1
|
Soumier A, Lio G, Demily C. Current and future applications of light-sheet imaging for identifying molecular and developmental processes in autism spectrum disorders. Mol Psychiatry 2024; 29:2274-2284. [PMID: 38443634 DOI: 10.1038/s41380-024-02487-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 03/07/2024]
Abstract
Autism spectrum disorder (ASD) is identified by a set of neurodevelopmental divergences that typically affect the social communication domain. ASD is also characterized by heterogeneous cognitive impairments and is associated with cooccurring physical and medical conditions. As behaviors emerge as the brain matures, it is particularly essential to identify any gaps in neurodevelopmental trajectories during early perinatal life. Here, we introduce the potential of light-sheet imaging for studying developmental biology and cross-scale interactions among genetic, cellular, molecular and macroscale levels of circuitry and connectivity. We first report the core principles of light-sheet imaging and the recent progress in studying brain development in preclinical animal models and human organoids. We also present studies using light-sheet imaging to understand the development and function of other organs, such as the skin and gastrointestinal tract. We also provide information on the potential of light-sheet imaging in preclinical drug development. Finally, we speculate on the translational benefits of light-sheet imaging for studying individual brain-body interactions in advancing ASD research and creating personalized interventions.
Collapse
Affiliation(s)
- Amelie Soumier
- Le Vinatier Hospital Center, 95 boulevard Pinel, 69675, Bron cedex, France.
- iMIND, Center of Excellence for Autism, 95 boulevard Pinel, 69675, Bron cedex, France.
- Institute of Cognitive Science Marc Jeannerod, CNRS, UMR 5229, 67 boulevard Pinel, 69675, Bron cedex, France.
- University Claude Bernard Lyon 1, 43 boulevard du 11 Novembre 1918, 69622, Villeurbanne cedex, France.
| | - Guillaume Lio
- Le Vinatier Hospital Center, 95 boulevard Pinel, 69675, Bron cedex, France
- iMIND, Center of Excellence for Autism, 95 boulevard Pinel, 69675, Bron cedex, France
- Institute of Cognitive Science Marc Jeannerod, CNRS, UMR 5229, 67 boulevard Pinel, 69675, Bron cedex, France
| | - Caroline Demily
- Le Vinatier Hospital Center, 95 boulevard Pinel, 69675, Bron cedex, France
- iMIND, Center of Excellence for Autism, 95 boulevard Pinel, 69675, Bron cedex, France
- Institute of Cognitive Science Marc Jeannerod, CNRS, UMR 5229, 67 boulevard Pinel, 69675, Bron cedex, France
- University Claude Bernard Lyon 1, 43 boulevard du 11 Novembre 1918, 69622, Villeurbanne cedex, France
| |
Collapse
|
2
|
Otomo K, Omura T, Nozawa Y, Edwards SJ, Sato Y, Saito Y, Yagishita S, Uchida H, Watakabe Y, Naitou K, Yanai R, Sahara N, Takagi S, Katayama R, Iwata Y, Shiokawa T, Hayakawa Y, Otsuka K, Watanabe-Takano H, Haneda Y, Fukuhara S, Fujiwara M, Nii T, Meno C, Takeshita N, Yashiro K, Rosales Rocabado JM, Kaku M, Yamada T, Oishi Y, Koike H, Cheng Y, Sekine K, Koga JI, Sugiyama K, Kimura K, Karube F, Kim H, Manabe I, Nemoto T, Tainaka K, Hamada A, Brismar H, Susaki EA. descSPIM: an affordable and easy-to-build light-sheet microscope optimized for tissue clearing techniques. Nat Commun 2024; 15:4941. [PMID: 38866781 PMCID: PMC11169475 DOI: 10.1038/s41467-024-49131-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 05/24/2024] [Indexed: 06/14/2024] Open
Abstract
Despite widespread adoption of tissue clearing techniques in recent years, poor access to suitable light-sheet fluorescence microscopes remains a major obstacle for biomedical end-users. Here, we present descSPIM (desktop-equipped SPIM for cleared specimens), a low-cost ($20,000-50,000), low-expertise (one-day installation by a non-expert), yet practical do-it-yourself light-sheet microscope as a solution for this bottleneck. Even the most fundamental configuration of descSPIM enables multi-color imaging of whole mouse brains and a cancer cell line-derived xenograft tumor mass for the visualization of neurocircuitry, assessment of drug distribution, and pathological examination by false-colored hematoxylin and eosin staining in a three-dimensional manner. Academically open-sourced ( https://github.com/dbsb-juntendo/descSPIM ), descSPIM allows routine three-dimensional imaging of cleared samples in minutes. Thus, the dissemination of descSPIM will accelerate biomedical discoveries driven by tissue clearing technologies.
Collapse
Affiliation(s)
- Kohei Otomo
- Department of Biochemistry and Systems Biomedicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Biochemistry II, Juntendo University School of Medicine, Tokyo, Japan
- Nakatani Biomedical Spatialomics Hub, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Division of Biophotonics, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan
- Biophotonics Research Group, Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Japan
| | - Takaki Omura
- Department of Biochemistry and Systems Biomedicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Nakatani Biomedical Spatialomics Hub, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Neurosurgery, University of Tokyo, Tokyo, Japan
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Yuki Nozawa
- Biochemistry II, Juntendo University School of Medicine, Tokyo, Japan
| | - Steven J Edwards
- Science for Life Laboratory, Department of Applied Physics, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Yukihiko Sato
- Department of Biochemistry and Systems Biomedicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Nakatani Biomedical Spatialomics Hub, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yuri Saito
- Department of Biochemistry and Systems Biomedicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Nakatani Biomedical Spatialomics Hub, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shigehiro Yagishita
- Department of Pharmacology and Therapeutics, Fundamental Innovative Oncology Core, National Cancer Center Research Institute, Tokyo, Japan
- Division of Molecular Pharmacology, National Cancer Center Research Institute, Tokyo, Japan
| | - Hitoshi Uchida
- Department of System Pathology for Neurological Disorders, Brain Research Institute, Niigata University, Niigata, Japan
| | - Yuki Watakabe
- Division of Biophotonics, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan
- Biophotonics Research Group, Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Japan
| | - Kiyotada Naitou
- Department of Basic Veterinary Science, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Rin Yanai
- Advanced Neuroimaging Center, Institute for Quantum Medical Sciences, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Naruhiko Sahara
- Advanced Neuroimaging Center, Institute for Quantum Medical Sciences, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Satoshi Takagi
- Division of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Ryohei Katayama
- Division of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Yusuke Iwata
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Toshiro Shiokawa
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoku Hayakawa
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kensuke Otsuka
- Biology and Environmental Chemistry Division, Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry, Chiba, Japan
| | - Haruko Watanabe-Takano
- Department of Molecular Pathophysiology, Institute for Advanced Medical Sciences, Nippon Medical School, Tokyo, Japan
| | - Yuka Haneda
- Department of Molecular Pathophysiology, Institute for Advanced Medical Sciences, Nippon Medical School, Tokyo, Japan
| | - Shigetomo Fukuhara
- Department of Molecular Pathophysiology, Institute for Advanced Medical Sciences, Nippon Medical School, Tokyo, Japan
| | - Miku Fujiwara
- Department of Developmental Biology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takenobu Nii
- Department of Developmental Biology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Chikara Meno
- Department of Developmental Biology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Naoki Takeshita
- Anatomy and Developmental Biology, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Department of Pediatrics, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kenta Yashiro
- Anatomy and Developmental Biology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Juan Marcelo Rosales Rocabado
- Division of Bio-prosthodontics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Masaru Kaku
- Division of Bio-prosthodontics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Tatsuya Yamada
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, USA
| | - Yumiko Oishi
- Department of Meidical Biochemistry, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroyuki Koike
- Department of Meidical Biochemistry, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yinglan Cheng
- Department of Meidical Biochemistry, Tokyo Medical and Dental University, Tokyo, Japan
| | - Keisuke Sekine
- Laboratory of Cancer Cell Systems, National Cancer Center Research Institute, Tokyo, Japan
| | - Jun-Ichiro Koga
- The Second Department of Internal Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Kaori Sugiyama
- Institute for Advanced Research of Biosystem Dynamics, Research Institute for Science and Engineering, Waseda University, Tokyo, Japan
| | - Kenichi Kimura
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Japan
| | - Fuyuki Karube
- Lab of Histology and Cytology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hyeree Kim
- Department of Systems Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Ichiro Manabe
- Department of Systems Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Tomomi Nemoto
- Division of Biophotonics, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan
- Biophotonics Research Group, Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Japan
| | - Kazuki Tainaka
- Department of System Pathology for Neurological Disorders, Brain Research Institute, Niigata University, Niigata, Japan
| | - Akinobu Hamada
- Department of Pharmacology and Therapeutics, Fundamental Innovative Oncology Core, National Cancer Center Research Institute, Tokyo, Japan
- Division of Molecular Pharmacology, National Cancer Center Research Institute, Tokyo, Japan
| | - Hjalmar Brismar
- Science for Life Laboratory, Department of Applied Physics, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Etsuo A Susaki
- Department of Biochemistry and Systems Biomedicine, Juntendo University Graduate School of Medicine, Tokyo, Japan.
- Biochemistry II, Juntendo University School of Medicine, Tokyo, Japan.
- Nakatani Biomedical Spatialomics Hub, Juntendo University Graduate School of Medicine, Tokyo, Japan.
| |
Collapse
|
3
|
Williams RM, Bloom JC, Robertus CM, Recknagel AK, Putnam D, Schimenti JC, Zipfel WR. Practical strategies for robust and inexpensive imaging of aqueous-cleared tissues. J Microsc 2023; 291:237-247. [PMID: 37413663 DOI: 10.1111/jmi.13213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 06/13/2023] [Accepted: 06/27/2023] [Indexed: 07/08/2023]
Abstract
Lightsheet microscopy offers an ideal method for imaging of large (mm-cm scale) biological tissues rendered transparent via optical clearing protocols. However the diversity of clearing technologies and tissue types, and how these are adapted to the microscope can make tissue mounting complicated and somewhat irreproducible. Tissue preparation for imaging can involve glues and or equilibration in a variety of expensive and/or proprietary formulations. Here we present practical advice for mounting and capping cleared tissues in optical cuvettes for macroscopic imaging, providing a standardised 3D cell that can be imaged routinely and relatively inexpensively. We show that acrylic cuvettes cause minimal spherical aberration with objective numerical apertures less than 0.65. Furthermore, we describe methods for aligning and assessing the light sheets, discriminating fluorescence from autofluorescence, identifying chromatic artefacts due to differential scattering and removing streak artefacts such that they do not confound downstream 3D object segmentation analyses, with mouse embryo, liver and heart imaging as demonstrated examples.
Collapse
Affiliation(s)
- Rebecca M Williams
- BRC Imaging Facility, Institute of Biotechnology, Cornell University, Ithaca, New York
| | - Jordana C Bloom
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Cara M Robertus
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York
| | | | - David Putnam
- Meinig School of Biomedical Engineering, Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York
| | - John C Schimenti
- Department of Biomedical Sciences, Cornell University, Ithaca, New York
| | - Warren R Zipfel
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York
| |
Collapse
|
4
|
Maes A, Pestiaux C, Marino A, Balcaen T, Leyssens L, Vangrunderbeeck S, Pyka G, De Borggraeve WM, Bertrand L, Beauloye C, Horman S, Wevers M, Kerckhofs G. Cryogenic contrast-enhanced microCT enables nondestructive 3D quantitative histopathology of soft biological tissues. Nat Commun 2022; 13:6207. [PMID: 36266273 PMCID: PMC9584947 DOI: 10.1038/s41467-022-34048-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 10/12/2022] [Indexed: 12/24/2022] Open
Abstract
Biological tissues comprise a spatially complex structure, composition and organization at the microscale, named the microstructure. Given the close structure-function relationships in tissues, structural characterization is essential to fully understand the functioning of healthy and pathological tissues, as well as the impact of possible treatments. Here, we present a nondestructive imaging approach to perform quantitative 3D histo(patho)logy of biological tissues, termed Cryogenic Contrast-Enhanced MicroCT (cryo-CECT). By combining sample staining, using an X-ray contrast-enhancing staining agent, with freezing the sample at the optimal freezing rate, cryo-CECT enables 3D visualization and structural analysis of individual tissue constituents, such as muscle and collagen fibers. We applied cryo-CECT on murine hearts subjected to pressure overload following transverse aortic constriction surgery. Cryo-CECT allowed to analyze, in an unprecedented manner, the orientation and diameter of the individual muscle fibers in the entire heart, as well as the 3D localization of fibrotic regions within the myocardial layers. We foresee further applications of cryo-CECT in the optimization of tissue/food preservation and donor banking, showing that cryo-CECT also has clinical and industrial potential.
Collapse
Affiliation(s)
- Arne Maes
- Department of Materials Engineering, KU Leuven, Heverlee, Belgium
- Biomechanics lab, Institute of Mechanics, Materials and Civil Engineering, UCLouvain, Louvain-la-Neuve, Belgium
- Pole of Morphology, Institute of Experimental and Clinical Research, UCLouvain, Brussels, Belgium
| | - Camille Pestiaux
- Biomechanics lab, Institute of Mechanics, Materials and Civil Engineering, UCLouvain, Louvain-la-Neuve, Belgium
- Pole of Morphology, Institute of Experimental and Clinical Research, UCLouvain, Brussels, Belgium
| | - Alice Marino
- Pole of Cardiovascular Research, Institute of Experimental and Clinical Research, UCLouvain, Brussels, Belgium
| | - Tim Balcaen
- Biomechanics lab, Institute of Mechanics, Materials and Civil Engineering, UCLouvain, Louvain-la-Neuve, Belgium
- Pole of Morphology, Institute of Experimental and Clinical Research, UCLouvain, Brussels, Belgium
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Leuven, Belgium
| | - Lisa Leyssens
- Biomechanics lab, Institute of Mechanics, Materials and Civil Engineering, UCLouvain, Louvain-la-Neuve, Belgium
- Pole of Morphology, Institute of Experimental and Clinical Research, UCLouvain, Brussels, Belgium
| | - Sarah Vangrunderbeeck
- Biomechanics lab, Institute of Mechanics, Materials and Civil Engineering, UCLouvain, Louvain-la-Neuve, Belgium
- Pole of Morphology, Institute of Experimental and Clinical Research, UCLouvain, Brussels, Belgium
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Leuven, Belgium
| | - Grzegorz Pyka
- Biomechanics lab, Institute of Mechanics, Materials and Civil Engineering, UCLouvain, Louvain-la-Neuve, Belgium
- Pole of Morphology, Institute of Experimental and Clinical Research, UCLouvain, Brussels, Belgium
| | - Wim M De Borggraeve
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Leuven, Belgium
| | - Luc Bertrand
- Pole of Cardiovascular Research, Institute of Experimental and Clinical Research, UCLouvain, Brussels, Belgium
| | | | - Sandrine Horman
- Pole of Cardiovascular Research, Institute of Experimental and Clinical Research, UCLouvain, Brussels, Belgium
| | - Martine Wevers
- Department of Materials Engineering, KU Leuven, Heverlee, Belgium
| | - Greet Kerckhofs
- Department of Materials Engineering, KU Leuven, Heverlee, Belgium.
- Biomechanics lab, Institute of Mechanics, Materials and Civil Engineering, UCLouvain, Louvain-la-Neuve, Belgium.
- Pole of Morphology, Institute of Experimental and Clinical Research, UCLouvain, Brussels, Belgium.
- Prometheus, Division for Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium.
| |
Collapse
|
5
|
Bissardon C, Mermet X, Quintard C, Sanjuan F, Fouillet Y, Bottausci F, Carriere M, Rivera F, Blandin P. Selective plane illumination microscope dedicated to volumetric imaging in microfluidic chambers. BIOMEDICAL OPTICS EXPRESS 2022; 13:5261-5274. [PMID: 36425641 PMCID: PMC9664896 DOI: 10.1364/boe.455377] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/11/2022] [Accepted: 04/11/2022] [Indexed: 05/31/2023]
Abstract
In this article, we are presenting an original selective plane illumination fluorescence microscope dedicated to image "Organ-on-chip"-like biostructures in microfluidic chips. In order to be able to morphologically analyze volumetric samples in development at the cellular scale inside microfluidic chambers, the setup presents a compromise between relatively large field of view (∼ 200 µm) and moderate resolution (∼ 5 µm). The microscope is based on a simple design, built around the chip and its microfluidic environment to allow 3D imaging inside the chip. In particular, the sample remains horizontally avoiding to disturb the fluidics phenomena. The experimental setup, its optical characterization and the first volumetric images are reported.
Collapse
Affiliation(s)
| | - Xavier Mermet
- Univ. Grenoble Alpes, CEA, LETI, DTBS, F-38000 Grenoble, France
| | | | - Federico Sanjuan
- Univ. de Pau et des Pays de l'Adour, E2S UPPA, CNRS, Total, LFCR, Pau, France
| | - Yves Fouillet
- Univ. Grenoble Alpes, CEA, LETI, DTBS, F-38000 Grenoble, France
| | | | - Marie Carriere
- Univ. Grenoble-Alpes, CEA, CNRS, IRIG, SyMMES, F-38000 Grenoble, France
| | - Florence Rivera
- Univ. Grenoble Alpes, CEA, LETI, DTBS, F-38000 Grenoble, France
| | - Pierre Blandin
- Univ. Grenoble Alpes, CEA, LETI, DTBS, F-38000 Grenoble, France
| |
Collapse
|
6
|
Zeng C, Chen Z, Yang H, Fan Y, Fei L, Chen X, Zhang M. Advanced high resolution three-dimensional imaging to visualize the cerebral neurovascular network in stroke. Int J Biol Sci 2022; 18:552-571. [PMID: 35002509 PMCID: PMC8741851 DOI: 10.7150/ijbs.64373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/28/2021] [Indexed: 11/05/2022] Open
Abstract
As an important method to accurately and timely diagnose stroke and study physiological characteristics and pathological mechanism in it, imaging technology has gone through more than a century of iteration. The interaction of cells densely packed in the brain is three-dimensional (3D), but the flat images brought by traditional visualization methods show only a few cells and ignore connections outside the slices. The increased resolution allows for a more microscopic and underlying view. Today's intuitive 3D imagings of micron or even nanometer scale are showing its essentiality in stroke. In recent years, 3D imaging technology has gained rapid development. With the overhaul of imaging mediums and the innovation of imaging mode, the resolution has been significantly improved, endowing researchers with the capability of holistic observation of a large volume, real-time monitoring of tiny voxels, and quantitative measurement of spatial parameters. In this review, we will summarize the current methods of high-resolution 3D imaging applied in stroke.
Collapse
Affiliation(s)
- Chudai Zeng
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, Hunan, China, 410008.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China, 410008
| | - Zhuohui Chen
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, Hunan, China, 410008.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China, 410008
| | - Haojun Yang
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, Hunan, China, 410008.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China, 410008
| | - Yishu Fan
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, Hunan, China, 410008.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China, 410008
| | - Lujing Fei
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, Hunan, China, 410008.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China, 410008
| | - Xinghang Chen
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, Hunan, China, 410008.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China, 410008
| | - Mengqi Zhang
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, Hunan, China, 410008.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China, 410008
| |
Collapse
|
7
|
Watson ER, Taherian Fard A, Mar JC. Computational Methods for Single-Cell Imaging and Omics Data Integration. Front Mol Biosci 2022; 8:768106. [PMID: 35111809 PMCID: PMC8801747 DOI: 10.3389/fmolb.2021.768106] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
Integrating single cell omics and single cell imaging allows for a more effective characterisation of the underlying mechanisms that drive a phenotype at the tissue level, creating a comprehensive profile at the cellular level. Although the use of imaging data is well established in biomedical research, its primary application has been to observe phenotypes at the tissue or organ level, often using medical imaging techniques such as MRI, CT, and PET. These imaging technologies complement omics-based data in biomedical research because they are helpful for identifying associations between genotype and phenotype, along with functional changes occurring at the tissue level. Single cell imaging can act as an intermediary between these levels. Meanwhile new technologies continue to arrive that can be used to interrogate the genome of single cells and its related omics datasets. As these two areas, single cell imaging and single cell omics, each advance independently with the development of novel techniques, the opportunity to integrate these data types becomes more and more attractive. This review outlines some of the technologies and methods currently available for generating, processing, and analysing single-cell omics- and imaging data, and how they could be integrated to further our understanding of complex biological phenomena like ageing. We include an emphasis on machine learning algorithms because of their ability to identify complex patterns in large multidimensional data.
Collapse
Affiliation(s)
| | - Atefeh Taherian Fard
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Jessica Cara Mar
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
8
|
Newmaster KT, Kronman FA, Wu YT, Kim Y. Seeing the Forest and Its Trees Together: Implementing 3D Light Microscopy Pipelines for Cell Type Mapping in the Mouse Brain. Front Neuroanat 2022; 15:787601. [PMID: 35095432 PMCID: PMC8794814 DOI: 10.3389/fnana.2021.787601] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/02/2021] [Indexed: 12/14/2022] Open
Abstract
The brain is composed of diverse neuronal and non-neuronal cell types with complex regional connectivity patterns that create the anatomical infrastructure underlying cognition. Remarkable advances in neuroscience techniques enable labeling and imaging of these individual cell types and their interactions throughout intact mammalian brains at a cellular resolution allowing neuroscientists to examine microscopic details in macroscopic brain circuits. Nevertheless, implementing these tools is fraught with many technical and analytical challenges with a need for high-level data analysis. Here we review key technical considerations for implementing a brain mapping pipeline using the mouse brain as a primary model system. Specifically, we provide practical details for choosing methods including cell type specific labeling, sample preparation (e.g., tissue clearing), microscopy modalities, image processing, and data analysis (e.g., image registration to standard atlases). We also highlight the need to develop better 3D atlases with standardized anatomical labels and nomenclature across species and developmental time points to extend the mapping to other species including humans and to facilitate data sharing, confederation, and integrative analysis. In summary, this review provides key elements and currently available resources to consider while developing and implementing high-resolution mapping methods.
Collapse
Affiliation(s)
- Kyra T Newmaster
- Department of Neural and Behavioral Sciences, The Pennsylvania State University, Hershey, PA, United States
| | - Fae A Kronman
- Department of Neural and Behavioral Sciences, The Pennsylvania State University, Hershey, PA, United States
| | - Yuan-Ting Wu
- Department of Neural and Behavioral Sciences, The Pennsylvania State University, Hershey, PA, United States
| | - Yongsoo Kim
- Department of Neural and Behavioral Sciences, The Pennsylvania State University, Hershey, PA, United States
| |
Collapse
|
9
|
Advanced Static and Dynamic Fluorescence Microscopy Techniques to Investigate Drug Delivery Systems. Pharmaceutics 2021; 13:pharmaceutics13060861. [PMID: 34208080 PMCID: PMC8230741 DOI: 10.3390/pharmaceutics13060861] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 01/01/2023] Open
Abstract
In the past decade(s), fluorescence microscopy and laser scanning confocal microscopy (LSCM) have been widely employed to investigate biological and biomimetic systems for pharmaceutical applications, to determine the localization of drugs in tissues or entire organisms or the extent of their cellular uptake (in vitro). However, the diffraction limit of light, which limits the resolution to hundreds of nanometers, has for long time restricted the extent and quality of information and insight achievable through these techniques. The advent of super-resolution microscopic techniques, recognized with the 2014 Nobel prize in Chemistry, revolutionized the field thanks to the possibility to achieve nanometric resolution, i.e., the typical scale length of chemical and biological phenomena. Since then, fluorescence microscopy-related techniques have acquired renewed interest for the scientific community, both from the perspective of instrument/techniques development and from the perspective of the advanced scientific applications. In this contribution we will review the application of these techniques to the field of drug delivery, discussing how the latest advancements of static and dynamic methodologies have tremendously expanded the experimental opportunities for the characterization of drug delivery systems and for the understanding of their behaviour in biologically relevant environments.
Collapse
|
10
|
In Situ 3D-Imaging of the Inner Ear Synapses with a Cochlear Implant. Life (Basel) 2021; 11:life11040301. [PMID: 33915846 PMCID: PMC8066088 DOI: 10.3390/life11040301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/27/2021] [Accepted: 03/28/2021] [Indexed: 11/17/2022] Open
Abstract
In recent years sensorineural hearing loss was found to affect not exclusively, nor at first, the sensory cells of the inner ear. The sensory cells' synapses and subsequent neurites are initially damaged. Auditory synaptopathies also play an important role in cochlear implant (CI) care, as they can lead to a loss of physiological hearing in patients with residual hearing. These auditory synaptopathies and in general the cascades of hearing pathologies have been in the focus of research in recent years with the aim to develop more targeted and individually tailored therapeutics. In the current study, a method to examine implanted inner ears of guinea pigs was developed to examine the synapse level. For this purpose, the cochlea is made transparent and scanned with the implant in situ using confocal laser scanning microscopy. Three different preparation methods were compared to enable both an overview image of the cochlea for assessing the CI position and images of the synapses on the same specimen. The best results were achieved by dissection of the bony capsule of the cochlea.
Collapse
|
11
|
Theobalt N, Hofmann I, Fiedler S, Renner S, Dhom G, Feuchtinger A, Walch A, Hrabĕ de Angelis M, Wolf E, Wanke R, Blutke A. Unbiased analysis of obesity related, fat depot specific changes of adipocyte volumes and numbers using light sheet fluorescence microscopy. PLoS One 2021; 16:e0248594. [PMID: 33725017 PMCID: PMC7963095 DOI: 10.1371/journal.pone.0248594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 03/01/2021] [Indexed: 12/26/2022] Open
Abstract
In translational obesity research, objective assessment of adipocyte sizes and numbers is essential to characterize histomorphological alterations linked to obesity, and to evaluate the efficacies of experimental medicinal or dietetic interventions. Design-based quantitative stereological techniques based on the analysis of 2D-histological sections provide unbiased estimates of relevant 3D-parameters of adipocyte morphology, but often involve complex and time-consuming tissue processing and analysis steps. Here we report the application of direct 3D light sheet fluorescence microscopy (LSFM) for effective and accurate analysis of adipocyte volumes and numbers in optically cleared adipose tissue samples from a porcine model of diet-induced obesity (DIO). Subcutaneous and visceral adipose tissue samples from DIO-minipigs and lean controls were systematically randomly sampled, optically cleared with 3DISCO (3-dimensional imaging of solvent cleared organs), stained with eosin, and subjected to LSFM for detection of adipocyte cell membrane autofluorescence. Individual adipocytes were unbiasedly sampled in digital 3D reconstructions of the adipose tissue samples, and their individual cell volumes were directly measured by automated digital image analysis. Adipocyte numbers and mean volumes obtained by LSFM analysis did not significantly differ from the corresponding values obtained by unbiased quantitative stereological analysis techniques performed on the same samples, thus proving the applicability of LSFM for efficient analysis of relevant morphological adipocyte parameters. The results of the present study demonstrate an adipose tissue depot specific plasticity of adipocyte growth responses to nutrient oversupply. This was characterized by an exclusively hypertrophic growth of visceral adipocytes, whereas adipocytes in subcutaneous fat tissue depots also displayed a marked (hyperplastic) increase in cell number. LSFM allows for accurate and efficient determination of relevant quantitative morphological adipocyte parameters. The applied stereological methods and LSFM protocols are described in detail and can serve as a guideline for unbiased quantitative morphological analyses of adipocytes in other studies and species.
Collapse
Affiliation(s)
- Natalie Theobalt
- Institute of Veterinary Pathology at the Center for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Isabel Hofmann
- Institute of Veterinary Pathology at the Center for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Sonja Fiedler
- Institute of Veterinary Pathology at the Center for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Simone Renner
- Gene Center and Department of Veterinary Sciences, Chair for Molecular Animal Breeding and Biotechnology, Ludwig-Maximilians-Universität München, Munich, Germany
- Department of Veterinary Sciences, Center for Innovative Medical Models (CiMM), Ludwig-Maximilians-Universität München, Oberschleißheim, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Georg Dhom
- Gene Center and Department of Veterinary Sciences, Chair for Molecular Animal Breeding and Biotechnology, Ludwig-Maximilians-Universität München, Munich, Germany
- Department of Veterinary Sciences, Center for Innovative Medical Models (CiMM), Ludwig-Maximilians-Universität München, Oberschleißheim, Germany
| | - Annette Feuchtinger
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Axel Walch
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Martin Hrabĕ de Angelis
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Eckhard Wolf
- Gene Center and Department of Veterinary Sciences, Chair for Molecular Animal Breeding and Biotechnology, Ludwig-Maximilians-Universität München, Munich, Germany
- Department of Veterinary Sciences, Center for Innovative Medical Models (CiMM), Ludwig-Maximilians-Universität München, Oberschleißheim, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Rüdiger Wanke
- Institute of Veterinary Pathology at the Center for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Andreas Blutke
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
- * E-mail:
| |
Collapse
|
12
|
Li B, Ponjavic A, Chen WH, Hopkins L, Hughes C, Ye Y, Bryant C, Klenerman D. Single-Molecule Light-Sheet Microscopy with Local Nanopipette Delivery. Anal Chem 2021; 93:4092-4099. [PMID: 33595281 DOI: 10.1021/acs.analchem.0c05296] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The detection of single molecules in biological systems has rapidly increased in resolution over the past decade. However, the delivery of single molecules remains to be a challenge. Currently, there is no effective method that can both introduce a precise amount of molecules onto or into a single cell at a defined position and then image the cellular response. Here, we have combined light-sheet microscopy with local delivery, using a nanopipette, to accurately deliver individual proteins to a defined position. We call this method local-delivery selective-plane illumination microscopy (ldSPIM). ldSPIM uses a nanopipette and ionic feedback current at the nanopipette tip to control the position from which the molecules are delivered. The number of proteins delivered can be controlled by varying the voltage applied. For single-molecule detection, we implemented single-objective SPIM using a reflective atomic force microscopy cantilever to create a 2 μm thin sheet. Using this setup, we demonstrate that ldSPIM can deliver single fluorescently labeled proteins onto the plasma membrane of HK293 cells or into the cytoplasm. Next, we deposited the aggregates of amyloid-β, which causes proteotoxicity relevant to Alzheimer's disease, onto a single macrophage stably expressing a MyDD88-eGFP fusion construct. Whole-cell imaging in the three-dimensional (3D) mode enables the live detection of MyDD88 accumulation and the formation of myddosome signaling complexes, as a result of the aggregate-induced triggering of toll-like receptor 4. Overall, we demonstrate a novel multifunctional imaging system capable of precise delivery of single proteins to a specific location on the cell surface or inside the cytoplasm and high-speed 3D detection at single-molecule resolution within live cells.
Collapse
Affiliation(s)
- Bing Li
- Department of Chemistry, University of Cambridge, Lensfield Rd, Cambridge CB2 1EW, UK
| | - Aleks Ponjavic
- Department of Chemistry, University of Cambridge, Lensfield Rd, Cambridge CB2 1EW, UK
| | - Wei-Hsin Chen
- Department of Chemistry, University of Cambridge, Lensfield Rd, Cambridge CB2 1EW, UK
| | - Lee Hopkins
- Department of Veterinary Medicine, University of Cambridge, Madingley Rd, Cambridge CB3 0ES, UK
| | - Craig Hughes
- Department of Chemistry, University of Cambridge, Lensfield Rd, Cambridge CB2 1EW, UK
| | - Yu Ye
- Department of Chemistry, University of Cambridge, Lensfield Rd, Cambridge CB2 1EW, UK
| | - Clare Bryant
- Department of Veterinary Medicine, University of Cambridge, Madingley Rd, Cambridge CB3 0ES, UK
| | - David Klenerman
- Department of Chemistry, University of Cambridge, Lensfield Rd, Cambridge CB2 1EW, UK.,UK Dementia Research Institute at Cambridge, Cambridge CB2 0XY, UK
| |
Collapse
|
13
|
Abstract
Inherited cardiac arrhythmias contribute substantially to sudden cardiac death in the young. The underlying pathophysiology remains incompletely understood because of the lack of representative study models and the labour-intensive nature of electrophysiological patch clamp experiments. Whereas patch clamp is still considered the gold standard for investigating electrical properties in a cell, optical mapping of voltage and calcium transients has paved the way for high-throughput studies. Moreover, the development of human-induced pluripotent stem-cell-derived cardiomyocytes (hiPSC-CMs) has enabled the study of patient specific cell lines capturing the full genomic background. Nevertheless, hiPSC-CMs do not fully address the complex interactions between various cell types in the heart. Studies using in vivo models, are therefore necessary. Given the analogies between the human and zebrafish cardiovascular system, zebrafish has emerged as a cost-efficient model for arrhythmogenic diseases. In this review, we describe how hiPSC-CM and zebrafish are employed as models to study primary electrical disorders. We provide an overview of the contemporary electrophysiological phenotyping tools and discuss in more depth the different strategies available for optical mapping. We consider the current advantages and disadvantages of both hiPSC-CM and zebrafish as a model and optical mapping as phenotyping tool and propose strategies for further improvement. Overall, the combination of experimental readouts at cellular (hiPSC-CM) and whole organ (zebrafish) level can raise our understanding of the complexity of inherited cardiac arrhythmia disorders to the next level.
Collapse
|
14
|
Fiedler S, Wünnemann H, Hofmann I, Theobalt N, Feuchtinger A, Walch A, Schwaiger J, Wanke R, Blutke A. A practical guide to unbiased quantitative morphological analyses of the gills of rainbow trout (Oncorhynchus mykiss) in ecotoxicological studies. PLoS One 2020; 15:e0243462. [PMID: 33296424 PMCID: PMC7725368 DOI: 10.1371/journal.pone.0243462] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 11/21/2020] [Indexed: 12/28/2022] Open
Abstract
Rainbow trout (Oncorhynchus mykiss) are frequently used as experimental animals in ecotoxicological studies, in which they are experimentally exposed to defined concentrations of test substances, such as heavy metals, pesticides, or pharmaceuticals. Following exposure to a broad variety of aquatic pollutants, early morphologically detectable toxic effects often manifest in alterations of the gills. Suitable methods for an accurate and unbiased quantitative characterization of the type and the extent of morphological gill alterations are therefore essential prerequisites for recognition, objective evaluation and comparison of the severity of gill lesions. The aim of the present guidelines is to provide practicable, standardized and detailed protocols for the application of unbiased quantitative stereological analyses of relevant morphological parameters of the gills of rainbow trout. These gill parameters inter alia include the total volume of the primary and secondary gill lamellae, the surface area of the secondary gill lamellae epithelium (i.e., the respiratory surface) and the thickness of the diffusion barrier. The featured protocols are adapted to fish of frequently used body size classes (300-2000 g). They include well-established, conventional sampling methods, probes and test systems for unbiased quantitative stereological analyses of light- and electron microscopic 2-D gill sections, as well as the application of modern 3-D light sheet fluorescence microscopy (LSFM) of optically cleared gill samples as an innovative, fast and efficient quantitative morphological analysis approach. The methods shown here provide a basis for standardized and representative state-of-the-art quantitative morphological analyses of trout gills, ensuring the unbiasedness and reproducibility, as well as the intra- and inter-study comparability of analyses results. Their broad implementation will therefore significantly contribute to the reliable identification of no observed effect concentration (NOEC) limits in ecotoxicological studies and, moreover, to limit the number of experimental animals by reduction of unnecessary repetition of experiments.
Collapse
Affiliation(s)
- Sonja Fiedler
- Institute of Veterinary Pathology at the Center for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Hannah Wünnemann
- Unit 73 Aquatic Ecotoxicology, Microbial Ecology, Bavarian Environment Agency, Wielenbach, Germany
| | - Isabel Hofmann
- Institute of Veterinary Pathology at the Center for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Natalie Theobalt
- Institute of Veterinary Pathology at the Center for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Annette Feuchtinger
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Axel Walch
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Julia Schwaiger
- Unit 73 Aquatic Ecotoxicology, Microbial Ecology, Bavarian Environment Agency, Wielenbach, Germany
| | - Rüdiger Wanke
- Institute of Veterinary Pathology at the Center for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Andreas Blutke
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
- * E-mail:
| |
Collapse
|
15
|
Meluzzi D, Arya G. Computational approaches for inferring 3D conformations of chromatin from chromosome conformation capture data. Methods 2020; 181-182:24-34. [PMID: 31470090 PMCID: PMC7044057 DOI: 10.1016/j.ymeth.2019.08.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/24/2019] [Accepted: 08/23/2019] [Indexed: 02/08/2023] Open
Abstract
Chromosome conformation capture (3C) and its variants are powerful experimental techniques for probing intra- and inter-chromosomal interactions within cell nuclei at high resolution and in a high-throughput, quantitative manner. The contact maps derived from such experiments provide an avenue for inferring the 3D spatial organization of the genome. This review provides an overview of the various computational methods developed in the past decade for addressing the very important but challenging problem of deducing the detailed 3D structure or structure population of chromosomal domains, chromosomes, and even entire genomes from 3C contact maps.
Collapse
Affiliation(s)
- Dario Meluzzi
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, United States
| | - Gaurav Arya
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, United States.
| |
Collapse
|
16
|
Blutke A, Sun N, Xu Z, Buck A, Harrison L, Schriever SC, Pfluger PT, Wiles D, Kunzke T, Huber K, Schlegel J, Aichler M, Feuchtinger A, Matiasek K, Hauck SM, Walch A. Light sheet fluorescence microscopy guided MALDI-imaging mass spectrometry of cleared tissue samples. Sci Rep 2020; 10:14461. [PMID: 32879402 PMCID: PMC7468256 DOI: 10.1038/s41598-020-71465-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 08/10/2020] [Indexed: 02/08/2023] Open
Abstract
Light sheet fluorescence microscopy (LSFM) of optically cleared biological samples represents a powerful tool to analyze the 3-dimensional morphology of tissues and organs. Multimodal combinations of LSFM with additional analyses of the identical sample help to limit the consumption of restricted specimen and reduce inter-sample variation. Here, we demonstrate the proof-of-concept that LSFM of cleared brain tissue samples can be combined with Matrix Assisted Laser Desorption/Ionization-Mass Spectrometry Imaging (MALDI-MSI) for detection and quantification of proteins. Samples of freshly dissected murine brain and of archived formalin-fixed paraffin-embedded (FFPE) human brain tissue were cleared (3DISCO). Tissue regions of interest were defined by LSFM and excised, (re)-embedded in paraffin, and sectioned. Mouse sections were coated with sinapinic acid matrix. Human brain sections were pre-digested with trypsin and coated with α-cyano-4-hydroxycinnamic acid matrix. Subsequently, sections were subjected to MALDI-time-of-flight (TOF)-MSI in mass ranges between 0.8 to 4 kDa (human tissue sections), or 2.5–25 kDa (mouse tissue sections) with a lateral resolution of 50 µm. Protein- and peptide-identities corresponding to acquired MALDI-MSI spectra were confirmed by parallel liquid chromatography tandem mass spectrometry (LC–MS/MS) analysis. The spatial abundance- and intensity-patterns of established marker proteins detected by MALDI-MSI were also confirmed by immunohistochemistry.
Collapse
Affiliation(s)
- Andreas Blutke
- Research Unit Analytical Pathology, Helmholtz Zentrum München, 8576, Neuherberg, Germany
| | - Na Sun
- Research Unit Analytical Pathology, Helmholtz Zentrum München, 8576, Neuherberg, Germany
| | - Zhihao Xu
- Research Unit Analytical Pathology, Helmholtz Zentrum München, 8576, Neuherberg, Germany
| | - Achim Buck
- Research Unit Analytical Pathology, Helmholtz Zentrum München, 8576, Neuherberg, Germany
| | - Luke Harrison
- Research Unit Neurobiology of Diabetes, Helmholtz Zentrum München, 85764, Neuherberg, Germany.,Institute for Diabetes and Obesity, Helmholtz Zentrum München, 85764, Neuherberg, Germany.,German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany.,Division of Metabolic Diseases, Technische Universität München, 80333, Munich, Germany
| | - Sonja C Schriever
- Research Unit Neurobiology of Diabetes, Helmholtz Zentrum München, 85764, Neuherberg, Germany.,Institute for Diabetes and Obesity, Helmholtz Zentrum München, 85764, Neuherberg, Germany.,German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany
| | - Paul T Pfluger
- Research Unit Neurobiology of Diabetes, Helmholtz Zentrum München, 85764, Neuherberg, Germany.,Institute for Diabetes and Obesity, Helmholtz Zentrum München, 85764, Neuherberg, Germany.,German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany
| | | | - Thomas Kunzke
- Research Unit Analytical Pathology, Helmholtz Zentrum München, 8576, Neuherberg, Germany
| | - Katharina Huber
- Research Unit Analytical Pathology, Helmholtz Zentrum München, 8576, Neuherberg, Germany
| | - Jürgen Schlegel
- Institute for Pathology, Department of Neuropathology, Technische Universität München, 80333, Munich, Germany
| | - Michaela Aichler
- Research Unit Analytical Pathology, Helmholtz Zentrum München, 8576, Neuherberg, Germany
| | - Annette Feuchtinger
- Research Unit Analytical Pathology, Helmholtz Zentrum München, 8576, Neuherberg, Germany.
| | - Kaspar Matiasek
- Institute for Veterinary Pathology at the Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität München, 80539, Munich, Germany
| | - Stefanie M Hauck
- Research Unit for Protein Science, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Axel Walch
- Research Unit Analytical Pathology, Helmholtz Zentrum München, 8576, Neuherberg, Germany
| |
Collapse
|
17
|
Three-dimensional bright-field microscopy with isotropic resolution based on multi-view acquisition and image fusion reconstruction. Sci Rep 2020; 10:12771. [PMID: 32728161 PMCID: PMC7392767 DOI: 10.1038/s41598-020-69730-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 06/30/2020] [Indexed: 11/08/2022] Open
Abstract
Optical Projection Tomography (OPT) is a powerful three-dimensional imaging technique used for the observation of millimeter-scaled biological samples, compatible with bright-field and fluorescence contrast. OPT is affected by spatially variant artifacts caused by the fact that light diffraction is not taken into account by the straight-light propagation models used for reconstruction. These artifacts hinder high-resolution imaging with OPT. In this work we show that, by using a multiview imaging approach, a 3D reconstruction of the bright-field contrast can be obtained without the diffraction artifacts typical of OPT, drastically reducing the amount of acquired data, compared to previously reported approaches. The method, purely based on bright-field contrast of the unstained sample, provides a comprehensive picture of the sample anatomy, as demonstrated in vivo on Arabidopsis thaliana and zebrafish embryos. Furthermore, this bright-field reconstruction can be implemented on practically any multi-view light-sheet fluorescence microscope without complex hardware modifications or calibrations, complementing the fluorescence information with tissue anatomy.
Collapse
|
18
|
Abstract
The light (or optical) microscope is the icon of science. The aphorism "seeing is believing" is often quoted in scientific papers involving microscopy. Unlike many scientific instruments, the light microscope will deliver an image however badly it is set up. Fluorescence microscopy is a widely used research tool across all disciplines of biological and biomedical science. Most universities and research institutions have microscopes, including confocal microscopes. This introductory paper in a series detailing advanced light microscopy techniques explains the foundations of both electron and light microscopy for biologists and life scientists working with the mouse. An explanation is given of how an image is formed. A description is given of how to set up a light microscope, whether it be a brightfield light microscope on the laboratory bench, a widefield fluorescence microscope, or a confocal microscope. These explanations are accompanied by operational protocols. A full explanation on how to set up and adjust a microscope according to the principles of Köhler illumination is given. The importance of Nyquist sampling is discussed. Guidelines are given on how to choose the best microscope to image the particular sample or slide preparation that you are working with. These are the basic principles of microscopy that a researcher must have an understanding of when operating core bioimaging facility instruments, in order to collect high-quality images. © 2020 The Authors. Basic Protocol 1: Setting up Köhler illumination for a brightfield microscope Basic Protocol 2: Aligning the fluorescence bulb and setting up Köhler illumination for a widefield fluorescence microscope Basic Protocol 3: Generic protocol for operating a confocal microscope.
Collapse
Affiliation(s)
- Jeremy Sanderson
- Bioimaging Facility Manager, MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire, UK
| |
Collapse
|
19
|
Voronin DV, Kozlova AA, Verkhovskii RA, Ermakov AV, Makarkin MA, Inozemtseva OA, Bratashov DN. Detection of Rare Objects by Flow Cytometry: Imaging, Cell Sorting, and Deep Learning Approaches. Int J Mol Sci 2020; 21:E2323. [PMID: 32230871 PMCID: PMC7177904 DOI: 10.3390/ijms21072323] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/25/2020] [Accepted: 03/25/2020] [Indexed: 12/14/2022] Open
Abstract
Flow cytometry nowadays is among the main working instruments in modern biology paving the way for clinics to provide early, quick, and reliable diagnostics of many blood-related diseases. The major problem for clinical applications is the detection of rare pathogenic objects in patient blood. These objects can be circulating tumor cells, very rare during the early stages of cancer development, various microorganisms and parasites in the blood during acute blood infections. All of these rare diagnostic objects can be detected and identified very rapidly to save a patient's life. This review outlines the main techniques of visualization of rare objects in the blood flow, methods for extraction of such objects from the blood flow for further investigations and new approaches to identify the objects automatically with the modern deep learning methods.
Collapse
Affiliation(s)
- Denis V. Voronin
- Laboratory of Biomedical Photoacoustics, Saratov State University, 410012 Saratov, Russia
- Department of Physical and Colloid Chemistry, National University of Oil and Gas (Gubkin University), 119991 Moscow, Russia
| | - Anastasiia A. Kozlova
- Laboratory of Biomedical Photoacoustics, Saratov State University, 410012 Saratov, Russia
| | - Roman A. Verkhovskii
- Laboratory of Biomedical Photoacoustics, Saratov State University, 410012 Saratov, Russia
- School of Urbanistics, Civil Engineering and Architecture, Yuri Gagarin State Technical University of Saratov, 410054 Saratov, Russia
| | - Alexey V. Ermakov
- Laboratory of Biomedical Photoacoustics, Saratov State University, 410012 Saratov, Russia
- Department of Biomedical Engineering, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Mikhail A. Makarkin
- Laboratory of Biomedical Photoacoustics, Saratov State University, 410012 Saratov, Russia
| | - Olga A. Inozemtseva
- Laboratory of Biomedical Photoacoustics, Saratov State University, 410012 Saratov, Russia
| | - Daniil N. Bratashov
- Laboratory of Biomedical Photoacoustics, Saratov State University, 410012 Saratov, Russia
| |
Collapse
|
20
|
Fast and accurate sCMOS noise correction for fluorescence microscopy. Nat Commun 2020; 11:94. [PMID: 31901080 PMCID: PMC6941997 DOI: 10.1038/s41467-019-13841-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 11/29/2019] [Indexed: 12/12/2022] Open
Abstract
The rapid development of scientific CMOS (sCMOS) technology has greatly advanced optical microscopy for biomedical research with superior sensitivity, resolution, field-of-view, and frame rates. However, for sCMOS sensors, the parallel charge-voltage conversion and different responsivity at each pixel induces extra readout and pattern noise compared to charge-coupled devices (CCD) and electron-multiplying CCD (EM-CCD) sensors. This can produce artifacts, deteriorate imaging capability, and hinder quantification of fluorescent signals, thereby compromising strategies to reduce photo-damage to live samples. Here, we propose a content-adaptive algorithm for the automatic correction of sCMOS-related noise (ACsN) for fluorescence microscopy. ACsN combines camera physics and layered sparse filtering to significantly reduce the most relevant noise sources in a sCMOS sensor while preserving the fine details of the signal. The method improves the camera performance, enabling fast, low-light and quantitative optical microscopy with video-rate denoising for a broad range of imaging conditions and modalities. Scientific complementary metal-oxide semiconductor (sCMOS) cameras have advanced the imaging field, but they often suffer from additional noise compared to CCD sensors. Here the authors present a content-adaptive algorithm for the automatic correction of sCMOS-related noise for fluorescence microscopy.
Collapse
|
21
|
Rakotoson I, Delhomme B, Djian P, Deeg A, Brunstein M, Seebacher C, Uhl R, Ricard C, Oheim M. Fast 3-D Imaging of Brain Organoids With a New Single-Objective Planar-Illumination Two-Photon Microscope. Front Neuroanat 2019; 13:77. [PMID: 31481880 PMCID: PMC6710410 DOI: 10.3389/fnana.2019.00077] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 07/16/2019] [Indexed: 12/28/2022] Open
Abstract
Human inducible pluripotent stem cells (hiPSCs) hold a large potential for disease modeling. hiPSC-derived human astrocyte and neuronal cultures permit investigations of neural signaling pathways with subcellular resolution. Combinatorial cultures, and three-dimensional (3-D) embryonic bodies (EBs) enlarge the scope of investigations to multi-cellular phenomena. The highest level of complexity, brain organoids that-in many aspects-recapitulate anatomical and functional features of the developing brain permit the study of developmental and morphological aspects of human disease. An ideal microscope for 3-D tissue imaging at these different scales would combine features from both confocal laser-scanning and light-sheet microscopes: a micrometric optical sectioning capacity and sub-micrometric spatial resolution, a large field of view and high frame rate, and a low degree of invasiveness, i.e., ideally, a better photon efficiency than that of a confocal microscope. In the present work, we describe such an instrument that uses planar two-photon (2P) excitation. Its particularity is that-unlike two- or three-lens light-sheet microscopes-it uses a single, low-magnification, high-numerical aperture objective for the generation and scanning of a virtual light sheet. The microscope builds on a modified Nipkow-Petráň spinning-disk scheme for achieving wide-field excitation. However, unlike the Yokogawa design that uses a tandem disk, our concept combines micro lenses, dichroic mirrors and detection pinholes on a single disk. This new design, advantageous for 2P excitation, circumvents problems arising with the tandem disk from the large wavelength difference between the infrared excitation light and visible fluorescence. 2P fluorescence excited by the light sheet is collected with the same objective and imaged onto a fast sCMOS camera. We demonstrate 3-D imaging of TO-PRO3-stained EBs and of brain organoids, uncleared and after rapid partial transparisation with triethanolamine formamide (RTF) and we compare the performance of our instrument to that of a confocal laser-scanning microscope (CLSM) having a similar numerical aperture. Our large-field 2P-spinning disk microscope permits one order of magnitude faster imaging, affords less photobleaching and permits better depth penetration than a confocal microscope with similar spatial resolution.
Collapse
Affiliation(s)
- Irina Rakotoson
- Centre National de la Recherche Scientifique (CNRS) UMR 8118, Brain Physiology Laboratory, Paris, France
- Fédération de Recherche en Neurosciences CNRS FR 3636, Paris, France
- Faculté de Sciences Fondamentales et Biomédicales, Université Paris Descartes, PRES Sorbonne Paris Cité, Paris, France
- Master Program: MASTER Mention Biologie Cellulaire, Physiologie, Pathologies (BCPP), Spécialité Neurosciences, Université Paris Descartes - Paris 5, Paris, France
| | - Brigitte Delhomme
- Centre National de la Recherche Scientifique (CNRS) UMR 8118, Brain Physiology Laboratory, Paris, France
- Fédération de Recherche en Neurosciences CNRS FR 3636, Paris, France
- Faculté de Sciences Fondamentales et Biomédicales, Université Paris Descartes, PRES Sorbonne Paris Cité, Paris, France
| | - Philippe Djian
- Centre National de la Recherche Scientifique (CNRS) UMR 8118, Brain Physiology Laboratory, Paris, France
- Fédération de Recherche en Neurosciences CNRS FR 3636, Paris, France
- Faculté de Sciences Fondamentales et Biomédicales, Université Paris Descartes, PRES Sorbonne Paris Cité, Paris, France
| | | | - Maia Brunstein
- Centre National de la Recherche Scientifique (CNRS) UMR 8118, Brain Physiology Laboratory, Paris, France
- Fédération de Recherche en Neurosciences CNRS FR 3636, Paris, France
- Faculté de Sciences Fondamentales et Biomédicales, Université Paris Descartes, PRES Sorbonne Paris Cité, Paris, France
| | | | | | - Clément Ricard
- Centre National de la Recherche Scientifique (CNRS) UMR 8118, Brain Physiology Laboratory, Paris, France
- Fédération de Recherche en Neurosciences CNRS FR 3636, Paris, France
- Faculté de Sciences Fondamentales et Biomédicales, Université Paris Descartes, PRES Sorbonne Paris Cité, Paris, France
| | - Martin Oheim
- Centre National de la Recherche Scientifique (CNRS) UMR 8118, Brain Physiology Laboratory, Paris, France
- Fédération de Recherche en Neurosciences CNRS FR 3636, Paris, France
- Faculté de Sciences Fondamentales et Biomédicales, Université Paris Descartes, PRES Sorbonne Paris Cité, Paris, France
| |
Collapse
|
22
|
Charbonneau AM, Al-Samadi A, Salo T, Tran SD. 3D Culture Histology Cryosectioned Well Insert Technology Preserves the Structural Relationship between Cells and Biomaterials for Time-Lapse Analysis of 3D Cultures. Biotechnol J 2019; 14:e1900105. [PMID: 31294920 DOI: 10.1002/biot.201900105] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/18/2019] [Indexed: 01/07/2023]
Abstract
When performing histology of softer biomaterials, aspiration disrupts the cellular and molecular location information. This study aims to develop a cryosectionable well insert able to preserve the biomaterial and cell's original 3D conformation from the well to histology analysis. The well insert is composed of a paraffin-coated gelatine pill. Within the coated capsule, the human epithelial cell line (NS-SV-AC) is cultured in Matrigel, GrowDex, Myogel, Myogel + GrowDex, or cell culture media for 14 days. At 0 and 14 days, the samples are frozen in liquid nitrogen and cryotome is used to create sections. The slides are stained by Sirius Red and immunohistochemistry using antibodies human collagens I-V and human Ki-67. Sirius Red shows pink shades of biomaterials and the best cellular vertical distribution throughout the sagittal section of the well is achieved with Matrigel, GrowDex, and Myogel + GrowDex; in Myogel and media, the cells sink. For collagen protein expression, only Matrigel induces a notable difference while in the other materials, collagen staining is weak or difficult to distinguish from endogenous collagens. Ki-67 expression is maintained over time. The 3D-cryo well insert provides a new time-lapse histology perspective of analysis for liquid or gel cultures that maintains cells and macromolecules in their unaltered in-well configuration.
Collapse
Affiliation(s)
- André M Charbonneau
- Faculty of Dentistry, McGill University, 3640 University Street, H3A 0C7, Montréal, Canada
| | - Ahmed Al-Samadi
- Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, 00014, Finland
| | - Tuula Salo
- Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, 00014, Finland
| | - Simon D Tran
- Faculty of Dentistry, McGill University, 3640 University Street, H3A 0C7, Montréal, Canada
| |
Collapse
|
23
|
Ovečka M, von Wangenheim D, Tomančák P, Šamajová O, Komis G, Šamaj J. Multiscale imaging of plant development by light-sheet fluorescence microscopy. NATURE PLANTS 2018; 4:639-650. [PMID: 30185982 DOI: 10.1038/s41477-018-0238-2] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 07/31/2018] [Indexed: 05/21/2023]
Abstract
Light-sheet fluorescence microscopy (LSFM) methods collectively represent the major breakthrough in developmental bio-imaging of living multicellular organisms. They are becoming a mainstream approach through the development of both commercial and custom-made LSFM platforms that are adjusted to diverse biological applications. Based on high-speed acquisition rates under conditions of low light exposure and minimal photo-damage of the biological sample, these methods provide ideal means for long-term and in-depth data acquisition during organ imaging at single-cell resolution. The introduction of LSFM methods into biology extended our understanding of pattern formation and developmental progress of multicellular organisms from embryogenesis to adult body. Moreover, LSFM imaging allowed the dynamic visualization of biological processes under almost natural conditions. Here, we review the most important, recent biological applications of LSFM methods in developmental studies of established and emerging plant model species, together with up-to-date methods of data editing and evaluation for modelling of complex biological processes. Recent applications in animal models push LSFM into the forefront of current bio-imaging approaches. Since LSFM is now the single most effective method for fast imaging of multicellular organisms, allowing quantitative analyses of their long-term development, its broader use in plant developmental biology will likely bring new insights.
Collapse
Affiliation(s)
- Miroslav Ovečka
- Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University Olomouc, Olomouc, Czech Republic
| | - Daniel von Wangenheim
- Plant Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - Pavel Tomančák
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Olga Šamajová
- Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University Olomouc, Olomouc, Czech Republic
| | - George Komis
- Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University Olomouc, Olomouc, Czech Republic
| | - Jozef Šamaj
- Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University Olomouc, Olomouc, Czech Republic.
| |
Collapse
|
24
|
Llancalahuen FM, Fuentes JA, Carreño A, Zúñiga C, Páez-Hernández D, Gacitúa M, Polanco R, Preite MD, Arratia-Pérez R, Otero C. New Properties of a Bioinspired Pyridine Benzimidazole Compound as a Novel Differential Staining Agent for Endoplasmic Reticulum and Golgi Apparatus in Fluorescence Live Cell Imaging. Front Chem 2018; 6:345. [PMID: 30211148 PMCID: PMC6123694 DOI: 10.3389/fchem.2018.00345] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 07/23/2018] [Indexed: 12/16/2022] Open
Abstract
In this study, we explored new properties of the bioinspired pyridine benzimidazole compound B2 (2,4-di-tert-butyl-6-(3H-imidazo[4,5-c]pyridine-2-yl)phenol) regarding its potential use as a differential biomarker. For that, we performed 1D 1HNMR (TOCSY), UV-Vis absorption spectra in different organic solvents, voltammetry profile (including a scan-rate study), and TD-DFT calculations that including NBO analyses, to provide valuable information about B2 structure and luminescence. In our study, we found that the B2 structure is highly stable, where the presence of an intramolecular hydrogen bond (IHB) seems to have a crucial role in the stability of luminescence, and its emission can be assigned as fluorescence. In fact, we found that the relatively large Stokes Shift observed for B2 (around 175 nm) may be attributed to the stability of the B2 geometry and the strength of its IHB. On the other hand, we determined that B2 is biocompatible by cytotoxicity experiments in HeLa cells, an epithelial cell line. Furthermore, in cellular assays we found that B2 could be internalized by passive diffusion in absence of artificial permeabilization at short incubation times (15 min to 30 min). Fluorescence microscopy studies confirmed that B2 accumulates in the endoplasmic reticulum (ER) and Golgi apparatus, two organelles involved in the secretory pathway. Finally, we determined that B2 exhibited no noticeable blinking or bleaching after 1 h of continuous exposure. Thus, B2 provides a biocompatible, rapid, simple, and efficient way to fluorescently label particular organelles, producing similar results to that obtained with other well-established but more complex methods.
Collapse
Affiliation(s)
- Felipe M Llancalahuen
- Escuela de Química y Farmacia, Facultad de Medicina, Universidad Andres Bello, Santiago, Chile
| | - Juan A Fuentes
- Laboratorio de Patogénesis y Genética Bacteriana, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Alexander Carreño
- Center of Applied Nanosciences, Universidad Andres Bello, Santiago, Chile.,Fondo Nacional de Ciencia y Tecnología (FONDECYT), Santiago, Chile
| | - César Zúñiga
- Center of Applied Nanosciences, Universidad Andres Bello, Santiago, Chile
| | | | | | - Rubén Polanco
- Centro de Biotecnología Vegeta, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Marcelo D Preite
- Departamento de Química Orgánica, Facultad de Química, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | - Carolina Otero
- Escuela de Química y Farmacia, Facultad de Medicina, Universidad Andres Bello, Santiago, Chile
| |
Collapse
|