1
|
Bae J, Bertucci EM, Bock SL, Hale MD, Moore J, Wilkinson PM, Rainwater TR, Bowden JA, Koal T, PhamTuan H, Parrott BB. Intrinsic and extrinsic factors interact during development to influence telomere length in a long-lived reptile. Mol Ecol 2022; 31:6114-6127. [PMID: 34101921 DOI: 10.1111/mec.16017] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 06/04/2021] [Accepted: 06/04/2021] [Indexed: 01/31/2023]
Abstract
The mechanisms connecting environmental conditions to plasticity in biological aging trajectories are fundamental to understanding individual variation in functional traits and life history. Recent findings suggest that telomere biology is especially dynamic during early life stages and has long-term consequences for subsequent reproduction and survival. However, our current understanding is mostly derived from studies investigating ecological and anthropogenic factors separately, leaving the effects of complex environmental interactions unresolved. American alligators (Alligator mississippiensis) are long-lived apex predators that rely on incubation temperature during a discrete period during development and endocrine cues to determine sex, making them especially vulnerable to current climatic variability and exposure to anthropogenic contaminants interfering with hormone function. Here, we combine field studies with a factorial design to understand how the developmental environment, along with intrinsic biological variation contribute to persistent telomere variation. We found that exposure to a common endocrine disrupting contaminant, DDE, affects telomere length, but that the directionality is highly dependent upon incubation temperature. Variation in hatchling growth, underlies a strong clutch effect. We also assess concentrations of a panel of glucocorticoid hormones and find that contaminant exposure elicits an increase in circulating glucocorticoids. Consistent with emerging evidence linking stress and aging trajectories, GC levels also appear to trend with shorter telomere length. Thus, we add support for a mechanistic link between contaminants and glucocorticoid signalling, which interacts with ecological aspects of the developmental environment to alter telomere dynamics.
Collapse
Affiliation(s)
- Junsoo Bae
- Savannah River Ecology Laboratory, Aiken, SC, USA.,Augusta University, Augusta, GA, USA
| | - Emily M Bertucci
- Savannah River Ecology Laboratory, Aiken, SC, USA.,Eugene P. Odum School of Ecology, University of Georgia, Athens, GA, USA
| | - Samantha L Bock
- Savannah River Ecology Laboratory, Aiken, SC, USA.,Eugene P. Odum School of Ecology, University of Georgia, Athens, GA, USA
| | - Matthew D Hale
- Savannah River Ecology Laboratory, Aiken, SC, USA.,Eugene P. Odum School of Ecology, University of Georgia, Athens, GA, USA
| | - Jameel Moore
- Savannah River Ecology Laboratory, Aiken, SC, USA.,Benedict College, Columbia, SC, USA
| | | | - Thomas R Rainwater
- Tom Yawkey Wildlife Center, Georgetown, SC, USA.,Belle W. Baruch Institute of Coastal Ecology & Forest Science, Clemson University, Georgetown, SC, USA
| | - John A Bowden
- Center for Environmental and Human Toxicology, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | | | | | - Benjamin B Parrott
- Savannah River Ecology Laboratory, Aiken, SC, USA.,Eugene P. Odum School of Ecology, University of Georgia, Athens, GA, USA
| |
Collapse
|
2
|
Smaga CR, Bock SL, Johnson JM, Parrott BB. Sex Determination and Ovarian Development in Reptiles and Amphibians: From Genetic Pathways to Environmental Influences. Sex Dev 2022; 17:99-119. [PMID: 36380624 DOI: 10.1159/000526009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 07/08/2022] [Indexed: 11/21/2023] Open
Abstract
BACKGROUND Reptiles and amphibians provide untapped potential for discovering how a diversity of genetic pathways and environmental conditions are incorporated into developmental processes that can lead to similar functional outcomes. These groups display a multitude of reproductive strategies, and whereas many attributes are conserved within groups and even across vertebrates, several aspects of sexual development show considerable variation. SUMMARY In this review, we focus our attention on the development of the reptilian and amphibian ovary. First, we review and describe the events leading to ovarian development, including sex determination and ovarian maturation, through a comparative lens. We then describe how these events are influenced by environmental factors, focusing on temperature and exposure to anthropogenic chemicals. Lastly, we identify critical knowledge gaps and future research directions that will be crucial to moving forward in our understanding of ovarian development and the influences of the environment in reptiles and amphibians. KEY MESSAGES Reptiles and amphibians provide excellent models for understanding the diversity of sex determination strategies and reproductive development. However, a greater understanding of the basic biology of these systems is necessary for deciphering the adaptive and potentially disruptive implications of embryo-by-environment interactions in a rapidly changing world.
Collapse
Affiliation(s)
- Christopher R Smaga
- Eugene P. Odum School of Ecology, University of Georgia, Athens, Georgia, USA
- Savannah River Ecology Laboratory, Aiken, South Carolina, USA
| | - Samantha L Bock
- Eugene P. Odum School of Ecology, University of Georgia, Athens, Georgia, USA
- Savannah River Ecology Laboratory, Aiken, South Carolina, USA
| | - Josiah M Johnson
- Eugene P. Odum School of Ecology, University of Georgia, Athens, Georgia, USA
- Savannah River Ecology Laboratory, Aiken, South Carolina, USA
| | - Benjamin B Parrott
- Eugene P. Odum School of Ecology, University of Georgia, Athens, Georgia, USA
- Savannah River Ecology Laboratory, Aiken, South Carolina, USA
| |
Collapse
|
3
|
Barraza AD, Finlayson KA, Leusch FDL, van de Merwe JP. Systematic review of reptile reproductive toxicology to inform future research directions on endangered or threatened species, such as sea turtles. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 286:117470. [PMID: 34438481 DOI: 10.1016/j.envpol.2021.117470] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 04/28/2021] [Accepted: 05/24/2021] [Indexed: 06/13/2023]
Abstract
Threatened or endangered reptiles, such as sea turtles, are generally understudied within the field of wildlife toxicology, with even fewer studies on how contaminants affect threatened species reproduction. This paper aimed to better inform threatened species conservation by systematically and quantitatively reviewing available research on the reproductive toxicology of all reptiles, threatened and non-threatened. This review found 178 studies that matched our search criteria. These papers were categorized into location conducted, taxa studied, species studied, effects found, and chemicals investigated. The most studied taxa were turtles (n = 87 studies, 49%), alligators/crocodiles (n = 54, 30%), and lizards (n = 37, 21%). Maternal transfer, sex steroid alterations, sex reversal, altered sexual development, developmental abnormalities, and egg contamination were the most common effects found across all reptile taxa, providing guidance for avenues of research into threatened species. Maternal transfer of contaminants was found across all taxa, and taking into account the foraging behavior of sea turtles, could help elucidate differences in maternal transfer seen at nesting beaches. Sex steroid alterations were a common effect found with contaminant exposure, indicating the potential to use sex steroids as biomarkers along with traditional biomarkers such as vitellogenin. Sex reversal through chemical exposure was commonly found among species that exhibit temperature dependent sex determination, indicating the potential for both environmental pollution and climate change to disrupt population dynamics of many reptile species, including sea turtles. Few studies used in vitro, DNA, or molecular methodologies, indicating the need for more research using high-throughput, non-invasive, and cost-effective tools for threatened species research. The prevalence of developmental abnormalities and altered sexual development and function indicates the need to further study how anthropogenic pollutants affect reproductive output in threatened reptiles.
Collapse
Affiliation(s)
- Arthur D Barraza
- Australian Rivers Institute, School of Environment and Science, Griffith University, Gold Coast, 4222, Qld, Australia.
| | - Kimberly A Finlayson
- Australian Rivers Institute, School of Environment and Science, Griffith University, Gold Coast, 4222, Qld, Australia
| | - Frederic D L Leusch
- Australian Rivers Institute, School of Environment and Science, Griffith University, Gold Coast, 4222, Qld, Australia
| | - Jason P van de Merwe
- Australian Rivers Institute, School of Environment and Science, Griffith University, Gold Coast, 4222, Qld, Australia
| |
Collapse
|
4
|
Hale MD, Parrott BB. Assessing the Ability of Developmentally Precocious Estrogen Signaling to Recapitulate Ovarian Transcriptomes and Follicle Dynamics in Alligators from a Contaminated Lake. ENVIRONMENTAL HEALTH PERSPECTIVES 2020; 128:117003. [PMID: 33186072 PMCID: PMC7665278 DOI: 10.1289/ehp6627] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 10/09/2020] [Accepted: 10/16/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Concern has grown in recent decades over anthropogenic contaminants that interfere with the functioning of endocrine hormones. However, mechanisms connecting developmental processes to pathologies associated with endocrine-disrupting chemical (EDC) exposure are poorly understood in naturally exposed populations. OBJECTIVES We sought to a) characterize divergence in ovarian transcriptomic and follicular profiles between alligators originating from a historically EDC-contaminated site, Lake Apopka, and a reference site; b) test the ability of developmentally precocious estrogen exposure to recapitulate site-associated patterns of divergence; and c) test whether treatment with exogenous follicle-stimulating hormone (FSH) is capable of rescuing phenotypes associated with contaminant exposure and/or embryonic estrogen treatment. METHODS Alligators eggs were collected from a contaminated site and a reference site, and a subset of eggs from the reference site were treated with estradiol (E2) during embryonic development prior to gonadal differentiation. After hatching, alligators were raised under controlled laboratory settings for 5 months. Juveniles from both sites were divided and treated with exogenous FSH. Histological analyses and RNA-sequencing were conducted to characterize divergence in ovarian follicle dynamics and transcriptomes between sites, between reference and E2-treated animals, and between FSH-treated and nontreated animals. RESULTS We observed broad site-of-origin divergence in ovarian transcriptomes and reductions in ovarian follicle density between juvenile alligators from Lake Apopka and the reference site. Treating embryos from the reference site with E2 overwhelmingly recapitulated transcriptional and histological alterations observed in Lake Apopka juveniles. Ovarian phenotypes observed in Lake Apopka alligators or resulting from estrogen treatment were only partially rescued by treatment with exogenous FSH. DISCUSSION Recapitulation of ovarian abnormalities by precocious E2 revealed a relatively simple mechanism underlying contaminant-induced pathologies in a historical example of environmental endocrine disruption. Findings reported here support a model where the developmental timing of estrogen signaling has the potential to permanently alter ovarian organization and function. https://doi.org/10.1289/EHP6627.
Collapse
Affiliation(s)
- Matthew D. Hale
- Savannah River Ecology Laboratory, Aiken, South Carolina, USA
- Odum School of Ecology, University of Georgia, Athens, Georgia, USA
| | - Benjamin B. Parrott
- Savannah River Ecology Laboratory, Aiken, South Carolina, USA
- Odum School of Ecology, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
5
|
Abstract
The One Environmental Health research approach, a subspecialty of the One Health initiative, focuses on toxic chemicals. Distinct disciplines work together to give a holistic perspective of a health concern through discrete disciplines, including, but not limited to, public health and the medical and veterinary sciences. In this article, we illustrate the concept of One Environmental Health with two case studies. One case study focuses on alligators and contributions to the field of endocrine disruption. The other case study focuses on whales and contributions to understanding carcinogenic metals. Both studies illustrate how the health of sentinel organisms has the potential to inform about the health of humans and the ecosystem.
Collapse
Affiliation(s)
- Adam Pérez
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, 505 S. Hancock Street, Louisville, KY 40292, USA
| | - John Pierce Wise Sr.
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, 505 S. Hancock Street, Louisville, KY 40292, USA
| |
Collapse
|
6
|
Guillette LJ, Parrott BB, Nilsson E, Haque MM, Skinner MK. Epigenetic programming alterations in alligators from environmentally contaminated lakes. Gen Comp Endocrinol 2016; 238:4-12. [PMID: 27080547 PMCID: PMC5064863 DOI: 10.1016/j.ygcen.2016.04.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 03/31/2016] [Accepted: 04/09/2016] [Indexed: 11/29/2022]
Abstract
Previous studies examining the reproductive health of alligators in Florida lakes indicate that a variety of developmental and health impacts can be attributed to a combination of environmental quality and exposures to environmental contaminants. The majority of these environmental contaminants have been shown to disrupt normal endocrine signaling. The potential that these environmental conditions and contaminants may influence epigenetic status and correlate to the health abnormalities was investigated in the current study. The red blood cell (RBC) (erythrocyte) in the alligator is nucleated so was used as an easily purified marker cell to investigate epigenetic programming. RBCs were collected from adult male alligators captured at three sites in Florida, each characterized by varying degrees of contamination. While Lake Woodruff (WO) has remained relatively pristine, Lake Apopka (AP) and Merritt Island (MI) convey exposures to different suites of contaminants. DNA was isolated and methylated DNA immunoprecipitation (MeDIP) was used to isolate methylated DNA that was then analyzed in a competitive hybridization using a genome-wide alligator tiling array for a MeDIP-Chip analysis. Pairwise comparisons of alligators from AP and MI to WO revealed alterations in the DNA methylome. The AP vs. WO comparison identified 85 differential DNA methylation regions (DMRs) with ⩾3 adjacent oligonucleotide tiling array probes and 15,451 DMRs with a single oligo probe analysis. The MI vs. WO comparison identified 75 DMRs with the ⩾3 oligo probe and 17,411 DMRs with the single oligo probe analysis. There was negligible overlap between the DMRs identified in AP vs. WO and MI vs. WO comparisons. In both comparisons DMRs were primarily associated with CpG deserts which are regions of low CpG density (1-2CpG/100bp). Although the alligator genome is not fully annotated, gene associations were identified and correlated to major gene class functional categories and pathways of endocrine relevance. Observations demonstrate that environmental quality may be associated with epigenetic programming and health status in the alligator. The epigenetic alterations may provide biomarkers to assess the environmental exposures and health impacts on these populations of alligators.
Collapse
Affiliation(s)
- Louis J Guillette
- Department of Obstetrics and Gynecology, Marine Biomedicine and Environmental Sciences Program, Medical University of South Carolina, Hollings Marine Laboratory, Charleston, SC 29412, USA
| | - Benjamin B Parrott
- Department of Obstetrics and Gynecology, Marine Biomedicine and Environmental Sciences Program, Medical University of South Carolina, Hollings Marine Laboratory, Charleston, SC 29412, USA
| | - Eric Nilsson
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| | - M M Haque
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| | - Michael K Skinner
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA.
| |
Collapse
|
7
|
Gunderson MP, Pickett MA, Martin JT, Hulse EJ, Smith SS, Smith LA, Campbell RM, Lowers RH, Boggs ASP, Guillette LJ. Variations in hepatic biomarkers in American alligators (Alligator mississippiensis) from three sites in Florida, USA. CHEMOSPHERE 2016; 155:180-187. [PMID: 27111470 PMCID: PMC4909370 DOI: 10.1016/j.chemosphere.2016.04.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 04/05/2016] [Accepted: 04/06/2016] [Indexed: 05/21/2023]
Abstract
Sub-individual biomarkers are sub-lethal biological responses commonly used in the assessment of wildlife exposure to environmental contaminants. In this study, we examined the activity of glutathione-s-transferase (GST) and lactate dehydrogenase (LDH), and metallothionein (MT) concentrations among captive-raised alligator hatchlings, wild-caught juveniles, and wild-caught adults. Juveniles and adults were collected from three locations in Florida (USA) with varying degrees of contamination (i.e. Lake Apopka (organochlorine polluted site), Merritt Island National Wildlife Refuge (NWR) (metal polluted site), and Lake Woodruff NWR (reference site)). We examined whether changes in the response of these three biomarkers were age and sex dependent or reflected site-specific variations of environmental contaminants. Juvenile alligators from Merritt Island NWR had higher MT concentrations and lower GST activity compared to those from the other two sites. This outcome was consistent with higher metal pollution at this location. Sexually dimorphic patterns of MT and GST (F > M) were observed in juvenile alligators from all sites, although this pattern was not observed in adults. GST activity was lower in captive-raised alligators from Lake Apopka and Merritt Island NWR as compared to animals from Lake Woodruff NWR, suggesting a possible developmental modulator at these sites. No clear patterns were observed in LDH activity. We concluded that GST and MT demonstrate age and sex specific patterns in the alligators inhabiting these study sites and that the observed variation among sites could be due to differences in contaminant exposure.
Collapse
Affiliation(s)
- Mark P Gunderson
- The College of Idaho, Department of Biology, 2112 Cleveland Blvd., Caldwell, ID 83605, USA.
| | - Melissa A Pickett
- The College of Idaho, Department of Biology, 2112 Cleveland Blvd., Caldwell, ID 83605, USA
| | - Justin T Martin
- The College of Idaho, Department of Biology, 2112 Cleveland Blvd., Caldwell, ID 83605, USA
| | - Elizabeth J Hulse
- The College of Idaho, Department of Biology, 2112 Cleveland Blvd., Caldwell, ID 83605, USA
| | - Spenser S Smith
- The College of Idaho, Department of Biology, 2112 Cleveland Blvd., Caldwell, ID 83605, USA
| | - Levi A Smith
- The College of Idaho, Department of Biology, 2112 Cleveland Blvd., Caldwell, ID 83605, USA
| | - Rachel M Campbell
- The College of Idaho, Department of Biology, 2112 Cleveland Blvd., Caldwell, ID 83605, USA
| | - Russell H Lowers
- Inomedic Health Applications, Aquatics Division, Mail Code IHA-300, Kennedy Space Center, FL, USA
| | - Ashley S P Boggs
- Marine Biomedicine and Environmental Sciences Center, Department of Obstetrics and Gynecology, Medical University South Carolina, Hollings Marine Laboratory, Charleston, SC 29412, USA
| | - Louis J Guillette
- Marine Biomedicine and Environmental Sciences Center, Department of Obstetrics and Gynecology, Medical University South Carolina, Hollings Marine Laboratory, Charleston, SC 29412, USA
| |
Collapse
|
8
|
Cruz G, Foster W, Paredes A, Yi KD, Uzumcu M. Long-term effects of early-life exposure to environmental oestrogens on ovarian function: role of epigenetics. J Neuroendocrinol 2014; 26:613-24. [PMID: 25040227 PMCID: PMC4297924 DOI: 10.1111/jne.12181] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 06/22/2014] [Accepted: 07/15/2014] [Indexed: 12/14/2022]
Abstract
Oestrogens play an important role in development and function of the brain and reproductive tract. Accordingly, it is considered that developmental exposure to environmental oestrogens can disrupt neural and reproductive tract development, potentially resulting in long-term alterations in neurobehaviour and reproductive function. Many chemicals have been shown to have oestrogenic activity, whereas others affect oestrogen production and turnover, resulting in the disruption of oestrogen signalling pathways. However, these mechanisms and the concentrations required to induce these effects cannot account for the myriad adverse effects of environmental toxicants on oestrogen-sensitive target tissues. Hence, alternative mechanisms are assumed to underlie the adverse effects documented in experimental animal models and thus could be important to human health. In this review, the epigenetic regulation of gene expression is explored as a potential target of environmental toxicants including oestrogenic chemicals. We suggest that toxicant-induced changes in epigenetic signatures are important mechanisms underlying the disruption of ovarian follicular development. In addition, we discuss how exposure to environmental oestrogens during early life can alter gene expression through effects on epigenetic control potentially leading to permanent changes in ovarian physiology.
Collapse
Affiliation(s)
- Gonzalo Cruz
- Centro de Neurobiología y Plasticidad Cerebral, Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
- Correspondence to: Gonzalo Cruz, Gran Bretaña 1111, Playa Ancha, Valparaíso, Chile. 2360102, Tel. 56 32 2508015,
| | - Warren Foster
- Department of Obstetrics & Gynecology, McMaster University, Hamilton, Ontario, Canada
| | - Alfonso Paredes
- Laboratorio de Neurobioquímica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Chile
| | - Kun Don Yi
- Syngenta Crop Protection, LLC. Greensboro, NC
| | - Mehmet Uzumcu
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
| |
Collapse
|
9
|
Kohno S, Parrott BB, Yatsu R, Miyagawa S, Moore BC, Iguchi T, Guillette L. Gonadal Differentiation in Reptiles Exhibiting Environmental Sex Determination. Sex Dev 2014; 8:208-26. [DOI: 10.1159/000358892] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
10
|
Gurzu S, Szentirmay Z, Jung I. Molecular classification of colorectal cancer: a dream that can become a reality. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY 2013; 7:267-76. [PMID: 23771065 DOI: 10.1159/000350687] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/11/2013] [Indexed: 12/14/2022]
Abstract
Despite thousands of studies about colorectal cancer (CRC) as much as extensively usage of prognostic antibodies÷genes and clinical trials that include the newest targeted drugs, this tumor still remains in the top of both incidence and cancer-related mortality. In this review, we intended to correlate our experience in field of colorectal cancer with the literature data and to present our vision about the prognostic and predictive role of some of the most used molecular and immunohistochemical examinations in the field. The prognostic and predictive values of parameters such as microsatellite instability, angiogenesis, Maspin gene/protein, K-ras and BRAF mutations are discussed in relationship to the classical antibodies such as Keratin 7/20, p53 or HER2. At the end, we correlated these informations and tried to realize a molecular classification of colorectal cancer, similar to breast carcinomas, in order to establish targeted groups of patients for targeted therapy.
Collapse
Affiliation(s)
- Simona Gurzu
- Department of Pathology, University of Medicine and Pharmacy of Targu Mures, Romania.
| | | | | |
Collapse
|
11
|
Moore BC, Roark AM, Kohno S, Hamlin HJ, Guillette LJ. Gene-environment interactions: the potential role of contaminants in somatic growth and the development of the reproductive system of the American alligator. Mol Cell Endocrinol 2012; 354:111-20. [PMID: 22061623 PMCID: PMC3328103 DOI: 10.1016/j.mce.2011.10.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2011] [Revised: 10/17/2011] [Accepted: 10/18/2011] [Indexed: 11/25/2022]
Abstract
Developing organisms interpret and integrate environmental signals to produce adaptive phenotypes that are prospectively suited for probable demands in later life. This plasticity can be disrupted when embryos are impacted by exogenous contaminants, such as environmental pollutants, producing potentially deleterious and long-lasting mismatches between phenotype and the future environment. We investigated the ability for in ovo environmental contaminant exposure to alter the growth trajectory and ovarian function of alligators at five months after hatching. Alligators collected as eggs from polluted Lake Apopka, FL, hatched with smaller body masses but grew faster during the first five months after hatching, as compared to reference-site alligators. Further, ovaries from Lake Apopka alligators displayed lower basal expression levels of inhibin beta A mRNA as well as decreased responsiveness of aromatase and follistatin mRNA expression levels to treatment with follicle stimulating hormone. We posit that these differences predispose these animals to increased risks of disease and reproductive dysfunction at adulthood.
Collapse
Affiliation(s)
- Brandon C Moore
- Department of Biology, 220 Bartram Hall, P.O. Box 118525, University of Florida, Gainesville, FL 32611-8525, USA.
| | | | | | | | | |
Collapse
|
12
|
Moore BC, Forouhar S, Kohno S, Botteri NL, Hamlin HJ, Guillette LJ. Gonadotropin-induced changes in oviducal mRNA expression levels of sex steroid hormone receptors and activin-related signaling factors in the alligator. Gen Comp Endocrinol 2012; 175:251-8. [PMID: 22154572 PMCID: PMC3328093 DOI: 10.1016/j.ygcen.2011.11.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 11/01/2011] [Accepted: 11/11/2011] [Indexed: 01/18/2023]
Abstract
Oviducts respond to hormonal cues from ovaries with tissue proliferation and differentiation in preparation of transporting and fostering gametes. These responses produce oviducal microenvironments conducive to reproductive success. Here, we investigated changes in circulating plasma sex steroid hormones concentrations and ovarian and oviducal mRNA expression to an in vivo gonadotropin (FSH) challenge in sexually immature, five-month-old alligators. Further, we investigated differences in these observed responses between alligators hatched from eggs collected at a heavily-polluted (Lake Apopka, FL) and minimally-polluted (Lake Woodruff, FL) site. In oviducts, we measured mRNA expression of estrogen, progesterone, and androgen receptors and also beta A and B subunits which homo- or heterodimerize to produce the transforming growth factor activin. In comparison, minimal inhibin alpha subunit mRNA expression suggests that these oviducts produce a primarily activin-dominated signaling milieu. Ovaries responded to a five-day FSH challenge with increased expression of steroidogenic enzyme mRNA which was concomitant with increased circulating sex steroid hormone concentrations. Oviducts in the FSH-challenged Lake Woodruff alligators increased mRNA expression of progesterone and androgen receptors, proliferating cell nuclear antigen, and the activin signaling antagonist follistatin. In contrast, Lake Apopka alligators displayed a diminished increase in ovarian CYP19A1 aromatase expression and no increase in oviducal AR expression, as compared to those observed in Lake Woodruff alligators. These results demonstrate that five-month-old female alligators display an endocrine-responsive ovarian-oviducal axis and environmental pollution exposure may alter these physiological responses.
Collapse
Affiliation(s)
- Brandon C Moore
- Department of Biology, 220 Bartram Hall, P.O. Box 118525, University of Florida, Gainesville, FL 32611-8525, USA.
| | | | | | | | | | | |
Collapse
|