1
|
Lee BY, Kim S, Oh S, Lee Y, Park J, Ko H, Koo JC, Jung Y, Lim H. Human-Inspired Tactile Perception System for Real-Time and Multimodal Detection of Tactile Stimuli. Soft Robot 2024; 11:270-281. [PMID: 38112297 DOI: 10.1089/soro.2022.0191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023] Open
Abstract
A human can intuitively perceive and comprehend complicated tactile information because the cutaneous receptors distributed in the fingertip skin receive different tactile stimuli simultaneously and the tactile signals are immediately transmitted to the brain. Although many research groups have attempted to mimic the structure and function of human skin, it remains a challenge to implement human-like tactile perception process inside one system. In this study, we developed a real-time and multimodal tactile system that mimics the function of cutaneous receptors and the transduction of tactile stimuli from receptors to the brain, by using multiple sensors, a signal processing and transmission circuit module, and a signal analysis module. The proposed system is capable of simultaneously acquiring four types of decoupled tactile information with a compact system, thereby enabling differentiation between various tactile stimuli, texture characteristics, and consecutive complex motions. This skin-like three-dimensional integrated design provides further opportunities in multimodal tactile sensing systems.
Collapse
Affiliation(s)
- Bo-Yeon Lee
- Department of Nature-Inspired System and Application, Korea Institute of Machinery and Materials, Daejeon, Republic of Korea
| | - Seonggi Kim
- Department of Nature-Inspired System and Application, Korea Institute of Machinery and Materials, Daejeon, Republic of Korea
| | - Sunjong Oh
- Department of Nature-Inspired System and Application, Korea Institute of Machinery and Materials, Daejeon, Republic of Korea
| | - Youngoh Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Jonghwa Park
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Hyunhyub Ko
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Ja Choon Koo
- School of Mechanical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Youngdo Jung
- Department of Nature-Inspired System and Application, Korea Institute of Machinery and Materials, Daejeon, Republic of Korea
| | - Hyuneui Lim
- Department of Nature-Inspired System and Application, Korea Institute of Machinery and Materials, Daejeon, Republic of Korea
| |
Collapse
|
2
|
Li AH, Kuo YY, Yang SB, Chen PC. Central Channelopathies in Obesity. CHINESE J PHYSIOL 2024; 67:15-26. [PMID: 38780269 DOI: 10.4103/ejpi.ejpi-d-23-00029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/18/2024] [Indexed: 05/25/2024] Open
Abstract
As obesity has raised heightening awareness, researchers have attempted to identify potential targets that can be treated for therapeutic intervention. Focusing on the central nervous system (CNS), the key organ in maintaining energy balance, a plethora of ion channels that are expressed in the CNS have been inspected and determined through manipulation in different hypothalamic neural subpopulations for their roles in fine-tuning neuronal activity on energy state alterations, possibly acting as metabolic sensors. However, a remaining gap persists between human clinical investigations and mouse studies. Despite having delineated the pathways and mechanisms of how the mouse study-identified ion channels modulate energy homeostasis, only a few targets overlap with the obesity-related risk genes extracted from human genome-wide association studies. Here, we present the most recently discovered CNS-specific metabolism-correlated ion channels using reverse and forward genetics approaches in mice and humans, respectively, in the hope of illuminating the prospects for future therapeutic development.
Collapse
Affiliation(s)
- Athena Hsu Li
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yi-Ying Kuo
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shi-Bing Yang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Pei-Chun Chen
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
3
|
Kearney BE, Lanius RA. The brain-body disconnect: A somatic sensory basis for trauma-related disorders. Front Neurosci 2022; 16:1015749. [PMID: 36478879 PMCID: PMC9720153 DOI: 10.3389/fnins.2022.1015749] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/14/2022] [Indexed: 08/16/2023] Open
Abstract
Although the manifestation of trauma in the body is a phenomenon well-endorsed by clinicians and traumatized individuals, the neurobiological underpinnings of this manifestation remain unclear. The notion of somatic sensory processing, which encompasses vestibular and somatosensory processing and relates to the sensory systems concerned with how the physical body exists in and relates to physical space, is introduced as a major contributor to overall regulatory, social-emotional, and self-referential functioning. From a phylogenetically and ontogenetically informed perspective, trauma-related symptomology is conceptualized to be grounded in brainstem-level somatic sensory processing dysfunction and its cascading influences on physiological arousal modulation, affect regulation, and higher-order capacities. Lastly, we introduce a novel hierarchical model bridging somatic sensory processes with limbic and neocortical mechanisms regulating an individual's emotional experience and sense of a relational, agentive self. This model provides a working framework for the neurobiologically informed assessment and treatment of trauma-related conditions from a somatic sensory processing perspective.
Collapse
Affiliation(s)
- Breanne E. Kearney
- Department of Neuroscience, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Ruth A. Lanius
- Department of Neuroscience, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| |
Collapse
|
4
|
Yang H, Hou C, Xiao W, Qiu Y. The role of mechanosensitive ion channels in the gastrointestinal tract. Front Physiol 2022; 13:904203. [PMID: 36060694 PMCID: PMC9437298 DOI: 10.3389/fphys.2022.904203] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Mechanosensation is essential for normal gastrointestinal (GI) function, and abnormalities in mechanosensation are associated with GI disorders. There are several mechanosensitive ion channels in the GI tract, namely transient receptor potential (TRP) channels, Piezo channels, two-pore domain potassium (K2p) channels, voltage-gated ion channels, large-conductance Ca2+-activated K+ (BKCa) channels, and the cystic fibrosis transmembrane conductance regulator (CFTR). These channels are located in many mechanosensitive intestinal cell types, namely enterochromaffin (EC) cells, interstitial cells of Cajal (ICCs), smooth muscle cells (SMCs), and intrinsic and extrinsic enteric neurons. In these cells, mechanosensitive ion channels can alter transmembrane ion currents in response to mechanical forces, through a process known as mechanoelectrical coupling. Furthermore, mechanosensitive ion channels are often associated with a variety of GI tract disorders, including irritable bowel syndrome (IBS) and GI tumors. Mechanosensitive ion channels could therefore provide a new perspective for the treatment of GI diseases. This review aims to highlight recent research advances regarding the function of mechanosensitive ion channels in the GI tract. Moreover, it outlines the potential role of mechanosensitive ion channels in related diseases, while describing the current understanding of interactions between the GI tract and mechanosensitive ion channels.
Collapse
Affiliation(s)
- Haoyu Yang
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Army Medical University, Chongqing, China
| | - Chaofeng Hou
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Army Medical University, Chongqing, China
| | - Weidong Xiao
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Yuan Qiu
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
- *Correspondence: Yuan Qiu,
| |
Collapse
|
5
|
Migalev AS, Vigasina KD, Gotovtsev PM. A review of motor neural system robotic modeling approaches and instruments. BIOLOGICAL CYBERNETICS 2022; 116:271-306. [PMID: 35041073 DOI: 10.1007/s00422-021-00918-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
In this review, we are considering an actively developing tool in neuroscience-robotic modeling. The new perspective and existing application fields, tools, and methods are discussed. We try to determine starting positions and approaches that are useful at the beginning of new research in this field. Among multiple directions of the research is robotic modeling on the level of muscles fibers and their afferents, skin surface sensors, muscles, and joints proprioceptors. Some examples of technical implementation for physical modeling are reviewed. They are software and hardware tools like event-related modeling algorithms, reduced neuron models, robotic drives constructions. We observe existing drives technologies and prospective electric motor types: switched reluctance and transverse flux motors. Next, we look at the existing examples and approaches for robotic modeling of the cerebellum and spinal cord neural networks. These examples show practical methods for the model neural network architecture and adaptation. Those methods allow the use of cortical and spinal cord reflexes for the network training and apply additional artificial blocks for data processing in other brain structures that transmit and receive data from biologically realistic models.
Collapse
Affiliation(s)
- Alexander S Migalev
- National Research Center "Kurchatov Intitute", 1, Akademika Kurchatova pl., Moscow, 123182, Russia
| | - Kristina D Vigasina
- Institute of Higher Nervous Activity and Neurophysiology of RAS, 5A, Butlerova st., Moscow, 117485, Russia
| | - Pavel M Gotovtsev
- National Research Center "Kurchatov Intitute", 1, Akademika Kurchatova pl., Moscow, 123182, Russia
- Moscow Institute of Physics and Technology 9, Institutsky per., Dolgoprudny, Moscow Region, 141701, Russian Federation
| |
Collapse
|
6
|
Cho H, Park HJ, Choi JH, Nam MH, Jeong JS, Seo YK. Sound affects the neuronal maturation of neuroblastoma cells and the repair of damaged tissues. ELECTRON J BIOTECHN 2022. [DOI: 10.1016/j.ejbt.2022.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
7
|
Foote AG, Thibeault SL. Sensory Innervation of the Larynx and the Search for Mucosal Mechanoreceptors. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2021; 64:371-391. [PMID: 33465318 PMCID: PMC8632506 DOI: 10.1044/2020_jslhr-20-00350] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/19/2020] [Accepted: 10/28/2020] [Indexed: 05/03/2023]
Abstract
Purpose The larynx is a uniquely situated organ, juxtaposed between the gastrointestinal and respiratory tracts, and endures considerable immunological challenges while providing reflexogenic responses via putative mucosal mechanoreceptor afferents. Laryngeal afferents mediate precise monitoring of sensory events by relay to the internal branch of the superior laryngeal nerve (iSLN). Exposure to a variety of stimuli (e.g., mechanical, chemical, thermal) at the mucosa-airway interface has likely evolved a diverse array of specialized sensory afferents for rapid laryngeal control. Accordingly, mucosal mechanoreceptors in demarcated laryngeal territories have been hypothesized as primary sources of sensory input. The purpose of this article is to provide a tutorial on current evidence for laryngeal afferent receptors in mucosa, the role of mechano-gated ion channels within airway epithelia and mechanisms for mechanoreceptors implicated in laryngeal health and disease. Method An overview was conducted on the distribution and identity of iSLN-mediated afferent receptors in the larynx, with specific focus on mechanoreceptors and their functional roles in airway mucosa. Results/Conclusions Laryngeal somatosensation at the cell and molecular level is still largely unexplored. This tutorial consolidates various animal and human researches, with translational emphasis provided for the importance of mucosal mechanoreceptors to normal and abnormal laryngeal function. Information presented in this tutorial has relevance to both clinical and research arenas. Improved understanding of iSLN innervation and corresponding mechanotransduction events will help shed light upon a variety of pathological reflex responses, including persistent cough, dysphonia, and laryngospasm.
Collapse
Affiliation(s)
- Alexander G. Foote
- Division of Otolaryngology–Head and Neck Surgery, University of Wisconsin–Madison
| | - Susan L. Thibeault
- Division of Otolaryngology–Head and Neck Surgery, University of Wisconsin–Madison
| |
Collapse
|
8
|
Yoshihara M, Tsujimura T, Suzuki T, Nagoya K, Shiraishi N, Magara J, Terunuma M, Inoue M. Sustained laryngeal transient receptor potential vanilloid 1 activation inhibits mechanically induced swallowing in anesthetized rats. Am J Physiol Gastrointest Liver Physiol 2020; 319:G412-G419. [PMID: 32755305 DOI: 10.1152/ajpgi.00082.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A major component of gastric acid is hydrochloric acid (HCl), which can activate transient receptor potential vanilloid 1 (TRPV1). In the present study, we investigated how sustained laryngeal TRPV1 activation affects the frequency of the swallowing reflex. Experiments were carried out on 85 male Sprague-Dawley rats. The effects of short and sustained application of chemicals (3 µl of 0.1 N HCl or capsaicin) on the frequency of swallowing and on time-dependent changes in the occurrence of swallowing evoked by supralaryngeal nerve stimulation were determined. To evaluate vascular permeability of the larynx, Evans blue dye was intravenously injected after 5 or 60 min of sustained TRPV1 activation. SB366791 (a TRPV1 inhibitor) and Cap/QX-314 (a TRPV1-expressed neuronal inhibitor) significantly inhibited HCl/capsaicin-induced swallowing, but air flow-induced swallowing was not affected. Although the number of air flow-induced swallows followed by capsaicin stimulation was not affected within 5 min, it was significantly reduced by 60-min capsaicin or HCl application. The swallowing threshold associated with supralaryngeal nerve stimulation did not significantly change throughout the recording period. Evans blue dye concentrations in the larynx were significantly higher at 60 min in the 10-5 M capsaicin group than in the control group. Our results suggest that sustained TPRV1 activation not only desensitizes TRPV1 but also inactivates mechanoreceptors, which may be attributed to increases in vascular permeability and edema, as part of an inflammatory process.NEW & NOTEWORTHY Although a transient receptor potential vanilloid 1 (TRPV1) inhibitor or TRPV1-expressed neuronal inhibitor significantly inhibited HCl/capsaicin-evoked swallowing, air flow-induced swallowing was not affected. The number of air flow-induced swallows was significantly reduced within 60 min of TRPV1 activation. Evans blue dye concentration in the larynx increased 60 min after capsaicin application. TPRV1 activation not only desensitizes TRPV1 but also inactivates mechanoreceptors caused by increases in vascular permeability and edema.
Collapse
Affiliation(s)
- Midori Yoshihara
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, Chuo-ku, Niigata, Japan
| | - Takanori Tsujimura
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, Chuo-ku, Niigata, Japan
| | - Taku Suzuki
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, Chuo-ku, Niigata, Japan
| | - Kouta Nagoya
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, Chuo-ku, Niigata, Japan
| | - Naru Shiraishi
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, Chuo-ku, Niigata, Japan
| | - Jin Magara
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, Chuo-ku, Niigata, Japan
| | - Miho Terunuma
- Division of Oral Biochemistry, Niigata University Graduate School of Medical and Dental Sciences, Chuo-ku, Niigata, Japan
| | - Makoto Inoue
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, Chuo-ku, Niigata, Japan
| |
Collapse
|
9
|
Peripheral Mechanobiology of Touch-Studies on Vertebrate Cutaneous Sensory Corpuscles. Int J Mol Sci 2020; 21:ijms21176221. [PMID: 32867400 PMCID: PMC7504094 DOI: 10.3390/ijms21176221] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/19/2020] [Accepted: 08/24/2020] [Indexed: 12/21/2022] Open
Abstract
The vertebrate skin contains sensory corpuscles that are receptors for different qualities of mechanosensitivity like light brush, touch, pressure, stretch or vibration. These specialized sensory organs are linked anatomically and functionally to mechanosensory neurons, which function as low-threshold mechanoreceptors connected to peripheral skin through Aβ nerve fibers. Furthermore, low-threshold mechanoreceptors associated with Aδ and C nerve fibers have been identified in hairy skin. The process of mechanotransduction requires the conversion of a mechanical stimulus into electrical signals (action potentials) through the activation of mechanosensible ion channels present both in the axon and the periaxonal cells of sensory corpuscles (i.e., Schwann-, endoneurial- and perineurial-related cells). Most of those putative ion channels belong to the degenerin/epithelial sodium channel (especially the family of acid-sensing ion channels), the transient receptor potential channel superfamilies, and the Piezo family. This review updates the current data about the occurrence and distribution of putative mechanosensitive ion channels in cutaneous mechanoreceptors including primary sensory neurons and sensory corpuscles.
Collapse
|
10
|
Suárez-Quintanilla J, Martín-Cruces J, Martín-Biedma B, Cobo JL, Mérida-García AJ, de Vicente JC, Junquera LM, Mérida-Velasco JR, Vega JA. The juxta-oral organ of Chievitz (organum yuxtaorale) updated: Embryology, anatomy, function and pathology. Ann Anat 2020; 232:151582. [PMID: 32810612 DOI: 10.1016/j.aanat.2020.151582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/05/2020] [Accepted: 07/26/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND The Chievitz's organ or juxta-oral organ is a mysterious bilateral structure, phylogenetically preserved, which develops from the mouth epithelium as an invagination that loses connection to it in the prenatal period. It is located laterally to the walls of the oral cavity in an imprecise anatomical location and receives abundant innervation from the buccal nerve. Structurally it consists of non-keratinizing squamous-like neuroepithelial cells surrounded by two layers of connective tissue with nerve fibers and different morphotypes of sensory corpuscles. Its function is completely unknown although based on its rich innervation it is assumed that works as a mechanoreceptor. METHODS We have performed immunohistochemistry for axonal and Schwann cells, and the putative mechanoproteins ASIC2, TRPV4 and Piezo2 in sections of fetal juxta-oral organ. RESULTS Intraparenchymatous nerve fibers and sensory corpuscles were observed as well as immunoreactivity for Piezo2 in both nerve fibers and epithelial parenchymatous cells. CONCLUSIONS We add indirect evidence that the juxtaoral organ is a mechanoreceptor because in addition to its dense innervation, the epithelial cells and sensory nerve fibers display immunoreactivity for the mechanogated ion channel Piezo2. Based on current knowledge, the functional and clinical importance of the juxta-oral organ should be further investigated.
Collapse
Affiliation(s)
- J Suárez-Quintanilla
- Departamento Ciencias Morfológicas, Universidad de Santiago de Compostela, Spain
| | - J Martín-Cruces
- Departamento de Morfología y Biología Celular, Grupo SINPOS, Universidad de Oviedo, Spain
| | - B Martín-Biedma
- Departamento de Cirugía y Especialidades Médico-Quirúrgicas, Universidad de Santiago de Compostela, Spain
| | - J L Cobo
- Departamento de Morfología y Biología Celular, Grupo SINPOS, Universidad de Oviedo, Spain; Servicio de Cirugía Máxilofacial, Hospital Universitario Central de Asturias, Oviedo, Spain
| | | | - J C de Vicente
- Servicio de Cirugía Máxilofacial, Hospital Universitario Central de Asturias, Oviedo, Spain; Departamento de Cirugía y Especialidades Médico-Quirúrgicas, Universidad de Oviedo, Spain
| | - L M Junquera
- Servicio de Cirugía Máxilofacial, Hospital Universitario Central de Asturias, Oviedo, Spain; Departamento de Cirugía y Especialidades Médico-Quirúrgicas, Universidad de Oviedo, Spain
| | - J R Mérida-Velasco
- Departamento de Anatomía y Embriología, Instituto de Embriología, Universidad Complutense de Madrid, Madrid, Spain
| | - J A Vega
- Departamento de Morfología y Biología Celular, Grupo SINPOS, Universidad de Oviedo, Spain; Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago de Chile, Chile.
| |
Collapse
|
11
|
Awan H, Zeid K, Adve RS, Wallbridge N, Plummer C, Eckford AW. Communication in Plants: Comparison of Multiple Action Potential and Mechanosensitive Signals With Experiments. IEEE Trans Nanobioscience 2019; 19:213-223. [PMID: 31689198 DOI: 10.1109/tnb.2019.2951289] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Both action potentials and mechanosensitive signalling are an important communication mechanisms in plants. Considering an information-theoretic framework, this paper explores the effective range of multiple action potentials for a long chain of cells (i.e., up to 100) in different configurations, and introduces the study of multiple mechanosensitive activation signals (generated due to a mechanical stimulus) in plants. For both these signals, we find that the mutual information per cell and information propagation speed tends to increase up to a certain number of receiver cells. However, as the number of cells increase beyond 10 to 12, the mutual information per cell starts to decrease. To validate our model and results, we include an experimental verification of the theoretical model, using a PhytlSigns biosignal amplifier, allowing us to measure the magnitude of the voltage associated with the multiple AP's and mechanosensitive activation signals induced by different stimulus in plants. Experimental data is used to calculate the mutual information and information propagation speed, which is compared with corresponding numerical results. Since these signals are used for a variety of important tasks within the plant, understanding them may lead to new bioengineering methods for plants.
Collapse
|
12
|
Tsujimura T, Ueha R, Yoshihara M, Takei E, Nagoya K, Shiraishi N, Magara J, Inoue M. Involvement of the epithelial sodium channel in initiation of mechanically evoked swallows in anaesthetized rats. J Physiol 2019; 597:2949-2963. [PMID: 31032906 DOI: 10.1113/jp277895] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 04/25/2019] [Indexed: 12/17/2022] Open
Abstract
KEY POINTS Afferents carried by the superior laryngeal nerve play a primary role in the initiation of laryngeal mechanically evoked swallows in anaesthetized rats. Amiloride and its analogues inhibit swallowing evoked by mechanical stimulation, but not swallowing evoked by chemical and electrical stimulation. The epithelial sodium channel is probably involved in the initiation of laryngeal mechanically evoked swallows. ABSTRACT The swallowing reflex plays a critical role in airway protection. Because impaired laryngeal mechanosensation is associated with food bolus aspiration, it is important to know how the laryngeal sensory system regulates swallowing initiation. This study was performed to clarify the neuronal mechanism of mechanically evoked swallows. Urethane-anaesthetized Sprague-Dawley male rats were used. A swallow was identified by activation of the suprahyoid and thyrohyoid muscles on electromyography. The swallowing threshold was measured by von Frey filament and electrical stimulation of the larynx. The number of swallows induced by upper airway distension and capsaicin application (0.03 nmol, 3 μl) to the vocal folds was counted. The effects of topical application (0.3-30 nmol, 3 μl) of the epithelial sodium channel (ENaC) blocker amiloride and its analogues (benzamil and dimethylamiloride), acid-sensing ion channel (ASIC) inhibitors (mambalgine-1 and diminazene) and gadolinium to the laryngeal mucosa on swallowing initiation were evaluated. A nerve transection study indicated that afferents carried by the superior laryngeal nerve play a primary role in the initiation of laryngeal mechanically evoked swallows. The mechanical threshold of swallowing was increased in a dose-dependent manner by amiloride and its analogues and gadolinium, but not by ASIC inhibitors. The number of swallows by upper airway distension was significantly decreased by benzamil application. However, the initiation of swallows evoked by capsaicin and electrical stimulation was not affected by benzamil application. We speculate that the ENaC is involved in the initiation of laryngeal mechanically evoked swallows.
Collapse
Affiliation(s)
- Takanori Tsujimura
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan
| | - Rumi Ueha
- Department of Otolaryngology, University of Tokyo, Tokyo, 113-8655, Japan
| | - Midori Yoshihara
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan
| | - Eri Takei
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan
| | - Kouta Nagoya
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan
| | - Naru Shiraishi
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan
| | - Jin Magara
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan
| | - Makoto Inoue
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan
| |
Collapse
|
13
|
Robertson SN, Campsie P, Childs PG, Madsen F, Donnelly H, Henriquez FL, Mackay WG, Salmerón-Sánchez M, Tsimbouri MP, Williams C, Dalby MJ, Reid S. Control of cell behaviour through nanovibrational stimulation: nanokicking. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2018; 376:20170290. [PMID: 29661978 PMCID: PMC5915650 DOI: 10.1098/rsta.2017.0290] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/07/2018] [Indexed: 05/05/2023]
Abstract
Mechanical signals are ubiquitous in our everyday life and the process of converting these mechanical signals into a biological signalling response is known as mechanotransduction. Our understanding of mechanotransduction, and its contribution to vital cellular responses, is a rapidly expanding field of research involving complex processes that are still not clearly understood. The use of mechanical vibration as a stimulus of mechanotransduction, including variation of frequency and amplitude, allows an alternative method to control specific cell behaviour without chemical stimulation (e.g. growth factors). Chemical-independent control of cell behaviour could be highly advantageous for fields including drug discovery and clinical tissue engineering. In this review, a novel technique is described based on nanoscale sinusoidal vibration. Using finite-element analysis in conjunction with laser interferometry, techniques that are used within the field of gravitational wave detection, optimization of apparatus design and calibration of vibration application have been performed. We further discuss the application of nanovibrational stimulation, or 'nanokicking', to eukaryotic and prokaryotic cells including the differentiation of mesenchymal stem cells towards an osteoblast cell lineage. Mechanotransductive mechanisms are discussed including mediation through the Rho-A kinase signalling pathway. Optimization of this technique was first performed in two-dimensional culture using a simple vibration platform with an optimal frequency and amplitude of 1 kHz and 22 nm. A novel bioreactor was developed to scale up cell production, with recent research demonstrating that mesenchymal stem cell differentiation can be efficiently triggered in soft gel constructs. This important step provides first evidence that clinically relevant (three-dimensional) volumes of osteoblasts can be produced for the purpose of bone grafting, without complex scaffolds and/or chemical induction. Initial findings have shown that nanovibrational stimulation can also reduce biofilm formation in a number of clinically relevant bacteria. This demonstrates additional utility of the bioreactor to investigate mechanotransduction in other fields of research.This article is part of a discussion meeting issue 'The promises of gravitational-wave astronomy'.
Collapse
Affiliation(s)
- Shaun N Robertson
- SUPA, Department of Biomedical Engineering, University of Strathclyde, Graham Hills, 50 George Street, Glasgow G1 1QE, UK
| | - Paul Campsie
- SUPA, Department of Biomedical Engineering, University of Strathclyde, Graham Hills, 50 George Street, Glasgow G1 1QE, UK
| | - Peter G Childs
- Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK
| | - Fiona Madsen
- Institute of Healthcare, Policy and Practice, School of Health, Nursing and Midwifery, University of the West of Scotland, Paisley PA1 2BE, UK
| | - Hannah Donnelly
- Centre for Cell Engineering, Institute for Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Fiona L Henriquez
- Institute of Biomedical and Environmental Health Research, School of Science and Sport, University of the West of Scotland, Paisley PA1 2BE, UK
| | - William G Mackay
- Institute of Healthcare, Policy and Practice, School of Health, Nursing and Midwifery, University of the West of Scotland, Paisley PA1 2BE, UK
| | - Manuel Salmerón-Sánchez
- Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK
| | - Monica P Tsimbouri
- Centre for Cell Engineering, Institute for Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Craig Williams
- Institute of Healthcare, Policy and Practice, School of Health, Nursing and Midwifery, University of the West of Scotland, Paisley PA1 2BE, UK
| | - Matthew J Dalby
- Centre for Cell Engineering, Institute for Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Stuart Reid
- SUPA, Department of Biomedical Engineering, University of Strathclyde, Graham Hills, 50 George Street, Glasgow G1 1QE, UK
| |
Collapse
|
14
|
Byers MR, Cornel LM. Multiple complex somatosensory systems in mature rat molars defined by immunohistochemistry. Arch Oral Biol 2017; 85:84-97. [PMID: 29035722 DOI: 10.1016/j.archoralbio.2017.09.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 08/24/2017] [Accepted: 09/13/2017] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Intradental sensory receptors trigger painful sensations and unperceived mechanosensitivity, but the receptor bases for those functions are only partly defined. We present new evidence here concerning complex endings of myelinated axons in rat molars. DESIGN We sectioned mature rat jaws in sagittal and transverse planes to analyze neural immunoreactivity (IR) for parvalbumin, peripherin, neurofilament protein, neurotrophin receptors, synaptophysin, calcitonin gene-related peptide (CGRP), or mas-related g-protein-receptor-d (Mrgprd). RESULTS We found two complex sensory systems in mature rat molar dentin that labeled with neurofilament protein-IR, plus either parvalbumin-IR or peripherin-IR. The parvalbumin-IR system made extensively branched, beaded endings focused into dentin throughout each pulp horn. The peripherin-IR system primarily made unbeaded, fork-shaped dentinal endings scattered throughout crown including cervical regions. Both of these systems differed from neuropeptide CGRP-IR. In molar pulp we found peripherin- and parvalbumin-IR layered endings, either near special horizontal plexus arrays or in small coiled endings near tangled plexus, each with specific foci for specific pulp horns. Parvalbumin-IR nerve fibers had Aβ axons (5-7μm diameter), while peripherin-IR axons were thinner Aδ size (2-5μm). Mechano-nociceptive Mrgprd-IR was only found in peripherin-IR axons. CONCLUSIONS Complex somatosensory receptors in rat molars include two types of dentinal endings that both differ from CGRP-IR endings, and at least two newly defined types of pulpal endings. The PV-IR neurons with their widely branched, synaptophysin-rich, intradentinal beaded endings are good candidates for endodontic non-nociceptive, low threshold, unperceived mechanoreceptors. The complex molar dentinal and pulpal sensory systems were not found in rat incisors.
Collapse
Affiliation(s)
- Margaret R Byers
- Department of Anesthesiology & Pain Medicine, Box 356540, University of Washington, Seattle, WA 98195-6540, USA.
| | - Leanne M Cornel
- Department of Anesthesiology & Pain Medicine, Box 356540, University of Washington, Seattle, WA 98195-6540, USA
| |
Collapse
|
15
|
García-Mesa Y, García-Piqueras J, García B, Feito J, Cabo R, Cobo J, Vega JA, García-Suárez O. Merkel cells and Meissner's corpuscles in human digital skin display Piezo2 immunoreactivity. J Anat 2017; 231:978-989. [PMID: 28905996 DOI: 10.1111/joa.12688] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2017] [Indexed: 12/13/2022] Open
Abstract
The transformation of mechanical energy into electrical signals is the first step in mechanotransduction in the peripheral sensory nervous system and relies on the presence of mechanically gated ion channels within specialized sensory organs called mechanoreceptors. Piezo2 is a vertebrate stretch-gated ion channel necessary for mechanosensitive channels in mammalian cells. Functionally, it is related to light touch, which has been detected in murine cutaneous Merkel cell-neurite complexes, Meissner-like corpuscles and lanceolate nerve endings. To the best of our knowledge, the occurrence of Piezo2 in human cutaneous mechanoreceptors has never been investigated. Here, we used simple and double immunohistochemistry to investigate the occurrence of Piezo2 in human digital glabrous skin. Piezo2 immunoreactivity was detected in approximately 80% of morphologically and immunohistochemically characterized (cytokeratin 20+ , chromogranin A+ and synaptophisin+ ) Merkel cells. Most of them were in close contact with Piezo2- nerve fibre profiles. Moreover, the axon, but not the lamellar cells, of Meissner's corpuscles was also Piezo2+ , but other mechanoreceptors, i.e. Pacinian or Ruffini's corpuscles, were devoid of immunoreactivity. Piezo2 was also observed in non-nervous tissue, especially the basal keratinocytes, endothelial cells and sweat glands. The present results demonstrate the occurrence of Piezo2 in cutaneous sensory nerve formations that functionally work as slowly adapting (Merkel cells) and rapidly adapting (Meissner's corpuscles) low-threshold mechanoreceptors and are related to fine and discriminative touch but not to vibration or hard touch. These data offer additional insight into the molecular basis of mechanosensing in humans.
Collapse
Affiliation(s)
- Y García-Mesa
- Departamento de Morfología y Biología Celular, Grupo SINPOs, Sección de Anatomía y Embriología Humana, Universidad de Oviedo, Oviedo, Spain
| | - J García-Piqueras
- Departamento de Morfología y Biología Celular, Grupo SINPOs, Sección de Anatomía y Embriología Humana, Universidad de Oviedo, Oviedo, Spain
| | - B García
- Departamento de Biología Funcional, Universidad de Oviedo, Oviedo, Spain
| | - J Feito
- Servicio de Anatomía Patológica, Complejo Asistencial Universitario de Salamanca, Salamanca, Spain
| | - R Cabo
- Departamento de Morfología y Biología Celular, Grupo SINPOs, Sección de Anatomía y Embriología Humana, Universidad de Oviedo, Oviedo, Spain
| | - J Cobo
- Departamento de Cirugía y Especialidades Médico-Quirúrgicas, Universidad de Oviedo, Oviedo, Spain.,Instituto Asturiano de Odontología, Oviedo, Spain
| | - J A Vega
- Departamento de Morfología y Biología Celular, Grupo SINPOs, Sección de Anatomía y Embriología Humana, Universidad de Oviedo, Oviedo, Spain.,Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Temuco, Chile
| | - O García-Suárez
- Departamento de Morfología y Biología Celular, Grupo SINPOs, Sección de Anatomía y Embriología Humana, Universidad de Oviedo, Oviedo, Spain
| |
Collapse
|
16
|
Cobo J, Solé-Magdalena A, Menéndez I, de Vicente J, Vega J. Connections between the facial and trigeminal nerves: Anatomical basis for facial muscle proprioception. JPRAS Open 2017. [DOI: 10.1016/j.jpra.2017.01.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
17
|
Alonso-González P, Cabo R, San José I, Gago A, Suazo IC, García-Suárez O, Cobo J, Vega JA. Human Digital Meissner Corpuscles Display Immunoreactivity for the Multifunctional Ion Channels Trpc6 and Trpv4. Anat Rec (Hoboken) 2017; 300:1022-1031. [DOI: 10.1002/ar.23522] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 02/02/2016] [Accepted: 02/02/2016] [Indexed: 02/01/2023]
Affiliation(s)
| | - Roberto Cabo
- Departamento de Morfología y Biología Celular, Grupo SINPOs; Universidad de Oviedo; Spain
| | - Isabel San José
- Departamento de Anatomía y Radiología; Universidad de Valladolid; Spain
| | - Angel Gago
- Departamento de Morfología y Biología Celular, Grupo SINPOs; Universidad de Oviedo; Spain
| | - Iván C. Suazo
- Facultad de Ciencias de la Salud; Universidad Autónoma de Chile; Chile
| | - Olivia García-Suárez
- Departamento de Morfología y Biología Celular, Grupo SINPOs; Universidad de Oviedo; Spain
| | - Juan Cobo
- Departamento de Cirugía y Especialidades Médico-Quirúrgicas; Universidad de Oviedo; Spain
- Instituto Asturiano de Odontología; Oviedo Spain
| | - José A. Vega
- Departamento de Morfología y Biología Celular, Grupo SINPOs; Universidad de Oviedo; Spain
| |
Collapse
|
18
|
Searching for proprioceptors in human facial muscles. Neurosci Lett 2017; 640:1-5. [PMID: 28082150 DOI: 10.1016/j.neulet.2017.01.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 01/06/2017] [Accepted: 01/07/2017] [Indexed: 12/28/2022]
Abstract
The human craniofacial muscles innervated by the facial nerve typically lack muscle spindles. However these muscles have proprioception that participates in the coordination of facial movements. A functional substitution of facial proprioceptors by cutaneous mechanoreceptors has been proposed but at present this alternative has not been demonstrated. Here we have investigated whether other kinds of sensory structures are present in two human facial muscles (zygomatic major and buccal). Human checks were removed from Spanish cadavers, and processed for immunohistochemical detection of nerve fibers (neurofilament proteins and S100 protein) and two putative mechanoproteins (acid-sensing ion channel 2 and transient receptor potential vanilloid 4) associated with mechanosensing. Nerves of different calibers were found in the connective septa and within the muscle itself. In all the muscles analysed, capsular corpuscle-like structures resembling elongated or round Ruffini-like corpuscles were observed. Moreover the axon profiles within these structures displayed immunoreactivity for both putative mechanoproteins. The present results demonstrate the presence of sensory structures in facial muscles that can substitute for typical muscle spindles as the source of facial proprioception.
Collapse
|
19
|
Abbate F, Madrigrano M, Scopitteri T, Levanti M, Cobo J, Germanà A, Vega J, Laurà R. Acid-sensing ion channel immunoreactivities in the cephalic neuromasts of adult zebrafish. Ann Anat 2016; 207:27-31. [DOI: 10.1016/j.aanat.2016.06.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 06/21/2016] [Accepted: 06/22/2016] [Indexed: 01/23/2023]
|
20
|
Jalalvand E, Robertson B, Wallén P, Grillner S. Ciliated neurons lining the central canal sense both fluid movement and pH through ASIC3. Nat Commun 2016; 7:10002. [PMID: 26743691 PMCID: PMC4729841 DOI: 10.1038/ncomms10002] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 10/26/2015] [Indexed: 01/02/2023] Open
Abstract
Cerebrospinal fluid-contacting (CSF-c) cells are found in all vertebrates but their function has remained elusive. We recently identified one type of laterally projecting CSF-c cell in lamprey spinal cord with neuronal properties that expresses GABA and somatostatin. We show here that these CSF-c neurons respond to both mechanical stimulation and to lowered pH. These effects are most likely mediated by ASIC3-channels, since APETx2, a specific antagonist of ASIC3, blocks them both. Furthermore, lowering of pH as well as application of somatostatin will reduce the locomotor burst rate. The somatostatin receptor antagonist counteracts the effects of both a decrease in pH and of somatostatin. Lateral bending movement imposed on the spinal cord, as would occur during natural swimming, activates CSF-c neurons. Taken together, we show that CSF-c neurons act both as mechanoreceptors and as chemoreceptors through ASIC3 channels, and their action may protect against pH-changes resulting from excessive neuronal activity.
Collapse
Affiliation(s)
- Elham Jalalvand
- The Nobel Institute for Neurophysiology, Department of Neuroscience, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - Brita Robertson
- The Nobel Institute for Neurophysiology, Department of Neuroscience, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - Peter Wallén
- The Nobel Institute for Neurophysiology, Department of Neuroscience, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - Sten Grillner
- The Nobel Institute for Neurophysiology, Department of Neuroscience, Karolinska Institutet, Stockholm SE-171 77, Sweden
| |
Collapse
|
21
|
Quindlen JC, Stolarski HK, Johnson MD, Barocas VH. A multiphysics model of the Pacinian corpuscle. Integr Biol (Camb) 2016; 8:1111-1125. [DOI: 10.1039/c6ib00157b] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
This study integrates mechanics and neuroscience to model the mechanoelectrochemical transduction of vibrations into neural signals in the Pacinian corpuscle.
Collapse
Affiliation(s)
- Julia C. Quindlen
- Department of Biomedical Engineering
- University of Minnesota
- Minneapolis
- USA
| | - Henryk K. Stolarski
- Department of Civil, Environmental, and Geo-Engineering
- University of Minnesota
- Minneapolis
- USA
| | - Matthew D. Johnson
- Department of Biomedical Engineering
- University of Minnesota
- Minneapolis
- USA
| | - Victor H. Barocas
- Department of Biomedical Engineering
- University of Minnesota
- Minneapolis
- USA
| |
Collapse
|
22
|
Bradman MJ, Ferrini F, Salio C, Merighi A. Practical mechanical threshold estimation in rodents using von Frey hairs/Semmes–Weinstein monofilaments: Towards a rational method. J Neurosci Methods 2015; 255:92-103. [DOI: 10.1016/j.jneumeth.2015.08.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 08/06/2015] [Accepted: 08/07/2015] [Indexed: 12/27/2022]
|
23
|
Fernández-González FJ, Cañigral A, López-Caballo JL, Brizuela A, Cobo T, de Carlos F, Suazo I, Pérez-González Y, Vega JA. Recombinant osteoprotegerin effects during orthodontic movement in a rat model. Eur J Orthod 2015; 38:379-85. [PMID: 26293288 DOI: 10.1093/ejo/cjv056] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
BACKGROUND AND OBJECTIVES Anchorage is one of the most challenging sides in orthodontics. The use of biological modulators that inhibit osteoclasts could be a solution to address these problems and provide new adjunctive approaches. The aim of this study was to assess the effectiveness of recombinant osteoprotegerin fusion protein (OPG-Fc) in orthodontic anchorage. MATERIALS AND METHODS Two groups of male Sprague-Dawley rats were utilized. The animals in the experimental group received twice-weekly injections with high dose of OPG-Fc (5.0mg/kg) in mesial and distal mucosa of the first molars, and those in the control group received no drugs. Right first maxillary molars were mesialized using a calibrated nickel-titanium spring connected to an anterior mini-screw. Tooth movement was measured by two blinded observers using scanned and magnified stone casts. Receptor activator of nuclear factor κB (RANK), run-related transcription factor 2 (Runx2), type I collagen, vimentin, matrix metalloproteinases 2 and 9, S100 protein and the putative mechanoproteins acid-sensing ion channel (ASIC2) and transient receptor potential vainilloid 4 (TRPV4) were evaluated using immunohistochemistry. RESULTS OPG-Fc group showed an important decreased in mesial molar movement with only 52%, 31%, and 22% of the total mesial molar movement compared with control group at Days 7, 14, and 21, respectively (P < 0.001). RANK ligand and Runx2 positive cells were severely reduced after OPG-Fc treatment. Periodontal ligament architecture, cell arrangement, and immunohistochemical patter for vimentin, type I collagen and the mechanoproteins TRPV4 and ASIC2 were altered by tooth movement and all these parameters altered by the applied treatment. CONCLUSIONS OPG-Fc effectively inhibits osteoclastogenesis resulting in improved bone quantity and orthodontic anchorage. Based on present results, OPG-Fc could have clinical utility in preventing undesired tooth movements.
Collapse
Affiliation(s)
| | - Aránzazu Cañigral
- *Department of Orthodontics and Dentofacial Orthopedics, University of Oviedo, Oviedo, Spain
| | - José L López-Caballo
- *Department of Orthodontics and Dentofacial Orthopedics, University of Oviedo, Oviedo, Spain
| | - Aritza Brizuela
- **Department of Oral Implantology, School of Medicine and Dentistry, University of the Basque Country, Leioa, Spain
| | - Teresa Cobo
- *Department of Orthodontics and Dentofacial Orthopedics, University of Oviedo, Oviedo, Spain
| | - Félix de Carlos
- *Department of Orthodontics and Dentofacial Orthopedics, University of Oviedo, Oviedo, Spain
| | - Iván Suazo
- ***Director de Postgrado e investigacion, Universidad Autónoma de Chile, Chile
| | | | - Jose A Vega
- *****Department of Morphology and Cell Biology, Facultad de Medicina, University of Oviedo, Oviedo, Spain and ******Facultad Ciencias de la Salud, Universidad Autónoma de Chile, Chile
| |
Collapse
|
24
|
The PDZ-domain protein Whirlin facilitates mechanosensory signaling in mammalian proprioceptors. J Neurosci 2015; 35:3073-84. [PMID: 25698744 DOI: 10.1523/jneurosci.3699-14.2015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Mechanoreception is an essential feature of many sensory modalities. Nevertheless, the mechanisms that govern the conversion of a mechanical force to distinct patterns of action potentials remain poorly understood. Proprioceptive mechanoreceptors reside in skeletal muscle and inform the nervous system of the position of body and limbs in space. We show here that Whirlin/Deafness autosomal recessive 31 (DFNB31), a PDZ-scaffold protein involved in vestibular and auditory hair cell transduction, is also expressed by proprioceptive sensory neurons (pSNs) in dorsal root ganglia in mice. Whirlin localizes to the peripheral sensory endings of pSNs and facilitates pSN afferent firing in response to muscle stretch. The requirement of Whirlin in both proprioceptors and hair cells suggests that accessory mechanosensory signaling molecules define common features of mechanoreceptive processing across sensory systems.
Collapse
|
25
|
Viña E, Parisi V, Sánchez-Ramos C, Cabo R, Guerrera MC, Quirós LM, Germanà A, Vega JA, García-Suárez O. Acid-sensing ion channels (ASICs) 2 and 4.2 are expressed in the retina of the adult zebrafish. Cell Tissue Res 2015; 360:223-31. [PMID: 25585988 DOI: 10.1007/s00441-014-2084-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 11/27/2014] [Indexed: 01/01/2023]
Abstract
Acid-sensing ion channels (ASICs) are H(+)-gated, voltage-insensitive cation channels involved in synaptic transmission, mechanosensation and nociception. Different ASICs have been detected in the retina of mammals but it is not known whether they are expressed in adult zebrafish, a commonly used animal model to study the retina in both normal and pathological conditions. We study the expression and distribution of ASIC2 and ASIC4 in the retina of adult zebrafish and its regulation by light using PCR, in situ hybridization, western blot and immunohistochemistry. We detected mRNA encoding zASIC2 and zASIC4.2 but not zASIC4.1. ASIC2, at the mRNA or protein level, was detected in the outer nuclear layer, the outer plexiform layer, the inner plexiform layer, the retinal ganglion cell layer and the optic nerve. ASIC4 was expressed in the photoreceptors layer and to a lesser extent in the retinal ganglion cell layer. Furthermore, the expression of both ASIC2 and ASIC4.2 was down-regulated by light and darkness. These results are the first demonstration that ASIC2 and ASIC4 are expressed in the adult zebrafish retina and suggest that zebrafish could be used as a model organism for studying retinal pathologies involving ASICs.
Collapse
Affiliation(s)
- E Viña
- Departamento de Morfología y Biología Celular, Grupo SINPOS Universidad de Oviedo, 33006, Oviedo, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Sheldon RE, Shmygol A, Van Den Berg HA, Blanks AM. Functional and morphological development of the womb throughout life. Sci Prog 2015; 98:103-27. [PMID: 26288915 PMCID: PMC10365438 DOI: 10.3184/003685015x14308363103415] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The uterus undergoes changes throughout a woman's life, beginning with her own embryonic development when she is still in the womb, commencing a monthly cycle at the onset of adulthood, and undergoing dramatic changes during pregnancy and parturition. The impact of preterm labour and other perinatal health problems is significant, both in human and financial terms; therefore the study of the physiological and regulatory changes which the uterus undergoes can be of enormous potential benefit. Here we briefly review the current state of knowledge, with an emphasis on the importance of changes in connectivity in the uterine smooth muscle cell network and on recent mathematical modelling work aimed at elucidating the role of spatial heterogeneity in this connected network.
Collapse
|
27
|
Cabo R, Alonso P, Viña E, Vázquez G, Gago A, Feito J, Pérez-Moltó FJ, García-Suárez O, Vega JA. ASIC2 is present in human mechanosensory neurons of the dorsal root ganglia and in mechanoreceptors of the glabrous skin. Histochem Cell Biol 2014; 143:267-76. [DOI: 10.1007/s00418-014-1278-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2014] [Indexed: 01/23/2023]
|
28
|
Cuesta A, Del Valle ME, García-Suárez O, Viña E, Cabo R, Vázquez G, Cobo JL, Murcia A, Alvarez-Vega M, García-Cosamalón J, Vega JA. Acid-sensing ion channels in healthy and degenerated human intervertebral disc. Connect Tissue Res 2014; 55:197-204. [PMID: 24432912 DOI: 10.3109/03008207.2014.884083] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Acid-sensing ion channels (ASICs) are a family of H(+)-gated voltage-insensitive ion channels that respond to extracellular acidification by regulating transmembrane Ca(2+) flux. Moreover, ASICs can also be gated by mechanical forces and may function as mechanosensors. The cells of the intervertebral disc (IVD) have an unusual acidic and hyperosmotic microenvironment. Changes in the pH and osmolarity determine the viability of IVD cells and the composition of the extracellular matrix, and both are the basis of IVD degeneration. In this study, the expression of ASICs (ASIC1, ASIC2, ASIC3 and ASIC4) mRNAs and proteins in human healthy and degenerated IVD was evaluated by quantitative reverse transcription-quantitative polymerase chain reaction and Western blot. The distribution of ASIC proteins was determined by immunohistochemistry. The mRNAs for all ASICs were detected in normal human IVD, and significantly increased levels were found in degenerated IVD. Western blots demonstrated the presence of proteins with estimated molecular weights of approximately 68-72 kDa. In both the annulus fibrosus (AF) and nucleus pulposus (NP) of normal IVD, ASIC2 is the most frequently expressed ASIC followed by ASIC3, ASIC1 and ASIC4. In the AF of degenerated IVD, there was a significant increase in the number of ASIC1 and ASIC4 positive cells, whereas in the NP, we found significant increase of expression of ASIC1, ASIC2 and ASIC3. These results describe the occurrence and localization of different ASICs in human healthy IVD, and their increased expression in degenerated IVD, thus suggesting that ASICs may be involved in IVD degeneration.
Collapse
|
29
|
de Carlos F, Cobo J, Macías E, Feito J, Cobo T, Calavia M, García-Suárez O, Vega J. The Sensory Innervation of the Human Pharynx: Searching for Mechanoreceptors. Anat Rec (Hoboken) 2013; 296:1735-46. [DOI: 10.1002/ar.22792] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 07/16/2013] [Indexed: 12/30/2022]
Affiliation(s)
- F. de Carlos
- Departamento de Cirugía y Especialidades Médicos-Quirúrgicas; Universidad de Oviedo; Oviedo Spain
- Instituto Asturiano de Odontología; Oviedo Spain
| | - J. Cobo
- Departamento de Cirugía y Especialidades Médicos-Quirúrgicas; Universidad de Oviedo; Oviedo Spain
- Instituto Asturiano de Odontología; Oviedo Spain
| | - E. Macías
- Instituto Asturiano de Odontología; Oviedo Spain
| | - J. Feito
- Departamento de Morfología y Biología Celular; Universidad de Oviedo; Oviedo Spain
- Servicio de Anatomía Patológica; Hospital Universitario Central de Asturias; Oviedo Spain
| | - T. Cobo
- Instituto Asturiano de Odontología; Oviedo Spain
| | - M.G. Calavia
- Departamento de Morfología y Biología Celular; Universidad de Oviedo; Oviedo Spain
| | - O. García-Suárez
- Departamento de Morfología y Biología Celular; Universidad de Oviedo; Oviedo Spain
| | - J.A. Vega
- Departamento de Morfología y Biología Celular; Universidad de Oviedo; Oviedo Spain
| |
Collapse
|
30
|
McClintic AM, Dickey TC, Gofeld M, Illian PR, Kliot M, Kucewicz JC, Loeser JD, Richebe PG, Mourad PD. Rapid ultrasonic stimulation of inflamed tissue with diagnostic intent. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2013; 134:1521-1529. [PMID: 23927192 PMCID: PMC3745493 DOI: 10.1121/1.4812872] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 02/06/2013] [Accepted: 02/08/2013] [Indexed: 06/02/2023]
Abstract
Previous studies have observed that individual pulses of intense focused ultrasound (iFU) applied to inflamed and normal tissue can generate sensations, where inflamed tissue responds at a lower intensity than normal tissue. It was hypothesized that successively applied iFU pulses will generate sensation in inflamed tissue at a lower intensity and dose than application of a single iFU pulse. This hypothesis was tested using an animal model of chronic inflammatory pain, created by injecting an irritant into the rat hind paw. Ultrasound pulses were applied in rapid succession or individually to rats' rear paws beginning at low peak intensities and progressing to higher peak intensities, until the rats withdrew their paws immediately after iFU application. Focused ultrasound protocols consisting of successively and rapidly applied pulses elicited inflamed paw withdrawal at lower intensity and estimated tissue displacement values than single pulse protocols. However, both successively applied pulses and single pulses produced comparable threshold acoustic dose values and estimates of temperature increases. This raises the possibility that temperature increase contributed to paw withdrawal after rapid iFU stimulation. While iFU-induction of temporal summation may also play a role, electrophysiological studies are necessary to tease out these potential contributors to iFU stimulation.
Collapse
Affiliation(s)
- Abbi M McClintic
- Applied Physics Laboratory, University of Washington, 1013 NE 40th Street, Seattle, Washington 98105, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Zeveke AV, Efes ED, Polevaya SA. An integrative framework of the skin receptors activation: mechanoreceptors activity patterns versus "labeled lines". J Integr Neurosci 2013; 12:47-56. [PMID: 23621456 DOI: 10.1142/s0219635213500052] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The paper presents a review of electrophysiological data which indicate the integrative mechanisms of information coded in the human and animal peripheral skin receptors. The activity of the skin sensory receptors was examined by applying various natural stimuli. It was revealed that numerous identical receptors respond to various stimuli (mechanical, temperature, and pain ones), but the spike patterns of these receptors were found to be specific for each stimulus. The description of characteristic structures of spike patterns in the cutaneous nerve fibers in response to five major modalities, namely: "touch", "pain", "vibration/breath", "cold", and "heat", is being presented. The recordings of the cutaneous physical state revealed a correlation between the patterns of spatiotemporal skin deformation and the receptors activity. A rheological state of the skin can be changed either in response to external temperature variation or by the sympathetic pilomotor activation. These results indicate that the skin sensory receptors activity may be considered as an integrative process. It depends not only on the receptors themselves, but also on the changes in the surrounding tissue and on the adaptive influence of the central nervous system. A new framework for the sensory channel system related to the skin is proposed on the basis of experimental results.
Collapse
Affiliation(s)
- Alexander V Zeveke
- Nizhny Novgorod State Medical Academy, 46 Ul'yanov Street, 603950, Nizhny Novgorod, Russia.
| | | | | |
Collapse
|
32
|
Chen CC, Wong CW. Neurosensory mechanotransduction through acid-sensing ion channels. J Cell Mol Med 2013; 17:337-49. [PMID: 23490035 PMCID: PMC3823015 DOI: 10.1111/jcmm.12025] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 12/28/2012] [Indexed: 02/06/2023] Open
Abstract
Acid-sensing ion channels (ASICs) are voltage-insensitive cation channels responding to extracellular acidification. ASIC proteins have two transmembrane domains and a large extracellular domain. The molecular topology of ASICs is similar to that of the mechanosensory abnormality 4- or 10-proteins expressed in touch receptor neurons and involved in neurosensory mechanotransduction in nematodes. The ASIC proteins are involved in neurosensory mechanotransduction in mammals. The ASIC isoforms are expressed in Merkel cell-neurite complexes, periodontal Ruffini endings and specialized nerve terminals of skin and muscle spindles, so they might participate in mechanosensation. In knockout mouse models, lacking an ASIC isoform produces defects in neurosensory mechanotransduction of tissue such as skin, stomach, colon, aortic arch, venoatrial junction and cochlea. The ASICs are thus implicated in touch, pain, digestive function, baroreception, blood volume control and hearing. However, the role of ASICs in mechanotransduction is still controversial, because we lack evidence that the channels are mechanically sensitive when expressed in heterologous cells. Thus, ASIC channels alone are not sufficient to reconstruct the path of transducing molecules of mechanically activated channels. The mechanotransducers associated with ASICs need further elucidation. In this review, we discuss the expression of ASICs in sensory afferents of mechanoreceptors, findings of knockout studies, technical issues concerning studies of neurosensory mechanotransduction and possible missing links. Also we propose a molecular model and a new approach to disclose the molecular mechanism underlying the neurosensory mechanotransduction.
Collapse
Affiliation(s)
- Chih-Cheng Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
| | | |
Collapse
|
33
|
Cabo R, Gálvez A, Laurà R, San José I, Pastor J, López-Muñiz A, García-Suárez O, Vega J. Immunohistochemical Detection of the Putative Mechanoproteins ASIC2 and TRPV4 in Avian Herbst Sensory Corpuscles. Anat Rec (Hoboken) 2012; 296:117-22. [DOI: 10.1002/ar.22615] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2012] [Revised: 07/06/2012] [Accepted: 07/29/2012] [Indexed: 12/20/2022]
|
34
|
Widera D, Hauser S, Kaltschmidt C, Kaltschmidt B. Origin and regenerative potential of vertebrate mechanoreceptor-associated stem cells. ANATOMY RESEARCH INTERNATIONAL 2012; 2012:837626. [PMID: 23082250 PMCID: PMC3467754 DOI: 10.1155/2012/837626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 09/04/2012] [Indexed: 01/02/2023]
Abstract
Meissner corpuscles and Merkel cell neurite complexes are highly specialized mechanoreceptors present in the hairy and glabrous skin, as well as in different types of mucosa. Several reports suggest that after injury, such as after nerve crush, freeze injury, or dissection of the nerve, they are able to regenerate, particularly including reinnervation and repopulation of the mechanoreceptors by Schwann cells. However, little is known about mammalian cells responsible for these regenerative processes. Here we review cellular origin of this plasticity in the light of newly described adult neural crest-derived stem cell populations. We also discuss further potential multipotent stem cell populations with the ability to regenerate disrupted innervation and to functionally recover the mechanoreceptors. These capabilities are discussed as in context to cellularly reprogrammed Schwann cells and tissue resident adult mesenchymal stem cells.
Collapse
Affiliation(s)
- Darius Widera
- Department of Cell Biology, University of Bielefeld, Universitätsstraße 25, 33501 Bielefeld, Germany
| | - Stefan Hauser
- Department of Molecular Neurobiology, University of Bielefeld, Universitätsstraße 25, 33501 Bielefeld, Germany
| | - Christian Kaltschmidt
- Department of Cell Biology, University of Bielefeld, Universitätsstraße 25, 33501 Bielefeld, Germany
| | - Barbara Kaltschmidt
- Department of Molecular Neurobiology, University of Bielefeld, Universitätsstraße 25, 33501 Bielefeld, Germany
| |
Collapse
|
35
|
Cabo R, Gálvez MA, San José I, Laurà R, López-Muñiz A, García-Suárez O, Cobo T, Insausti R, Vega JA. Immunohistochemical localization of acid-sensing ion channel 2 (ASIC2) in cutaneous Meissner and Pacinian corpuscles of Macaca fascicularis. Neurosci Lett 2012; 516:197-201. [PMID: 22708125 DOI: 10.1016/j.neulet.2012.03.081] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Acid-sensing ion channel 2 (ASIC2) is a member of the degenerin/epithelial sodium channel superfamily, presumably involved mechanosensation. Expression of ASIC2 has been detected in mechanosensory neurons as well as in both axons and Schwann-like cells of cutaneous mechanoreceptors. In these studies we analysed expression of ASIC2 in the cutaneous sensory corpuscles of Macaca fascicularis using immunohistochemistry and laser confocal-scanner microscopy. ASIC2 immunoreactivity was detected in both Meissner and Pacinian corpuscles. It was found to co-localize with neuron-specific enolase and RT-97, but not with S100 protein, demonstrating that ASIC2 expression is restricted to axons supplying mechanoreceptors. These results demonstrate for the first time the presence of the protein ASIC2 in cutaneous rapidly adapting low-threshold mechanoreceptors of monkey, suggesting a role of this ion channel in touch sense.
Collapse
Affiliation(s)
- R Cabo
- Departamento de Morfología y Biología Celular, Universidad de Oviedo, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|