1
|
Jürgens KJ, Drechsler M, Paululat A. An anatomical atlas of Drosophila melanogaster-the wild-type. Genetics 2024; 228:iyae129. [PMID: 39240573 PMCID: PMC11457947 DOI: 10.1093/genetics/iyae129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/18/2024] [Indexed: 09/07/2024] Open
Abstract
Scanning electron microscopy is the method of choice to visualize the surface structures of animals, fungi, plants, or inorganic objects at the highest resolution and often with impressive appeal. Numerous scanning electron microscope (SEM) images exist of Drosophila melanogaster, one of the most important model organisms in genetics and developmental biology, which have been taken partly for esthetics and often to solve scientific questions. Our work presents a collection of images comprising many prominent anatomical details of D. melanogaster in excellent quality to create a research and teaching resource for all Drosophilists.
Collapse
Affiliation(s)
- Kai J Jürgens
- Department of Zoology and Developmental Biology, Osnabrück University, Osnabrück 49076, Germany
| | - Maik Drechsler
- Department of Zoology and Developmental Biology, Osnabrück University, Osnabrück 49076, Germany
- Center of Cellular Nanoanalytics (CellNanOS), Osnabrück University, Osnabrück 49076, Germany
| | - Achim Paululat
- Department of Zoology and Developmental Biology, Osnabrück University, Osnabrück 49076, Germany
- Center of Cellular Nanoanalytics (CellNanOS), Osnabrück University, Osnabrück 49076, Germany
| |
Collapse
|
2
|
Teeters G, Weasner BM, Ordway AJ, Weasner BP, Kumar JP. Control of fate specification within the dorsal head of Drosophila melanogaster. Development 2024; 151:dev199885. [PMID: 39190554 PMCID: PMC11385744 DOI: 10.1242/dev.199885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 07/11/2024] [Indexed: 08/29/2024]
Abstract
During development, unique combinations of transcription factors and signaling pathways carve the nascent eye-antennal disc of the fruit fly Drosophila melanogaster into several territories that will eventually develop into the compound eye, ocelli, head epidermis, bristles, antenna and maxillary palpus of the adult head. Juxtaposed patterns of Hedgehog (Hh) and Decapentaplegic (Dpp) initiate compound eye development, while reciprocal domains of Dpp and Wingless (Wg) induce formation of the antennal and maxillary palp fields. Hh and Wg signaling, but not Dpp, contribute to the patterning of the dorsal head vertex. Here, we show that combinatorial reductions of the Pax6 transcription factor Twin of Eyeless and either the Wg pathway or the Mirror (Mirr) transcription factor trigger a transformation of the ocelli into a compound eye and the neighboring head epidermis into an antenna. These changes in fate are accompanied by the ectopic expression of Dpp, which might be expected to trigger these changes in fate. However, the transformation of the field cannot be replicated by increasing Dpp levels alone despite the recreation of adjacent Hh-Dpp and Wg-Dpp domains. As such, the emergence of these ectopic organs occurs through a unique regulatory path.
Collapse
Affiliation(s)
- Gary Teeters
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Bonnie M. Weasner
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Alison J. Ordway
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | | - Justin P. Kumar
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
3
|
Zhang T, Zhou Q, Jusić N, Lu W, Pignoni F, Neal SJ. Mitf, with Yki and STRIPAK-PP2A, is a key determinant of form and fate in the progenitor epithelium of the Drosophila eye. Eur J Cell Biol 2024; 103:151421. [PMID: 38776620 PMCID: PMC11229422 DOI: 10.1016/j.ejcb.2024.151421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/30/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024] Open
Abstract
The Microphthalmia-associated Transcription Factor (MITF) governs numerous cellular and developmental processes. In mice, it promotes specification and differentiation of the retinal pigmented epithelium (RPE), and in humans, some mutations in MITF induce congenital eye malformations. Herein, we explore the function and regulation of Mitf in Drosophila eye development and uncover two roles. We find that knockdown of Mitf results in retinal displacement (RDis), a phenotype associated with abnormal eye formation. Mitf functions in the peripodial epithelium (PE), a retinal support tissue akin to the RPE, to suppress RDis, via the Hippo pathway effector Yorkie (Yki). Yki physically interacts with Mitf and can modify its transcriptional activity in vitro. Severe loss of Mitf, instead, results in the de-repression of retinogenesis in the PE, precluding its development. This activity of Mitf requires the protein phosphatase 2 A holoenzyme STRIPAK-PP2A, but not Yki; Mitf transcriptional activity is potentiated by STRIPAK-PP2A in vitro and in vivo. Knockdown of STRIPAK-PP2A results in cytoplasmic retention of Mitf in vivo and in its decreased stability in vitro, highlighting two potential mechanisms for the control of Mitf function by STRIPAK-PP2A. Thus, Mitf functions in a context-dependent manner as a key determinant of form and fate in the Drosophila eye progenitor epithelium.
Collapse
Affiliation(s)
- Tianyi Zhang
- Department of Neuroscience & Physiology, Upstate Medical University, 505 Irving Avenue, NRB 4601, Syracuse, NY 13210, USA
| | - Qingxiang Zhou
- Department of Neuroscience & Physiology, Upstate Medical University, 505 Irving Avenue, NRB 4601, Syracuse, NY 13210, USA
| | - Nisveta Jusić
- Department of Neuroscience & Physiology, Upstate Medical University, 505 Irving Avenue, NRB 4601, Syracuse, NY 13210, USA
| | - Wenwen Lu
- Department of Neuroscience & Physiology, Upstate Medical University, 505 Irving Avenue, NRB 4601, Syracuse, NY 13210, USA
| | - Francesca Pignoni
- Department of Neuroscience & Physiology, Upstate Medical University, 505 Irving Avenue, NRB 4601, Syracuse, NY 13210, USA; Department of Ophthalmology and Visual Sciences; Department of Biochemistry and Molecular Biology; Department of Cell and Developmental Biology, USA.
| | - Scott J Neal
- Department of Neuroscience & Physiology, Upstate Medical University, 505 Irving Avenue, NRB 4601, Syracuse, NY 13210, USA.
| |
Collapse
|
4
|
Warren J, Kumar JP. Patterning of the Drosophila retina by the morphogenetic furrow. Front Cell Dev Biol 2023; 11:1151348. [PMID: 37091979 PMCID: PMC10117938 DOI: 10.3389/fcell.2023.1151348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/23/2023] [Indexed: 04/25/2023] Open
Abstract
Pattern formation is the process by which cells within a homogeneous epithelial sheet acquire distinctive fates depending upon their relative spatial position to each other. Several proposals, starting with Alan Turing's diffusion-reaction model, have been put forth over the last 70 years to describe how periodic patterns like those of vertebrate somites and skin hairs, mammalian molars, fish scales, and avian feather buds emerge during development. One of the best experimental systems for testing said models and identifying the gene regulatory networks that control pattern formation is the compound eye of the fruit fly, Drosophila melanogaster. Its cellular morphogenesis has been extensively studied for more than a century and hundreds of mutants that affect its development have been isolated. In this review we will focus on the morphogenetic furrow, a wave of differentiation that takes an initially homogeneous sheet of cells and converts it into an ordered array of unit eyes or ommatidia. Since the discovery of the furrow in 1976, positive and negative acting morphogens have been thought to be solely responsible for propagating the movement of the furrow across a motionless field of cells. However, a recent study has challenged this model and instead proposed that mechanical driven cell flow also contributes to retinal pattern formation. We will discuss both models and their impact on patterning.
Collapse
Affiliation(s)
| | - Justin P. Kumar
- Department of Biology, Indiana University, Bloomington, IN, United States
| |
Collapse
|
5
|
Struhl G. Segmental origins of the Drosophila eye-antennal disc: fission not fusion. Genetics 2023; 223:iyac168. [PMID: 36370072 PMCID: PMC9836018 DOI: 10.1093/genetics/iyac168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 09/09/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Gary Struhl
- Department of Genetics and Development, Columbia University, New York, NY 10027, USA
| |
Collapse
|
6
|
Singh A, Yeates C, Deshpande P, Kango-Singh M. Signaling interactions among neurons impact cell fitness and death in Alzheimer’s disease. Neural Regen Res 2023; 18:784-789. [DOI: 10.4103/1673-5374.354516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
7
|
Mishra AK, Sprecher SG. Eye Development in Drosophila : From Photoreceptor Specification to Terminal Differentiation. Neurogenetics 2023. [DOI: 10.1007/978-3-031-07793-7_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
8
|
Jean‐Guillaume CB, Kumar JP. Development of the ocellar visual system in Drosophila melanogaster. FEBS J 2022; 289:7411-7427. [PMID: 35490409 PMCID: PMC9805374 DOI: 10.1111/febs.16468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/28/2022] [Accepted: 04/29/2022] [Indexed: 01/14/2023]
Abstract
The adult visual system of the fruit fly, Drosophila melanogaster, contains seven eyes-two compound eyes, a pair of Hofbauer-Buchner eyelets, and three ocelli. Each of these eye types has a specialized and essential role to play in visual and/or circadian behavior. As such, understanding how each is specified, patterned, and wired is of primary importance to vision biologists. Since the fruit fly is amenable to manipulation by an enormous array of genetic and molecular tools, its development is one of the best and most studied model systems. After more than a century of experimental investigations, our understanding of how each eye type is specified and patterned is grossly uneven. The compound eye has been the subject of several thousand studies; thus, our knowledge of its development is the deepest. By comparison, very little is known about the specification and patterning of the other two visual systems. In this Viewpoint article, we will describe what is known about the function and development of the Drosophila ocelli.
Collapse
|
9
|
Tissue dissociation for single-cell and single-nuclei RNA sequencing for low amounts of input material. Front Zool 2022; 19:27. [DOI: 10.1186/s12983-022-00472-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 10/27/2022] [Indexed: 11/15/2022] Open
Abstract
Abstract
Background
Recent technological advances opened the opportunity to simultaneously study gene expression for thousands of individual cells on a genome-wide scale. The experimental accessibility of such single-cell RNA sequencing (scRNAseq) approaches allowed gaining insights into the cell type composition of heterogeneous tissue samples of animal model systems and emerging models alike. A major prerequisite for a successful application of the method is the dissociation of complex tissues into individual cells, which often requires large amounts of input material and harsh mechanical, chemical and temperature conditions. However, the availability of tissue material may be limited for small animals, specific organs, certain developmental stages or if samples need to be acquired from collected specimens. Therefore, we evaluated different dissociation protocols to obtain single cells from small tissue samples of Drosophila melanogaster eye-antennal imaginal discs.
Results
We show that a combination of mechanical and chemical dissociation resulted in sufficient high-quality cells. As an alternative, we tested protocols for the isolation of single nuclei, which turned out to be highly efficient for fresh and frozen tissue samples. Eventually, we performed scRNAseq and single-nuclei RNA sequencing (snRNAseq) to show that the best protocols for both methods successfully identified relevant cell types. At the same time, snRNAseq resulted in less artificial gene expression that is caused by rather harsh dissociation conditions needed to obtain single cells for scRNAseq. A direct comparison of scRNAseq and snRNAseq data revealed that both datasets share biologically relevant genes among the most variable genes, and we showed differences in the relative contribution of the two approaches to identified cell types.
Conclusion
We present two dissociation protocols that allow isolating single cells and single nuclei, respectively, from low input material. Both protocols resulted in extraction of high-quality RNA for subsequent scRNAseq or snRNAseq applications. If tissue availability is limited, we recommend the snRNAseq procedure of fresh or frozen tissue samples as it is perfectly suited to obtain thorough insights into cellular diversity of complex tissue.
Collapse
|
10
|
Weasner BP, Kumar JP. The early history of the eye-antennal disc of Drosophila melanogaster. Genetics 2022; 221:6573236. [PMID: 35460415 PMCID: PMC9071535 DOI: 10.1093/genetics/iyac041] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 03/04/2022] [Indexed: 12/15/2022] Open
Abstract
A pair of eye-antennal imaginal discs give rise to nearly all external structures of the adult Drosophila head including the compound eyes, ocelli, antennae, maxillary palps, head epidermis, and bristles. In the earliest days of Drosophila research, investigators would examine thousands of adult flies in search of viable mutants whose appearance deviated from the norm. The compound eyes are dispensable for viability and perturbations to their structure are easy to detect. As such, the adult compound eye and the developing eye-antennal disc emerged as focal points for studies of genetics and developmental biology. Since few tools were available at the time, early researchers put an enormous amount of thought into models that would explain their experimental observations-many of these hypotheses remain to be tested. However, these "ancient" studies have been lost to time and are no longer read or incorporated into today's literature despite the abundance of field-defining discoveries that are contained therein. In this FlyBook chapter, I will bring these forgotten classics together and draw connections between them and modern studies of tissue specification and patterning. In doing so, I hope to bring a larger appreciation of the contributions that the eye-antennal disc has made to our understanding of development as well as draw the readers' attention to the earliest studies of this important imaginal disc. Armed with the today's toolkit of sophisticated genetic and molecular methods and using the old papers as a guide, we can use the eye-antennal disc to unravel the mysteries of development.
Collapse
Affiliation(s)
- Brandon P Weasner
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Justin P Kumar
- Department of Biology, Indiana University, Bloomington, IN 47405, USA,Corresponding author: Department of Biology, Indiana University, Bloomington, IN 47405, USA.
| |
Collapse
|
11
|
Polidori C, Piwczynski M, Ronchetti F, Johnston NP, Szpila K. Host-trailing satellite flight behaviour is associated with greater investment in peripheral visual sensory system in miltogrammine flies. Sci Rep 2022; 12:2773. [PMID: 35177753 PMCID: PMC8854417 DOI: 10.1038/s41598-022-06704-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 02/02/2022] [Indexed: 11/24/2022] Open
Abstract
Insect sensory systems are the subjects of different selective pressures that shape their morphology. In many species of the flesh fly subfamily Miltogramminae (Diptera: Sarcophagidae) that are kleptoparasitic on bees and wasps, females perch on objects close to the host nests and, once a returning host is detected, they follow it in flight at a fixed distance behind until reaching the nest. We hypothesized that such satellite (SAT) flight behaviour, which implies a finely coordinated trailing flight, is associated with an improved visual system, compared to species adopting other, non-satellite (NON-SAT) strategies. After looking at body size and common ancestry, we found that SAT species have a greater number of ommatidia and a greater eye surface area when compared to NON-SAT species. Ommatidium area is only affected by body size, suggesting that selection changes disproportionately (relative to body size variation) the number of ommatidia and as a consequence the eye area, instead of ommatidium size. SAT species also tend to have larger ocelli, but their role in host-finding was less clear. This suggests that SAT species may have a higher visual acuity by increasing ommatidia number, as well as better stability during flight and motion perception through larger ocelli. Interestingly, antennal length was significantly reduced in SAT species, and ommatidia number negatively correlated with antennal length. While this finding does not imply a selection pressure of improved antennal sensory system in species adopting NON-SAT strategies, it suggests an inverse resource (i.e. a single imaginal disc) allocation between eyes and antennae in this fly subfamily.
Collapse
Affiliation(s)
- Carlo Polidori
- Dipartimento di Scienze e Politiche Ambientali, Università Degli Studi di Milano, via Celoria 26, 20133, Milan, Italy.
| | - Marcin Piwczynski
- Department of Ecology and Biogeography, Nicolaus Copernicus University, Lwowska 1, 87-100, Toruń, Poland
| | - Federico Ronchetti
- Department of Animal Ecology and Tropical Biology, University of Wuerzburg, Hubland Nord, 97074, Würzburg, Germany
| | - Nikolas P Johnston
- School of Life Sciences, University of Technology Sydney, 15 Broadway, Ultimo, NSW, 2007, Australia
| | - Krzysztof Szpila
- Department of Ecology and Biogeography, Nicolaus Copernicus University, Lwowska 1, 87-100, Toruń, Poland
| |
Collapse
|
12
|
Weasner BM, Kumar JP. The timing of cell fate decisions is crucial for initiating pattern formation in the Drosophila eye. Development 2022; 149:274084. [PMID: 35072208 PMCID: PMC8917411 DOI: 10.1242/dev.199634] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 12/09/2021] [Indexed: 01/26/2023]
Abstract
The eye-antennal disc of Drosophila is composed of three cell layers: a columnar epithelium called the disc proper (DP); an overlying sheet of squamous cells called the peripodial epithelium (PE); and a strip of cuboidal cells that joins the other two cellular sheets to each other and comprises the outer margin (M) of the disc. The M cells play an important role in patterning the eye because it is here that the Hedgehog (Hh), Decapentaplegic (Dpp) and JAK/STAT pathways function to initiate pattern formation. Dpp signaling is lost from the margin of eyes absent (eya) mutant discs and, as a result, the initiation of retinal patterning is blocked. Based on these observations, Eya has been proposed to control the initiation of the morphogenetic furrow via regulation of Dpp signaling within the M. We show that the failure in pattern formation surprisingly results from M cells prematurely adopting a head epidermis fate. This switch in fate normally takes place during pupal development after the eye has been patterned. Our results suggest that the timing of cell fate decisions is essential for correct eye development.
Collapse
|
13
|
Mehta AS, Deshpande P, Chimata AV, Tsonis PA, Singh A. Newt regeneration genes regulate Wingless signaling to restore patterning in Drosophila eye. iScience 2021; 24:103166. [PMID: 34746690 PMCID: PMC8551474 DOI: 10.1016/j.isci.2021.103166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/02/2021] [Accepted: 09/21/2021] [Indexed: 12/21/2022] Open
Abstract
Newts utilize their unique genes to restore missing parts by strategic regulation of conserved signaling pathways. Lack of genetic tools poses challenges to determine the function of such genes. Therefore, we used the Drosophila eye model to demonstrate the potential of 5 unique newt (Notophthalmus viridescens) gene(s), viropana1-viropana5 (vna1-vna5), which were ectopically expressed in L 2 mutant and GMR-hid, GMR-GAL4 eye. L 2 exhibits the loss of ventral half of early eye and head involution defective (hid) triggers cell-death during later eye development. Surprisingly, newt genes significantly restore missing photoreceptor cells both in L 2 and GMR>hid background by upregulating cell-proliferation and blocking cell-death, regulating evolutionarily conserved Wingless (Wg)/Wnt signaling pathway and exhibit non-cell-autonomous rescues. Further, Wg/Wnt signaling acts downstream of newt genes. Our data highlights that unique newt proteins can regulate conserved pathways to trigger a robust restoration of missing photoreceptor cells in Drosophila eye model with weak restoration capability.
Collapse
Affiliation(s)
| | | | | | | | - Amit Singh
- Department of Biology, University of Dayton, Dayton, OH 45469, USA
- Premedical Program, University of Dayton, Dayton, USA
- Center for Tissue Regeneration and Engineering at Dayton (TREND), University of Dayton, Dayton, USA
- The Integrative Science and Engineering Center, University of Dayton, Dayton, OH 45469, USA
- Center for Genomic Advocacy (TCGA), Indiana State University, Terre Haute, IN, USA
| |
Collapse
|
14
|
Koch S, Tahara R, Vasquez-Correa A, Abouheif E. Nano-CT imaging of larvae in the ant Pheidole hyatti reveals coordinated growth of a rudimentary organ necessary for soldier development. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2021; 336:540-553. [PMID: 34549874 DOI: 10.1002/jez.b.23097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 08/05/2021] [Accepted: 09/02/2021] [Indexed: 11/09/2022]
Abstract
The growth of imaginal discs in holometabolous insects is coordinated with larval growth to ensure the symmetrical and proportional development of the adult appendages. In ants, the differential growth of these discs generates distinct castes-the winged male and queen castes and the wingless worker caste. In the hyperdiverse ant genus Pheidole, the worker caste is composed of two morphologically distinct subcastes: small-headed minor workers and larger, big-headed, soldiers. Although these worker subcastes are completely wingless, soldier larvae develop rudimentary forewing discs that function in generating the disproportionate head-to-body scaling and size of soldiers. It remains unclear, however, how rudimentary forewing discs in soldier larvae are coordinated with other imaginal discs. Here we show, using quantitative nano-CT imaging and three-dimensional analyses, that the increase in the volume of the soldier rudimentary forewing discs is coordinated with larval size as well as with the increase in the volume of the leg and eye-antennal (head) discs. However, relative to larval size, we found that when the rudimentary forewing discs appear during the last larval instar, they are relatively smaller but increase in volume faster than that of the head (eye-antennal) and leg discs. These findings show that the rudimentary wing disc in soldier larvae has evolved novel patterns of inter-organ coordination as compared with other insects to generate the big-headed soldier caste in Pheidole. More generally, our study raises the possibility that novel patterns of inter-organ coordination are a general feature of rudimentary organs that acquire novel regulatory functions during development and evolution.
Collapse
Affiliation(s)
- Sophie Koch
- Department of Biology, McGill University, Montréal, Quebec, Canada
| | - Rui Tahara
- Department of Biology, McGill University, Montréal, Quebec, Canada
| | | | - Ehab Abouheif
- Department of Biology, McGill University, Montréal, Quebec, Canada
| |
Collapse
|
15
|
Trebels B, Dippel S, Goetz B, Graebner M, Hofmann C, Hofmann F, Schmid FR, Uhl M, Vuong MP, Weber V, Schachtner J. Metamorphic development of the olfactory system in the red flour beetle (Tribolium castaneum, HERBST). BMC Biol 2021; 19:155. [PMID: 34330268 PMCID: PMC8323255 DOI: 10.1186/s12915-021-01055-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 05/25/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Insects depend on their olfactory sense as a vital system. Olfactory cues are processed by a rather complex system and translated into various types of behavior. In holometabolous insects like the red flour beetle Tribolium castaneum, the nervous system typically undergoes considerable remodeling during metamorphosis. This process includes the integration of new neurons, as well as remodeling and elimination of larval neurons. RESULTS We find that the sensory neurons of the larval antennae are reused in the adult antennae. Further, the larval antennal lobe gets transformed into its adult version. The beetle's larval antennal lobe is already glomerularly structured, but its glomeruli dissolve in the last larval stage. However, the axons of the olfactory sensory neurons remain within the antennal lobe volume. The glomeruli of the adult antennal lobe then form from mid-metamorphosis independently of the presence of a functional OR/Orco complex but mature dependent on the latter during a postmetamorphic phase. CONCLUSIONS We provide insights into the metamorphic development of the red flour beetle's olfactory system and compared it to data on Drosophila melanogaster, Manduca sexta, and Apis mellifera. The comparison revealed that some aspects, such as the formation of the antennal lobe's adult glomeruli at mid-metamorphosis, are common, while others like the development of sensory appendages or the role of Orco seemingly differ.
Collapse
Affiliation(s)
- Björn Trebels
- Department of Biology, Animal Physiology, Philipps-University Marburg, Karl-von-Frisch-Str. 8, 35032 Marburg, Germany
| | - Stefan Dippel
- Department of Biology, Animal Physiology, Philipps-University Marburg, Karl-von-Frisch-Str. 8, 35032 Marburg, Germany
| | - Brigitte Goetz
- Department of Biology, Animal Physiology, Philipps-University Marburg, Karl-von-Frisch-Str. 8, 35032 Marburg, Germany
| | - Maria Graebner
- Department of Biology, Animal Physiology, Philipps-University Marburg, Karl-von-Frisch-Str. 8, 35032 Marburg, Germany
| | - Carolin Hofmann
- Department of Biology, Animal Physiology, Philipps-University Marburg, Karl-von-Frisch-Str. 8, 35032 Marburg, Germany
| | - Florian Hofmann
- Department of Biology, Animal Physiology, Philipps-University Marburg, Karl-von-Frisch-Str. 8, 35032 Marburg, Germany
| | - Freya-Rebecca Schmid
- Department of Biology, Animal Physiology, Philipps-University Marburg, Karl-von-Frisch-Str. 8, 35032 Marburg, Germany
| | - Mara Uhl
- Department of Biology, Animal Physiology, Philipps-University Marburg, Karl-von-Frisch-Str. 8, 35032 Marburg, Germany
| | - Minh-Phung Vuong
- Department of Biology, Animal Physiology, Philipps-University Marburg, Karl-von-Frisch-Str. 8, 35032 Marburg, Germany
| | - Vanessa Weber
- Department of Biology, Animal Physiology, Philipps-University Marburg, Karl-von-Frisch-Str. 8, 35032 Marburg, Germany
| | - Joachim Schachtner
- Department of Biology, Animal Physiology, Philipps-University Marburg, Karl-von-Frisch-Str. 8, 35032 Marburg, Germany
- Clausthal University of Technology, Adolph-Roemer-Str. 2a, 38678 Clausthal-Zellerfeld, Germany
| |
Collapse
|
16
|
Buchberger E, Bilen A, Ayaz S, Salamanca D, Matas de las Heras C, Niksic A, Almudi I, Torres-Oliva M, Casares F, Posnien N. Variation in Pleiotropic Hub Gene Expression Is Associated with Interspecific Differences in Head Shape and Eye Size in Drosophila. Mol Biol Evol 2021; 38:1924-1942. [PMID: 33386848 PMCID: PMC8097299 DOI: 10.1093/molbev/msaa335] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Revealing the mechanisms underlying the breathtaking morphological diversity observed in nature is a major challenge in Biology. It has been established that recurrent mutations in hotspot genes cause the repeated evolution of morphological traits, such as body pigmentation or the gain and loss of structures. To date, however, it remains elusive whether hotspot genes contribute to natural variation in the size and shape of organs. As natural variation in head morphology is pervasive in Drosophila, we studied the molecular and developmental basis of differences in compound eye size and head shape in two closely related Drosophila species. We show differences in the progression of retinal differentiation between species and we applied comparative transcriptomics and chromatin accessibility data to identify the GATA transcription factor Pannier (Pnr) as central factor associated with these differences. Although the genetic manipulation of Pnr affected multiple aspects of dorsal head development, the effect of natural variation is restricted to a subset of the phenotypic space. We present data suggesting that this developmental constraint is caused by the coevolution of expression of pnr and its cofactor u-shaped (ush). We propose that natural variation in expression or function of highly connected developmental regulators with pleiotropic functions is a major driver for morphological evolution and we discuss implications on gene regulatory network evolution. In comparison to previous findings, our data strongly suggest that evolutionary hotspots are not the only contributors to the repeated evolution of eye size and head shape in Drosophila.
Collapse
Affiliation(s)
- Elisa Buchberger
- Department of Developmental Biology, University of Göttingen, Göttingen, Germany
| | - Anıl Bilen
- Department of Developmental Biology, University of Göttingen, Göttingen, Germany
| | - Sanem Ayaz
- Department of Developmental Biology, University of Göttingen, Göttingen, Germany
| | - David Salamanca
- Department of Developmental Biology, University of Göttingen, Göttingen, Germany
- Present address: Department of Integrative Zoology, University of Vienna, Vienna, Austria
| | | | - Armin Niksic
- Department of Developmental Biology, University of Göttingen, Göttingen, Germany
| | - Isabel Almudi
- CABD (CSIC/UPO/JA), DMC2 Unit, Pablo de Olavide University Campus, Seville, Spain
| | - Montserrat Torres-Oliva
- Department of Developmental Biology, University of Göttingen, Göttingen, Germany
- Present address: Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Fernando Casares
- CABD (CSIC/UPO/JA), DMC2 Unit, Pablo de Olavide University Campus, Seville, Spain
| | - Nico Posnien
- Department of Developmental Biology, University of Göttingen, Göttingen, Germany
- Corresponding author: E-mail:
| |
Collapse
|
17
|
Estella C, Baonza A. Cell proliferation control by Notch signalling during imaginal discs development in Drosophila. AIMS GENETICS 2021. [DOI: 10.3934/genet.2015.1.70] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
AbstractThe Notch signalling pathway is evolutionary conserved and participates in numerous developmental processes, including the control of cell proliferation. However, Notch signalling can promote or restrain cell division depending on the developmental context, as has been observed in human cancer where Notch can function as a tumor suppressor or an oncogene. Thus, the outcome of Notch signalling can be influenced by the cross-talk between Notch and other signalling pathways. The use of model organisms such as Drosophila has been proven to be very valuable to understand the developmental role of the Notch pathway in different tissues and its relationship with other signalling pathways during cell proliferation control. Here we review recent studies in Drosophila that shed light in the developmental control of cell proliferation by the Notch pathway in different contexts such as the eye, wing and leg imaginal discs. We also discuss the autonomous and non-autonomous effects of the Notch pathway on cell proliferation and its interactions with different signalling pathways.
Collapse
Affiliation(s)
- Carlos Estella
- Departamento de Biología Molecular and Centro de Biología Molecular SeveroOchoa, Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Antonio Baonza
- Centro de Biología Molecular Severo Ochoa (CSIC/UAM) c/Nicolás Cabrera 1, 28049, Madrid, Spain
| |
Collapse
|
18
|
Ordway AJ, Teeters GM, Weasner BM, Weasner BP, Policastro R, Kumar JP. A multi-gene knockdown approach reveals a new role for Pax6 in controlling organ number in Drosophila. Development 2021; 148:dev198796. [PMID: 33982759 PMCID: PMC8172120 DOI: 10.1242/dev.198796] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 04/07/2021] [Indexed: 11/20/2022]
Abstract
Genetic screens are designed to target individual genes for the practical reason of establishing a clear association between a mutant phenotype and a single genetic locus. This allows for a developmental or physiological role to be assigned to the wild-type gene. We previously observed that the concurrent loss of Pax6 and Polycomb epigenetic repressors in Drosophila leads the eye to transform into a wing. This fate change is not seen when either factor is disrupted separately. An implication of this finding is that standard screens may miss the roles that combinations of genes play in development. Here, we show that this phenomenon is not limited to Pax6 and Polycomb but rather applies more generally. We demonstrate that in the Drosophila eye-antennal disc, the simultaneous downregulation of Pax6 with either the NURF nucleosome remodeling complex or the Pointed transcription factor transforms the head epidermis into an antenna. This is a previously unidentified fate change that is also not observed with the loss of individual genes. We propose that the use of multi-gene knockdowns is an essential tool for unraveling the complexity of development.
Collapse
Affiliation(s)
| | | | | | | | | | - Justin P. Kumar
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
19
|
DeAngelis MW, Coolon JD, Johnson RI. Comparative transcriptome analyses of the Drosophila pupal eye. G3-GENES GENOMES GENETICS 2021; 11:5995320. [PMID: 33561221 PMCID: PMC8043229 DOI: 10.1093/g3journal/jkaa003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/08/2020] [Indexed: 12/04/2022]
Abstract
Tissue function is dependent on correct cellular organization and behavior. As a result, the identification and study of genes that contribute to tissue morphogenesis is of paramount importance to the fields of cell and developmental biology. Many of the genes required for tissue patterning and organization are highly conserved between phyla. This has led to the emergence of several model organisms and developmental systems that are used to study tissue morphogenesis. One such model is the Drosophila melanogaster pupal eye that has a highly stereotyped arrangement of cells. In addition, the pupal eye is postmitotic that allows for the study of tissue morphogenesis independent from any effects of proliferation. While the changes in cell morphology and organization that occur throughout pupal eye development are well documented, less is known about the corresponding transcriptional changes that choreograph these processes. To identify these transcriptional changes, we dissected wild-type Canton S pupal eyes and performed RNA-sequencing. Our analyses identified differential expression of many loci that are documented regulators of pupal eye morphogenesis and contribute to multiple biological processes including signaling, axon projection, adhesion, and cell survival. We also identified differential expression of genes not previously implicated in pupal eye morphogenesis such as components of the Toll pathway, several non-classical cadherins, and components of the muscle sarcomere, which could suggest these loci function as novel patterning factors.
Collapse
Affiliation(s)
- Miles W DeAngelis
- Department of Biology, Wesleyan University, 52 Lawn Avenue, Middletown, CT 06459, USA
| | - Joseph D Coolon
- Department of Biology, Wesleyan University, 52 Lawn Avenue, Middletown, CT 06459, USA
| | - Ruth I Johnson
- Department of Biology, Wesleyan University, 52 Lawn Avenue, Middletown, CT 06459, USA
| |
Collapse
|
20
|
Tremblay CS, Chiu SK, Saw J, McCalmont H, Litalien V, Boyle J, Sonderegger SE, Chau N, Evans K, Cerruti L, Salmon JM, McCluskey A, Lock RB, Robinson PJ, Jane SM, Curtis DJ. Small molecule inhibition of Dynamin-dependent endocytosis targets multiple niche signals and impairs leukemia stem cells. Nat Commun 2020; 11:6211. [PMID: 33277497 PMCID: PMC7719179 DOI: 10.1038/s41467-020-20091-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 11/09/2020] [Indexed: 02/07/2023] Open
Abstract
Intensive chemotherapy for acute leukemia can usually induce complete remission, but fails in many patients to eradicate the leukemia stem cells responsible for relapse. There is accumulating evidence that these relapse-inducing cells are maintained and protected by signals provided by the microenvironment. Thus, inhibition of niche signals is a proposed strategy to target leukemia stem cells but this requires knowledge of the critical signals and may be subject to compensatory mechanisms. Signals from the niche require receptor-mediated endocytosis, a generic process dependent on the Dynamin family of large GTPases. Here, we show that Dynole 34-2, a potent inhibitor of Dynamin GTPase activity, can block transduction of key signalling pathways and overcome chemoresistance of leukemia stem cells. Our results provide a significant conceptual advance in therapeutic strategies for acute leukemia that may be applicable to other malignancies in which signals from the niche are involved in disease progression and chemoresistance. The tumour microenvironment provides signals to support leukaemic stem cells (LSC) maintenance and chemoresistance. Here, the authors show that disrupting niche-associated signalling by inhibiting receptor-mediated endocytosis with a dynamin GTPase inhibitor overcomes chemoresistance of LSC.
Collapse
Affiliation(s)
- Cedric S Tremblay
- Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, VIC, Australia.
| | - Sung Kai Chiu
- Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, VIC, Australia.,Department of Clinical Haematology, Alfred Health, Melbourne, VIC, Australia
| | - Jesslyn Saw
- Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Hannah McCalmont
- Lowy Cancer Research Centre, Children's Cancer Institute, University of New South Wales, Sydney, NSW, Australia
| | - Veronique Litalien
- Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Jacqueline Boyle
- Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Stefan E Sonderegger
- Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Ngoc Chau
- Cell Signalling Unit, Children's Medical Research Institute, Sydney, NSW, Australia
| | - Kathryn Evans
- Lowy Cancer Research Centre, Children's Cancer Institute, University of New South Wales, Sydney, NSW, Australia
| | - Loretta Cerruti
- Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Jessica M Salmon
- Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Adam McCluskey
- Chemistry, Centre for Chemical Biology, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
| | - Richard B Lock
- Lowy Cancer Research Centre, Children's Cancer Institute, University of New South Wales, Sydney, NSW, Australia
| | - Phillip J Robinson
- Cell Signalling Unit, Children's Medical Research Institute, Sydney, NSW, Australia
| | - Stephen M Jane
- Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, VIC, Australia.,Department of Clinical Haematology, Alfred Health, Melbourne, VIC, Australia
| | - David J Curtis
- Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, VIC, Australia.,Department of Clinical Haematology, Alfred Health, Melbourne, VIC, Australia
| |
Collapse
|
21
|
A network of transcriptional repressors modulates auxin responses. Nature 2020; 589:116-119. [PMID: 33208947 DOI: 10.1038/s41586-020-2940-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 09/04/2020] [Indexed: 11/08/2022]
Abstract
The regulation of signalling capacity, combined with the spatiotemporal distribution of developmental signals themselves, is pivotal in setting developmental responses in both plants and animals1. The hormone auxin is a key signal for plant growth and development that acts through the AUXIN RESPONSE FACTOR (ARF) transcription factors2-4. A subset of these, the conserved class A ARFs5, are transcriptional activators of auxin-responsive target genes that are essential for regulating auxin signalling throughout the plant lifecycle2,3. Although class A ARFs have tissue-specific expression patterns, how their expression is regulated is unknown. Here we show, by investigating chromatin modifications and accessibility, that loci encoding these proteins are constitutively open for transcription. Through yeast one-hybrid screening, we identify the transcriptional regulators of the genes encoding class A ARFs from Arabidopsis thaliana and demonstrate that each gene is controlled by specific sets of transcriptional regulators. Transient transformation assays and expression analyses in mutants reveal that, in planta, the majority of these regulators repress the transcription of genes encoding class A ARFs. These observations support a scenario in which the default configuration of open chromatin enables a network of transcriptional repressors to regulate expression levels of class A ARF proteins and modulate auxin signalling output throughout development.
Collapse
|
22
|
Mazzotta GM, Damulewicz M, Cusumano P. Better Sleep at Night: How Light Influences Sleep in Drosophila. Front Physiol 2020; 11:997. [PMID: 33013437 PMCID: PMC7498665 DOI: 10.3389/fphys.2020.00997] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/22/2020] [Indexed: 01/25/2023] Open
Abstract
Sleep-like states have been described in Drosophila and the mechanisms and factors that generate and define sleep-wake profiles in this model organism are being thoroughly investigated. Sleep is controlled by both circadian and homeostatic mechanisms, and environmental factors such as light, temperature, and social stimuli are fundamental in shaping and confining sleep episodes into the correct time of the day. Among environmental cues, light seems to have a prominent function in modulating the timing of sleep during the 24 h and, in this review, we will discuss the role of light inputs in modulating the distribution of the fly sleep-wake cycles. This phenomenon is of growing interest in the modern society, where artificial light exposure during the night is a common trait, opening the possibility to study Drosophila as a model organism for investigating shift-work disorders.
Collapse
Affiliation(s)
| | - Milena Damulewicz
- Department of Cell Biology and Imaging, Jagiellonian University, Kraków, Poland
| | - Paola Cusumano
- Department of Biology, University of Padova, Padua, Italy
| |
Collapse
|
23
|
Reis M, Wiegleb G, Claude J, Lata R, Horchler B, Ha NT, Reimer C, Vieira CP, Vieira J, Posnien N. Multiple loci linked to inversions are associated with eye size variation in species of the Drosophila virilis phylad. Sci Rep 2020; 10:12832. [PMID: 32732947 PMCID: PMC7393161 DOI: 10.1038/s41598-020-69719-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/14/2020] [Indexed: 11/26/2022] Open
Abstract
The size and shape of organs is tightly controlled to achieve optimal function. Natural morphological variations often represent functional adaptations to an ever-changing environment. For instance, variation in head morphology is pervasive in insects and the underlying molecular basis is starting to be revealed in the Drosophila genus for species of the melanogaster group. However, it remains unclear whether similar diversifications are governed by similar or different molecular mechanisms over longer timescales. To address this issue, we used species of the virilis phylad because they have been diverging from D. melanogaster for at least 40 million years. Our comprehensive morphological survey revealed remarkable differences in eye size and head shape among these species with D. novamexicana having the smallest eyes and southern D. americana populations having the largest eyes. We show that the genetic architecture underlying eye size variation is complex with multiple associated genetic variants located on most chromosomes. Our genome wide association study (GWAS) strongly suggests that some of the putative causative variants are associated with the presence of inversions. Indeed, northern populations of D. americana share derived inversions with D. novamexicana and they show smaller eyes compared to southern ones. Intriguingly, we observed a significant enrichment of genes involved in eye development on the 4th chromosome after intersecting chromosomal regions associated with phenotypic differences with those showing high differentiation among D. americana populations. We propose that variants associated with chromosomal inversions contribute to both intra- and interspecific variation in eye size among species of the virilis phylad.
Collapse
Affiliation(s)
- Micael Reis
- Department of Developmental Biology, Göttingen Center for Molecular Biosciences (GZMB), University of Goettingen, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany
| | - Gordon Wiegleb
- Department of Developmental Biology, Göttingen Center for Molecular Biosciences (GZMB), University of Goettingen, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany.,International Max Planck Research School for Genome Science, Am Fassberg 11, 37077, Göttingen, Germany
| | - Julien Claude
- Institut Des Sciences de l'Evolution de Montpellier, CNRS/UM2/IRD, 2 Place Eugène Bataillon, cc64, 34095, Montpellier Cedex 5, France
| | - Rodrigo Lata
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Britta Horchler
- Department of Developmental Biology, Göttingen Center for Molecular Biosciences (GZMB), University of Goettingen, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany
| | - Ngoc-Thuy Ha
- Animal Breeding and Genetics Group, Department of Animal Sciences, University of Goettingen, Albrecht-Thaer-Weg 3, 37075, Göttingen, Germany.,Center for Integrated Breeding Research, University of Goettingen, Albrecht-Thaer-Weg 3, 37075, Göttingen, Germany
| | - Christian Reimer
- Animal Breeding and Genetics Group, Department of Animal Sciences, University of Goettingen, Albrecht-Thaer-Weg 3, 37075, Göttingen, Germany.,Center for Integrated Breeding Research, University of Goettingen, Albrecht-Thaer-Weg 3, 37075, Göttingen, Germany
| | - Cristina P Vieira
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Jorge Vieira
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Nico Posnien
- Department of Developmental Biology, Göttingen Center for Molecular Biosciences (GZMB), University of Goettingen, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany.
| |
Collapse
|
24
|
Pavani G, Laurent M, Fabiano A, Cantelli E, Sakkal A, Corre G, Lenting PJ, Concordet JP, Toueille M, Miccio A, Amendola M. Ex vivo editing of human hematopoietic stem cells for erythroid expression of therapeutic proteins. Nat Commun 2020; 11:3778. [PMID: 32728076 PMCID: PMC7391635 DOI: 10.1038/s41467-020-17552-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 07/06/2020] [Indexed: 11/30/2022] Open
Abstract
Targeted genome editing has a great therapeutic potential to treat disorders that require protein replacement therapy. To develop a platform independent of specific patient mutations, therapeutic transgenes can be inserted in a safe and highly transcribed locus to maximize protein expression. Here, we describe an ex vivo editing approach to achieve efficient gene targeting in human hematopoietic stem/progenitor cells (HSPCs) and robust expression of clinically relevant proteins by the erythroid lineage. Using CRISPR-Cas9, we integrate different transgenes under the transcriptional control of the endogenous α-globin promoter, recapitulating its high and erythroid-specific expression. Erythroblasts derived from targeted HSPCs secrete different therapeutic proteins, which retain enzymatic activity and cross-correct patients’ cells. Moreover, modified HSPCs maintain long-term repopulation and multilineage differentiation potential in transplanted mice. Overall, we establish a safe and versatile CRISPR-Cas9-based HSPC platform for different therapeutic applications, including hemophilia and inherited metabolic disorders. A platform for systemic therapeutic transgene expression independent of patient mutations needs a safe and highly transcribed locus. Here the authors ex vivo edit HPSCs using CRISPR-Cas9 to integrate transgenes under the α-globin promoter to achieve erythroid specific expression.
Collapse
Affiliation(s)
- Giulia Pavani
- Genethon, 91000, Evry, France.,Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare research unit UMR_S951, 91000, Evry, France
| | - Marine Laurent
- Genethon, 91000, Evry, France.,Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare research unit UMR_S951, 91000, Evry, France
| | - Anna Fabiano
- Genethon, 91000, Evry, France.,Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare research unit UMR_S951, 91000, Evry, France
| | - Erika Cantelli
- Genethon, 91000, Evry, France.,Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare research unit UMR_S951, 91000, Evry, France
| | - Aboud Sakkal
- Genethon, 91000, Evry, France.,Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare research unit UMR_S951, 91000, Evry, France
| | - Guillaume Corre
- Genethon, 91000, Evry, France.,Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare research unit UMR_S951, 91000, Evry, France
| | - Peter J Lenting
- Laboratory of Hemostasis-Inflammation-Thrombosis, UMR_S1176, Inserm, Univ. Paris-Sud, Université Paris-Saclay, 94276, Le Kremlin-Bicêtre, France
| | - Jean-Paul Concordet
- National Museum of Natural History, UMR_1154 Inserm, UMR_7196 CNRS, Univ Sorbonne, Paris, France
| | | | - Annarita Miccio
- Université de Paris, Imagine Institute, Laboratory of chromatin and gene regulation during development, INSERM UMR 1163, F-75015, Paris, France
| | - Mario Amendola
- Genethon, 91000, Evry, France. .,Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare research unit UMR_S951, 91000, Evry, France.
| |
Collapse
|
25
|
Holzem M, Franke FA, Mendes CC, McGregor AP. Wnt gene regulation and function during maxillary palp development in Drosophila melanogaster. Dev Biol 2020; 462:66-73. [PMID: 32229133 DOI: 10.1016/j.ydbio.2020.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/20/2020] [Accepted: 03/20/2020] [Indexed: 10/24/2022]
Abstract
Wnt genes encode secreted ligands that play many important roles in the development of metazoans. There are thirteen known Wnt gene subfamilies and seven of these are represented in Drosophila melanogaster. While wingless (wg) is the best understood and most widely studied Wnt gene in Drosophila, the functions of many of the other Drosophila Wnt genes are less well understood. For example, relatively little is known about Wnt6, which is an ancient paralog of wg and they form a conserved Wnt cluster together with Wnt9 (Dwnt4) and Wnt10. Wg and Wnt6 encode similar proteins and exhibit overlapping expression in several tissues during development. Both wg and Wnt6 were previously shown to regulate the development of maxillary palps, important olfactory organs in flies, but it remained unclear how these two ligands may combine to carry out specific functions and how this is regulated. Here, we have further analysed Wnt6 function in the context of maxillary palp development. Surprisingly, we found that Wnt6 does not appear to be necessary for development of maxillary palps. While a deletion of the 5' region of Wnt6 results in very small maxillary palps, we show that this effect is more likely to be a consequence of removing cis-regulatory elements that may regulate wg expression in this tissue rather than through the loss of Wnt6 function. Although, we cannot completely exclude the possibility that Wnt6 may subtly regulate maxillary palp development in combination with wg, our analysis of Wnt6 loss of function mutants suggests this ligand plays a more general role in regulating growth during development. Taken together our results provide new insights into maxillary palp formation and Wnt6 functions in Drosophila, and further evidence for a complex cis-regulatory landscape in the Wnt9-wg-Wnt6-Wnt10 cluster, which may help explain its evolutionary conservation.
Collapse
Affiliation(s)
- Michaela Holzem
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, OX3 0BP, United Kingdom; Division of Signalling and Functional Genomics, German Cancer Research Centre (DKFZ), Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany.
| | - Franziska A Franke
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, OX3 0BP, United Kingdom
| | - Cláudia C Mendes
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, OX3 0BP, United Kingdom; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3QX, United Kingdom
| | - Alistair P McGregor
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, OX3 0BP, United Kingdom.
| |
Collapse
|
26
|
Gerdes C, Waal N, Offner T, Fornasiero EF, Wender N, Verbarg H, Manzini I, Trenkwalder C, Mollenhauer B, Strohäker T, Zweckstetter M, Becker S, Rizzoli SO, Basmanav FB, Opazo F. A nanobody-based fluorescent reporter reveals human α-synuclein in the cell cytosol. Nat Commun 2020; 11:2729. [PMID: 32483166 PMCID: PMC7264335 DOI: 10.1038/s41467-020-16575-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 05/05/2020] [Indexed: 12/15/2022] Open
Abstract
Aggregation and spreading of α-Synuclein (αSyn) are hallmarks of several neurodegenerative diseases, thus monitoring human αSyn (hαSyn) in animal models or cell cultures is vital for the field. However, the detection of native hαSyn in such systems is challenging. We show that the nanobody NbSyn87, previously-described to bind hαSyn, also shows cross-reactivity for the proteasomal subunit Rpn10. As such, when the NbSyn87 is expressed in the absence of hαSyn, it is continuously degraded by the proteasome, while it is stabilized when it binds to hαSyn. Here, we exploit this feature to design a new Fluorescent Reporter for hαSyn (FluoReSyn) by fusing NbSyn87 to fluorescent proteins, which results in fluorescence signal fluctuations depending on the presence and amounts of intracellular hαSyn. We characterize this biosensor in cells and tissues to finally reveal the presence of transmittable αSyn in human cerebrospinal fluid, demonstrating the potential of FluoReSyn for clinical research and diagnostics.
Collapse
Affiliation(s)
- Christoph Gerdes
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, D-37073, Göttingen, Germany
| | - Natalia Waal
- Center for Biostructural Imaging of Neurodegeneration (BIN), University Medical Center Göttingen, D-37073, Göttingen, Germany
| | - Thomas Offner
- Institute of Animal Physiology, Department of Animal Physiology and Molecular Biomedicine, Justus-Liebig University Giessen, 35390, Giessen, Germany
- Institute of Neurophysiology and Cellular Biophysics, University of Göttingen, Göttingen, Germany
| | - Eugenio F Fornasiero
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, D-37073, Göttingen, Germany
| | - Nora Wender
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, D-37073, Göttingen, Germany
| | - Hannes Verbarg
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, D-37073, Göttingen, Germany
| | - Ivan Manzini
- Institute of Animal Physiology, Department of Animal Physiology and Molecular Biomedicine, Justus-Liebig University Giessen, 35390, Giessen, Germany
- Institute of Neurophysiology and Cellular Biophysics, University of Göttingen, Göttingen, Germany
| | - Claudia Trenkwalder
- Department of Neurosurgery, University Medical Center Göttingen, D-37075, Göttingen, Germany
- Paracelsus-Elena-Klinik, Klinikstraße 16, 34128, Kassel, Germany
| | - Brit Mollenhauer
- Paracelsus-Elena-Klinik, Klinikstraße 16, 34128, Kassel, Germany
- Department of Neurology, University Medical Center Göttingen, D-37075, Göttingen, Germany
| | - Timo Strohäker
- German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, 37075, Göttingen, Germany
| | - Markus Zweckstetter
- German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, 37075, Göttingen, Germany
- Department for NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, 37077, Göttingen, Germany
| | - Stefan Becker
- Department for NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, 37077, Göttingen, Germany
| | - Silvio O Rizzoli
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, D-37073, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Goettingen, Göttingen, Germany
| | - Fitnat Buket Basmanav
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, D-37073, Göttingen, Germany
- Campus Laboratory for Advanced Imaging, Microscopy and Spectroscopy, University of Göttingen, D-37073, Göttingen, Germany
| | - Felipe Opazo
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, D-37073, Göttingen, Germany.
- Center for Biostructural Imaging of Neurodegeneration (BIN), University Medical Center Göttingen, D-37073, Göttingen, Germany.
| |
Collapse
|
27
|
Casares F, McGregor AP. The evolution and development of eye size in flies. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2020; 10:e380. [PMID: 32400100 DOI: 10.1002/wdev.380] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 03/08/2020] [Accepted: 03/12/2020] [Indexed: 01/19/2023]
Abstract
The compound eyes of flies exhibit striking variation in size, which has contributed to the adaptation of these animals to different habitats and their evolution of specialist behaviors. These differences in size are caused by differences in the number and/or size of ommatidia, which are specified during the development of the retinal field in the eye imaginal disc. While the genes and developmental mechanisms that regulate the formation of compound eyes are understood in great detail in the fruit fly Drosophila melanogaster, we know very little about the genetic changes and mechanistic alterations that lead to natural variation in ommatidia number and/or size, and thus overall eye size, within and between fly species. Understanding the genetic and developmental bases for this natural variation in eye size not only has great potential to help us understand adaptations in fly vision but also determine how eye size and organ size more generally are regulated. Here we explore the genetic and developmental mechanisms that could underlie natural differences in compound eye size within and among fly species based on our knowledge of eye development in D. melanogaster and the few cases where the causative genes and mechanisms have already been identified. We suggest that the fly eye provides an evolutionary and developmental framework to better understand the regulation and diversification of this crucial sensory organ globally at a systems level as well as the gene regulatory networks and mechanisms acting at the tissue, cellular and molecular levels. This article is categorized under: Establishment of Spatial and Temporal Patterns > Regulation of Size, Proportion, and Timing Invertebrate Organogenesis > Flies Comparative Development and Evolution > Regulation of Organ Diversity.
Collapse
Affiliation(s)
| | - Alistair P McGregor
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
| |
Collapse
|
28
|
Abstract
Molecules of the hedgehog (hh) family are involved in the specification and patterning of eyes in vertebrates and invertebrates. These organs, though, are of very different sizes, raising the question of how Hh molecules operate at such different scales. In this paper we discuss the strategies used by Hh to control the development of the two eye types in Drosophila: the large compound eye and the small ocellus. We first describe the distinct ways in which these two eyes develop and the evidence for the key role played by Hh in both; then we consider the potential for variation in the range of action of a "typical" morphogen and measure this range ("characteristic length") for Hh in different organs, including the compound eye and the ocellus. Finally, we describe how different feedback mechanisms are used to extend the Hh range of action to pattern the large and even the small eye. In the ocellus, the basic Hh signaling pathway adds to its dynamics the attenuation of its receptor as cell differentiate. This sole regulatory change can result in the decoding of the Hh gradient by receiving cells as a wave of constant speed. Therefore, in the fly ocellus, the Hh morphogen adds to its spatial patterning role a novel one: patterning along a time axis.
Collapse
|
29
|
Chai PC, Cruchet S, Wigger L, Benton R. Sensory neuron lineage mapping and manipulation in the Drosophila olfactory system. Nat Commun 2019; 10:643. [PMID: 30733440 PMCID: PMC6367400 DOI: 10.1038/s41467-019-08345-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 12/28/2018] [Indexed: 11/20/2022] Open
Abstract
Nervous systems exhibit myriad cell types, but understanding how this diversity arises is hampered by the difficulty to visualize and genetically-probe specific lineages, especially at early developmental stages prior to expression of unique molecular markers. Here, we use a genetic immortalization method to analyze the development of sensory neuron lineages in the Drosophila olfactory system, from their origin to terminal differentiation. We apply this approach to define a fate map of nearly all olfactory lineages and refine the model of temporal patterns of lineage divisions. Taking advantage of a selective marker for the lineage that gives rise to Or67d pheromone-sensing neurons and a genome-wide transcription factor RNAi screen, we identify the spatial and temporal requirements for Pointed, an ETS family member, in this developmental pathway. Transcriptomic analysis of wild-type and Pointed-depleted olfactory tissue reveals a universal requirement for this factor as a switch-like determinant of fates in these sensory lineages. Few tools exist to study molecular diversity during neurodevelopment. Here the authors apply a genetic immortalization method in Drosophila to generate a fate map of olfactory sensory lineages, examine the relationships of this map and the neuroanatomical, molecular and evolutionary properties of the mature circuits, and identify a novel factor controlling lineage development.
Collapse
Affiliation(s)
- Phing Chian Chai
- Center for Integrative Genomics, Génopode Building, Faculty of Biology and Medicine, University of Lausanne, 1015, Lausanne, Switzerland
| | - Steeve Cruchet
- Center for Integrative Genomics, Génopode Building, Faculty of Biology and Medicine, University of Lausanne, 1015, Lausanne, Switzerland
| | - Leonore Wigger
- Lausanne Genomic Technologies Facility, Génopode Building, Faculty of Biology and Medicine, University of Lausanne, 1015, Lausanne, Switzerland.,Vital-IT Group, SIB Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
| | - Richard Benton
- Center for Integrative Genomics, Génopode Building, Faculty of Biology and Medicine, University of Lausanne, 1015, Lausanne, Switzerland.
| |
Collapse
|
30
|
Abstract
During development of biological organisms, multiple complex structures are formed. In many instances, these structures need to exhibit a high degree of order to be functional, although many of their constituents are intrinsically stochastic. Hence, it has been suggested that biological robustness ultimately must rely on complex gene regulatory networks and clean-up mechanisms. Here we explore developmental processes that have evolved inherent robustness against stochasticity. In the context of the Drosophila eye disc, multiple optical units, ommatidia, develop into crystal-like patterns. During the larva-to-pupa stage of metamorphosis, the centers of the ommatidia are specified initially through the diffusion of morphogens, followed by the specification of R8 cells. Establishing the R8 cell is crucial in setting up the geometric, and functional, relationships of cells within an ommatidium and among neighboring ommatidia. Here we study an PDE mathematical model of these spatio-temporal processes in the presence of parametric stochasticity, defining and applying measures that quantify order within the resulting spatial patterns. We observe a universal sigmoidal response to increasing transcriptional noise. Ordered patterns persist up to a threshold noise level in the model parameters. In accordance with prior qualitative observations, as the noise is further increased past a threshold point of no return, these ordered patterns rapidly become disordered. Such robustness in development allows for the accumulation of genetic variation without any observable changes in phenotype. We argue that the observed sigmoidal dependence introduces robustness allowing for sizable amounts of genetic variation and transcriptional noise to be tolerated in natural populations without resulting in phenotype variation.
Collapse
|
31
|
Billes V, Kovács T, Manzéger A, Lőrincz P, Szincsák S, Regős Á, Kulcsár PI, Korcsmáros T, Lukácsovich T, Hoffmann G, Erdélyi M, Mihály J, Takács-Vellai K, Sass M, Vellai T. Developmentally regulated autophagy is required for eye formation in Drosophila. Autophagy 2018; 14:1499-1519. [PMID: 29940806 PMCID: PMC6135572 DOI: 10.1080/15548627.2018.1454569] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 03/03/2018] [Accepted: 03/15/2018] [Indexed: 01/22/2023] Open
Abstract
The compound eye of the fruit fly Drosophila melanogaster is one of the most intensively studied and best understood model organs in the field of developmental genetics. Herein we demonstrate that autophagy, an evolutionarily conserved selfdegradation process of eukaryotic cells, is essential for eye development in this organism. Autophagic structures accumulate in a specific pattern in the developing eye disc, predominantly in the morphogenetic furrow (MF) and differentiation zone. Silencing of several autophagy genes (Atg) in the eye primordium severely affects the morphology of the adult eye through triggering ectopic cell death. In Atg mutant genetic backgrounds however genetic compensatory mechanisms largely rescue autophagic activity in, and thereby normal morphogenesis of, this organ. We also show that in the eye disc the expression of a key autophagy gene, Atg8a, is controlled in a complex manner by the anterior Hox paralog Lab (Labial), a master regulator of early development. Atg8a transcription is repressed in front of, while activated along, the MF by Lab. The amount of autophagic structures then remains elevated behind the moving MF. These results indicate that eye development in Drosophila depends on the cell death-suppressing and differentiating effects of the autophagic process. This novel, developmentally regulated function of autophagy in the morphogenesis of the compound eye may shed light on a more fundamental role for cellular self-digestion in differentiation and organ formation than previously thought. ABBREVIATIONS αTub84B, α-Tubulin at 84B; Act5C, Actin5C; AO, acridine orange; Atg, autophagy-related; Ato, Atonal; CASP3, caspase 3; Dcr-2; Dicer-2; Dfd, Deformed; DZ, differentiation zone; eGFP, enhanced green fluorescent protein; EM, electron microscopy; exd, extradenticle; ey, eyeless; FLP, flippase recombinase; FRT, FLP recognition target; Gal4, gene encoding the yeast transcription activator protein GAL4; GFP, green fluorescent protein; GMR, Glass multimer reporter; Hox, homeobox; hth, homothorax; lab, labial; L3F, L3 feeding larval stage; L3W, L3 wandering larval stage; lf, loss-of-function; MAP1LC3, microtubule-associated protein 1 light chain 3; MF, morphogenetic furrow; PE, phosphatidylethanolamine; PBS, phosphate-buffered saline; PI3K/PtdIns3K, class III phosphatidylinositol 3-kinase; PZ, proliferation zone; Ref(2)P, refractory to sigma P, RFP, red fluorescent protein; RNAi, RNA interference; RpL32, Ribosomal protein L32; RT-PCR, reverse transcription-coupled polymerase chain reaction; S.D., standard deviation; SQSTM1, Sequestosome-1, Tor, Target of rapamycin; TUNEL, terminal deoxynucleotidyl transferase mediated dUTP nick end labeling assay; UAS, upstream activation sequence; qPCR, quantitative real-time polymerase chain reaction; w, white.
Collapse
Affiliation(s)
- Viktor Billes
- Department of Genetics, Eötvös Loránd University, Budapest, Hungary
| | - Tibor Kovács
- Department of Genetics, Eötvös Loránd University, Budapest, Hungary
| | - Anna Manzéger
- Department of Genetics, Eötvös Loránd University, Budapest, Hungary
| | - Péter Lőrincz
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
| | - Sára Szincsák
- Department of Genetics, Eötvös Loránd University, Budapest, Hungary
| | - Ágnes Regős
- Department of Genetics, Eötvös Loránd University, Budapest, Hungary
| | - Péter István Kulcsár
- Institute of Enzymology, Research Centre for Natural Sciences of the Hungarian Academy of Sciences, Budapest, Hungary
| | - Tamás Korcsmáros
- Department of Genetics, Eötvös Loránd University, Budapest, Hungary
- Earlham Institute, Norwich Research Park, Norwich, UK
- Gut Health and Food Safety Programme, Institute of Food Research, Norwich Research Park, Norwich, UK
| | - Tamás Lukácsovich
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
| | - Gyula Hoffmann
- Department of Anatomy and Developmental Biology, University of Pécs, Pécs, Hungary
| | - Miklós Erdélyi
- Institute of Genetics, Biological Research Centre, Szeged, Hungary
| | - József Mihály
- Institute of Genetics, Biological Research Centre, Szeged, Hungary
| | | | - Miklós Sass
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
| | - Tibor Vellai
- Department of Genetics, Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
32
|
Baker LR, Weasner BM, Nagel A, Neuman SD, Bashirullah A, Kumar JP. Eyeless/Pax6 initiates eye formation non-autonomously from the peripodial epithelium. Development 2018; 145:dev.163329. [PMID: 29980566 DOI: 10.1242/dev.163329] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 06/27/2018] [Indexed: 01/08/2023]
Abstract
The transcription factor Pax6 is considered the master control gene for eye formation because (1) it is present within the genomes and retina/lens of all animals with a visual system; (2) severe retinal defects accompany its loss; (3) Pax6 genes have the ability to substitute for one another across the animal kingdom; and (4) Pax6 genes are capable of inducing ectopic eye/lens in flies and mammals. Many roles of Pax6 were first elucidated in Drosophila through studies of the gene eyeless (ey), which controls both growth of the entire eye-antennal imaginal disc and fate specification of the eye. We show that Ey also plays a surprising role within cells of the peripodial epithelium to control pattern formation. It regulates the expression of decapentaplegic (dpp), which is required for initiation of the morphogenetic furrow in the eye itself. Loss of Ey within the peripodial epithelium leads to the loss of dpp expression within the eye, failure of the furrow to initiate, and abrogation of retinal development. These findings reveal an unexpected mechanism for how Pax6 controls eye development in Drosophila.
Collapse
Affiliation(s)
- Luke R Baker
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Bonnie M Weasner
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Athena Nagel
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Sarah D Neuman
- Department of Pharmaceutical Sciences, University of Wisconsin, Madison, WI 53705, USA
| | - Arash Bashirullah
- Department of Pharmaceutical Sciences, University of Wisconsin, Madison, WI 53705, USA
| | - Justin P Kumar
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
33
|
Kim AA, Nekimken AL, Fechner S, O'Brien LE, Pruitt BL. Microfluidics for mechanobiology of model organisms. Methods Cell Biol 2018; 146:217-259. [PMID: 30037463 PMCID: PMC6418080 DOI: 10.1016/bs.mcb.2018.05.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Mechanical stimuli play a critical role in organ development, tissue homeostasis, and disease. Understanding how mechanical signals are processed in multicellular model systems is critical for connecting cellular processes to tissue- and organism-level responses. However, progress in the field that studies these phenomena, mechanobiology, has been limited by lack of appropriate experimental techniques for applying repeatable mechanical stimuli to intact organs and model organisms. Microfluidic platforms, a subgroup of microsystems that use liquid flow for manipulation of objects, are a promising tool for studying mechanobiology of small model organisms due to their size scale and ease of customization. In this work, we describe design considerations involved in developing a microfluidic device for studying mechanobiology. Then, focusing on worms, fruit flies, and zebrafish, we review current microfluidic platforms for mechanobiology of multicellular model organisms and their tissues and highlight research opportunities in this developing field.
Collapse
Affiliation(s)
- Anna A Kim
- University of California, Santa Barbara, CA, United States; Uppsala University, Uppsala, Sweden; Stanford University, Stanford, CA, United States
| | | | | | | | - Beth L Pruitt
- University of California, Santa Barbara, CA, United States; Stanford University, Stanford, CA, United States.
| |
Collapse
|
34
|
Ruiz-Losada M, Blom-Dahl D, Córdoba S, Estella C. Specification and Patterning of Drosophila Appendages. J Dev Biol 2018; 6:jdb6030017. [PMID: 30011921 PMCID: PMC6162442 DOI: 10.3390/jdb6030017] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 07/10/2018] [Accepted: 07/12/2018] [Indexed: 02/06/2023] Open
Abstract
Appendages are external projections of the body that serve the animal for locomotion, feeding, or environment exploration. The appendages of the fruit fly Drosophilamelanogaster are derived from the imaginal discs, epithelial sac-like structures specified in the embryo that grow and pattern during larva development. In the last decades, genetic and developmental studies in the fruit fly have provided extensive knowledge regarding the mechanisms that direct the formation of the appendages. Importantly, many of the signaling pathways and patterning genes identified and characterized in Drosophila have similar functions during vertebrate appendage development. In this review, we will summarize the genetic and molecular mechanisms that lead to the specification of appendage primordia in the embryo and their posterior patterning during imaginal disc development. The identification of the regulatory logic underlying appendage specification in Drosophila suggests that the evolutionary origin of the insect wing is, in part, related to the development of ventral appendages.
Collapse
Affiliation(s)
- Mireya Ruiz-Losada
- Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid (UAM/CSIC), Nicolás Cabrera 1, 28049 Madrid, Spain.
| | - David Blom-Dahl
- Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid (UAM/CSIC), Nicolás Cabrera 1, 28049 Madrid, Spain.
| | - Sergio Córdoba
- Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid (UAM/CSIC), Nicolás Cabrera 1, 28049 Madrid, Spain.
| | - Carlos Estella
- Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid (UAM/CSIC), Nicolás Cabrera 1, 28049 Madrid, Spain.
| |
Collapse
|
35
|
Sarkar A, Gogia N, Farley K, Payton L, Singh A. Characterization of a morphogenetic furrow specific Gal4 driver in the developing Drosophila eye. PLoS One 2018; 13:e0196365. [PMID: 29702674 PMCID: PMC5922546 DOI: 10.1371/journal.pone.0196365] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 04/11/2018] [Indexed: 11/18/2022] Open
Abstract
The ability to express a gene of interest in a spatio-temporal manner using Gal4-UAS system has allowed the use of Drosophila model to study various biological phenomenon. During Drosophila eye development, a synchronous wave of differentiation called Morphogenetic furrow (MF) initiates at the posterior margin resulting in differentiation of retinal neurons. This synchronous differentiation is also observed in the differentiating retina of vertebrates. Since MF is highly dynamic, it can serve as an excellent model to study patterning and differentiation. However, there are not any Gal4 drivers available to observe the gain- of- function or loss- of- function of a gene specifically along the dynamic MF. The decapentaplegic (dpp) gene encodes a secreted protein of the transforming growth factor-beta (TGF-beta) superfamily that expresses at the posterior margin and then moves with the MF. However, unlike the MF associated pattern of dpp gene expression, the targeted dpp-Gal4 driver expression is restricted to the posterior margin of the developing eye disc. We screened GMR lines harboring regulatory regions of dpp fused with Gal4 coding region to identify MF specific enhancer of dpp using a GFP reporter gene. We employed immuno-histochemical approaches to detect gene expression. The rationale was that GFP reporter expression will correspond to the dpp expression domain in the developing eye. We identified two new dpp-Gal4 lines, viz., GMR17E04-Gal4 and GMR18D08-Gal4 that carry sequences from first intron region of dpp gene. GMR17E04-Gal4 drives expression along the MF during development and later in the entire pupal retina whereas GMR18D08-Gal4 drives expression of GFP transgene in the entire developing eye disc, which later drives expression only in the ventral half of the pupal retina. Thus, GMR18D08-Gal4 will serve as a new reagent for targeting gene expression in the ventral half of the pupal retina. We compared misexpression phenotypes of Wg, a negative regulator of eye development, using GMR17E04-Gal4, GMR18D08-Gal4 with existing dpp-Gal4 driver. The eye phenotypes generated by using our newly identified MF specific driver are not similar to the ones generated by existing dpp-Gal4 driver. It suggests that misexpression studies along MF needs revisiting using the new Gal4 drivers generated in our studies.
Collapse
Affiliation(s)
- Ankita Sarkar
- Department of Biology, University of Dayton, Dayton, OH, United States of America
| | - Neha Gogia
- Department of Biology, University of Dayton, Dayton, OH, United States of America
| | - Kevin Farley
- Department of Biology, University of Dayton, Dayton, OH, United States of America
| | - Lydia Payton
- Department of Biology, University of Dayton, Dayton, OH, United States of America
| | - Amit Singh
- Department of Biology, University of Dayton, Dayton, OH, United States of America
- Premedical Program, University of Dayton, Dayton, OH, United States of America
- Center for Tissue Regeneration and Engineering at Dayton (TREND), University of Dayton, Dayton, OH, United States of America
- The Integrative Science and Engineering Center, University of Dayton, Dayton, OH, United States of America
- Affiliate Member, Center for Genome Advocacy, Indiana State University, Terre Haute, IN, United States of America
| |
Collapse
|
36
|
Zhu J, Ordway AJ, Weber L, Buddika K, Kumar JP. Polycomb group (PcG) proteins and Pax6 cooperate to inhibit in vivo reprogramming of the developing Drosophila eye. Development 2018; 145:dev160754. [PMID: 29530880 PMCID: PMC5963869 DOI: 10.1242/dev.160754] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 03/01/2018] [Indexed: 01/01/2023]
Abstract
How different cells and tissues commit to and determine their fates has been a central question in developmental biology since the seminal embryological experiments conducted by Wilhelm Roux and Hans Driesch in sea urchins and frogs. Here, we demonstrate that Polycomb group (PcG) proteins maintain Drosophila eye specification by suppressing the activation of alternative fate choices. The loss of PcG in the developing eye results in a cellular reprogramming event in which the eye is redirected to a wing fate. This fate transformation occurs with either the individual loss of Polycomb proteins or the simultaneous reduction of the Pleiohomeotic repressive complex and Pax6. Interestingly, the requirement for retinal selector genes is limited to Pax6, as the removal of more downstream members does not lead to the eye-wing transformation. We also show that distinct PcG complexes are required during different developmental windows throughout eye formation. These findings build on earlier observations that the eye can be reprogrammed to initiate head epidermis, antennal and leg development.
Collapse
Affiliation(s)
- Jinjin Zhu
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Alison J Ordway
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Lena Weber
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Kasun Buddika
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Justin P Kumar
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
37
|
Abidi SNF, Smith-Bolton RK. Cell fate changes induced by a Distal-less enhancer-trap transgene in the Drosophila antennal imaginal disc. Sci Rep 2018; 8:4950. [PMID: 29563503 PMCID: PMC5862905 DOI: 10.1038/s41598-018-23093-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 03/06/2018] [Indexed: 11/29/2022] Open
Abstract
The imaginal discs of the genetically tractable model organism Drosophila melanogaster have been used to study cell-fate specification and plasticity, including homeotic changes and regeneration-induced transdetermination. The identity of the reprogramming mechanisms that induce plasticity has been of great interest in the field. Here we identify a change from antennal fate to eye fate induced by a Distal-less-GAL4 (DllGAL4) P-element insertion that is a mutant allele of Dll and expresses GAL4 in the antennal imaginal disc. While this fate change is not induced by tissue damage, it appears to be a hybrid of transdetermination and homeosis as the GAL4 expression causes upregulation of Wingless, and the Dll mutation is required for the fate change. Neither GAL4 expression nor a Dll mutation on its own is able to induce antenna-to-eye fate changes. This plasticity appears to be unique to the DllGAL4 line, possibly due to cellular stress induced by the high GAL4 expression combined with the severity of the Dll mutation. Thus, we propose that even in the absence of tissue damage, other forms of cellular stress caused by high GAL4 expression can induce determined cell fates to change, and selector gene mutations can sensitize the tissue to these transformations.
Collapse
Affiliation(s)
- Syeda Nayab Fatima Abidi
- Department of Cell and Developmental Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Rachel K Smith-Bolton
- Department of Cell and Developmental Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
38
|
Allocation of distinct organ fates from a precursor field requires a shift in expression and function of gene regulatory networks. PLoS Genet 2018; 14:e1007185. [PMID: 29351292 PMCID: PMC5792024 DOI: 10.1371/journal.pgen.1007185] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 01/31/2018] [Accepted: 01/03/2018] [Indexed: 11/30/2022] Open
Abstract
A common occurrence in metazoan development is the rise of multiple tissues/organs from a single uniform precursor field. One example is the anterior forebrain of vertebrates, which produces the eyes, hypothalamus, diencephalon, and telencephalon. Another instance is the Drosophila wing disc, which generates the adult wing blade, the hinge, and the thorax. Gene regulatory networks (GRNs) that are comprised of signaling pathways and batteries of transcription factors parcel the undifferentiated field into discrete territories. This simple model is challenged by two observations. First, many GRN members that are thought to control the fate of one organ are actually expressed throughout the entire precursor field at earlier points in development. Second, each GRN can simultaneously promote one of the possible fates choices while repressing the other alternatives. It is therefore unclear how GRNs function to allocate tissue fates if their members are uniformly expressed and competing with each other within the same populations of cells. We address this paradigm by studying fate specification in the Drosophila eye-antennal disc. The disc, which begins its development as a homogeneous precursor field, produces a number of adult structures including the compound eyes, the ocelli, the antennae, the maxillary palps, and the surrounding head epidermis. Several selector genes that control the fates of the eye and antenna, respectively, are first expressed throughout the entire eye-antennal disc. We show that during early stages, these genes are tasked with promoting the growth of the entire field. Upon segregation to distinct territories within the disc, each GRN continues to promote growth while taking on the additional roles of promoting distinct primary fates and repressing alternate fates. The timing of both expression pattern restriction and expansion of functional duties is an elemental requirement for allocating fates within a single field. A battery of transcription factors collectively called the retinal determination (RD) network controls the earliest steps in the specification of the fruit fly compound eye. Loss-of-function mutations lead to the loss of the compound eyes while over-expression of RD network members in non-retinal tissues induces the formation of ectopic eyes. These observations suggest that the network governs the growth, specification, and patterning of the eye field. Recent studies have also shown that the RD network represses the fates of the non-ocular tissues that are also derived from the disc such as the antenna, maxillary palp, and head epidermis. One inconsistency in the model for how this network controls eye specification is that many of its members are expressed throughout the entire eye-antennal disc. In this study, we show that early in development, the RD network is expressed throughout and promotes the growth of the entire eye-antennal disc. After the initial growth phase, the expression of these genes is restricted to just the eye field. This temporal and spatial limiting of the RD network to the developing eye is essential so that its role can expand to include promoting eye specification and repressing non-ocular fates.
Collapse
|
39
|
Davis TL, Rebay I. Pleiotropy in Drosophila organogenesis: Mechanistic insights from Combgap and the retinal determination gene network. Fly (Austin) 2018; 12:62-70. [PMID: 29125381 DOI: 10.1080/19336934.2017.1402994] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Master regulatory transcription factors cooperate in networks to shepherd cells through organogenesis. In the Drosophila eye, a collection of master control proteins known as the retinal determination gene network (RDGN) switches the direction and targets of its output to choreograph developmental transitions, but the molecular partners that enable such regulatory flexibility are not known. We recently showed that two RDGN members, Eyes absent (Eya) and Sine oculis (So), promote exit from the terminal cell cycle known as the second mitotic wave (SMW) to permit differentiation. A search for co-factors identified the ubiquitously expressed Combgap (Cg) as a novel transcriptional partner that impedes cell cycle exit and interferes with Eya-So activity specifically in this context. Here, we argue that Cg acts as a flexible transcriptional platform that contributes to numerous gene expression outcomes by a variety of mechanisms. For example, Cg provides repressive activities that dampen Eya-So output, but not by recruiting Polycomb chromatin-remodeling complexes as it does in other contexts. We propose that master regulators depend on both specifically expressed co-factors that assemble the combinatorial code and broadly expressed partners like Cg that recruit the diverse molecular activities needed to appropriately regulate their target enhancers.
Collapse
Affiliation(s)
- Trevor L Davis
- a Committee on Development, Regeneration, and Stem Cell Biology , University of Chicago , Chicago , IL , USA
| | - Ilaria Rebay
- a Committee on Development, Regeneration, and Stem Cell Biology , University of Chicago , Chicago , IL , USA.,b Ben May Department for Cancer Research , University of Chicago , Chicago , IL , USA
| |
Collapse
|
40
|
Zattara EE, Busey HA, Linz DM, Tomoyasu Y, Moczek AP. Neofunctionalization of embryonic head patterning genes facilitates the positioning of novel traits on the dorsal head of adult beetles. Proc Biol Sci 2017; 283:rspb.2016.0824. [PMID: 27412276 DOI: 10.1098/rspb.2016.0824] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 06/20/2016] [Indexed: 01/17/2023] Open
Abstract
The origin and integration of novel traits are fundamental processes during the developmental evolution of complex organisms. Yet how novel traits integrate into pre-existing contexts remains poorly understood. Beetle horns represent a spectacular evolutionary novelty integrated within the context of the adult dorsal head, a highly conserved trait complex present since the origin of insects. We investigated whether otd1/2 and six3, members of a highly conserved gene network that instructs the formation of the anterior end of most bilaterians, also play roles in patterning more recently evolved traits. Using ablation-based fate-mapping, comparative larval RNA interference (RNAi) and transcript sequencing, we found that otd1/2, but not six3, play a fundamental role in the post-embryonic formation of the adult dorsal head and head horns of Onthophagus beetles. By contrast, neither gene appears to pattern the adult head of Tribolium flour beetles even though all are expressed in the dorsal head epidermis of both Onthophagus and Tribolium We propose that, at least in beetles, the roles of otd genes during post-embryonic development are decoupled from their embryonic functions, and that potentially non-functional post-embryonic expression in the dorsal head facilitated their co-option into a novel horn-patterning network during Onthophagus evolution.
Collapse
Affiliation(s)
- Eduardo E Zattara
- Department of Biology, Indiana University, 915 East Third Street, Myers Hall 150, Bloomington, IN 47405, USA
| | - Hannah A Busey
- Department of Biology, Indiana University, 915 East Third Street, Myers Hall 150, Bloomington, IN 47405, USA
| | - David M Linz
- Department of Biology, Miami University, 700 East High Street, Oxford, OH 45056, USA
| | - Yoshinori Tomoyasu
- Department of Biology, Miami University, 700 East High Street, Oxford, OH 45056, USA
| | - Armin P Moczek
- Department of Biology, Indiana University, 915 East Third Street, Myers Hall 150, Bloomington, IN 47405, USA
| |
Collapse
|
41
|
Kumar JP. The fly eye: Through the looking glass. Dev Dyn 2017; 247:111-123. [PMID: 28856763 DOI: 10.1002/dvdy.24585] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/14/2017] [Accepted: 08/14/2017] [Indexed: 12/20/2022] Open
Abstract
The developing eye-antennal disc of Drosophila melanogaster has been studied for more than a century, and it has been used as a model system to study diverse processes, such as tissue specification, organ growth, programmed cell death, compartment boundaries, pattern formation, cell fate specification, and planar cell polarity. The findings that have come out of these studies have informed our understanding of basic developmental processes as well as human disease. For example, the isolation of a white-eyed fly ultimately led to a greater appreciation of the role that sex chromosomes play in development, sex determination, and sex linked genetic disorders. Similarly, the discovery of the Sevenless receptor tyrosine kinase pathway not only revealed how the fate of the R7 photoreceptor is selected but it also helped our understanding of how disruptions in similar biochemical pathways result in tumorigenesis and cancer onset. In this article, I will discuss some underappreciated areas of fly eye development that are fertile for investigation and are ripe for producing exciting new breakthroughs. The topics covered here include organ shape, growth control, inductive signaling, and right-left symmetry. Developmental Dynamics 247:111-123, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Justin P Kumar
- Department of Biology, Indiana University, Bloomington, Indiana
| |
Collapse
|
42
|
Friedrich M. Ancient genetic redundancy of eyeless and twin of eyeless in the arthropod ocular segment. Dev Biol 2017; 432:192-200. [PMID: 28993201 DOI: 10.1016/j.ydbio.2017.10.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 10/02/2017] [Accepted: 10/03/2017] [Indexed: 01/28/2023]
Abstract
Pax6 transcription factors are essential upstream regulators in the developing anterior brain and peripheral visual system of most bilaterian animals. While a single homolog is in charge of these functions in vertebrates, two Pax6 genes are in Drosophila: eyeless (ey) and twin of eyeless (toy). At first glance, their co-existence seems sufficiently explained by their differential involvement in the specification of two types of insect visual organs: the lateral compound eyes (ey) and the dorsal ocelli (toy). Less straightforward to understand, however, is their genetic redundancy in promoting defined early and late growth phases of the precursor tissue to these organs: the eye-antennal imaginal disc. Drawing on comparative sequence, expression, and gene function evidence, I here conclude that this gene regulatory network module dates back to the dawn of arthropod evolution, securing the embryonic development of the ocular head segment. Thus, ey and toy constitute a paradigm to explore the organization and functional significance of longterm conserved genetic redundancy of duplicated genes. Indeed, as first steps in this direction, recent studies uncovered the shared use of binding sites in shared enhancers of target genes that are under redundant (string) and, strikingly, even subfunctionalized control by ey and toy (atonal). Equally significant, the evolutionarily recent and paralog-specific function of ey to repress the transcription of the antenna fate regulator Distal-less offers a functionally and phylogenetically well-defined opportunity to study the reconciliation of shared, partitioned, and newly acquired functions in a duplicated developmental gene pair.
Collapse
Affiliation(s)
- Markus Friedrich
- Department of Biological Sciences, Wayne State University, 5047 Gullen Mall, Detroit, MI 48202, USA; Department of Anatomy and Cell Biology, Wayne State University, School of Medicine, 540 East Canfield Avenue, Detroit, MI 48201,USA.
| |
Collapse
|
43
|
The Noncell Autonomous Requirement of Proboscipedia for Growth and Differentiation of the Distal Maxillary Palp during Metamorphosis of Drosophila melanogaster. GENETICS RESEARCH INTERNATIONAL 2017; 2017:2624170. [PMID: 28357140 PMCID: PMC5357526 DOI: 10.1155/2017/2624170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 01/18/2017] [Indexed: 11/17/2022]
Abstract
The Drosophila maxillary palpus that develops during metamorphosis is composed of two elements: the proximal maxillary socket and distal maxillary palp. The HOX protein, Proboscipedia (PB), was required for development of the proximal maxillary socket and distal maxillary palp. For growth and differentiation of the distal maxillary palp, PB was required in the cells of, or close to, the maxillary socket, as well as the cells of the distal maxillary palp. Therefore, PB is required in cells outside the distal maxillary palp for the expression, by some mechanism, of a growth factor or factors that promote the growth of the distal maxillary palp. Both wingless (wg) and hedgehog (hh) genes were expressed in cells outside the distal maxillary palp in the lancinia and maxillary socket, respectively. Both wg and hh were required for distal maxillary palp growth, and hh was required noncell autonomously for distal maxillary palp growth. However, expression of wg-GAL4 and hh-GAL4 during maxillary palp differentiation did not require PB, ruling out a direct role for PB in the regulation of transcription of these growth factors.
Collapse
|
44
|
5D imaging via light sheet microscopy reveals cell dynamics during the eye-antenna disc primordium formation in Drosophila. Sci Rep 2017; 7:44945. [PMID: 28322328 PMCID: PMC5359570 DOI: 10.1038/srep44945] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 02/14/2017] [Indexed: 01/05/2023] Open
Abstract
5D images of engrailed (en) and eye gone (eyg) gene expressions during the course of the eye-antenna disc primordium (EADP) formation of Drosophila embryos from embryonic stages 13 through 16 were recorded via light sheet microscopy and analyzed to reveal the cell dynamics involved in the development of the EADP. Detailed analysis of the time-lapsed images revealed the process of EADP formation and its invagination trajectory, which involved an inversion of the EADP anterior-posterior axis relative to the body. Furthermore, analysis of the en-expression pattern in the EADP provided strong evidence that the EADP is derived from one of the en-expressing head segments.
Collapse
|
45
|
Abstract
decapentaplegic (dpp), the Drosophila ortholog of BMP 2/4, directs ventral adult head morphogenesis through expression in the peripodial epithelium of the eye-antennal disc. This dpp expressing domain exerts effects both on the peripodial epithelium, and the underlying disc proper epithelium. We have uncovered a role for the Jun N-terminal kinase (JNK) pathway in dpp-mediated ventral head development. JNK activity is required for dpp's action on the disc proper, but in the absence of dpp expression, excessive JNK activity is produced, leading to specific loss of maxillary palps. In this review we outline our hypotheses on how dpp acts by both short range and longer range mechanisms to direct head morphogenesis and speculate on the dual role of JNK signaling in this process. Finally, we describe the regulatory control of dpp expression in the eye-antennal disc, and pose the problem of how the various expression domains of a secreted protein can be targeted to their specific functions.
Collapse
Affiliation(s)
- Deborah A Hursh
- a Division of Cell and Gene Therapies , Center for Biologics Evaluation and Research, Food and Drug Administration , Silver Spring , MD , USA
| | - Brian G Stultz
- a Division of Cell and Gene Therapies , Center for Biologics Evaluation and Research, Food and Drug Administration , Silver Spring , MD , USA
| | - Sung Yeon Park
- b Ischemic/Hypoxic Disease Institute , Department of Physiology , Seoul National University College of Medicine , Seoul , Republic of Korea
| |
Collapse
|
46
|
Robert JA, Bonnett T, Pitt C, Spooner LJ, Fraser J, Yuen MMS, Keeling CI, Bohlmann J, Huber DPW. Gene expression analysis of overwintering mountain pine beetle larvae suggests multiple systems involved in overwintering stress, cold hardiness, and preparation for spring development. PeerJ 2016; 4:e2109. [PMID: 27441109 PMCID: PMC4941763 DOI: 10.7717/peerj.2109] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 05/16/2016] [Indexed: 11/30/2022] Open
Abstract
Cold-induced mortality has historically been a key aspect of mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae), population control, but little is known about the molecular basis for cold tolerance in this insect. We used RNA-seq analysis to monitor gene expression patterns of mountain pine beetle larvae at four time points during their overwintering period—early-autumn, late-autumn, early-spring, and late-spring. Changing transcript profiles over the winter indicates a multipronged physiological response from larvae that is broadly characterized by gene transcripts involved in insect immune responses and detoxification during the autumn. In the spring, although transcripts associated with developmental process are present, there was no particular biological process dominating the transcriptome.
Collapse
Affiliation(s)
- Jeanne A Robert
- Department of Ecosystem Science and Management, University of Northern British Columbia, Prince George, British Columbia, Canada
| | - Tiffany Bonnett
- Department of Ecosystem Science and Management, University of Northern British Columbia, Prince George, British Columbia, Canada
| | - Caitlin Pitt
- Department of Ecosystem Science and Management, University of Northern British Columbia, Prince George, British Columbia, Canada
| | - Luke J Spooner
- Department of Ecosystem Science and Management, University of Northern British Columbia, Prince George, British Columbia, Canada
| | - Jordie Fraser
- Department of Ecosystem Science and Management, University of Northern British Columbia, Prince George, British Columbia, Canada
| | - Macaire M S Yuen
- Department of Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Christopher I Keeling
- Department of Michael Smith Laboratories, University of British Columbia,Vancouver,British Columbia,Canada; Department of Biological Sciences, Simon Fraser University,Burnaby,British Columbia,Canada
| | - Jörg Bohlmann
- Department of Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Dezene P W Huber
- Department of Ecosystem Science and Management, University of Northern British Columbia, Prince George, British Columbia, Canada
| |
Collapse
|
47
|
Gottardo M, Callaini G, Riparbelli MG. Does Unc-GFP uncover ciliary structures in the rhabdomeric eye of Drosophila? J Cell Sci 2016; 129:2726-31. [PMID: 27235419 DOI: 10.1242/jcs.185942] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 05/25/2016] [Indexed: 11/20/2022] Open
Abstract
The uncoordinated (unc) gene product, a potential ortholog of mammalian orofaciodigital syndrome 1 (Ofd1), is involved in the assembly of the ciliary axoneme in Drosophila and it is, therefore, constrained to cell types that have ciliary structures, namely type 1 sensory neurons and male germ cells. Here, we show that evenly spaced Unc-GFP spots are present in the eye imaginal discs of third-instar larvae. These spots are restricted to the R8 photoreceptor cell of each ommatidium in association with mother centrioles. This finding is unexpected because the Drosophila eye is of the rhabdomeric type and would be expected to lack ciliary structures.
Collapse
Affiliation(s)
- Marco Gottardo
- University of Siena, Department of Life Sciences, Via A. Moro 2, 53100 Siena, Italy
| | - Giuliano Callaini
- University of Siena, Department of Life Sciences, Via A. Moro 2, 53100 Siena, Italy
| | | |
Collapse
|
48
|
Abstract
The study of Drosophila imaginal discs has contributed to a number of discoveries in developmental and cellular biology. In addition to the elucidation of the role of tissue compartments and organ-specific master regulator genes during development, imaginal discs have also become well established as models for studying cellular interactions and complex genetic pathways. Here, we review key discoveries resulting from investigations of these epithelial precursor organs, ranging from cell fate determination and transdetermination to tissue patterning. Furthermore, the design of increasingly sophisticated genetic tools over the last decades has added value to the use of imaginal discs as model systems. As a result of tissue-specific genetic screens, several components of developmentally regulated signaling pathways were identified and epistasis revealed the levels at which they function. Discs have been widely used to assess cellular interactions in their natural tissue context, contributing to a better understanding of growth regulation, tissue regeneration, and cancer. With the continuous implementation of novel tools, imaginal discs retain significant potential as model systems to address emerging questions in biology and medicine.
Collapse
|
49
|
Wu C, Chen C, Dai J, Zhang F, Chen Y, Li W, Pastor-Pareja JC, Xue L. Toll pathway modulates TNF-induced JNK-dependent cell death in Drosophila. Open Biol 2016. [PMID: 26202785 PMCID: PMC4632500 DOI: 10.1098/rsob.140171] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Signalling networks that control the life or death of a cell are of central interest in modern biology. While the defined roles of the c-Jun N-terminal kinase (JNK) pathway in regulating cell death have been well-established, additional factors that modulate JNK-mediated cell death have yet to be fully elucidated. To identify novel regulators of JNK-dependent cell death, we performed a dominant-modifier screen in Drosophila and found that the Toll pathway participates in JNK-mediated cell death. Loss of Toll signalling suppresses ectopically and physiologically activated JNK signalling-induced cell death. Our epistasis analysis suggests that the Toll pathway acts as a downstream modulator for JNK-dependent cell death. In addition, gain of JNK signalling results in Toll pathway activation, revealed by stimulated transcription of Drosomycin (Drs) and increased cytoplasm-to-nucleus translocation of Dorsal. Furthermore, the Spätzle (Spz) family ligands for the Toll receptor are transcriptionally upregulated by activated JNK signalling in a non-cell-autonomous manner, providing a molecular mechanism for JNK-induced Toll pathway activation. Finally, gain of Toll signalling exacerbates JNK-mediated cell death and promotes cell death independent of caspases. Thus, we have identified another important function for the evolutionarily conserved Toll pathway, in addition to its well-studied roles in embryonic dorso-ventral patterning and innate immunity.
Collapse
Affiliation(s)
- Chenxi Wu
- Institute of Intervention Vessel, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, People's Republic of China
| | - Changyan Chen
- Institute of Intervention Vessel, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, People's Republic of China
| | - Jianli Dai
- School of Life Sciences, Tsinghua University, Medical Science Building, D224, Beijing 100084, People's Republic of China
| | - Fan Zhang
- School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, People's Republic of China
| | - Yujun Chen
- Institute of Intervention Vessel, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, People's Republic of China
| | - Wenzhe Li
- Institute of Intervention Vessel, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, People's Republic of China
| | - José Carlos Pastor-Pareja
- School of Life Sciences, Tsinghua University, Medical Science Building, D224, Beijing 100084, People's Republic of China
| | - Lei Xue
- Institute of Intervention Vessel, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, People's Republic of China
| |
Collapse
|
50
|
Park SY, Stultz BG, Hursh DA. Dual Role of Jun N-Terminal Kinase Activity in Bone Morphogenetic Protein-Mediated Drosophila Ventral Head Development. Genetics 2015; 201:1411-26. [PMID: 26500262 PMCID: PMC4676534 DOI: 10.1534/genetics.115.178376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 10/13/2015] [Indexed: 01/15/2023] Open
Abstract
The Drosophila bone morphogenetic protein encoded by decapentaplegic (dpp) controls ventral head morphogenesis by expression in the head primordia, eye-antennal imaginal discs. These are epithelial sacs made of two layers: columnar disc proper cells and squamous cells of the peripodial epithelium. dpp expression related to head formation occurs in the peripodial epithelium; cis-regulatory mutations disrupting this expression display defects in sensory vibrissae, rostral membrane, gena, and maxillary palps. Here we document that disruption of this dpp expression causes apoptosis in peripodial cells and underlying disc proper cells. We further show that peripodial Dpp acts directly on the disc proper, indicating that Dpp must cross the disc lumen to act. We demonstrate that palp defects are mechanistically separable from the other mutant phenotypes; both are affected by the c-Jun N-terminal kinase pathway but in opposite ways. Slight reduction of both Jun N-terminal kinase and Dpp activity in peripodial cells causes stronger vibrissae, rostral membrane, and gena defects than Dpp alone; additionally, strong reduction of Jun N-terminal kinase activity alone causes identical defects. A more severe reduction of dpp results in similar vibrissae, rostral membrane, and gena defects, but also causes mutant maxillary palps. This latter defect is correlated with increased peripodial Jun N-terminal kinase activity and can be caused solely by ectopic activation of Jun N-terminal kinase. We conclude that formation of sensory vibrissae, rostral membrane, and gena tissue in head morphogenesis requires the action of Jun N-terminal kinase in peripodial cells, while excessive Jun N-terminal kinase signaling in these same cells inhibits the formation of maxillary palps.
Collapse
Affiliation(s)
- Sung Yeon Park
- Division of Cell and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland 20993 BK21PLUS Biomedical Science Project, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea
| | - Brian G Stultz
- Division of Cell and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland 20993
| | - Deborah A Hursh
- Division of Cell and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland 20993
| |
Collapse
|