12/11/2022]
Abstract
The environment within the spinal cord after injury, which changes in the progression from the acute to chronic stages, limits the extent of regeneration. The delivery of inductive factors to promote regeneration following spinal cord injury has been promising, yet, few strategies are versatile to allow delivery during acute or chronic injury that would facilitate screening of candidate therapies. This report investigates the intrathecal delivery of lentiviruses for long-term expression of regenerative factors. Lentivirus-filled sponges were inserted into the intrathecal space surrounding the spinal cord, with transgene expression observed within multiple cell types that persists for 12 weeks for both intact and injured spinal cord, without any apparent damage to the spinal cord tissue. Sponges loaded with lentivirus encoding for Sonic hedgehog (Shh) were investigated for acute (delivered at 0 weeks) and chronic (at 4 weeks) injuries, and for multiple locations relative to the injury. In an acute model, sponges placed directly above the injury increased oligodendrocyte and decreased astrocyte presence. Sponges placed caudal to the injury had reduced impact on oligodendrocytes and astrocytes in the injury. In a chronic model, sponges increased oligodendrocyte and decreased astrocyte presence. Furthermore, the effect of Shh was shown to be mediated in part by reduction of Bmp signaling, monitored with an Msx2-sensitive reporter vector. The implantation of lentivirus-loaded biomaterials intrathecally provides the opportunity to induce the expression of a factor at a specified time without entering the spinal cord, and has the potential to promote gene delivery within the spinal cord, which can influence the extent of regeneration.
Collapse
Affiliation(s)
- Aline M Thomas
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, Illinois
| | - Jaime L Palma
- Department of Chemical and Biological Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, USA
| | - Lonnie D Shea
- Department of Chemical and Biological Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, USA; Institute for BioNanotechnology in Medicine (IBNAM), Northwestern University, Chicago, IL, USA; Center for Reproductive Science (CRS), Northwestern University, Evanston, IL, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA; Chemistry of Life Processes Institute (CLP), Northwestern University, Evanston, IL, USA.
| |
Collapse
|
34
|
Elliott Donaghue I, Tator CH, Shoichet MS. Sustained delivery of bioactive neurotrophin-3 to the injured spinal cord. Biomater Sci 2015. [DOI: 10.1039/c4bm00311j] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The sustained release of neurotrophin-3 from a nanoparticle/hydrogel composite resulted in functional and tissue benefit after compressive spinal cord injury.
Collapse
Affiliation(s)
- Irja Elliott Donaghue
- Department of Chemical Engineering and Applied Chemistry
- University of Toronto
- Toronto
- Canada M5S 3E5
- Institute of Biomaterials and Biomedical Engineering
| | - Charles H. Tator
- Division of Genetics and Development
- Toronto Western Research Institute
- University of Toronto
- Toronto
- Canada M5 T 2S8
| | - Molly S. Shoichet
- Department of Chemical Engineering and Applied Chemistry
- University of Toronto
- Toronto
- Canada M5S 3E5
- Institute of Biomaterials and Biomedical Engineering
| |
Collapse
|
35
|
Modulation of the proteoglycan receptor PTPσ promotes recovery after spinal cord injury. Nature 2014; 518:404-8. [PMID: 25470046 PMCID: PMC4336236 DOI: 10.1038/nature13974] [Citation(s) in RCA: 340] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 10/16/2014] [Indexed: 11/09/2022]
Abstract
Contusive spinal cord injury (SCI) leads to a variety of disabilities due to limited neuronal regeneration and functional plasticity. It is well established that an upregulation of glial derived chondroitin sulfate proteoglycans (CSPGs) within the glial scar and perineuronal net (PNN) creates a barrier to axonal regrowth and sprouting1–5. Protein Tyrosine Phosphatase σ (PTPσ), along with its sister phosphatase Leukocyte common Antigen-Related (LAR), and the Nogo Receptors 1 and 3 (NgR) have recently been identified as receptors for the inhibitory glycosylated side chains of CSPGs6–8. We found that PTPσ plays a critical role in converting growth cones into a dystrophic state by tightly stabilizing them within CSPG-rich substrates. We generated a membrane-permeable peptide mimetic of the PTPσ wedge domain that binds to PTPσ and relieves CSPG-mediated inhibition. Systemic delivery of this peptide over weeks restored substantial serotonergic innervation to the spinal cord below the level of injury and facilitated functional recovery of both locomotor and urinary systems. Our results add a new layer of understanding to the critical role of PTPσ in mediating the growth-inhibited state of neurons due to CSPGs within the injured adult spinal cord.
Collapse
|
36
|
Hayakawa K, Uchida S, Ogata T, Tanaka S, Kataoka K, Itaka K. Intrathecal injection of a therapeutic gene-containing polyplex to treat spinal cord injury. J Control Release 2014; 197:1-9. [PMID: 25449800 DOI: 10.1016/j.jconrel.2014.10.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 09/20/2014] [Accepted: 10/27/2014] [Indexed: 12/20/2022]
Abstract
Spinal cord injury (SCI) is a serious clinical problem that suddenly deprives patients of neurologic function and drastically diminishes their quality of life. Gene introduction has the potential to be effective for various pathological states of SCI because various proteins can be produced just by modifying nucleic acid sequences. In addition, the sustainable protein expression allows to maintain its concentration at an effective level at the target site in the spinal cord. Here we propose an approach using a polyplex system composed of plasmid DNA (pDNA) and a cationic polymer, poly{N'-[N-(2-aminoethyl)-2-aminoethyl]aspartamide} [PAsp(DET)], that has high capacity to promote endosome escape and the long-term safety by self-catalytically degrading within a few days. We applied brain-derived neurotrophic factor (BDNF)-expressing pDNA for SCI treatment by intrathecal injection of PAsp(DET)/pDNA polyplex. A single administration of polyplex for experimental SCI provided sufficient therapeutic effects including prevention of neural cell death and enhancement of motor function recovery. This lasted for a few weeks after SCI, demonstrating the capability of this system to express BDNF in a safe and responsible manner for treatment of various pathological states in SCI.
Collapse
Affiliation(s)
- Kentaro Hayakawa
- Department of Rehabilitation for the Movement Functions, Research Institute, National Rehabilitation Center for the Persons with Disabilities, Saitama, Japan; Sensory and Motor System Medicine, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Satoshi Uchida
- Laboratory of Clinical Biotechnology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Toru Ogata
- Department of Rehabilitation for the Movement Functions, Research Institute, National Rehabilitation Center for the Persons with Disabilities, Saitama, Japan
| | - Sakae Tanaka
- Sensory and Motor System Medicine, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazunori Kataoka
- Laboratory of Clinical Biotechnology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan.
| | - Keiji Itaka
- Sensory and Motor System Medicine, Faculty of Medicine, The University of Tokyo, Tokyo, Japan; Laboratory of Clinical Biotechnology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
37
|
Schweizer D, Serno T, Goepferich A. Controlled release of therapeutic antibody formats. Eur J Pharm Biopharm 2014; 88:291-309. [DOI: 10.1016/j.ejpb.2014.08.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 06/30/2014] [Accepted: 08/03/2014] [Indexed: 10/24/2022]
|
38
|
Elliott Donaghue I, Tam R, Sefton MV, Shoichet MS. Cell and biomolecule delivery for tissue repair and regeneration in the central nervous system. J Control Release 2014; 190:219-27. [DOI: 10.1016/j.jconrel.2014.05.040] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 05/12/2014] [Accepted: 05/20/2014] [Indexed: 11/25/2022]
|
39
|
Burnside ER, Bradbury EJ. Review: Manipulating the extracellular matrix and its role in brain and spinal cord plasticity and repair. Neuropathol Appl Neurobiol 2014; 40:26-59. [DOI: 10.1111/nan.12114] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 12/20/2013] [Indexed: 12/17/2022]
Affiliation(s)
- E. R. Burnside
- King's College London; Regeneration Group; The Wolfson Centre for Age-Related Diseases; Guy's Campus; London UK
| | - E. J. Bradbury
- King's College London; Regeneration Group; The Wolfson Centre for Age-Related Diseases; Guy's Campus; London UK
| |
Collapse
|
40
|
Brazda N, Voss C, Estrada V, Lodin H, Weinrich N, Seide K, Müller J, Müller HW. A mechanical microconnector system for restoration of tissue continuity and long-term drug application into the injured spinal cord. Biomaterials 2013; 34:10056-64. [PMID: 24090837 DOI: 10.1016/j.biomaterials.2013.09.057] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 09/17/2013] [Indexed: 11/18/2022]
Abstract
Complete transection of the spinal cord leaves a gap of several mm which fills with fibrous scar tissue. Several approaches in rodent models have used tubes, foams, matrices or tissue implants to bridge this gap. Here, we describe a mechanical microconnector system (mMS) to re-adjust the retracted spinal cord stumps. The mMS is a multi-channel system of polymethylmethacrylate (PMMA), designed to fit into the spinal cord tissue gap after transection, with an outlet tubing system to apply negative pressure to the mMS thus sucking the spinal cord stumps into the honeycomb-structured holes. The stumps adhere to the microstructure of the mMS walls and remain in the mMS after removal of the vacuum. We show that the mMS preserves tissue integrity and allows axonal regrowth at 2, 5 and 19 weeks post lesion with no adverse tissue effects like in-bleeding or cyst formation. Preliminary assessment of locomotor function in the open field suggested beneficial effects of the mMS. Additional inner micro-channels enable local substance delivery into the lesion center via an attached osmotic minipump. We suggest that the mMS is a suitable device to adapt and stabilize the injured spinal cord after surgical resection of scar tissue (e.g., for chronic patients) or traumatic injuries with large tissue and bone damages.
Collapse
Affiliation(s)
- Nicole Brazda
- Molecular Neurobiology Laboratory, Neurology, Heinrich Heine University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Repair of the injured spinal cord by transplantation of neural stem cells in a hyaluronan-based hydrogel. Biomaterials 2013; 34:3775-83. [DOI: 10.1016/j.biomaterials.2013.02.002] [Citation(s) in RCA: 185] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 02/01/2013] [Indexed: 12/29/2022]
|
42
|
Tuinstra HM, Ducommun MM, Briley WE, Shea LD. Gene delivery to overcome astrocyte inhibition of axonal growth: an in vitro model of the glial scar. Biotechnol Bioeng 2012; 110:947-57. [PMID: 23055330 DOI: 10.1002/bit.24750] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 10/03/2012] [Accepted: 10/05/2012] [Indexed: 01/31/2023]
Abstract
After injury to the central nervous system, a glial scar develops that physically and biochemically inhibits axon growth. In the scar, activated astrocytes secrete inhibitory extracellular matrix, of which chondroitin sulfate proteoglycans (CSPGs) are considered the major inhibitory component. An inhibitory interface of CSPGs forms around the lesion and prevents axons from traversing the injury, and decreasing CSPGs can enhance axon growth. In this report, we established an in vitro interface model of activated astrocytes and subsequently investigated gene delivery as a means to reduce CSPG levels and enhance axon growth. In the model, a continuous interface of CSPG producing astrocytes was created with neurons seeded opposite the astrocytes, and neurite crossing, stopping, and turning were evaluated as they approached the interface. We investigated the efficacy of lentiviral delivery to degrade or prevent the synthesis of CSPGs, thereby removing CSPG inhibition of neurite growth. Lentiviral delivery of RNAi targeting two key CSPG synthesis enzymes, chondroitin polymerizing factor and chondroitin synthase-1, decreased CSPGs, and reduced inhibition by the interface. Degradation of CSPGs by lentiviral delivery of chondroitinase also resulted in less inhibition and more neurites crossing the interface. These results indicate that the interface model provides a tool to investigate interventions that reduce inhibition by CSPGs, and that gene delivery can be effective in promoting neurite growth across an interface of CSPG producing astrocytes.
Collapse
Affiliation(s)
- Hannah M Tuinstra
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | | | | | | |
Collapse
|
43
|
Turner M, Nguyen HS, Cohen-Gadol AA. Intraventricular baclofen as an alternative to intrathecal baclofen for intractable spasticity or dystonia: outcomes and technical considerations. J Neurosurg Pediatr 2012; 10:315-9. [PMID: 22861196 DOI: 10.3171/2012.6.peds11456] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT The aim of this study was to identify the benefits of intraventricular baclofen (IVB) therapy for the treatment of intractable spasticity or dystonia in a subset of patients who had experienced multiple revisions while receiving intrathecal baclofen (ITB) therapy. METHODS The authors reviewed the charts of 22 consecutive patients with intractable spasticity or dystonia who initially underwent ITB therapy, subsequently suffered multiple revisions during ITB therapy, and ultimately received IVB therapy, all during a 12-year period from November 1998 to October 2010. The intraventricular catheters were positioned in the lateral ventricle, aided by stereonavigation. RESULTS The surgical revision rate (the average number of surgical revisions per average number of follow-up years) during ITB therapy was 0.84, and was 0.50 during IVB therapy. The most frequent complication requiring surgical revision during ITB therapy was catheter occlusion, followed by pump malfunction/pump pocket issues, and infection. The most frequent complication requiring surgical revision during IVB therapy was infection, followed by catheter misplacement/migration. Four patients suffered infection that required removal of their intraventricular catheter, and currently have no baclofen system. CONCLUSIONS Some of these patients had a history of increasing revisions with increasing frequency during ITB therapy. Such a history puts them at risk for spinal arachnoiditis, a condition that complicates further ITB therapy. For such patients, the authors believe that IVB therapy may be a beneficial therapeutic option, given that the surgical revision rate was lower for IVB than for ITB. Intraventricular baclofen may be a cost-effective option for patients with mounting revisions during ITB therapy.
Collapse
Affiliation(s)
- Michael Turner
- Goodman Campbell Brain and Spine, Indiana University Department of Neurological Surgery, Indianapolis, Indiana 46202, USA
| | | | | |
Collapse
|
44
|
Fan XYS, Mothe AJ, Tator CH. Ephrin-B3 decreases the survival of adult rat spinal cord-derived neural stem/progenitor cells in vitro and after transplantation into the injured rat spinal cord. Stem Cells Dev 2012; 22:359-73. [PMID: 22900481 DOI: 10.1089/scd.2012.0131] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Although transplantation of neural stem/progenitor cells (NSPC) encourages regeneration and repair after spinal cord injury (SCI), the survival of transplanted NSPC is limited. Ephrin-B3 has been shown to reduce the death of endogenous NSPC in the subventricular zone of the mouse brain without inducing uncontrolled proliferation. Due to similarities in the environment of the brain and spinal cord, we hypothesized that ephrin-B3 might reduce the death of both transplanted and endogenous spinal cord-derived NSPC. Both normal and injured (26 g clip compression) spinal cords were examined. Ephrin-B3-Fc was tested, and Fc fragments and phosphate-buffered saline (PBS) were used as controls. We found that EphA4 receptors were expressed by spinal cord-derived NSPC and expressed in the normal and injured rat spinal cord (higher expression in the latter). In vitro, ephrin-B3-Fc did not significantly reduce the survival of NSPC except at 1 μg/mL (P<0.05), but Fc fragments alone reduced NSPC survival at all doses in a dose-dependent fashion. In vivo, intrathecal infusion of ephrin-B3-Fc increased the proliferation of endogenous ependymal cells and the proportion of proliferating cells that expressed the glial fibrillary acidic protein astrocytic marker in the injured spinal cord compared with the infusion of PBS (P<0.05). However, in the injured spinal cord, the infusion of either ephrin-B3-Fc or Fc fragments alone caused a 20-fold reduction in the survival of transplanted NSPC (P<0.001). Thus, after SCI, ephrin-B3-Fc and Fc fragments are toxic to transplanted NSPC.
Collapse
Affiliation(s)
- Xin Yan Susan Fan
- Toronto Western Research Institute, Toronto Western Hospital, Toronto, Canada
| | | | | |
Collapse
|
45
|
Comolli N, Donaldson O, Grantier N, Zhukareva V, Tom VJ. Polyvinyl alcohol-polyvinyl pyrrolidone thin films provide local short-term release of anti-inflammatory agents post spinal cord injury. J Biomed Mater Res B Appl Biomater 2012; 100:1867-73. [DOI: 10.1002/jbm.b.32754] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Revised: 03/14/2012] [Accepted: 04/04/2012] [Indexed: 11/08/2022]
|
46
|
Kang CE, Baumann MD, Tator CH, Shoichet MS. Localized and sustained delivery of fibroblast growth factor-2 from a nanoparticle-hydrogel composite for treatment of spinal cord injury. Cells Tissues Organs 2012; 197:55-63. [PMID: 22796886 DOI: 10.1159/000339589] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2012] [Indexed: 11/19/2022] Open
Abstract
After traumatic spinal cord injury, grossly injured blood vessels leak blood and fluid into the parenchyma, leading to a large cystic cavity. Fibroblast growth factor-2 (FGF2) can reduce immediate vasoconstriction of vessels in the tissue surrounding the primary injury and promote angiogenesis. A localized delivery system would both achieve restricted delivery of FGF2 to the spinal cord and limit possible systemic effects such as mitogenesis. To enhance the endogenous angiogenic response after spinal cord injury, FGF2 was encapsulated in poly(lactide-co-glycolide) (PLGA) nanoparticles which were embedded in a biopolymer blend of hyaluronan and methylcellulose (HAMC) and then injected into the intrathecal space. Treatment began immediately after a 26 g clip compression spinal cord injury in rats and consisted of intrathecal delivery of FGF2 from the HAMC/PLGA/FGF2 composite. Control animals received intrathecal HAMC loaded with blank nanoparticles, intrathecal HAMC alone or intrathecal artificial cerebrospinal fluid alone. Sustained and localized delivery of FGF2 from composite HAMC/PLGA/FGF2 achieved higher blood vessel density in the dorsal horns 28 days post-injury, due to either greater angiogenesis near the epicenter of the injury or vasoprotection acutely after spinal cord injury. Importantly, delivery of FGF2 from composite HAMC/PLGA/FGF2 did not produce proliferative lesions that had been previously reported for FGF2 delivered locally using a minipump/catheter. These results suggest that localized and sustained delivery with composite HAMC/PLGA/FGF2 is an excellent system to deliver biomolecules directly to the spinal cord, thereby circumventing the blood spinal cord barrier and avoiding systemic side effects.
Collapse
Affiliation(s)
- Catherine E Kang
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ont., Canada
| | | | | | | |
Collapse
|
47
|
Chen L, Jiang M, Pei L. Comparison of Three Methods of Drug Delivery in the Rat Lumbar Spinal Subarachnoid Space. Anat Rec (Hoboken) 2012; 295:1212-20. [DOI: 10.1002/ar.22506] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 05/05/2012] [Indexed: 11/08/2022]
|
48
|
|
49
|
Hawryluk GWJ, Mothe A, Wang J, Wang S, Tator C, Fehlings MG. An in vivo characterization of trophic factor production following neural precursor cell or bone marrow stromal cell transplantation for spinal cord injury. Stem Cells Dev 2012; 21:2222-38. [PMID: 22085254 DOI: 10.1089/scd.2011.0596] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cellular transplantation strategies for repairing the injured spinal cord have shown consistent benefit in preclinical models, and human clinical trials have begun. Interactions between transplanted cells and host tissue remain poorly understood. Trophic factor secretion is postulated a primary or supplementary mechanism of action for many transplanted cells, however, there is little direct evidence to support trophin production by transplanted cells in situ. In the present study, trophic factor expression was characterized in uninjured, injured-untreated, injured-treated with transplanted cells, and corresponding control tissue from the adult rat spinal cord. Candidate trophic factors were identified in a literature search, and primers were designed for these genes. We examined in vivo trophin expression in 3 paradigms involving transplantation of either brain or spinal cord-derived neural precursor cells (NPCs) or bone marrow stromal cells (BMSCs). Injury without further treatment led to a significant elevation of nerve growth factor (NGF), leukemia inhibitory factor (LIF), insulin-like growth factor-1 (IGF-1), and transforming growth factor-β1 (TGF-β1), and lower expression of vascular endothelial growth factor isoform A (VEGF-A) and platelet-derived growth factor-A (PDGF-A). Transplantation of NPCs led to modest changes in trophin expression, and the co-administration of intrathecal trophins resulted in significant elevation of the neurotrophins, glial-derived neurotrophic factor (GDNF), LIF, and basic fibroblast growth factor (bFGF). BMSCs transplantation upregulated NGF, LIF, and IGF-1. NPCs isolated after transplantation into the injured spinal cord expressed the neurotrophins, ciliary neurotrophic factor (CNTF), epidermal growth factor (EGF), and bFGF at higher levels than host cord. These data show that trophin expression in the spinal cord is influenced by injury and cell transplantation, particularly when combined with intrathecal trophin infusion. Trophins may contribute to the benefits associated with cell-based repair strategies for spinal cord injury.
Collapse
Affiliation(s)
- Gregory W J Hawryluk
- Division of Genetics and Development, Krembil Neuroscience Center, Toronto Western Research Institute, University Health Network, Toronto, Canada
| | | | | | | | | | | |
Collapse
|
50
|
Jin Y, Ketschek A, Jiang Z, Smith G, Fischer I. Chondroitinase activity can be transduced by a lentiviral vector in vitro and in vivo. J Neurosci Methods 2011; 199:208-13. [PMID: 21600922 DOI: 10.1016/j.jneumeth.2011.05.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Revised: 04/18/2011] [Accepted: 05/04/2011] [Indexed: 12/11/2022]
Abstract
The bacterial enzyme chondroitinase ABC (ChABC), which cleaves chondroitin sulfate glycosaminoglycan chains, can degrade inhibitory scar tissue formed following spinal cord injury, thereby promoting axonal growth and regeneration. However, delivering the active enzyme for prolonged periods presents practical limitations. To overcome these problems, we prepared a lentiviral vector (LV) encoding chondroitinase AC (Chase) together with the green fluorescent protein (GFP) reporter (Chase/LV) and demonstrated its expression and enzymatic activity in vitro and in vivo. Neural precursor cells infected with Chase/LV expressed the GFP reporter at levels that increased dramatically with time in culture. Enzymatic activity from the supernatant of the infected cells was demonstrated by dot blot assay using an antibody that recognizes the digested form of CSPG and was compared with the bacterial ChABC enzyme. Chick DRG cultures plated adjacent to the CSPG border and incubated with supernatant from Chase/LV-infected cells showed neurites growing into the CSPG area, a response similar to that after treatment with ChABC. In contrast, in control cultures, the neurites turned to avoid the inhibitory CSPG interface. Degradation of CSPG in these cultures was confirmed by specific CSPG antibodies. A single injection of Chase/LV into the spinal cord resulted in sustained secretion of the enzyme, whose activity was detected for 8 weeks by expression of GFP and evidence of the digested form of CSPG. This study demonstrates the efficacy of the Chase/LV vector and its potential as a therapeutic tool to reduce scar inhibition and promote axonal growth and repair following central nervous system injury.
Collapse
Affiliation(s)
- Ying Jin
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, PA 19129, United States.
| | | | | | | | | |
Collapse
|