1
|
Liang H, Zhou B, Li P, Zhang X, Zhang S, Zhang Y, Yao S, Qu S, Chen J. Stemness regulation in prostate cancer: prostate cancer stem cells and targeted therapy. Ann Med 2025; 57:2442067. [PMID: 39711287 DOI: 10.1080/07853890.2024.2442067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 11/07/2024] [Accepted: 11/22/2024] [Indexed: 12/24/2024] Open
Abstract
BACKGROUND Increasing evidence indicates that cancer stem cells (CSCs) and cancer stem-like cells form a special subpopulation of cells that are ubiquitous in tumors. These cells exhibit similar characteristics to those of normal stem cells in tissues; moreover, they are capable of self-renewal and differentiation, as well as high tumorigenicity and drug resistance. In prostate cancer (PCa), it is difficult to kill these cells using androgen signaling inhibitors and chemotherapy drugs. Consequently, the residual prostate cancer stem cells (PCSCs) mediate tumor recurrence and progression. OBJECTIVE This review aims to provide a comprehensive and up-to-date overview of PCSCs, with a particular emphasis on potential therapeutic strategies targeting these cells. METHODS After searching in PubMed and Embase databases using 'prostate cancer' and 'cancer stem cells' as keywords, studies related were compiled and examined. RESULTS In this review, we detail the origin and characteristics of PCSCs, introduce the regulatory pathways closely related to CSC survival and stemness maintenance, and discuss the link between epithelial-mesenchymal transition, tumor microenvironment and tumor stemness. Furthermore, we introduce the currently available therapeutic strategies targeting CSCs, including signaling pathway inhibitors, anti-apoptotic protein inhibitors, microRNAs, nanomedicine, and immunotherapy. Lastly, we summarize the limitations of current CSC research and mention future research directions. CONCLUSION A deeper understanding of the regulatory network and molecular markers of PCSCs could facilitate the development of novel therapeutic strategies targeting these cells. Previous preclinical studies have demonstrated the potential of this treatment approach. In the future, this may offer alternative treatment options for PCa patients.
Collapse
Affiliation(s)
- Hao Liang
- Department of Urology, Qilu Hospital of Shandong University (Qingdao), Qingdao, China
| | - Bin Zhou
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - Peixin Li
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - Xiaoyi Zhang
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - Shijie Zhang
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - Yaozhong Zhang
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - Shengwen Yao
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - Sifeng Qu
- Department of Urology, Qilu Hospital of Shandong University (Qingdao), Qingdao, China
| | - Jun Chen
- Department of Urology, Qilu Hospital of Shandong University (Qingdao), Qingdao, China
| |
Collapse
|
2
|
Feng Y, Mo Y, Zhang Y, Teng Y, Xi D, Zhou J, Zeng G, Zong S. Polyphyllin VI: A promising treatment for prostate cancer bone metastasis. Int Immunopharmacol 2025; 144:113684. [PMID: 39602960 DOI: 10.1016/j.intimp.2024.113684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 11/18/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024]
Abstract
Prostate cancer, as one of the most prevalent malignant tumors in men, seriously affects the prognosis and survival of patients due to its extremely high rate of bone metastasis. This study investigated the effect of Polyphyllin VI (PPVI) on metastatic bone disease for the first time in prostate cancer, focusing on its impact on osteoclast and tumor cell. In vitro studies utilized TRAP staining, ghost pen cyclic peptide staining, and bone resorption assays to evaluate the differentiation and function of receptor activator of nuclear factor-κB ligand (RANKL) induced and RM-1 conditional medium (CM) induced osteoclasts. The colony formation assay, wound healing assay, and Transwell assay were employed to analyze tumor cell proliferation, migration, and invasion in vitro. Flow cytometry was used to detect the cycling and apoptosis of tumor cells in vitro. Western Blot and PCR assays were conducted to assess the expression of genes. In vivo, micro-CT, hematoxylin-eosin staining, and immunohistochemical staining evaluated the impact of PPVI on bone destruction and tumor growth in a mouse model of tumor tibial metastasis. The study results indicated that PPVI effectively inhibited osteoclast differentiation, suppresses tumor cell proliferation, migration, and invasion in vitro, and induces apoptosis and G2/M phase arrest. In vivo, PPVI not only inhibits the growth of metastatic tumors but also mitigates the resulting bone destruction. These results suggest that PPVI holds significant potential as an alternative treatment for prostate cancer with bone metastasis, providing insights into its molecular mechanisms and therapeutic efficacy.
Collapse
Affiliation(s)
- Yanbin Feng
- Department of Spine Osteopathia, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, Guangxi, China; Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Jinan, Shandong, China
| | - Yaomin Mo
- Department of Spine Osteopathia, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, Guangxi, China
| | - Yang Zhang
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Jinan, Shandong, China
| | - Yilin Teng
- Department of Spine Osteopathia, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, Guangxi, China
| | - Deshuang Xi
- Department of Spine Osteopathia, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, Guangxi, China
| | - Junhong Zhou
- Department of Spine Osteopathia, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, Guangxi, China
| | - Gaofeng Zeng
- Department of Nutrition and Food Hygiene, College of Public Hygiene of Guangxi Medical University, Nanning, Guangxi, China.
| | - Shaohui Zong
- Department of Spine Osteopathia, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, Guangxi, China.
| |
Collapse
|
3
|
Rink JS, Lin AY, Calvert AE, Kwon D, Moxley A, Henrich SE, Mohammadlou A, Zhang XH, Wu X, Querfeld C, Griend DJV, Yin HH, Horne DA, Nguyen ST, Rosen ST, Gordon LI, Thaxton CS. Encapsulation and Delivery of the Kinase Inhibitor PIK-75 by Organic Core High-Density Lipoprotein-Like Nanoparticles Targeting Scavenger Receptor Class B Type 1. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39688216 DOI: 10.1021/acsami.4c15472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
PIK-75 (F7) is a potent multikinase inhibitor that targets p110α, DNA-PK, and p38γ. PIK-75 has shown potential as a therapy in preclinical cancer models, but it has not been used in the clinic, at least in part, due to limited solubility. We therefore developed a nanoparticle to encapsulate PIK-75 and enable targeted cellular delivery. Scavenger receptor class B type 1 (SR-B1) is often overexpressed in cancer compared with normal cells, which enables targeting by synthetic lipid nanoparticles with some features of native high-density lipoprotein (HDL), the natural ligand of SR-B1. We investigated the use of organic core (oc) molecular platforms to synthesize HDL-like nanoparticles (oc-HDL NP). Employing an oc, we successfully formulated PIK-75 into oc-HDL NPs. The PIK-75 loaded oc-HDL NP (PIK-75 oc-HDL NP), comprising ∼20 PIK-75 molecules/NP, has similar size, surface charge, and surface composition as oc-HDL NP and natural human HDL. Using prostate cancer (PCa) and cutaneous T-cell lymphoma (CTCL) models known to be sensitive to inhibitors of p110α and p38γ, respectively, we found that PIK-75 oc-HDL NPs specifically targeted SR-B1 to deliver PIK-75 and potently induced cell death in vitro in PCa and CTCL and in vivo in a murine PCa model. Additionally, we found that PIK-75 oc-HDL NP, but not free PIK-75 or oc-HDL NP alone, reduced the IC50 in the NCI-60 cell line panel and additional pancreatic cancer cell lines. These data demonstrate the first example of drug-loaded oc-HDL NP that actively target SR-B1 and kill cancer cells in vitro and in vivo, encouraging further development and translation to human patients.
Collapse
Affiliation(s)
- Jonathan S Rink
- Department of Medicine, Division of Hematology/Oncology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
- Simpson Querrey Institute for Nanotechnology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Adam Y Lin
- Department of Medicine, Division of Hematology/Oncology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Andrea E Calvert
- Simpson Querrey Institute for Nanotechnology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - David Kwon
- High Throughput Screening Core, City of Hope, Duarte, California 91010, United States
| | - Alexandra Moxley
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Stephen E Henrich
- Simpson Querrey Institute for Nanotechnology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Aliakbar Mohammadlou
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Xu Hannah Zhang
- Department of Hematology and Hematopoietic Stem Cell Transplantation, Beckman Research Institute, City of Hope, Duarte, California 91010, United States
| | - Xiwei Wu
- Department of Computational and Quantitative Medicine, City of Hope, Duarte, California 91010, United States
| | - Christiane Querfeld
- Department of Pathology, City of Hope, Duarte, California 91010, United States
| | - Donald J Vander Griend
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Hongwei Holly Yin
- High Throughput Screening Core, City of Hope, Duarte, California 91010, United States
| | - David A Horne
- Department of Hematology and Hematopoietic Stem Cell Transplantation, Beckman Research Institute, City of Hope, Duarte, California 91010, United States
| | - SonBinh T Nguyen
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Steven T Rosen
- Department of Hematology and Hematopoietic Stem Cell Transplantation, Beckman Research Institute, City of Hope, Duarte, California 91010, United States
| | - Leo I Gordon
- Department of Medicine, Division of Hematology/Oncology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Colby Shad Thaxton
- Simpson Querrey Institute for Nanotechnology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
| |
Collapse
|
4
|
Zhang L, Lou K, Zhang Y, Leng Y, Huang Y, Liao X, Liu X, Feng S, Feng G. Tools for regulating metabolic diseases: extracellular vesicles from adipose macrophages. Front Endocrinol (Lausanne) 2024; 15:1510712. [PMID: 39735643 PMCID: PMC11674605 DOI: 10.3389/fendo.2024.1510712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 11/20/2024] [Indexed: 12/31/2024] Open
Abstract
Metabolic diseases have gradually become one of the most significant global medical burdens. Diseases such as obesity, diabetes, and metabolic syndrome, along with their complications, are clinically categorized as metabolic diseases. Long-term oral medication significantly reduces patient compliance and quality of life. Therefore, alternative therapies that intervene at the cellular level or target the root causes of metabolic diseases might help change this predicament. Research has found that extracellular vesicles derived from adipose macrophages can effectively regulate metabolic diseases by influencing the disease's development. This regulation is likely related to the role of these extracellular vesicles as important mediators in modulating adipose tissue function and insulin sensitivity, and their involvement in the crosstalk between adipocytes and macrophages. This review aims to describe the regulation of metabolic diseases mediated by adipose macrophage-derived extracellular vesicles, with a focus on their involvement in adipocyte crosstalk, the regulation of metabolism-related autoimmunity, and their potential as therapeutic agents for metabolic diseases, providing new avenues for diagnosis and treatment.
Collapse
Affiliation(s)
- Liang Zhang
- Department of Urology, Jiujiang University Clinic College/Hospital, Jiujiang, Jiangxi, China
| | - Kecheng Lou
- Department of Urology, Lanxi People’s Hospital, Jinhua, Zhejiang, China
| | - Yunmeng Zhang
- Department of Anesthesiology, Jiujiang College Hospital, Jiujiang, Jiangxi, China
| | - Yuanjing Leng
- Department of Urology, Jiujiang University Clinic College/Hospital, Jiujiang, Jiangxi, China
| | - Yuqing Huang
- Department of Urology, Jiujiang University Clinic College/Hospital, Jiujiang, Jiangxi, China
| | - Xinxin Liao
- Department of Urology, Jiujiang University Clinic College/Hospital, Jiujiang, Jiangxi, China
| | - Xiaoliang Liu
- Department of Urology, Jiujiang University Clinic College/Hospital, Jiujiang, Jiangxi, China
| | - Shangzhi Feng
- Department of Urology, Jiujiang University Clinic College/Hospital, Jiujiang, Jiangxi, China
| | - Guoqiang Feng
- Department of Rehabilitation, Jiujiang College Hospital, Jiujiang, Jiangxi, China
| |
Collapse
|
5
|
Wu Y, Song P, Wang M, Liu H, Jing Y, Su J. Extracellular derivatives for bone metabolism. J Adv Res 2024; 66:329-347. [PMID: 38218580 PMCID: PMC11674789 DOI: 10.1016/j.jare.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/13/2023] [Accepted: 01/09/2024] [Indexed: 01/15/2024] Open
Abstract
BACKGROUND Bone metabolism can maintain the normal homeostasis and function of bone tissue. Once the bone metabolism balance is broken, it will cause osteoporosis, osteoarthritis, bone defects, bone tumors, or other bone diseases. However, such orthopedic diseases still have many limitations in clinical treatment, such as drug restrictions, drug tolerance, drug side effects, and implant rejection. AIM OF REVIEW In complex bone therapy and bone regeneration, extracellular derivatives have become a promising research focus to solve the problems of bone metabolic diseases. These derivatives, which include components such as extracellular matrix, growth factors, and extracellular vesicles, have significant therapeutic potential. It has the advantages of good biocompatibility, low immune response, and dynamic demand for bone tissue. The purpose of this review is to provide a comprehensive perspective on extracellular derivatives for bone metabolism and elucidate the intrinsic properties and versatility of extracellular derivatives. Further discussion of them as innovative advanced orthopedic materials for improving the effectiveness of bone therapy and regeneration processes. KEY SCIENTIFIC CONCEPTS OF REVIEW In this review, we first listed the types and functions of three extracellular derivatives. Then, we discussed the effects of extracellular derivatives of different cell sources on bone metabolism. Subsequently, we collected applications of extracellular derivatives in the treatment of bone metabolic diseases and summarized the advantages and challenges of extracellular derivatives in clinical applications. Finally, we prospected the extracellular derivatives in novel orthopedic materials and clinical applications. We hope that the comprehensive understanding of extracellular derivatives in bone metabolism will provide new solutions to bone diseases.
Collapse
Affiliation(s)
- Yan Wu
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; Organoid Research Center, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China
| | - Peiran Song
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; Organoid Research Center, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China
| | - Miaomiao Wang
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; Department of Rehabilitation Medicine, Shanghai Zhongye Hospital, Shanghai 200941, China
| | - Han Liu
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; Organoid Research Center, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China.
| | - Yingying Jing
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; Organoid Research Center, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China.
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; Organoid Research Center, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China; Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| |
Collapse
|
6
|
Liu S, Zhang X, Wang W, Li X, Sun X, Zhao Y, Wang Q, Li Y, Hu F, Ren H. Metabolic reprogramming and therapeutic resistance in primary and metastatic breast cancer. Mol Cancer 2024; 23:261. [PMID: 39574178 PMCID: PMC11580516 DOI: 10.1186/s12943-024-02165-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 10/31/2024] [Indexed: 11/25/2024] Open
Abstract
Metabolic alterations, a hallmark of cancer, enable tumor cells to adapt to their environment by modulating glucose, lipid, and amino acid metabolism, which fuels rapid growth and contributes to treatment resistance. In primary breast cancer, metabolic shifts such as the Warburg effect and enhanced lipid synthesis are closely linked to chemotherapy failure. Similarly, metastatic lesions often display distinct metabolic profiles that not only sustain tumor growth but also confer resistance to targeted therapies and immunotherapies. The review emphasizes two major aspects: the mechanisms driving metabolic resistance in both primary and metastatic breast cancer, and how the unique metabolic environments in metastatic sites further complicate treatment. By targeting distinct metabolic vulnerabilities at both the primary and metastatic stages, new strategies could improve the efficacy of existing therapies and provide better outcomes for breast cancer patients.
Collapse
Affiliation(s)
- Shan Liu
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xingda Zhang
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Wenzheng Wang
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xue Li
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xue Sun
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yuqian Zhao
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Qi Wang
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yingpu Li
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China.
| | - Fangjie Hu
- Department of Gastroenterology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.
| | - He Ren
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China.
| |
Collapse
|
7
|
Liu Z, Chen J, Ren Y, Liu S, Ba Y, Zuo A, Luo P, Cheng Q, Xu H, Han X. Multi-stage mechanisms of tumor metastasis and therapeutic strategies. Signal Transduct Target Ther 2024; 9:270. [PMID: 39389953 PMCID: PMC11467208 DOI: 10.1038/s41392-024-01955-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 07/18/2024] [Accepted: 08/24/2024] [Indexed: 10/12/2024] Open
Abstract
The cascade of metastasis in tumor cells, exhibiting organ-specific tendencies, may occur at numerous phases of the disease and progress under intense evolutionary pressures. Organ-specific metastasis relies on the formation of pre-metastatic niche (PMN), with diverse cell types and complex cell interactions contributing to this concept, adding a new dimension to the traditional metastasis cascade. Prior to metastatic dissemination, as orchestrators of PMN formation, primary tumor-derived extracellular vesicles prepare a fertile microenvironment for the settlement and colonization of circulating tumor cells at distant secondary sites, significantly impacting cancer progression and outcomes. Obviously, solely intervening in cancer metastatic sites passively after macrometastasis is often insufficient. Early prediction of metastasis and holistic, macro-level control represent the future directions in cancer therapy. This review emphasizes the dynamic and intricate systematic alterations that occur as cancer progresses, illustrates the immunological landscape of organ-specific PMN creation, and deepens understanding of treatment modalities pertinent to metastasis, thereby identifying some prognostic and predictive biomarkers favorable to early predict the occurrence of metastasis and design appropriate treatment combinations.
Collapse
Affiliation(s)
- Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Interventional Institute of Zhengzhou University, Zhengzhou, Henan, China
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan, China
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingqi Chen
- Department of Clinical Medicine, Zhengzhou University, Zhengzhou, Henan, China
| | - Yuqing Ren
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shutong Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yuhao Ba
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Anning Zuo
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Peng Luo
- The Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Hui Xu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
- Interventional Institute of Zhengzhou University, Zhengzhou, Henan, China.
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan, China.
| |
Collapse
|
8
|
Lange S, Inal JM, Kraev I, Dart DA, Uysal-Onganer P. Low Magnetic Field Exposure Alters Prostate Cancer Cell Properties. BIOLOGY 2024; 13:734. [PMID: 39336161 PMCID: PMC11428832 DOI: 10.3390/biology13090734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/11/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024]
Abstract
Prostate cancer is the second most common neoplasia and fifth-leading cause of cancer death in men worldwide. Electromagnetic and magnetic fields have been classified as possible human carcinogens, but current understanding of molecular and cellular pathways involved is very limited. Effects due to extremely low magnetic/hypomagnetic fields (LMF) are furthermore poorly understood. Extracellular vesicles (EVs) are crucial mediators of cellular communication with multifaceted roles in cancer progression, including via transport and uptake of various protein and microRNA (miRNA) EV-cargoes. miRNAs regulate gene expression and are implicated in cancer-related processes such as proliferation, metastasis, and chemoresistance. This study investigated the effects of LMF exposure (20 nT) by magnetic shielding on the prostate cancer cell line PC3 compared to the prostate epithelial cell line PNT2 under short-term (4 h) conditions. We examined EV profiles following a 4 h LMF exposure alongside associated functional enrichment KEGG and GO pathways for the EV proteomes. The 4 h LMF exposure significantly reduced cellular EV release and modified PC3 EV cargoes to a more inflammatory and metastatic profile, with 16 Disease Pathways and 95 Human Phenotypes associated specifically with the LMF-treated PC3 EV proteomes. These included cancerous, metabolic, blood, skin, cardiac and skeletal Disease Pathways, as well as pain and developmental disorders. In the normal PNT2 cells, less EV protein cargo was observed following LMF exposure compared with cells not exposed to LMF, and fewer associated functional enrichment pathways were identified. This pointed to some differences in various cellular functions, ageing, defence responses, oxidative stress, and disease phenotypes, including respiratory, digestive, immune, and developmental pathways. Furthermore, we analysed alterations in matrix metalloproteinases (MMPs) and miRNAs linked to metastasis, as this is crucial in cancer aggressiveness. The 4 h LMF exposure caused a significant increase in MMP2 and MMP9, as well as in onco-miRs miR-155, miR-210, miR-21, but a significant reduction in tumour-suppressor miRs (miR-200c and miR-126) in the metastatic PC3 cells, compared with normal PNT2 cells. In addition, 4 h LMF exposure significantly induced cellular invasion of PC3 cells. Overall, our findings suggest that changes in magnetic field exposures modulate EV-mediated and miR-regulatory processes in PCa metastasis, providing a basis for exploring novel therapeutic strategies.
Collapse
Affiliation(s)
- Sigrun Lange
- Pathobiology and Extracellular Vesicles Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, UK
| | - Jameel M Inal
- Cell Communication in Disease Pathology, School of Human Sciences, London Metropolitan University, 166-220 Holloway Road, London N7 8DB, UK
- Biosciences Research Group, School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9EU, UK
| | - Igor Kraev
- Electron Microscopy Suite, Faculty of Science, Technology, Engineering and Mathematics, Open University, Milton Keynes MK7 6AA, UK
| | - Dafydd Alwyn Dart
- UCL Cancer Institute, University College London, Paul O'Gorman Building, 72 Huntley Street, London WC1E 6DD, UK
| | - Pinar Uysal-Onganer
- Cancer Mechanisms and Biomarkers Research Group, School of Life Sciences, College of Liberal Arts and Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK
| |
Collapse
|
9
|
Wang B, Liu W, Zhang M, Li Y, Tang H, Wang Y, Song C, Song B, Tan B. Circ_0001947 encapsulated by small extracellular vesicles promotes gastric cancer progression and anti-PD-1 resistance by modulating CD8 + T cell exhaustion. J Nanobiotechnology 2024; 22:563. [PMID: 39272146 PMCID: PMC11401313 DOI: 10.1186/s12951-024-02826-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/31/2024] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND While small extracellular vesicles (sEVs)-derived circular RNAs (circRNAs) have been emerged as significant players in cancer, the function and underlying mechanism of sEVs-derived circRNAs in anti-cancer immunity remain unclear. METHODS Gastric cancer (GC)-derived circRNAs were identified using RNA-seq data from GEO datasets and quantitative reverse transcription polymerase chain reaction (qRT-PCR), RNA immunoprecipitation, dual-luciferase assay, and bioinformatics analysis were performed to investigate the regulatory axis. Transwell assay, wound healing assay, cell counting kit-8 (CCK-8) assay, and xenograft models were used to evaluate its role in GC progression in vivo and in vitro. The delivery of specific circRNAs into sEVs were verified through electron microscopy, nanoparticle tracking analysis (NTA) and fuorescence in situ hybridization (FISH). Flow cytometric analysis and immunohistochemical staining were conducted to find out how specific circRNAs mediated CD8+ T cell exhaustion and resistant to anti-programmed cell death 1 (PD-1) therapy. RESULTS We identified that circ_0001947, packaged by GC-derived sEVs, was obviously elevated in GC and was associated with poor clinical outcome. High circ0001947 level augmented the proliferation, migration, and invasion of GC cells. Mechanistically, circ0001947 sponged miR-661 and miR-671-5p to promote the expression of CD39, which further facilitated CD8+ T cell exhaustion and immune resistance. Conversely, blocking circ_0001947 attenuated CD8+ T cell exhaustion and increased the response to anti-PD-1 therapy. CONCLUSIONS Our study manifested the therapeutic potential of targeting sEVs-transmitted circ_0001947 to prohibit CD8+ T cell exhaustion and immune resistance in GC.
Collapse
Affiliation(s)
- Bingyu Wang
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China
| | - Wenbo Liu
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China
| | - Mingming Zhang
- Hebei Key Laboratory of Metabolic Disease, Shijiazhuang, 050011, China
| | - Yong Li
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China
| | - Hongyue Tang
- Hebei Key Laboratory of Metabolic Disease, Shijiazhuang, 050011, China
| | - Yingying Wang
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China
| | - Chao Song
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China
| | - Buyun Song
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China
| | - Bibo Tan
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China.
| |
Collapse
|
10
|
Hu C, Chen Q, Wu T, Du X, Dong Y, Peng Z, Xue W, Sunkara V, Cho YK, Dong L. The Role of Extracellular Vesicles in the Treatment of Prostate Cancer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311071. [PMID: 38639331 DOI: 10.1002/smll.202311071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/26/2024] [Indexed: 04/20/2024]
Abstract
Prostate cancer (PCa) has become a public health concern in elderly men due to an ever-increasing number of estimated cases. Unfortunately, the available treatments are unsatisfactory because of a lack of a durable response, especially in advanced disease states. Extracellular vesicles (EVs) are lipid-bilayer encircled nanoscale vesicles that carry numerous biomolecules (e.g., nucleic acids, proteins, and lipids), mediating the transfer of information. The past decade has witnessed a wide range of EV applications in both diagnostics and therapeutics. First, EV-based non-invasive liquid biopsies provide biomarkers in various clinical scenarios to guide treatment; EVs can facilitate the grading and staging of patients for appropriate treatment selection. Second, EVs play a pivotal role in pathophysiological processes via intercellular communication. Targeting key molecules involved in EV-mediated tumor progression (e.g., proliferation, angiogenesis, metastasis, immune escape, and drug resistance) is a potential approach for curbing PCa. Third, EVs are promising drug carriers. Naïve EVs from various sources and engineered EV-based drug delivery systems have paved the way for the development of new treatment modalities. This review discusses the recent advancements in the application of EV therapies and highlights EV-based functional materials as novel interventions for PCa.
Collapse
Affiliation(s)
- Cong Hu
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Qi Chen
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Tianyang Wu
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Xinxing Du
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Yanhao Dong
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Zehong Peng
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Wei Xue
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Vijaya Sunkara
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Yoon-Kyoung Cho
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
- Center for Algorithmic and Robotized Synthesis, Institute for Basic Science Ulsan, Ulsan, 44919, Republic of Korea
| | - Liang Dong
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| |
Collapse
|
11
|
Huang C, Zhang J, Wang H, Liang C. Exosomes That Have Different Cellular Origins Followed by the Impact They Have on Prostate Tumor Development in the Tumor Microenvironment. Cancer Rep (Hoboken) 2024; 7:e70001. [PMID: 39229670 PMCID: PMC11372288 DOI: 10.1002/cnr2.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/15/2024] [Accepted: 08/11/2024] [Indexed: 09/05/2024] Open
Abstract
BACKGROUND Prostate cancer (PCa) is the most common urinary tumor with the highest incidence rate and the second among the leading causes of death worldwide for adult males. In the worldwide cancer incidence rate, PCa is on the increase. The cancerous cells in the prostate and cells in the microenvironment surrounding the tumor communicate through signal transduction, which is crucial for the development and spread of PCa. RECENT FINDINGS Exosomes are nanoscale vesicles released into body fluids by various cells that can aid intercellular communication by releasing nucleic acids and proteins. Exosomes published by different types of cells in the tumor microenvironment can have varying impacts on the proliferation and growth of tumor cells via various signaling pathways, modes of action, and secreted cytokines. CONCLUSION The main purpose of this review is to describe the effects of different cell-derived exosomes in the tumor microenvironment of PCa on the progression of tumor cells, as well as to summarize and discuss the prospects for the application of exosomes in the treatment and diagnosis of PCa.
Collapse
Affiliation(s)
- Cong Huang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Key Laboratory of Genitourinary Diseases Anhui Province, Anhui Medical University, Hefei, China
| | - Jialong Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Key Laboratory of Genitourinary Diseases Anhui Province, Anhui Medical University, Hefei, China
| | - Hongzhi Wang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Key Laboratory of Genitourinary Diseases Anhui Province, Anhui Medical University, Hefei, China
| | - Chaozhao Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Key Laboratory of Genitourinary Diseases Anhui Province, Anhui Medical University, Hefei, China
| |
Collapse
|
12
|
Shi X, Wang X, Yao W, Shi D, Shao X, Lu Z, Chai Y, Song J, Tang W, Wang X. Mechanism insights and therapeutic intervention of tumor metastasis: latest developments and perspectives. Signal Transduct Target Ther 2024; 9:192. [PMID: 39090094 PMCID: PMC11294630 DOI: 10.1038/s41392-024-01885-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 05/29/2024] [Accepted: 06/10/2024] [Indexed: 08/04/2024] Open
Abstract
Metastasis remains a pivotal characteristic of cancer and is the primary contributor to cancer-associated mortality. Despite its significance, the mechanisms governing metastasis are not fully elucidated. Contemporary findings in the domain of cancer biology have shed light on the molecular aspects of this intricate process. Tumor cells undergoing invasion engage with other cellular entities and proteins en route to their destination. Insights into these engagements have enhanced our comprehension of the principles directing the movement and adaptability of metastatic cells. The tumor microenvironment plays a pivotal role in facilitating the invasion and proliferation of cancer cells by enabling tumor cells to navigate through stromal barriers. Such attributes are influenced by genetic and epigenetic changes occurring in the tumor cells and their surrounding milieu. A profound understanding of the metastatic process's biological mechanisms is indispensable for devising efficacious therapeutic strategies. This review delves into recent developments concerning metastasis-associated genes, important signaling pathways, tumor microenvironment, metabolic processes, peripheral immunity, and mechanical forces and cancer metastasis. In addition, we combine recent advances with a particular emphasis on the prospect of developing effective interventions including the most popular cancer immunotherapies and nanotechnology to combat metastasis. We have also identified the limitations of current research on tumor metastasis, encompassing drug resistance, restricted animal models, inadequate biomarkers and early detection methods, as well as heterogeneity among others. It is anticipated that this comprehensive review will significantly contribute to the advancement of cancer metastasis research.
Collapse
Affiliation(s)
- Xiaoli Shi
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China
- School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Xinyi Wang
- The First Clinical Medical College, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wentao Yao
- Department of Urology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu, China
| | - Dongmin Shi
- Department of Medical Oncology, Shanghai Changzheng Hospital, Shanghai, China
| | - Xihuan Shao
- The Fourth Clinical Medical College, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhengqing Lu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China
| | - Yue Chai
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China
| | - Jinhua Song
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China.
| | - Weiwei Tang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China.
| | - Xuehao Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China.
- School of Medicine, Southeast University, Nanjing, Jiangsu, China.
| |
Collapse
|
13
|
Liu Y, Chen H, Chen T, Qiu G, Han Y. The emerging role of osteoclasts in the treatment of bone metastases: rationale and recent clinical evidence. Front Oncol 2024; 14:1445025. [PMID: 39148909 PMCID: PMC11324560 DOI: 10.3389/fonc.2024.1445025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 07/16/2024] [Indexed: 08/17/2024] Open
Abstract
The occurrence of bone metastasis is a grave medical concern that substantially impacts the quality of life in patients with cancer. The precise mechanisms underlying bone metastasis remain unclear despite extensive research efforts, and efficacious therapeutic interventions are currently lacking. The ability of osteoclasts to degrade the bone matrix makes them a crucial factor in the development of bone metastasis. Osteoclasts are implicated in several aspects of bone metastasis, encompassing the formation of premetastatic microenvironment, suppression of the immune system, and reactivation of quiescent tumor cells. Contemporary clinical interventions targeting osteoclasts have proven effective in mitigating bone-related symptoms in patients with cancer. This review comprehensively analyzes the mechanistic involvement of osteoclasts in bone metastasis, delineates potential therapeutic targets associated with osteoclasts, and explores clinical evidence regarding interventions targeting osteoclasts.
Collapse
Affiliation(s)
- Youjun Liu
- Department of Spinal Surgery, Liuzhou Municipal Liutie Central Hospital, Liuzhou, China
| | - Huanshi Chen
- Department of Spinal Surgery, Liuzhou Municipal Liutie Central Hospital, Liuzhou, China
| | - Tong Chen
- Department of Spinal Surgery, Liuzhou Municipal Liutie Central Hospital, Liuzhou, China
| | - Guowen Qiu
- Department of Spinal Surgery, Liuzhou Municipal Liutie Central Hospital, Liuzhou, China
| | - Yu Han
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
14
|
Smith SF, Brewer DS, Hurst R, Cooper CS. Applications of Urinary Extracellular Vesicles in the Diagnosis and Active Surveillance of Prostate Cancer. Cancers (Basel) 2024; 16:1717. [PMID: 38730670 PMCID: PMC11083542 DOI: 10.3390/cancers16091717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Prostate cancer is the most common non-cutaneous cancer among men in the UK, causing significant health and economic burdens. Diagnosis and risk prognostication can be challenging due to the genetic and clinical heterogeneity of prostate cancer as well as uncertainties in our knowledge of the underlying biology and natural history of disease development. Urinary extracellular vesicles (EVs) are microscopic, lipid bilayer defined particles released by cells that carry a variety of molecular cargoes including nucleic acids, proteins and other molecules. Urine is a plentiful source of prostate-derived EVs. In this narrative review, we summarise the evidence on the function of urinary EVs and their applications in the evolving field of prostate cancer diagnostics and active surveillance. EVs are implicated in the development of all hallmarks of prostate cancer, and this knowledge has been applied to the development of multiple diagnostic tests, which are largely based on RNA and miRNA. Common gene probes included in multi-probe tests include PCA3 and ERG, and the miRNAs miR-21 and miR-141. The next decade will likely bring further improvements in the diagnostic accuracy of biomarkers as well as insights into molecular biological mechanisms of action that can be translated into opportunities in precision uro-oncology.
Collapse
Affiliation(s)
- Stephanie F. Smith
- Metabolic Health Research Centre, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK (C.S.C.)
- Department of Urology, Norfolk and Norwich University Hospitals, Norwich NR4 7UY, UK
| | - Daniel S. Brewer
- Metabolic Health Research Centre, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK (C.S.C.)
| | - Rachel Hurst
- Metabolic Health Research Centre, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK (C.S.C.)
| | - Colin S. Cooper
- Metabolic Health Research Centre, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK (C.S.C.)
| |
Collapse
|
15
|
Li Y, Zheng Y, Tan X, Du Y, Wei Y, Liu S. Extracellular vesicle-mediated pre-metastatic niche formation via altering host microenvironments. Front Immunol 2024; 15:1367373. [PMID: 38495881 PMCID: PMC10940351 DOI: 10.3389/fimmu.2024.1367373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/23/2024] [Indexed: 03/19/2024] Open
Abstract
The disordered growth, invasion and metastasis of cancer are mainly attributed to bidirectional cell-cell interactions. Extracellular vesicles (EVs) secreted by cancer cells are involved in orchestrating the formation of pre-metastatic niches (PMNs). Tumor-derived EVs mediate bidirectional communication between tumor and stromal cells in local and distant microenvironments. EVs carrying mRNAs, small RNAs, microRNAs, DNA fragments, proteins and metabolites determine metastatic organotropism, enhance angiogenesis, modulate stroma cell phenotypes, restructure the extracellular matrix, induce immunosuppression and modify the metabolic environment of organs. Evidence indicates that EVs educate stromal cells in secondary sites to establish metastasis-supportive microenvironments for seeding tumor cells. In this review, we provide a comprehensive overview of PMN formation and the underlying mechanisms mediated by EVs. Potential approaches to inhibit cancer metastasis by inhibiting the formation of PMNs are also presented.
Collapse
Affiliation(s)
- Ying Li
- Department of Blood Transfusion, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yan Zheng
- Department of Operating Room, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaojie Tan
- Department of Gastrointestinal Surgery, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yongxing Du
- Department of Pancreatic and Gastric Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yingxin Wei
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Shanglong Liu
- Department of Gastrointestinal Surgery, the Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
16
|
Wang Y, Hu Y, Wang M, Wang M, Xu Y. The Role of Breast Cancer Cells in Bone Metastasis: Suitable Seeds for Nourishing Soil. Curr Osteoporos Rep 2024; 22:28-43. [PMID: 38206556 DOI: 10.1007/s11914-023-00849-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/18/2023] [Indexed: 01/12/2024]
Abstract
PURPOSE OF REVIEW The purpose of this review was to describe the characteristics of breast cancer cells prone to developing bone metastasis and determine how they are regulated by the bone microenvironment. RECENT FINDINGS The bone is a site of frequent breast cancer metastasis. Bone metastasis accounts for 70% of advanced breast cancer cases and remains incurable. It can lead to skeletal-related events, such as bone fracture and pain, and seriously affect the quality of life of patients. Breast cancer cells escape from the primary lesion and spread to the bone marrow in the early stages. They can then enter the dormant state and restore tumourigenicity after several years to develop overt metastasis. In the last few years, an increasing number of studies have reported on the factors promoting bone metastasis of breast cancer cells, both at the primary and metastatic sites. Identifying factors associated with bone metastasis aids in the early recognition of bone metastasis tendency. How to target these factors and minimize the side effects on the bone remains to be further explored.
Collapse
Affiliation(s)
- Yiou Wang
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yue Hu
- Department of Outpatient, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Mozhi Wang
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Mengshen Wang
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yingying Xu
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
17
|
Li S, Kang Y, Zeng Y. Targeting tumor and bone microenvironment: Novel therapeutic opportunities for castration-resistant prostate cancer patients with bone metastasis. Biochim Biophys Acta Rev Cancer 2024; 1879:189033. [PMID: 38040267 DOI: 10.1016/j.bbcan.2023.189033] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/22/2023] [Accepted: 11/23/2023] [Indexed: 12/03/2023]
Abstract
Despite standard hormonal therapy that targets the androgen receptor (AR) attenuates prostate cancer (PCa) effectively in the initial stage, the tumor ultimately converts to castration-resistant prostate cancer (CRPC), and the acquired resistance is still a great challenge for the management of advanced prostate cancer patients. The tumor microenvironment (TME) consists of multiple cellular and noncellular agents is well known as a vital role during the development and progression of CRPC by establishing communication between TME and tumor cells. Additionally, as primary prostate cancer progresses towards metastasis, and CRPC always experiences bone metastasis, the TME is conducive to the spread of tumors to the distant sits, particularly in bone. In addition, the bone microenvironment (BME) is also closely related to the survival, growth and colonization of metastatic tumor cells. The present review summarized the recent studies which mainly focused on the role of TME or BME in the CRPC patients with bone metastasis, and discussed the underlying mechanisms, as well as the potential therapeutic values of targeting TME and BME in the management of metastatic CRPC patients.
Collapse
Affiliation(s)
- Shenglong Li
- Second ward of Bone and Soft Tissue Tumor Surgery,Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China; The Liaoning Provincial Key Laboratory of Interdisciplinary Research on Gastrointestinal Tumor Combining Medicine with Engineering, Shenyang, China
| | - Yue Kang
- Department of Breast Surgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Yu Zeng
- Department of Urology, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China.
| |
Collapse
|
18
|
Chen H, Pang B, Zhou C, Han M, Gong J, Li Y, Jiang J. Prostate cancer-derived small extracellular vesicle proteins: the hope in diagnosis, prognosis, and therapeutics. J Nanobiotechnology 2023; 21:480. [PMID: 38093355 PMCID: PMC10720096 DOI: 10.1186/s12951-023-02219-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/18/2023] [Indexed: 12/17/2023] Open
Abstract
Current diagnostic tools for prostate cancer (PCa) diagnosis and risk stratification are insufficient. The hidden onset and poor efficacy of traditional therapies against metastatic PCa make this disease a heavy burden in global men's health. Prostate cancer-derived extracellular vesicles (PCDEVs) have garnered attention in recent years due to their important role in communications in tumor microenvironment. Recent advancements have demonstrated PCDEVs proteins play an important role in PCa invasion, progression, metastasis, therapeutic resistance, and immune escape. In this review, we briefly discuss the applications of sEV proteins in PCa diagnosis and prognosis in liquid biopsy, focus on the roles of the PCa-derived small EVs (sEVs) proteins in tumor microenvironment associated with cancer progression, and explore the therapeutic potential of sEV proteins applied for future metastatic PCa therapy.
Collapse
Affiliation(s)
- Haotian Chen
- Health Science Center, Ningbo University, Ningbo, 315211, Zhejiang, People's Republic of China
- Ningbo Clinical Research Center for Urological Disease, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, Zhejiang, People's Republic of China
- Translational Research Laboratory for Urology, Department of Urology, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, Zhejiang, People's Republic of China
| | - Bairen Pang
- Ningbo Clinical Research Center for Urological Disease, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, Zhejiang, People's Republic of China
- Translational Research Laboratory for Urology, Department of Urology, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, Zhejiang, People's Republic of China
| | - Cheng Zhou
- Ningbo Clinical Research Center for Urological Disease, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, Zhejiang, People's Republic of China
- Translational Research Laboratory for Urology, Department of Urology, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, Zhejiang, People's Republic of China
| | - Meng Han
- Ningbo Clinical Research Center for Urological Disease, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, Zhejiang, People's Republic of China
- Translational Research Laboratory for Urology, Department of Urology, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, Zhejiang, People's Republic of China
| | - Jie Gong
- Ningbo Clinical Research Center for Urological Disease, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, Zhejiang, People's Republic of China
- Translational Research Laboratory for Urology, Department of Urology, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, Zhejiang, People's Republic of China
| | - Yong Li
- Cancer Care Centre, St George Hospital, Kogarah, NSW, 2217, Australia.
- School of Clinical Medicine, St. George and Sutherland Clinical Campuses, UNSW Sydney, Kensington, NSW, 2052, Australia.
| | - Junhui Jiang
- Ningbo Clinical Research Center for Urological Disease, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, Zhejiang, People's Republic of China.
- Translational Research Laboratory for Urology, Department of Urology, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, Zhejiang, People's Republic of China.
- Department of Urology, Ningbo First Hospital, The First Affiliated Hospital of Ningbo University, Haishu District, Ningbo, 315600, Zhejiang, People's Republic of China.
| |
Collapse
|
19
|
Nan W, Wang F, Wang H, Xiao W, Li L, Zhang C, Zhang Y, Dai L, Xu Z, Wan G, Wang Y, Chen H, Zhang Q, Hao Y. Synergistic wound repair effects of a composite hydrogel for delivering tumor-derived vesicles and S-nitrosoglutathione. J Mater Chem B 2023; 11:9987-10002. [PMID: 37823264 DOI: 10.1039/d3tb01512b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Treating chronic wounds requires transition from proinflammatory M1 to anti-inflammatory M2 dominant macrophages. Based on the role of tumor extracellular vesicles (tEVs) in regulating the phenotypic switching from M1 to M2 macrophages, we propose that tEVs may have a beneficial impact on alleviating the overactive inflammatory microenvironment associated with refractory wounds. On the other hand, as a nitric oxide donor, S-nitrosoglutathione (GSNO) can regulate inflammation, promote angiogenesis, enhance matrix deposition, and facilitate wound healing. In this study, a guar gum-based hydrogel with tEVs and GSNO was designed for the treatment of diabetic refractory wounds. This hybrid hydrogel was formed through the phenyl borate bonds, which can automatically disintegrate in response to the high reactive oxygen species (ROS) level at the site of refractory diabetic wounds, releasing tEVs and GSNO. We conducted a comprehensive evaluation of this hydrogel in vitro, which demonstrated excellent performance. Meanwhile, using a full-thickness excision model in diabetic mice, the wounds exposed to the therapeutic hydrogel healed completely within 21 days. The increased closure rate was associated with macrophage polarization and collagen deposition, accelerated fibroblast proliferation, and increased angiogenesis in the regenerating tissues. Therefore, this multifunctional hybrid hydrogel appears to be promising for clinical applications.
Collapse
Affiliation(s)
- Wenbin Nan
- College of Life Science and Technology, Nano Biomedical Materials Research Center, Xinxiang Medical University, Xinxiang, 453003, P. R. China.
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453003, P. R. China
| | - Fan Wang
- College of Life Science and Technology, Nano Biomedical Materials Research Center, Xinxiang Medical University, Xinxiang, 453003, P. R. China.
- Laboratory Animal Center, Academy of Medical Science, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Hao Wang
- College of Life Science and Technology, Nano Biomedical Materials Research Center, Xinxiang Medical University, Xinxiang, 453003, P. R. China.
| | - Wenchi Xiao
- College of Life Science and Technology, Nano Biomedical Materials Research Center, Xinxiang Medical University, Xinxiang, 453003, P. R. China.
| | - Linxiao Li
- College of Life Science and Technology, Nano Biomedical Materials Research Center, Xinxiang Medical University, Xinxiang, 453003, P. R. China.
| | - Chao Zhang
- College of Life Science and Technology, Nano Biomedical Materials Research Center, Xinxiang Medical University, Xinxiang, 453003, P. R. China.
| | - Yulu Zhang
- College of Life Science and Technology, Nano Biomedical Materials Research Center, Xinxiang Medical University, Xinxiang, 453003, P. R. China.
| | - Linna Dai
- College of Life Science and Technology, Nano Biomedical Materials Research Center, Xinxiang Medical University, Xinxiang, 453003, P. R. China.
| | - Zhihao Xu
- College of Life Science and Technology, Nano Biomedical Materials Research Center, Xinxiang Medical University, Xinxiang, 453003, P. R. China.
| | - Guoyun Wan
- College of Life Science and Technology, Nano Biomedical Materials Research Center, Xinxiang Medical University, Xinxiang, 453003, P. R. China.
| | - Yongxue Wang
- College of Life Science and Technology, Nano Biomedical Materials Research Center, Xinxiang Medical University, Xinxiang, 453003, P. R. China.
| | - Hongli Chen
- College of Life Science and Technology, Nano Biomedical Materials Research Center, Xinxiang Medical University, Xinxiang, 453003, P. R. China.
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453003, P. R. China
| | - Qiqing Zhang
- College of Life Science and Technology, Nano Biomedical Materials Research Center, Xinxiang Medical University, Xinxiang, 453003, P. R. China.
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences, Tianjin, 300000, P. R. China
| | - Yongwei Hao
- College of Life Science and Technology, Nano Biomedical Materials Research Center, Xinxiang Medical University, Xinxiang, 453003, P. R. China.
| |
Collapse
|
20
|
Lv T, Li Z, Wang D, Guo X, Zhang X, Cao J, Wang Z. Role of exosomes in prostate cancer bone metastasis. Arch Biochem Biophys 2023; 748:109784. [PMID: 37816420 DOI: 10.1016/j.abb.2023.109784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/05/2023] [Accepted: 10/07/2023] [Indexed: 10/12/2023]
Abstract
Bone is a preferred metastatic site of prostate cancer (PCa), and most patients with PCa metastases develop osteogenic bone metastasis, which manifests as disturbed bone structure and poor bone quality. However, the underlying mechanisms of PCa bone metastasis remain unclear. In recent years, increasing evidence has implicated extracellular vesicles, especially exosomes, in PCa bone metastasis. Exosomes are 30-150 nm in diameter, enclosing a cargo of biomolecules, such as DNA, RNA, and proteins. Exosomes play a functional role in intercellular communication, modulate the functions of recipient cells, and potentially modulate bone microenvironment changes, thereby influencing the development of PCa bone metastasis. This review summarizes the involvement of exosomes in the imbalance between bone resorption and formation, and establishing a pre-metastatic niche in bone marrow, as well as potential clinical applications of exosomes in therapeutic strategies for treating patients with advanced PCa with bone metastasis.
Collapse
Affiliation(s)
- Tingting Lv
- Department of Immuno-Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050011, PR China
| | - Zijie Li
- Department of Immuno-Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050011, PR China
| | - Dehua Wang
- Department of Immuno-Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050011, PR China
| | - Xiaojin Guo
- Department of Immuno-Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050011, PR China
| | - Xiaokuan Zhang
- Department of Immuno-Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050011, PR China
| | - Jing Cao
- Department of Immuno-Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050011, PR China
| | - Zhiyu Wang
- Department of Immuno-Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050011, PR China.
| |
Collapse
|
21
|
Zhang Y, Nong H, Bai Y, Zhou Q, Zhang Q, Liu M, Liu P, Zeng G, Zong S. Conditional knockout of PDK1 in osteoclasts suppressed osteoclastogenesis and ameliorated prostate cancer-induced osteolysis in murine model. Eur J Med Res 2023; 28:433. [PMID: 37828580 PMCID: PMC10571267 DOI: 10.1186/s40001-023-01425-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 10/03/2023] [Indexed: 10/14/2023] Open
Abstract
BACKGROUND The development and maintenance of normal bone tissue is maintained by balanced communication between osteoblasts and osteoclasts. The invasion of cancer cells disrupts this balance, leading to osteolysis. As the only bone resorbing cells in vivo, osteoclasts play important roles in cancer-induced osteolysis. However, the role of 3-phosphoinositide-dependent protein kinase-1 (PDK1) in osteoclast resorption remains unclear. METHODS In our study, we used a receptor activator of nuclear factor-kappa B (RANK) promoter-driven Cre-LoxP system to conditionally delete the PDK1 gene in osteoclasts in mice. We observed the effect of osteoclast-specific knockout of PDK1 on prostate cancer-induced osteolysis. Bone marrow-derived macrophage cells (BMMs) were extracted and induced to differentiate osteoclasts in vitro to explore the role of PDK1 in osteoclasts. RESULTS In this study, we found that PDK1 conditional knockout (cKO) mice exhibited smaller body sizes when compared to the wild-type (WT) mice. Moreover, deletion of PDK1 in osteoclasts ameliorated osteolysis and rPDK1educed bone resorption markers in the murine model of prostate cancer-induced osteolysis. In vivo, we discovered that osteoclast-specific knockout of suppressed RANKL-induced osteoclastogenesis, bone resorption function, and osteoclast-specific gene expression (Ctsk, TRAP, MMP-9, NFATc1). Western blot analyses of RANKL-induced signaling pathways showed that conditional knockout of PDK1 in osteoclasts inhibited the early nuclear factor κB (NF-κB) activation, which consequently suppressed the downstream induction of NFATc1. CONCLUSION These findings demonstrated that PDK1 performs an important role in osteoclastogenesis and prostate cancer-induced osteolysis by modulating the PDK1/AKT/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Yanan Zhang
- Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning, China
- Department of Spine Osteopathia, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Haibin Nong
- Department of Spine Osteopathia, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yiguang Bai
- Department of Spine Osteopathia, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Department of Orthopaedics, Nanchong Central Hospital, The Second Clinical Institute of North Sichuan Medical College, Nanchong, China
| | - Quan Zhou
- Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning, China
| | - Qiong Zhang
- College of Public Hygiene of Guangxi Medical University, Nanning, China
| | - Mingfu Liu
- Department of Spine Osteopathia, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Pan Liu
- Department of Spine Osteopathia, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Gaofeng Zeng
- College of Public Hygiene of Guangxi Medical University, Nanning, China.
| | - Shaohui Zong
- Department of Spine Osteopathia, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.
- Research Centre for Regenerative Medicine and Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, China.
| |
Collapse
|
22
|
Hu S, Hu Y, Yan W. Extracellular vesicle-mediated interorgan communication in metabolic diseases. Trends Endocrinol Metab 2023; 34:571-582. [PMID: 37394346 DOI: 10.1016/j.tem.2023.06.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/06/2023] [Accepted: 06/09/2023] [Indexed: 07/04/2023]
Abstract
The body partially maintains metabolic homeostasis through interorgan communication between metabolic organs under physiological conditions. This crosstalk is known to be mediated by hormones or metabolites, and has recently been expanding to include extracellular vesicles (EVs). EVs participate in interorgan communication under physiological and pathological conditions by encapsulating various bioactive cargoes, including proteins, metabolites, and nucleic acids. In this review we summarize the latest findings about the metabolic regulation of EV biogenesis, secretion, and components, and highlight the biological role of EV cargoes in interorgan communication in cancer, obesity, diabetes, and cardiovascular disease. We also discuss the potential application of EVs as diagnostic markers, and corresponding therapeutic strategies by EV engineering for both early detection and treatment of metabolic disorders.
Collapse
Affiliation(s)
- Sheng Hu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Yong Hu
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wei Yan
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
23
|
Dautle M, Zhang S, Chen Y. scTIGER: A Deep-Learning Method for Inferring Gene Regulatory Networks from Case versus Control scRNA-seq Datasets. Int J Mol Sci 2023; 24:13339. [PMID: 37686146 PMCID: PMC10488287 DOI: 10.3390/ijms241713339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/06/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Inferring gene regulatory networks (GRNs) from single-cell RNA-seq (scRNA-seq) data is an important computational question to find regulatory mechanisms involved in fundamental cellular processes. Although many computational methods have been designed to predict GRNs from scRNA-seq data, they usually have high false positive rates and none infer GRNs by directly using the paired datasets of case-versus-control experiments. Here we present a novel deep-learning-based method, named scTIGER, for GRN detection by using the co-differential relationships of gene expression profiles in paired scRNA-seq datasets. scTIGER employs cell-type-based pseudotiming, an attention-based convolutional neural network method and permutation-based significance testing for inferring GRNs among gene modules. As state-of-the-art applications, we first applied scTIGER to scRNA-seq datasets of prostate cancer cells, and successfully identified the dynamic regulatory networks of AR, ERG, PTEN and ATF3 for same-cell type between prostatic cancerous and normal conditions, and two-cell types within the prostatic cancerous environment. We then applied scTIGER to scRNA-seq data from neurons with and without fear memory and detected specific regulatory networks for BDNF, CREB1 and MAPK4. Additionally, scTIGER demonstrates robustness against high levels of dropout noise in scRNA-seq data.
Collapse
Affiliation(s)
- Madison Dautle
- Department of Biological and Biomedical Sciences, Rowan University, Glassboro, NJ 08028, USA;
| | - Shaoqiang Zhang
- College of Computer and Information Engineering, Tianjin Normal University, Tianjin 300387, China
| | - Yong Chen
- Department of Biological and Biomedical Sciences, Rowan University, Glassboro, NJ 08028, USA;
| |
Collapse
|
24
|
Li A, Li D, Gu Y, Liu R, Tang X, Zhao Y, Qi F, Wei J, Liu J. Plant-derived nanovesicles: Further exploration of biomedical function and application potential. Acta Pharm Sin B 2023; 13:3300-3320. [PMID: 37655320 PMCID: PMC10465964 DOI: 10.1016/j.apsb.2022.12.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/21/2022] [Accepted: 12/15/2022] [Indexed: 03/09/2023] Open
Abstract
Extracellular vesicles (EVs) are phospholipid bilayer vesicles actively secreted by cells, that contain a variety of functional nucleic acids, proteins, and lipids, and are important mediums of intercellular communication. Based on their natural properties, EVs can not only retain the pharmacological effects of their source cells but also serve as natural delivery carriers. Among them, plant-derived nanovesicles (PNVs) are characterized as natural disease therapeutics with many advantages such as simplicity, safety, eco-friendliness, low cost, and low toxicity due to their abundant resources, large yield, and low risk of immunogenicity in vivo. This review systematically introduces the biogenesis, isolation methods, physical characterization, and components of PNVs, and describes their administration and cellular uptake as therapeutic agents. We highlight the therapeutic potential of PNVs as therapeutic agents and drug delivery carriers, including anti-inflammatory, anticancer, wound healing, regeneration, and antiaging properties as well as their potential use in the treatment of liver disease and COVID-19. Finally, the toxicity and immunogenicity, the current clinical application, and the possible challenges in the future development of PNVs were analyzed. We expect the functions of PNVs to be further explored to promote clinical translation, thereby facilitating the development of a new framework for the treatment of human diseases.
Collapse
Affiliation(s)
- Aixue Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Dan Li
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yongwei Gu
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Rongmei Liu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xiaomeng Tang
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yunan Zhao
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Fu Qi
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jifu Wei
- Department of Pharmacy, Jiangsu Cancer Hospital, Nanjing 210009, China
- Jiangsu Institute of Cancer Research, Nanjing 210009, China
- The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Jiyong Liu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Department of Pharmacy, Shanghai Proton and Heavy Ion Center, Shanghai 201315, China
| |
Collapse
|
25
|
Jain DP, Dinakar YH, Kumar H, Jain R, Jain V. The multifaceted role of extracellular vesicles in prostate cancer-a review. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2023; 6:481-498. [PMID: 37842237 PMCID: PMC10571058 DOI: 10.20517/cdr.2023.17] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/08/2023] [Accepted: 07/20/2023] [Indexed: 10/17/2023]
Abstract
Prostate cancer is the second most prominent form of cancer in men and confers the highest mortality after lung cancer. The term "extracellular vesicles" refers to minute endosomal-derived membrane microvesicles and it was demonstrated that extracellular vesicles affect the environment in which tumors originate. Extracellular vesicles' involvement is also established in the development of drug resistance, angiogenesis, stemness, and radioresistance in various cancers including prostate cancer. Extracellular vesicles influence the general environment, processes, and growth of prostate cancer and can be a potential area that offers a significant lead in prostate cancer therapy. In this review, we have elaborated on the multifaceted role of extracellular vesicles in various processes involved in the development of prostate cancer, and their multitude of applications in the diagnosis and treatment of prostate cancer through the encapsulation of various bioactives.
Collapse
Affiliation(s)
- Divya Prakash Jain
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, India
| | - Yirivinti Hayagreeva Dinakar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, India
| | - Hitesh Kumar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, India
| | - Rupshee Jain
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, India
| | - Vikas Jain
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, India
| |
Collapse
|
26
|
Zhang B, Hu M, Ma Q, Li K, Li X, He X, Shu P, Chen Y, Gao G, Qin D, Guo F, Zhao J, Liu N, Zhou K, Feng M, Liao W, Li D, Wang X, Wang Y. Optimized CAR-T therapy based on spatiotemporal changes and chemotactic mechanisms of MDSCs induced by hypofractionated radiotherapy. Mol Ther 2023; 31:2105-2119. [PMID: 37073129 PMCID: PMC10362417 DOI: 10.1016/j.ymthe.2023.04.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 03/03/2023] [Accepted: 04/12/2023] [Indexed: 04/20/2023] Open
Abstract
Poor intratumoral infiltration is the major challenge for chimeric antigen receptor (CAR)-T cell therapy in solid tumors. Hypofractionated radiotherapy (HFRT) has been reported to induce immune cell infiltration and reshape the tumor immune microenvironment. Here, we showed that HFRT (5 × 5 Gy) mediated an early accumulation of intratumoral myeloid-derived suppressor cells (MDSCs) and decreased infiltration of T cells in the tumor microenvironment (TME) of immunocompetent mice bearing triple-negative breast cancer (TNBC) or colon cancer, which was further confirmed in tumors from patients. RNA sequencing (RNA-seq) and cytokine profiling analysis revealed that HFRT induced the activation and proliferation of tumor-infiltrated MDSCs, which was mediated by the interactions of multiple chemokines and chemokine receptors. Further investigation showed that when combined with HFRT, CXCR2 blockade significantly inhibited MDSCs trafficking to tumors and effectively enhanced the intratumoral infiltration and treatment efficacy of CAR-T cells. Our study demonstrates that MDSCs blockade combined with HFRT is promising for CAR-T cell therapy optimization in solid tumors.
Collapse
Affiliation(s)
- Benxia Zhang
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Min Hu
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Qizhi Ma
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Kai Li
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xue Li
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xia He
- Clinical Trial Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Pei Shu
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yue Chen
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ge Gao
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Diyuan Qin
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Fuchun Guo
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jian Zhao
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ning Liu
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Kexun Zhou
- Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - MingYang Feng
- Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Weiting Liao
- Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Dan Li
- Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, and Precision Medicine Research Center, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xin Wang
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yongsheng Wang
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
27
|
Giusti I, Poppa G, Di Fazio G, D'Ascenzo S, Dolo V. Metastatic Dissemination: Role of Tumor-Derived Extracellular Vesicles and Their Use as Clinical Biomarkers. Int J Mol Sci 2023; 24:ijms24119590. [PMID: 37298540 DOI: 10.3390/ijms24119590] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Cancer is a major cause of mortality in humans; often, rather than the primary tumor, it is the presence of metastases that are the cause of death. Extracellular vesicles (EVs) are small structures released by both normal and cancer cells; regarding the latter, they have been demonstrated to modulate almost all cancer-related processes, such as invasion, angiogenesis induction, drug resistance, and immune evasion. In the last years, it has become clear how EVs are widely involved in metastatic dissemination as well as in pre-metastatic niche (PMN) formation. Indeed, in order to achieve a successful metastatic process, i.e., penetration by cancer cells into distant tissues, the shaping of a favorable environment into those distant tissue, i.e., PMN formation, is mandatory. This process consists of an alteration that takes place in a distant organ and paves the way for the engraftment and growth of circulating tumor cells derived from the tumor primary site. This review focuses on the role of EVs in pre-metastatic niche formation and metastatic dissemination, also reporting the last studies suggesting the EVs role as biomarkers of metastatic diseases, possibly in a liquid biopsy approach.
Collapse
Affiliation(s)
- Ilaria Giusti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Via Vetoio-Coppito 2, 67100 L'Aquila, Italy
| | - Giuseppina Poppa
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Via Vetoio-Coppito 2, 67100 L'Aquila, Italy
| | - Giulia Di Fazio
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Via Vetoio-Coppito 2, 67100 L'Aquila, Italy
| | - Sandra D'Ascenzo
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Via Vetoio-Coppito 2, 67100 L'Aquila, Italy
| | - Vincenza Dolo
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Via Vetoio-Coppito 2, 67100 L'Aquila, Italy
| |
Collapse
|
28
|
Wang Y, Guo Z, Isah AD, Chen S, Ren Y, Cai H. Lipid metabolism and tumor immunotherapy. Front Cell Dev Biol 2023; 11:1187989. [PMID: 37261073 PMCID: PMC10228657 DOI: 10.3389/fcell.2023.1187989] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/04/2023] [Indexed: 06/02/2023] Open
Abstract
In recent years, the relationship between lipid metabolism and tumour immunotherapy has been thoroughly investigated. An increasing number of studies have shown that abnormal gene expression and ectopic levels of metabolites related to fatty acid synthesis or fatty acid oxidation affect tumour metastasis, recurrence, and drug resistance. Tumour immunotherapy that aims to promote an antitumour immune response has greatly improved the outcomes for tumour patients. However, lipid metabolism reprogramming in tumour cells or tumour microenvironment-infiltrating immune cells can influence the antitumour response of immune cells and induce tumor cell immune evasion. The recent increase in the prevalence of obesity-related cancers has drawn attention to the fact that obesity increases fatty acid oxidation in cancer cells and suppresses the activation of immune cells, thereby weakening antitumour immunity. This article reviews the changes in lipid metabolism in cells in the tumour microenvironment and describes the relationship between lipid metabolism reprogramming in multiple cell types and tumour immunotherapy.
Collapse
Affiliation(s)
- Yue Wang
- School of Medicine, Jiangsu University, Zhenjiang, China
- Cancer Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, China
- Department of Emergency, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Zongjin Guo
- Department of Interventional Radiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | | | - Shuangwei Chen
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yongfei Ren
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Huazhong Cai
- Cancer Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, China
- Department of Emergency, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
29
|
Blavier L, Nakata R, Neviani P, Sharma K, Shimada H, Benedicto A, Matei I, Lyden D, DeClerck YA. The capture of extracellular vesicles endogenously released by xenotransplanted tumours induces an inflammatory reaction in the premetastatic niche. J Extracell Vesicles 2023; 12:e12326. [PMID: 37194998 PMCID: PMC10190125 DOI: 10.1002/jev2.12326] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 04/18/2023] [Indexed: 05/18/2023] Open
Abstract
The capture of tumour-derived extracellular vesicles (TEVs) by cells in the tumour microenvironment (TME) contributes to metastasis and notably to the formation of the pre-metastatic niche (PMN). However, due to the challenges associated with modelling release of small EVs in vivo, the kinetics of PMN formation in response to endogenously released TEVs have not been examined. Here, we have studied the endogenous release of TEVs in mice orthotopically implanted with metastatic human melanoma (MEL) and neuroblastoma (NB) cells releasing GFP-tagged EVs (GFTEVs) and their capture by host cells to demonstrate the active contribution of TEVs to metastasis. Human GFTEVs captured by mouse macrophages in vitro resulted in transfer of GFP vesicles and the human exosomal miR-1246. Mice orthotopically implanted with MEL or NB cells showed the presence of TEVs in the blood between 5 and 28 days after implantation. Moreover, kinetic analysis of TEV capture by resident cells relative to the arrival and outgrowth of TEV-producing tumour cells in metastatic organs demonstrated that the capture of TEVs by lung and liver cells precedes the homing of metastatic tumour cells, consistent with the critical roles of TEVs in PMN formation. Importantly, TEV capture at future sites of metastasis was associated with the transfer of miR-1246 to lung macrophages, liver macrophages, and stellate cells. This is the first demonstration that the capture of endogenously released TEVs is organotropic as demonstrated by the presence of TEV-capturing cells only in metastatic organs and their absence in non-metastatic organs. The capture of TEVs in the PMN induced dynamic changes in inflammatory gene expression which evolved to a pro-tumorigenic reaction as the niche progressed to the metastatic state. Thus, our work describes a novel approach to TEV tracking in vivo that provides additional insights into their role in the earliest stages of metastatic progression.
Collapse
Affiliation(s)
- Laurence Blavier
- The Saban Research Institute of Children's Hospital Los AngelesUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Division of Hematology, Oncology, and Blood & Marrow TransplantationUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Department of PediatricsKeck School of Medicine University of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Rie Nakata
- The Saban Research Institute of Children's Hospital Los AngelesUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Division of Hematology, Oncology, and Blood & Marrow TransplantationUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Department of PediatricsKeck School of Medicine University of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Paolo Neviani
- The Saban Research Institute of Children's Hospital Los AngelesUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Division of Hematology, Oncology, and Blood & Marrow TransplantationUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Department of PediatricsKeck School of Medicine University of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Khounish Sharma
- Dornsife College of Letters, Arts and SciencesUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Hiroyuki Shimada
- Departments of Pathology and PediatricsStanford UniversityStanfordCaliforniaUSA
| | - Aitor Benedicto
- Department of Cellular Biology and Histology, School of Medicine and NursingUniversity of the Basque Country (UPV/EHU)LeioaSpain
| | - Irina Matei
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer CenterWeill Cornell MedicineNew YorkNew YorkUSA
| | - David Lyden
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer CenterWeill Cornell MedicineNew YorkNew YorkUSA
| | - Yves A. DeClerck
- The Saban Research Institute of Children's Hospital Los AngelesUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Division of Hematology, Oncology, and Blood & Marrow TransplantationUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Department of PediatricsKeck School of Medicine University of Southern CaliforniaLos AngelesCaliforniaUSA
- Department of Biochemistry and Molecular MedicineKeck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
30
|
Verma P, Shukla N, Kumari S, Ansari M, Gautam NK, Patel GK. Cancer stem cell in prostate cancer progression, metastasis and therapy resistance. Biochim Biophys Acta Rev Cancer 2023; 1878:188887. [PMID: 36997008 DOI: 10.1016/j.bbcan.2023.188887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/18/2023] [Accepted: 03/15/2023] [Indexed: 03/31/2023]
Abstract
Prostate cancer (PCa) is the most diagnosed malignancy in the men worldwide. Cancer stem cells (CSCs) are the sub-population of cells present in the tumor which possess unique properties of self-renewal and multilineage differentiation thus thought to be major cause of therapy resistance, disease relapse, and mortality in several malignancies including PCa. CSCs have also been shown positive for the common stem cells markers such as ALDH EZH2, OCT4, SOX2, c-MYC, Nanog etc. Therefore, isolation and characterization of CSCs specific markers which may discriminate CSCs and normal stem cells are critical to selectively eliminate CSCs. Rapid advances in the field offers a theoretical explanation for many of the enduring uncertainties encompassing the etiology and an optimism for the identification of new stem-cell targets, development of reliable and efficient therapies in the future. The emerging reports have also provided unprecedented insights into CSCs plasticity, quiescence, renewal, and therapeutic response. In this review, we discuss the identification of PCa stem cells, their unique properties, stemness-driving pathways, new diagnostics, and therapeutic interventions.
Collapse
|
31
|
Stem cell-derived small extracellular vesicles containing miR-27b-3p attenuated osteoarthritis through inhibition of leukaemia inhibitory factor. FUNDAMENTAL RESEARCH 2023. [DOI: 10.1016/j.fmre.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
|
32
|
A Novel Four Mitochondrial Respiration-Related Signature for Predicting Biochemical Recurrence of Prostate Cancer. J Clin Med 2023; 12:jcm12020654. [PMID: 36675580 PMCID: PMC9866444 DOI: 10.3390/jcm12020654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
The biochemical recurrence (BCR) of patients with prostate cancer (PCa) after radical prostatectomy is high, and mitochondrial respiration is reported to be associated with the metabolism in PCa development. This study aimed to establish a mitochondrial respiratory gene-based risk model to predict the BCR of PCa. RNA sequencing data of PCa were downloaded from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases, and mitochondrial respiratory-related genes (MRGs) were sourced via GeneCards. The differentially expressed mitochondrial respiratory and BCR-related genes (DE-MR-BCRGs) were acquired through overlapping BCR-related differentially expressed genes (BCR-DEGs) and differentially expressed MRGs (DE-MRGs) between PCa samples and controls. Further, univariate Cox, least absolute shrinkage and selection operator (LASSO), and multivariate Cox analyses were performed to construct a DE-MRGs-based risk model. Then, a nomogram was established by analyzing the independent prognostic factor of five clinical features and risk scores. Moreover, Gene Set Enrichment Analysis (GSEA), tumor microenvironment, and drug susceptibility analyses were employed between high- and low-risk groups of PCa patients with BCR. Finally, qRT-PCR was utilized to validate the expression of prognostic genes. We identified 11 DE-MR-BCRGs by overlapping 132 DE-MRGs and 13 BCR-DEGs and constructed a risk model consisting of 4 genes (APOE, DNAH8, EME2, and KIF5A). Furthermore, we established an accurate nomogram, including a risk score and a Gleason score, for the BCR prediction of PCa patients. The GSEA result suggested the risk model was related to the PPAR signaling pathway, the cholesterol catabolic process, the organic hydroxy compound biosynthetic process, the small molecule catabolic process, and the steroid catabolic process. Simultaneously, we found six immune cell types relevant to the risk model: resting memory CD4+ T cells, monocytes, resting mast cells, activated memory CD4+ T cells, regulatory T cells (Tregs), and macrophages M2. Moreover, the risk model could affect the IC50 of 12 cancer drugs, including Lapatinib, Bicalutamide, and Embelin. Finally, qRT-PCR showed that APOE, EME2, and DNAH8 were highly expressed in PCa, while KIF5A was downregulated in PCa. Collectively, a mitochondrial respiratory gene-based nomogram including four genes and one clinical feature was established for BCR prediction in patients with PCa, which could provide novel strategies for further studies.
Collapse
|
33
|
Iskrzak J, Zygmunciak P, Misiewicz-Krzemińska I, Puła B. Extracellular Vesicles in Multiple Myeloma-Cracking the Code to a Better Understanding of the Disease. Cancers (Basel) 2022; 14:cancers14225575. [PMID: 36428668 PMCID: PMC9688731 DOI: 10.3390/cancers14225575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Multiple myeloma (MM) is a plasma cell-derived malignancy that stands for around 1.5% of newly discovered cancer cases. Despite constantly improving treatment methods, the disease is incurable with over 13,000 deaths in the US and over 30,000 in Europe. Recent studies suggest that extracellular vesicles (EVs) might play a significant role in the pathogenesis and evolution of MM. Further investigation of their role could prove to be beneficial in establishing new therapies and hence, improve the prognosis of MM patients. What is more, EVs might serve as novel markers in diagnosing and monitoring the disease. Great advancements concerning the position of EVs in the pathophysiology of MM have recently been shown in research and in this review, we would like to delve into the still expanding state of knowledge.
Collapse
Affiliation(s)
- Justyna Iskrzak
- Medical University of Warsaw, 02-091 Warsaw, Poland
- Institute of Hematology and Transfusion Medicine, Indira Gandhi Str. 14, 02-776 Warsaw, Poland
| | - Przemysław Zygmunciak
- Medical University of Warsaw, 02-091 Warsaw, Poland
- Institute of Hematology and Transfusion Medicine, Indira Gandhi Str. 14, 02-776 Warsaw, Poland
| | - Irena Misiewicz-Krzemińska
- Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Chocimska Str. 5, 00-791 Warsaw, Poland
| | - Bartosz Puła
- Department of Hematology, Institute of Hematology and Transfusion Medicine, Indira Gandhi Str. 14, 02-776 Warsaw, Poland
- Correspondence: ; Tel.: +48-223-496-302; Fax: +48-223-496-335
| |
Collapse
|
34
|
Pauk M, Saito H, Hesse E, Taipaleenmäki H. Muscle and Bone Defects in Metastatic Disease. Curr Osteoporos Rep 2022; 20:273-289. [PMID: 35994202 PMCID: PMC9522697 DOI: 10.1007/s11914-022-00741-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/25/2022] [Indexed: 11/30/2022]
Abstract
PURPOSE OF REVIEW The present review addresses most recently identified mechanisms implicated in metastasis-induced bone resorption and muscle-wasting syndrome, known as cachexia. RECENT FINDINGS Metastatic disease in bone and soft tissues is often associated with skeletal muscle defects. Recent studies have identified a number of secreted molecules and extracellular vesicles that contribute to cancer cell growth and metastasis leading to bone destruction and muscle atrophy. In addition, alterations in muscle microenvironment including dysfunctions in hepatic and mitochondrial metabolism have been implicated in cancer-induced regeneration defect and muscle loss. Moreover, we review novel in vitro and animal models including promising new drug candidates for bone metastases and cancer cachexia. Preservation of bone health could be highly beneficial for maintaining muscle mass and function. Therefore, a better understanding of molecular pathways implicated in bone and muscle crosstalk in metastatic disease may provide new insights and identify new strategies to improve current anticancer therapeutics.
Collapse
Affiliation(s)
- Martina Pauk
- Institute of Musculoskeletal Medicine, University Hospital, LMU Munich, Munich, Germany
- Musculoskeletal University Center Munich, University Hospital, LMU Munich, Munich, Germany
| | - Hiroaki Saito
- Institute of Musculoskeletal Medicine, University Hospital, LMU Munich, Munich, Germany
- Musculoskeletal University Center Munich, University Hospital, LMU Munich, Munich, Germany
| | - Eric Hesse
- Institute of Musculoskeletal Medicine, University Hospital, LMU Munich, Munich, Germany
- Musculoskeletal University Center Munich, University Hospital, LMU Munich, Munich, Germany
| | - Hanna Taipaleenmäki
- Institute of Musculoskeletal Medicine, University Hospital, LMU Munich, Munich, Germany.
- Musculoskeletal University Center Munich, University Hospital, LMU Munich, Munich, Germany.
| |
Collapse
|
35
|
Lucotti S, Kenific CM, Zhang H, Lyden D. Extracellular vesicles and particles impact the systemic landscape of cancer. EMBO J 2022; 41:e109288. [PMID: 36052513 PMCID: PMC9475536 DOI: 10.15252/embj.2021109288] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 02/16/2022] [Accepted: 03/23/2022] [Indexed: 11/09/2022] Open
Abstract
Intercellular cross talk between cancer cells and stromal and immune cells is essential for tumor progression and metastasis. Extracellular vesicles and particles (EVPs) are a heterogeneous class of secreted messengers that carry bioactive molecules and that have been shown to be crucial for this cell-cell communication. Here, we highlight the multifaceted roles of EVPs in cancer. Functionally, transfer of EVP cargo between cells influences tumor cell growth and invasion, alters immune cell composition and function, and contributes to stromal cell activation. These EVP-mediated changes impact local tumor progression, foster cultivation of pre-metastatic niches at distant organ-specific sites, and mediate systemic effects of cancer. Furthermore, we discuss how exploiting the highly selective enrichment of molecules within EVPs has profound implications for advancing diagnostic and prognostic biomarker development and for improving therapy delivery in cancer patients. Altogether, these investigations into the role of EVPs in cancer have led to discoveries that hold great promise for improving cancer patient care and outcome.
Collapse
Affiliation(s)
- Serena Lucotti
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer CenterWeill Cornell MedicineNew YorkNYUSA
| | - Candia M Kenific
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer CenterWeill Cornell MedicineNew YorkNYUSA
| | - Haiying Zhang
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer CenterWeill Cornell MedicineNew YorkNYUSA
| | - David Lyden
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer CenterWeill Cornell MedicineNew YorkNYUSA
| |
Collapse
|
36
|
Viktorsson K, Hååg P, Shah CH, Franzén B, Arapi V, Holmsten K, Sandström P, Lewensohn R, Ullén A. Profiling of extracellular vesicles of metastatic urothelial cancer patients to discover protein signatures related to treatment outcome. Mol Oncol 2022; 16:3620-3641. [PMID: 35838333 PMCID: PMC9580890 DOI: 10.1002/1878-0261.13288] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 05/21/2022] [Accepted: 07/13/2022] [Indexed: 11/19/2022] Open
Abstract
The prognosis of metastatic urothelial carcinoma (mUC) patients is poor, and early prediction of systemic therapy response would be valuable to improve outcome. In this exploratory study, we investigated protein profiles in sequential plasma‐isolated extracellular vesicles (EVs) from a subset of mUC patients treated within a Phase I trial with vinflunine combined with sorafenib. The isolated EVs were of exosome size and expressed exosome markers CD9, TSG101 and SYND‐1. We found, no association between EVs/ml plasma at baseline and progression‐free survival (PFS). Protein profiling of EVs, using an antibody‐based 92‐plex Proximity Extension Assay on the Oncology II® platform, revealed a heterogeneous protein expression pattern. Qlucore bioinformatic analyses put forward a protein signature comprising of SYND‐1, TNFSF13, FGF‐BP1, TFPI‐2, GZMH, ABL1 and ERBB3 to be putatively associated with PFS. Similarly, a protein signature from EVs that related to best treatment response was found, which included FR‐alpha, TLR 3, TRAIL and FASLG. Several of the markers in the PFS or best treatment response signatures were also identified by a machine learning classification algorithm. In conclusion, protein profiling of EVs isolated from plasma of mUC patients shows a potential to identify protein signatures that may associate with PFS and/or treatment response.
Collapse
Affiliation(s)
- Kristina Viktorsson
- Department of Oncology-Pathology, Karolinska Institutet, SE-171 64, Solna, Sweden
| | - Petra Hååg
- Department of Oncology-Pathology, Karolinska Institutet, SE-171 64, Solna, Sweden
| | - Carl-Henrik Shah
- Department of Oncology-Pathology, Karolinska Institutet, SE-171 64, Solna, Sweden.,Department of Pelvic cancer, Genitourinary oncology and urology unit, Karolinska University Hospital, SE-171 64, Solna, Sweden
| | - Bo Franzén
- Department of Oncology-Pathology, Karolinska Institutet, SE-171 64, Solna, Sweden
| | - Vasiliki Arapi
- Department of Oncology-Pathology, Karolinska Institutet, SE-171 64, Solna, Sweden
| | - Karin Holmsten
- Department of Oncology-Pathology, Karolinska Institutet, SE-171 64, Solna, Sweden.,Department of Oncology, Capio Sankt Görans Hospital, SE-112 19, Stockholm, Sweden
| | - Per Sandström
- Department of Oncology-Pathology, Karolinska Institutet, SE-171 64, Solna, Sweden
| | - Rolf Lewensohn
- Department of Oncology-Pathology, Karolinska Institutet, SE-171 64, Solna, Sweden.,Theme Cancer, Medical Unit head and neck, lung, and skin tumors, Thoracic Oncology Center, Karolinska University Hospital, SE-171 64, Solna, Sweden
| | - Anders Ullén
- Department of Oncology-Pathology, Karolinska Institutet, SE-171 64, Solna, Sweden.,Department of Pelvic cancer, Genitourinary oncology and urology unit, Karolinska University Hospital, SE-171 64, Solna, Sweden
| |
Collapse
|
37
|
Lu T, Zhang Z, Zhang J, Pan X, Zhu X, Wang X, Li Z, Ruan M, Li H, Chen W, Yan M. CD73 in small extracellular vesicles derived from HNSCC defines tumour-associated immunosuppression mediated by macrophages in the microenvironment. J Extracell Vesicles 2022; 11:e12218. [PMID: 35524455 PMCID: PMC9077142 DOI: 10.1002/jev2.12218] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 03/21/2022] [Accepted: 03/29/2022] [Indexed: 12/20/2022] Open
Abstract
Research on tumour cell‐derived small extracellular vesicles (sEVs) that regulate tumour microenvironment (TME) has provided strategies for targeted therapy of head and neck squamous cell carcinoma (HNSCC). Herein, we demonstrated that sEVs derived from HNSCC cancer cells carried CD73 (sEVsCD73), which promoted malignant progression and mediated immune evasion. The sEVsCD73 phagocytosed by tumour‐associated macrophages (TAMs) in the TME induced immunosuppression. Higher CD73high TAMs infiltration levels in the HNSCC microenvironment were correlated with poorer prognosis, while sEVsCD73 activated the NF‐κB pathway in TAMs, thereby inhibiting immune function by increasing cytokines secretion such as IL‐6, IL‐10, TNF‐α, and TGF‐β1. The absence of sEVsCD73 enhanced the sensitivity of anti‐PD‐1 therapy through reversed immunosuppression. Moreover, circulating sEVsCD73 increased the risk of lymph node metastasis and worse prognosis. Taken together, our study suggests that sEVsCD73 derived from tumour cells contributes to immunosuppression and is a potential predictor of anti‐PD‐1 responses for immune checkpoint therapy in HNSCC.
Collapse
Affiliation(s)
- Tingwei Lu
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhen Zhang
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianjun Zhang
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinhua Pan
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xueqin Zhu
- Department of Pediatric Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xu Wang
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhihui Li
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Ruan
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huasheng Li
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wantao Chen
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ming Yan
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
38
|
Granata V, Crisafulli L, Nastasi C, Ficara F, Sobacchi C. Bone Marrow Niches and Tumour Cells: Lights and Shadows of a Mutual Relationship. Front Immunol 2022; 13:884024. [PMID: 35603212 PMCID: PMC9121377 DOI: 10.3389/fimmu.2022.884024] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/12/2022] [Indexed: 12/23/2022] Open
Abstract
The bone marrow (BM) niche is the spatial structure within the intra-trabecular spaces of spongious bones and of the cavity of long bones where adult haematopoietic stem cells (HSCs) maintain their undifferentiated and cellular self-renewal state through the intervention of vascular and nervous networks, metabolic pathways, transcriptional and epigenetic regulators, and humoral signals. Within the niche, HSCs interact with various cell types such as osteoblasts, endothelial cells, macrophages, and mesenchymal stromal cells (MSCs), which maintain HSCs in a quiescent state or sustain their proliferation, differentiation, and trafficking, depending on body needs. In physiological conditions, the BM niche permits the daily production of all the blood and immune cells and their admittance/ingress/progression into the bloodstream. However, disruption of this delicate microenvironment promotes the initiation and progression of malignancies such as those included in the spectrum of myeloid neoplasms, also favouring resistance to pharmacological therapies. Alterations in the MSC population and in the crosstalk with HSCs owing to tumour-derived factors contribute to the formation of a malignant niche. On the other hand, cells of the BM microenvironment cooperate in creating a unique milieu favouring metastasization of distant tumours into the bone. In this framework, the pro-tumorigenic role of MSCs is well-documented, and few evidence suggest also an anti-tumorigenic effect. Here we will review recent advances regarding the BM niche composition and functionality in normal and in malignant conditions, as well as the therapeutic implications of the interplay between its diverse cellular components and malignant cells.
Collapse
Affiliation(s)
- Valentina Granata
- IRCCS Humanitas Research Hospital, Milan, Italy
- Milan Unit, CNR-IRGB, Milan, Italy
| | - Laura Crisafulli
- IRCCS Humanitas Research Hospital, Milan, Italy
- Milan Unit, CNR-IRGB, Milan, Italy
| | - Claudia Nastasi
- Laboratory of Cancer Pharmacology, Department of Oncology, IRCCS Mario Negri Pharmacological Research Institute, Milan, Italy
| | - Francesca Ficara
- IRCCS Humanitas Research Hospital, Milan, Italy
- Milan Unit, CNR-IRGB, Milan, Italy
| | - Cristina Sobacchi
- IRCCS Humanitas Research Hospital, Milan, Italy
- Milan Unit, CNR-IRGB, Milan, Italy
- *Correspondence: Cristina Sobacchi,
| |
Collapse
|
39
|
Xu Y, Ge Y, Chen X, Zhang Y, Chen H, Liu D, Lu Y, Liu Y, Tu W. Hypoxic Cell-Derived Extracellular Vesicles Aggravate Rectal Injury Following Radiotherapy via MiR-122-5p. Front Cell Dev Biol 2022; 10:892575. [PMID: 35557942 PMCID: PMC9086396 DOI: 10.3389/fcell.2022.892575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/08/2022] [Indexed: 11/17/2022] Open
Abstract
Radiation-induced rectal injury is a common side effect of radiotherapy. Hypoxia often occurs after radiotherapy. This study aimed to explore the bystander effect of hypoxia on radiation-induced rectal injury. In vivo, apoptosis increased nearby the highly hypoxic area in the rectal tissues in the mouse models of radiation-induced rectal injury, indicating the potential involvement of hypoxia. In vitro, flow cytometry and Western blotting showed that both hypoxia and hypoxic human intestinal epithelial crypt (HIEC) cell supernatant promoted apoptosis in normoxic HIEC cells. The pro-apoptotic effect of extracellular vesicles (EVs) derived from hypoxic HIEC cell to normoxic HIEC cells was then determined. MiR-122-5p was chosen for further studies through a microRNA (miRNA) microarray assay and apoptosis was alleviated in cells receiving miR-122-5p inhibiting hypoxic EVs. Together, our study demonstrated that the miR-122-5p containing-EVs derived from hypoxic HIEC cells promoted apoptosis in normoxic HIEC cells. Hypoxic EV-derived miR-122-5p plays a critical pathologic role in radiation-induced rectal injury and may be a potential therapeutic target.
Collapse
Affiliation(s)
- Yiqing Xu
- Department of Radiation Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yulong Ge
- Department of Radiation Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuming Chen
- Department of Radiation Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingzi Zhang
- Department of Radiation Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huanliang Chen
- Department of Radiation Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dongli Liu
- Department of Radiation Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yue Lu
- Department of Radiotherapy, Huangpu Branch of the Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Yue Lu, ; Yong Liu, ; Wenzhi Tu,
| | - Yong Liu
- Department of Radiation Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Yue Lu, ; Yong Liu, ; Wenzhi Tu,
| | - Wenzhi Tu
- Department of Radiation Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Yue Lu, ; Yong Liu, ; Wenzhi Tu,
| |
Collapse
|
40
|
Kang J, La Manna F, Bonollo F, Sampson N, Alberts IL, Mingels C, Afshar-Oromieh A, Thalmann GN, Karkampouna S. Tumor microenvironment mechanisms and bone metastatic disease progression of prostate cancer. Cancer Lett 2022; 530:156-169. [PMID: 35051532 DOI: 10.1016/j.canlet.2022.01.015] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 01/02/2022] [Accepted: 01/13/2022] [Indexed: 12/14/2022]
Abstract
During disease progression from primary towards metastatic prostate cancer (PCa), and in particular bone metastases, the tumor microenvironment (TME) evolves in parallel with the cancer clones, altering extracellular matrix composition (ECM), vasculature architecture, and recruiting specialized tumor-supporting cells that favor tumor spread and colonization at distant sites. We introduce the clinical profile of advanced metastatic PCa in terms of common genetic alterations. Findings from recently developed models of PCa metastatic spread are discussed, focusing mainly on the role of the TME (mainly matrix and fibroblast cell types), at distinct stages: premetastatic niche orchestrated by the primary tumor towards the metastatic site and bone metastasis. We report evidence of premetastatic niche formation, such as the mechanisms of distant site conditioning by extracellular vesicles, chemokines and other tumor-derived mechanisms, including altered cancer cell-ECM interactions. Furthermore, evidence supporting the similarities of stroma alterations among the primary PCa and bone metastasis, and contribution of TME to androgen deprivation therapy resistance are also discussed. We summarize the available bone metastasis transgenic mouse models of PCa from a perspective of pro-metastatic TME alterations during disease progression and give an update on the current diagnostic and therapeutic radiological strategies for bone metastasis clinical management.
Collapse
Affiliation(s)
- Juening Kang
- Department for BioMedical Research, Urology Research Laboratory, University of Bern, Bern, Switzerland
| | - Federico La Manna
- Department for BioMedical Research, Urology Research Laboratory, University of Bern, Bern, Switzerland
| | - Francesco Bonollo
- Department for BioMedical Research, Urology Research Laboratory, University of Bern, Bern, Switzerland
| | - Natalie Sampson
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Ian L Alberts
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Clemens Mingels
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Ali Afshar-Oromieh
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - George N Thalmann
- Department for BioMedical Research, Urology Research Laboratory, University of Bern, Bern, Switzerland; Department of Urology, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Sofia Karkampouna
- Department for BioMedical Research, Urology Research Laboratory, University of Bern, Bern, Switzerland.
| |
Collapse
|
41
|
FT-IR Spectral Signature of Sensitive and Multidrug-Resistant Osteosarcoma Cell-Derived Extracellular Nanovesicles. Cells 2022; 11:cells11050778. [PMID: 35269400 PMCID: PMC8909163 DOI: 10.3390/cells11050778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/16/2022] [Accepted: 02/21/2022] [Indexed: 02/07/2023] Open
Abstract
Osteosarcoma (OS) is the most common primary bone cancer in children and adolescents. Despite aggressive treatment regimens, the outcome is unsatisfactory, and multidrug resistance (MDR) is a pivotal process in OS treatment failure. OS-derived extracellular vesicles (EVs) promote drug resistance to chemotherapy and target therapy through different mechanisms. The aim of this study was to identify subpopulations of osteosarcoma-EVs by Fourier transform infrared spectroscopy (FT-IR) to define a specific spectral signature for sensitive and multidrug-resistant OS-derived EVs. EVs were isolated from sensitive and MDR OS cells as well as from mesenchymal stem cells by differential centrifugation and ultracentrifugation. EVs size, morphology and protein expression were characterized. FT-IR/ATR of EVs spectra were acquired in the region of 400–4000 cm−1 (resolution 4 cm−1, 128 scans). The FT-IR spectra obtained were consistently different in the EVs compared to cells from which they originate. A specific spectral signature, characterized by a shift and a new band (1601 cm−1), permitted to clearly distinguish EVs isolated by sensitive and multidrug-resistant OS cells. Our data suggest that FT-IR spectroscopy allows to characterize and define a specific spectral signature for sensitive and MDR OS-derived EVs.
Collapse
|
42
|
Belliveau J, Papoutsakis ET. Extracellular Vesicles Facilitate Large-Scale Dynamic Exchange of Proteins and RNA Among Cultured Chinese Hamster Ovary (CHO) and Human Cells. Biotechnol Bioeng 2022; 119:1222-1238. [PMID: 35120270 DOI: 10.1002/bit.28053] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 01/31/2022] [Indexed: 11/11/2022]
Abstract
Cells in culture are viewed as unique individuals in a large population communicating through extracellular molecules and, more recently extracellular vesicles (EVs). Our data here paint a different picture: large-scale exchange of cellular material through EVs. To visualize the dynamic production and cellular uptake of EVs, we used correlative confocal microscopy and scanning electron microscopy, as well as flow cytometry to interrogate labeled cells. Using cells expressing fluorescent proteins (GFP, miRFP703) and cells tagged with protein and RNA dyes, we show that Chinese Hamster Ovary (CHO) cells dynamically produce and uptake EVs to exchange proteins and RNAs at a large scale. Applying a simple model to our data, we estimate, for the first time, the per cell specific rates of EV production (68 and 203 microparticles and exosomes, respectively, per day). This EV-mediated massive exchange of cellular material observed in CHO cultures was also observed in cultured human CHRF-288-11 and primary hematopoietic stem and progenitor cells. This study demonstrates an underappreciated massive protein and RNA exchange between cells mediated by EVs spanning cell type, suggesting that the proximity of cells in normal and tumor tissues may also result in prolific exchange of cellular material. This exchange would be expected to homogenize the cell-population cytosol and dynamically regulate cell proliferation and the cellular state. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jessica Belliveau
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, 19711.,Delaware Biotechnology Institute,, University of Delaware, Newark, DE, 19711
| | - Eleftherios T Papoutsakis
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, 19711.,Delaware Biotechnology Institute,, University of Delaware, Newark, DE, 19711.,Department of Biological Sciences, University of Delaware, Newark, DE, 19711
| |
Collapse
|
43
|
Ramirez-Garrastacho M, Bajo-Santos C, Line A, Martens-Uzunova ES, de la Fuente JM, Moros M, Soekmadji C, Tasken KA, Llorente A. Extracellular vesicles as a source of prostate cancer biomarkers in liquid biopsies: a decade of research. Br J Cancer 2022; 126:331-350. [PMID: 34811504 PMCID: PMC8810769 DOI: 10.1038/s41416-021-01610-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 01/02/2023] Open
Abstract
Prostate cancer is a global cancer burden and considerable effort has been made through the years to identify biomarkers for the disease. Approximately a decade ago, the potential of analysing extracellular vesicles in liquid biopsies started to be envisaged. This was the beginning of a new exciting area of research investigating the rich molecular treasure found in extracellular vesicles to identify biomarkers for a variety of diseases. Vesicles released from prostate cancer cells and cells of the tumour microenvironment carry molecular information about the disease that can be analysed in several biological fluids. Numerous studies document the interest of researchers in this field of research. However, methodological issues such as the isolation of vesicles have been challenging. Remarkably, novel technologies, including those based on nanotechnology, show promise for the further development and clinical use of extracellular vesicles as liquid biomarkers. Development of biomarkers is a long and complicated process, and there are still not many biomarkers based on extracellular vesicles in clinical use. However, the knowledge acquired during the last decade constitutes a solid basis for the future development of liquid biopsy tests for prostate cancer. These are urgently needed to bring prostate cancer treatment to the next level in precision medicine.
Collapse
Affiliation(s)
- Manuel Ramirez-Garrastacho
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | | | - Aija Line
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Elena S Martens-Uzunova
- Erasmus MC Cancer Institute, University Medical Center Rotterdam, Department of Urology, Laboratory of Experimental Urology, Erasmus MC, Rotterdam, The Netherlands
| | - Jesus Martinez de la Fuente
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Maria Moros
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Carolina Soekmadji
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Kristin Austlid Tasken
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Alicia Llorente
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.
- Department for Mechanical, Electronics and Chemical Engineering, Oslo Metropolitan University, Oslo, Norway.
| |
Collapse
|
44
|
Han M, Pang B, Zhou C, Li X, Wang Q, Jiang J, Li Y. Liquid biopsy of extracellular vesicle biomarkers for prostate cancer personalized treatment decision. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2022; 3:3-9. [PMID: 39697872 PMCID: PMC11648516 DOI: 10.20517/evcna.2021.20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/20/2021] [Accepted: 01/04/2022] [Indexed: 12/20/2024]
Abstract
Liquid biopsy of tumor-derived extracellular vesicles (EVs) has great potential as a biomarker source for prostate cancer (CaP) early diagnosis and predicting the stages of cancer. The contents of EVs play an important role in intercellular communication and have specific expression in blood and urine samples from CaP patients. Powered by high-throughput, next-generation sequencing and proteomic technologies, novel EV biomarkers are easily detected in a non-invasive manner in different stages of CaP patients. These identified potential biomarkers can be further validated with a large sample size, machine learning model, and other different methods to improve the sensitivity and specificity of CaP diagnosis. The EV-based liquid biopsy is a novel and less-invasive alternative to surgical biopsies which would enable clinicians to potentially discover a whole picture of tumor through a simple blood or urine sample. In summary, this approach holds promise for developing personalized medicine to guide treatment decisions precisely for CaP patients.
Collapse
Affiliation(s)
- Meng Han
- Translational Research Laboratory for Urology, the Key Laboratory of Ningbo City, Ningbo First Hospital, The Affiliated Hospital of Ningbo University, Ningbo 315600, Zhejiang, China
- Ningbo Clinical Research Center for Urological Disease, Ningbo 315600, Zhejiang, China
| | - Bairen Pang
- St George and Sutherland Clinical School, Faculty of Medicine, UNSW Sydney, Kensington, NSW 2052, Australia
- Cancer Care Centre, St. George Hospital, Kogarah, NSW 2217, Australia
| | - Cheng Zhou
- Translational Research Laboratory for Urology, the Key Laboratory of Ningbo City, Ningbo First Hospital, The Affiliated Hospital of Ningbo University, Ningbo 315600, Zhejiang, China
- Ningbo Clinical Research Center for Urological Disease, Ningbo 315600, Zhejiang, China
| | - Xin Li
- Translational Research Laboratory for Urology, the Key Laboratory of Ningbo City, Ningbo First Hospital, The Affiliated Hospital of Ningbo University, Ningbo 315600, Zhejiang, China
- Ningbo Clinical Research Center for Urological Disease, Ningbo 315600, Zhejiang, China
| | - Qi Wang
- St George and Sutherland Clinical School, Faculty of Medicine, UNSW Sydney, Kensington, NSW 2052, Australia
- Cancer Care Centre, St. George Hospital, Kogarah, NSW 2217, Australia
| | - Junhui Jiang
- Translational Research Laboratory for Urology, the Key Laboratory of Ningbo City, Ningbo First Hospital, The Affiliated Hospital of Ningbo University, Ningbo 315600, Zhejiang, China
- Ningbo Clinical Research Center for Urological Disease, Ningbo 315600, Zhejiang, China
| | - Yong Li
- St George and Sutherland Clinical School, Faculty of Medicine, UNSW Sydney, Kensington, NSW 2052, Australia
- Cancer Care Centre, St. George Hospital, Kogarah, NSW 2217, Australia
| |
Collapse
|
45
|
Anti-Cancer Role and Therapeutic Potential of Extracellular Vesicles. Cancers (Basel) 2021; 13:cancers13246303. [PMID: 34944923 PMCID: PMC8699603 DOI: 10.3390/cancers13246303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/02/2021] [Accepted: 12/11/2021] [Indexed: 02/07/2023] Open
Abstract
Cell-cell communication is an important mechanism in biological processes. Extracellular vesicles (EVs), also referred to as exosomes, microvesicles, and prostasomes, are microvesicles secreted by a variety of cells. EVs are nanometer-scale vesicles composed of a lipid bilayer and contain biological functional molecules, such as microRNAs (miRNAs), mRNAs, and proteins. In this review, "EVs" is used as a comprehensive term for vesicles that are secreted from cells. EV research has been developing over the last four decades. Many studies have suggested that EVs play a crucial role in cell-cell communication. Importantly, EVs contribute to cancer malignancy mechanisms such as carcinogenesis, proliferation, angiogenesis, metastasis, and escape from the immune system. EVs derived from cancer cells and their microenvironments are diverse, change in nature depending on the condition. As EVs are thought to be secreted into body fluids, they have the potential to serve as diagnostic markers for liquid biopsy. In addition, cells can encapsulate functional molecules in EVs. Hence, the characteristics of EVs make them suitable for use in drug delivery systems and novel cancer treatments. In this review, the potential of EVs as anti-cancer therapeutics is discussed.
Collapse
|
46
|
Dong Q, Liu X, Cheng K, Sheng J, Kong J, Liu T. Pre-metastatic Niche Formation in Different Organs Induced by Tumor Extracellular Vesicles. Front Cell Dev Biol 2021; 9:733627. [PMID: 34616739 PMCID: PMC8489591 DOI: 10.3389/fcell.2021.733627] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/01/2021] [Indexed: 12/11/2022] Open
Abstract
Primary tumors selectively modify the microenvironment of distant organs such as the lung, liver, brain, bone marrow, and lymph nodes to facilitate metastasis. This supportive metastatic microenvironment in distant organs was termed the pre-metastatic niche (PMN) that is characterized by increased vascular permeability, extracellular matrix remodeling, bone marrow-derived cells recruitment, angiogenesis, and immunosuppression. Extracellular vesicles (EVs) are a group of cell-derived membranous structures that carry various functional molecules. EVs play a critical role in PMN formation by delivering their cargos to recipient cells in target organs. We provide an overview of the characteristics of the PMN in different organs promoted by cancer EVs and the underlying mechanisms in this review.
Collapse
Affiliation(s)
- Qi Dong
- Department of Basic Science of Stomatology, Shanghai Stomatological Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, China.,Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian, China
| | - Xue Liu
- Department of Basic Science of Stomatology, Shanghai Stomatological Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, China
| | - Ke Cheng
- Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian, China
| | - Jiahao Sheng
- Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian, China
| | - Jing Kong
- Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian, China
| | - Tingjiao Liu
- Department of Basic Science of Stomatology, Shanghai Stomatological Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, China
| |
Collapse
|
47
|
Abstract
Prostate cancer (PCa) is the second most common cancer among men in the United States. While the use of prostate-specific antigen has improved the ability to screen and ultimately diagnose PCa, there still remain false positives due to noncancerous conditions in the prostate gland itself and other prognostic biomarkers for PCa are needed. Contents within extracellular vesicles (EVs) have emerged as promising biomarkers that can give valuable information about disease state, and have the additional benefit of being acquired through noninvasive liquid biopsies. Meaningful communication between cancer cells and the microenvironment are carried by EVs, which impact important cellular processes in prostate cancer such as metastasis, immune regulation, and drug resistance.
Collapse
Affiliation(s)
- Megan Ludwig
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Rhea Rajvansh
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA
- Eastview High School, Apple Valley, MN 55124, USA
| | - Justin M Drake
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Urology, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
48
|
Chen S, Jiang T, Lin H, Chen J, Yang S, Wang P, Gan X, Wang Y, Xu B, Sun J, Yin C, Huang Z, Fang Y. Fast and Ultrasensitive Visual Detection of Exosomes in Body Fluids for Point-of-Care Disease Diagnosis. Anal Chem 2021; 93:10372-10377. [PMID: 34254785 DOI: 10.1021/acs.analchem.1c02136] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Fast detection of low-concentration exosomes in body fluids is of great significance in understanding the pathogenesis and disease diagnosis but is quite a challenging work due to the complex matrix, tedious pretreatment, and relatively poor sensitivity without the aid of instruments. In this work, by simply using a filter membrane to enrich the exosomes at low concentrations and the use of CuS nanoparticles as labels, we were able to detect exosomes at concentrations as low as 2 × 103 particles/μL in a complex matrix by the naked eye. Due to its high sensitivity, specificity, and simplicity, it can be used for the diagnosis of direct prostate cancer via a 5 mL urine sample within 2 h without the use of any instrument. This method can also be applicable for the detection of other biological nanoparticles, such as viruses, at low concentrations in a complex matrix, offering a promising candidate for point-of-care disease diagnosis with low cost.
Collapse
Affiliation(s)
- Shan Chen
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, Jiangsu, China.,Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences, Key Laboratory for Protected Agricultural Engineering in the Middle and Lower Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs, Nanjing 210014, Jiangsu, China
| | - Tao Jiang
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Hao Lin
- Department of Clinical Science and Research, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu, China
| | - Junyan Chen
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Shuangli Yang
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Pengcheng Wang
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Xinqiang Gan
- Department of Urology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu, China
| | - Yali Wang
- Department of Urology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu, China
| | - Bin Xu
- Department of Urology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu, China
| | - Junjie Sun
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Congcong Yin
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Zongxiong Huang
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Yimin Fang
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| |
Collapse
|
49
|
Akoto T, Saini S. Role of Exosomes in Prostate Cancer Metastasis. Int J Mol Sci 2021; 22:3528. [PMID: 33805398 PMCID: PMC8036381 DOI: 10.3390/ijms22073528] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/22/2021] [Accepted: 03/26/2021] [Indexed: 02/06/2023] Open
Abstract
Prostate cancer remains a life-threatening disease among men worldwide. The majority of PCa-related mortality results from metastatic disease that is characterized by metastasis of prostate tumor cells to various distant organs, such as lung, liver, and bone. Bone metastasis is most common in prostate cancer with osteoblastic and osteolytic lesions. The precise mechanisms underlying PCa metastasis are still being delineated. Intercellular communication is a key feature underlying prostate cancer progression and metastasis. There exists local signaling between prostate cancer cells and cells within the primary tumor microenvironment (TME), in addition to long range signaling wherein tumor cells communicate with sites of future metastases to promote the formation of pre-metastatic niches (PMN) to augment the growth of disseminated tumor cells upon metastasis. Over the last decade, exosomes/ extracellular vesicles have been demonstrated to be involved in such signaling. Exosomes are nanosized extracellular vesicles (EVs), between 30 and 150 nm in thickness, that originate and are released from cells after multivesicular bodies (MVB) fuse with the plasma membrane. These vesicles consist of lipid bilayer membrane enclosing a cargo of biomolecules, including proteins, lipids, RNA, and DNA. Exosomes mediate intercellular communication by transferring their cargo to recipient cells to modulate target cellular functions. In this review, we discuss the contribution of exosomes/extracellular vesicles in prostate cancer progression, in pre-metastatic niche establishment, and in organ-specific metastases. In addition, we briefly discuss the clinical significance of exosomes as biomarkers and therapeutic agents.
Collapse
Affiliation(s)
- Theresa Akoto
- Department of Cellular Biology and Anatomy, Augusta University, Augusta, GA 30912, USA;
| | - Sharanjot Saini
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
50
|
Wang M, Zhao X, Huang F, Wang L, Huang J, Gong Z, Yu W. Exosomal proteins: Key players mediating pre‑metastatic niche formation and clinical implications (Review). Int J Oncol 2021; 58:4. [PMID: 33649844 DOI: 10.3892/ijo.2021.5184] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/11/2021] [Indexed: 02/07/2023] Open
Abstract
Tumor metastasis is a destructive characteristic of malignant tumors and the fundamental reason why malignant tumors are difficult to cure. The concept of a pre‑metastatic niche (PMN) provides a novel way to elucidate the molecular mechanism of tumor metastasis. At present, the PMN has been considered as a critical determinant priming distal sites for metastasis. Accumulating evidence has suggested that exosomes are cellular communicators serving a pivotal role in mediating tumor cell metastasis by establishing the PMN. Among exosomal cargos, non‑coding RNAs and proteins are two commonly studied components; however, the latter has received less attention. The present review aimed to summarize the findings regarding cargo proteins selectively loaded in malignant tumor‑derived exosomes. Metastasis‑associated proteins have been demonstrated to be selectively enriched in malignant tumor‑derived exosomes. Exosomal proteins promote PMN formation to mediate the site‑specific metastasis of tumor cells by inducing lymphangiogenesis, angiogenesis and permeability, educating stromal cells, remodeling the extracellular matrix, and suppressing the antitumor immune response. These exosomal proteins have great potential in predicting organ‑directed metastasis and prognosis, as well as in cancer therapy.
Collapse
Affiliation(s)
- Mei Wang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Xinxin Zhao
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Feng Huang
- Department of Clinical Laboratory, The First People's Hospital of Kunshan Affiliated to Jiangsu University, Suzhou, Jiangsu 215300, P.R. China
| | - Lin Wang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Jiaying Huang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Zheng Gong
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Wanjun Yu
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| |
Collapse
|