1
|
Thomson P, Pineda M, Yargeau V, Langlois VS. Chronic Exposure to Two Gestagens Differentially Alters Morphology and Gene Expression in Silurana tropicalis. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 80:745-759. [PMID: 33856560 DOI: 10.1007/s00244-021-00831-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
Gestagens are active ingredients in human and veterinary drugs with progestogenic activity. Two gestagens-progesterone (P4), and the synthetic P4 analogue, melengestrol acetate (MGA)-are approved for use in beef cattle agriculture in North America. Both P4 and MGA have been measured in surface water receiving runoff from animal agricultural operations. This project aimed to assess the morphometric and molecular consequences of chronic exposures to P4, MGA, and their mixture during Western clawed frog metamorphosis. Chronic exposure (from embryo to metamorphosis) to MGA (1.7 µg/L) or P4 + MGA (0.22 µg/L P4 + 1.5 µg/L MGA) caused a considerable dysregulation of metamorphic timing, as evidenced by an inhibition of growth, narrower head, and lack of forelimb emergence in all animals. Molecular analysis revealed that chronic exposure to the mixture induced an additive upregulation of neurosteroid-related (GABAA receptor subunit α6 (gabra6) and steroid 5-alpha reductase 1 (srd5α1) gene expression in brain tissue. Chronic P4 exposure (0.26 µg/L P4) induced a significant upregulation of the expression hypothalamic-pituitary-gonadal (HPG)-related genes (ipgr, erα) in the gonadal mesonephros complex (GMC). Our data suggest that exposure to P4, MGA, and their mixture induces multiple endocrine responses and adverse effects in larval Western clawed frogs. This study helps to better our understanding of the consequences of chronic gestagen exposure and suggests that the implications and risk of high gestagen use in beef cattle feeding operations may extend to the aquatic environment.
Collapse
Affiliation(s)
- Paisley Thomson
- Institut national de la recherche scientifique (INRS) - Centre Eau Terre Environnement, 490 rue de la Couronne, Québec City, QC, G1K 9A9, Canada
| | - Marco Pineda
- Department of Chemical Engineering, McGill University, 3610 University St, Montreal, QC, H3A 0C5, Canada
| | - Viviane Yargeau
- Department of Chemical Engineering, McGill University, 3610 University St, Montreal, QC, H3A 0C5, Canada
| | - Valerie S Langlois
- Institut national de la recherche scientifique (INRS) - Centre Eau Terre Environnement, 490 rue de la Couronne, Québec City, QC, G1K 9A9, Canada.
| |
Collapse
|
2
|
Pang Z, Lü Z, Wang M, Gong L, Liu B, Jiang L, Liu L. Characterization, relative abundances of mRNA transcripts, and subcellular localization of two forms of membrane progestin receptors (mPRs) in the common Chinese cuttlefish, Sepiella japonica. Anim Reprod Sci 2019; 208:106107. [DOI: 10.1016/j.anireprosci.2019.106107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 06/08/2019] [Accepted: 06/24/2019] [Indexed: 01/14/2023]
|
3
|
Omer NA, Hu Y, Hu Y, Idriss AA, Abobaker H, Hou Z, Dong H, Zhao R. Dietary betaine activates hepatic VTGII expression in laying hens associated with hypomethylation of GR gene promoter and enhanced GR expression. J Anim Sci Biotechnol 2018; 9:2. [PMID: 29375826 PMCID: PMC5773019 DOI: 10.1186/s40104-017-0218-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 12/14/2017] [Indexed: 12/25/2022] Open
Abstract
Background Vitellogenin (VTG) is a precursor of egg yolk proteins synthesized within the liver of oviparous vertebrates. Betaine is an important methyl donor that is reported to improve egg production of laying hens with an unclear mechanism. In the present study, we fed betaine-supplemented diet (0.5%) to laying hens for 4 wk and investigated its effect on VTGII expression in the liver. Results Betaine did not affect chicken weight, but significantly (P < 0.05) increased egg laying rate accompanied with a significant (P < 0.05) increase in hepatic concentration and plasma level of VTGII. Plasma estrogen level did not change, but the hepatic expression of estrogen receptor α (ERα) mRNA was significantly (P < 0.05) up-regulated. Betaine did not affect the protein content of ERα, but significantly (P < 0.05) increased hepatic expression of glucocorticoid receptor (GR) at both mRNA and protein levels. Also, ERα/GR interaction tended to be enhanced in the liver nuclear lysates of betaine-supplemented hens as determined by co-immunoprecipitation. Furthermore, dietary betaine supplementation significantly increased (P < 0.05) the hepatic expression of methyl-transfer enzymes, such as BHMT, GNMT, and DNMT1, which was associated with higher SAM/SAH ratio and hypomethylation of GR promoter regions. Conclusions Betaine activates hepatic VTGII expression in association with modified DNA methylation of GR gene promoter, GR expression and ERα/GR interaction. Activation of hepatic VTGII expression may contribute, at least partly, to improved egg production in betaine-supplemented hens.
Collapse
Affiliation(s)
- Nagmeldin A Omer
- 1MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, 210095 People's Republic of China.,2Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095 People's Republic of China
| | - Yun Hu
- 1MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, 210095 People's Republic of China.,2Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095 People's Republic of China
| | - Yan Hu
- 4Poultry Institute, Chinese Academy of Agriculture Sciences, Yangzhou, Jiangsu China
| | - Abdulrahman A Idriss
- 1MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, 210095 People's Republic of China.,2Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095 People's Republic of China
| | - Halima Abobaker
- 1MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, 210095 People's Republic of China.,2Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095 People's Republic of China
| | - Zhen Hou
- 1MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, 210095 People's Republic of China.,2Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095 People's Republic of China
| | - Haibo Dong
- 1MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, 210095 People's Republic of China.,2Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095 People's Republic of China
| | - Ruqian Zhao
- 1MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, 210095 People's Republic of China.,2Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095 People's Republic of China.,Jiangsu Collaborative Innovation Centre of Meat Production and Processing, Quality and Safety Control, Nanjing, 210095 People's Republic of China
| |
Collapse
|
4
|
Cooke PS, Nanjappa MK, Ko C, Prins GS, Hess RA. Estrogens in Male Physiology. Physiol Rev 2017; 97:995-1043. [PMID: 28539434 PMCID: PMC6151497 DOI: 10.1152/physrev.00018.2016] [Citation(s) in RCA: 283] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 01/06/2017] [Accepted: 01/17/2017] [Indexed: 02/06/2023] Open
Abstract
Estrogens have historically been associated with female reproduction, but work over the last two decades established that estrogens and their main nuclear receptors (ESR1 and ESR2) and G protein-coupled estrogen receptor (GPER) also regulate male reproductive and nonreproductive organs. 17β-Estradiol (E2) is measureable in blood of men and males of other species, but in rete testis fluids, E2 reaches concentrations normally found only in females and in some species nanomolar concentrations of estrone sulfate are found in semen. Aromatase, which converts androgens to estrogens, is expressed in Leydig cells, seminiferous epithelium, and other male organs. Early studies showed E2 binding in numerous male tissues, and ESR1 and ESR2 each show unique distributions and actions in males. Exogenous estrogen treatment produced male reproductive pathologies in laboratory animals and men, especially during development, and studies with transgenic mice with compromised estrogen signaling demonstrated an E2 role in normal male physiology. Efferent ductules and epididymal functions are dependent on estrogen signaling through ESR1, whose loss impaired ion transport and water reabsorption, resulting in abnormal sperm. Loss of ESR1 or aromatase also produces effects on nonreproductive targets such as brain, adipose, skeletal muscle, bone, cardiovascular, and immune tissues. Expression of GPER is extensive in male tracts, suggesting a possible role for E2 signaling through this receptor in male reproduction. Recent evidence also indicates that membrane ESR1 has critical roles in male reproduction. Thus estrogens are important physiological regulators in males, and future studies may reveal additional roles for estrogen signaling in various target tissues.
Collapse
Affiliation(s)
- Paul S Cooke
- Department of Physiological Sciences, University of Florida, Gainesville, Florida; Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Manjunatha K Nanjappa
- Department of Physiological Sciences, University of Florida, Gainesville, Florida; Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - CheMyong Ko
- Department of Physiological Sciences, University of Florida, Gainesville, Florida; Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Gail S Prins
- Department of Physiological Sciences, University of Florida, Gainesville, Florida; Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Rex A Hess
- Department of Physiological Sciences, University of Florida, Gainesville, Florida; Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
5
|
Verderame M, Scudiero R, Limatola E. Exploring the Role of Estrogens in Lizard Spermatogenesis through the Study of Clomiphene and FSH Effects. Int J Endocrinol 2017; 2017:4760638. [PMID: 29463981 PMCID: PMC5804365 DOI: 10.1155/2017/4760638] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/23/2017] [Accepted: 12/05/2017] [Indexed: 11/17/2022] Open
Abstract
Spermatogenesis is a fascinating biological process aiming to generate haploid spermatozoa from diploid spermatogonia through a specific hormonal network between gonadotropins and steroids. Increasing evidence suggests that the primary female sex hormone estrogen plays an active role in this process. This research points out on the role of estrogen during lizard spermatogenesis by using three experimental approaches: (1) exposure to an analogue of nonsteroidal estrogen as Clomiphene citrate that acts both as estrogen agonist and antagonist; (2) exposure to the gonadotropin FSH; and (3) exposures to FSH followed by Clomiphene. Histological and immunohistochemical results demonstrate that in the lizard Podarcis sicula during the mating period, Clomiphene as well as FSH determines the breakdown of spermatogenesis and the epididymal regression, presumably through estrogens input as indirectly demonstrated by the appearance of ERα and vitellogenin in the liver. The ability of Clomiphene to restore the gonadal natural condition after FSH treatment is also demonstrated. Finally, data indicate that lizard testis and epididymis control their morphophysiology regulating the intracellular presence of ERα.
Collapse
Affiliation(s)
- Mariailaria Verderame
- Department of Biology, University Federico II, Via Mezzocannone 8, 80134 Naples, Italy
| | - Rosaria Scudiero
- Department of Biology, University Federico II, Via Mezzocannone 8, 80134 Naples, Italy
| | - Ermelinda Limatola
- Department of Biology, University Federico II, Via Mezzocannone 8, 80134 Naples, Italy
| |
Collapse
|
6
|
Säfholm M, Jansson E, Fick J, Berg C. Mixture effects of levonorgestrel and ethinylestradiol: estrogenic biomarkers and hormone receptor mRNA expression during sexual programming. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 161:146-153. [PMID: 25703176 DOI: 10.1016/j.aquatox.2015.02.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 12/22/2014] [Accepted: 02/08/2015] [Indexed: 06/04/2023]
Abstract
Synthetic progesterone (progestins) and estrogens are widely used pharmaceuticals. Given that their simultaneous unintentional exposure occurs in wildlife and also in human infants, data on mixture effects of combined exposures to these hormones during development is needed. Using the Xenopus (Silurana) tropicalis test system we investigated mixture effects of levonorgestrel (LNG) and ethinylestradiol (EE2) on hormone sensitive endpoints. After larval exposure to LNG (0.1nM), or EE2 (0.1nM) singly, or in combination with LNG (0.01, 0.1, 1.0nM), the gonadal sex ratio was determined histologically and hepatic mRNA levels of genes encoding vitellogenin (vtg beta1) and the estrogen (esr1, esr2), progesterone (ipgr) and androgen (ar) receptors were quantified using quantitative PCR. All EE2-exposed groups showed female-biased sex ratios and increased vtg beta1 mRNA levels compared with the controls. Compared with the EE2-alone group (positive control) there were no significant alterations in vtg beta1 levels or in sex ratios in the co-exposure groups. Exposure to LNG-alone caused an increase in ar mRNA levels in females, but not in males, compared to the controls and the co-exposed groups, indicating that co-exposure to EE2 counteracted the LNG-induced ar levels. No treatment related impacts on the mRNA expression of esr1, esr2, and ipgr in female tadpoles were found, suggesting that these endpoints are insensitive to long-term exposure to estrogen or progestin. Due to the EE2-induced female-biased sex ratios, the mRNA expression data for the low number of males in the EE2-exposed groups were not statistically analyzed. In conclusion, our results suggest that induced vtg expression is a robust biomarker for estrogenic activity in exposure scenarios involving both estrogens and progestins. Developmental exposure to LNG caused an induction of hepatic ar mRNA expression that was antagonized by combined exposure to EE2 and LNG. To our knowledge this is the first study to report effects of combined exposures to EE2 and LNG during the period of sexual programming.
Collapse
Affiliation(s)
- Moa Säfholm
- Uppsala University, Department of Environmental Toxicology, Centre for Reproductive Biology in Uppsala, Norbyvägen 18A, 752 36 Uppsala, Sweden.
| | - Erika Jansson
- Uppsala University, Department of Environmental Toxicology, Centre for Reproductive Biology in Uppsala, Norbyvägen 18A, 752 36 Uppsala, Sweden.
| | - Jerker Fick
- Umeå University, Department of Chemistry, KBC 6A, Linnaeus väg 6, 901 87 Umeå, Sweden.
| | - Cecilia Berg
- Uppsala University, Department of Environmental Toxicology, Centre for Reproductive Biology in Uppsala, Norbyvägen 18A, 752 36 Uppsala, Sweden.
| |
Collapse
|
7
|
Bhandari RK, Deem SL, Holliday DK, Jandegian CM, Kassotis CD, Nagel SC, Tillitt DE, Vom Saal FS, Rosenfeld CS. Effects of the environmental estrogenic contaminants bisphenol A and 17α-ethinyl estradiol on sexual development and adult behaviors in aquatic wildlife species. Gen Comp Endocrinol 2015; 214:195-219. [PMID: 25277515 DOI: 10.1016/j.ygcen.2014.09.014] [Citation(s) in RCA: 180] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Revised: 08/08/2014] [Accepted: 09/20/2014] [Indexed: 12/12/2022]
Abstract
Endocrine disrupting chemicals (EDCs), including the mass-produced component of plastics, bisphenol A (BPA) are widely prevalent in aquatic and terrestrial habitats. Many aquatic species, such as fish, amphibians, aquatic reptiles and mammals, are exposed daily to high concentrations of BPA and ethinyl estradiol (EE2), estrogen in birth control pills. In this review, we will predominantly focus on BPA and EE2, well-described estrogenic EDCs. First, the evidence that BPA and EE2 are detectable in almost all bodies of water will be discussed. We will consider how BPA affects sexual and neural development in these species, as these effects have been the best characterized across taxa. For instance, such chemicals have been in many cases reported to cause sex-reversal of males to females. Even if these chemicals do not overtly alter the gonadal sex, there are indications that several EDCs might demasculinize male-specific behaviors that are essential for attracting a mate. In so doing, these chemicals may reduce the likelihood that these males reproduce. If exposed males do reproduce, the concern is that they will then be passing on compromised genetic fitness to their offspring and transmitting potential transgenerational effects through their sperm epigenome. We will thus consider how diverse epigenetic changes might be a unifying mechanism of how BPA and EE2 disrupt several processes across species. Such changes might also serve as universal species diagnostic biomarkers of BPA and other EDCs exposure. Lastly, the evidence that estrogenic EDCs-induced effects in aquatic species might translate to humans will be considered.
Collapse
Affiliation(s)
- Ramji K Bhandari
- Biological Sciences, University of Missouri, Columbia, MO 65211, USA; Columbia Environmental Research Center, U.S. Geological Survey, Columbia, MO 65201, USA
| | - Sharon L Deem
- Institute for Conservation Medicine, Saint Louis Zoo, Saint Louis, MO 63110, USA; Veterinary Clinical Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Dawn K Holliday
- Department of Biology and Environmental Science, Westminster College, Fulton, MO 65251, USA; Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Caitlin M Jandegian
- Columbia Environmental Research Center, U.S. Geological Survey, Columbia, MO 65201, USA; Institute for Conservation Medicine, Saint Louis Zoo, Saint Louis, MO 63110, USA; Masters in Public Health Program, University of Missouri, Columbia, MO 65211, USA
| | | | - Susan C Nagel
- Biological Sciences, University of Missouri, Columbia, MO 65211, USA; Obstetrics, Gynecology, & Women's Health, University of Missouri, Columbia, MO 65211, USA
| | - Donald E Tillitt
- Columbia Environmental Research Center, U.S. Geological Survey, Columbia, MO 65201, USA
| | | | - Cheryl S Rosenfeld
- Biomedical Sciences, University of Missouri, Columbia, MO 65211, USA; Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA; Genetics Area Program Faculty Member, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
8
|
Unal G, Marquez EC, Feld M, Stavropoulos P, Callard IP. Isolation of estrogen receptor subtypes and vitellogenin genes: Expression in female Chalcalburnus tarichi. Comp Biochem Physiol B Biochem Mol Biol 2014; 172-173:67-73. [DOI: 10.1016/j.cbpb.2014.04.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 03/17/2014] [Accepted: 04/08/2014] [Indexed: 11/17/2022]
|
9
|
Huang GY, Ying GG, Liang YQ, Liu YS, Liu SS. Effects of steroid hormones on reproduction- and detoxification-related gene expression in adult male mosquitofish, Gambusia affinis. Comp Biochem Physiol C Toxicol Pharmacol 2013; 158:36-43. [PMID: 23665278 DOI: 10.1016/j.cbpc.2013.05.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Revised: 05/02/2013] [Accepted: 05/02/2013] [Indexed: 12/30/2022]
Abstract
The molecular mechanisms that mediate fish reproduction and detoxification in response to steroid hormones were studied by using adult male western mosquitofish (Gambusia affinis) as sentinel species. The expression patterns of three vitellogenins (VtgA, VtgB and VtgC), two estrogen receptors (ERα and ERβ), two androgen receptors (ARα and ARβ), metallothionein (MT) and cytochrome P450 1A (CYP1A) in the liver and testis of adult male mosquitofish were assessed through exposure treatments with progesterone (P), testosterone (T) and 17β-estradiol (E2), alone and in combination for eight days. The results showed that expression patterns of Vtg subtype, ER subtype, AR subtype, MT and CYP1A genes in male mosquitofish varied according to tissue and specific hormone stress. Vtg subtype mRNA expression was induced in the liver in E2-added treatments, and an up-regulation of ERα mRNA expression was also observed. In addition, hormone treatments increased three Vtg subtype mRNA expression levels in the testis, at least to some extent. All hormone treatments significantly inhibited ERα, ERβ and ARβ mRNA expression in the testis. Some of hormone treatments could affect MT and CYP1A gene expression in mosquitofish. In general, multiple hormone treatments showed different effects on target gene expression compared with corresponding hormone alone. The results from the present study provided valuable information on the toxicological effects of steroid hormones in mosquitofish.
Collapse
Affiliation(s)
- Guo-Yong Huang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| | | | | | | | | |
Collapse
|
10
|
Huang GY, Ying GG, Liu S, Fang YX. Regulation of reproduction- and biomarker-related gene expression by sex steroids in the livers and ovaries of adult female western mosquitofish (Gambusia affinis). Comp Biochem Physiol A Mol Integr Physiol 2012; 162:36-43. [DOI: 10.1016/j.cbpa.2012.02.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2012] [Revised: 02/06/2012] [Accepted: 02/07/2012] [Indexed: 01/16/2023]
|
11
|
Marquez EC, Traylor-Knowles N, Novillo-Villajos A, Callard IP. Cloning of estrogen receptor alpha and aromatase cDNAs and gene expression in turtles (Chrysemys picta and Pseudemys scripta) exposed to different environments. Comp Biochem Physiol C Toxicol Pharmacol 2011; 154:213-25. [PMID: 21664488 DOI: 10.1016/j.cbpc.2011.05.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 05/19/2011] [Accepted: 05/25/2011] [Indexed: 11/22/2022]
Abstract
Reproductive changes have been observed in painted turtles (Chrysemys picta) from a site with known contamination located on Cape Cod, MA, USA. We hypothesize that these changes are caused by exposure to endocrine-disrupting compounds and that genes playing a significant role in reproduction are affected. cDNA sequences were determined for estrogen receptor alpha and aromatase in the painted turtle. These genes were measured in our study animals using quantitative PCR. Adult turtles were trapped from our study site (Moody Pond, MP) or a reference site (Washburn Pond) and exposed to laboratory environments containing soil from either site. The red-eared slider (Pseudemys scripta), a pond turtle closely related to the painted turtle, was used to assess neonatal exposure to soil and water from the sites. Our results show an increase in hepatic estrogen receptor, which suggests exposure to estrogenic contaminants. Female turtles from MP appear to have a long-term effect on hepatic ER. Other findings were apparent age-dependent differences in expression of aromatase and ER in the brains of neonate and year-old juvenile turtles. Phylogenetic analyses of the cDNA sequences further support the hypothesis that turtles are in a sister clade to birds and crocodilians.
Collapse
Affiliation(s)
- Emily C Marquez
- Boston University, Department of Biology, 5 Cummington St., Boston, MA 02215, USA
| | | | | | | |
Collapse
|
12
|
Verderame M, Limatola E. Molecular identification of estrogen receptors (ERalpha and ERbeta) and their differential expression during VTG synthesis in the liver of lizard Podarcis sicula. Gen Comp Endocrinol 2010; 168:231-8. [PMID: 20417209 DOI: 10.1016/j.ygcen.2010.04.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2009] [Revised: 03/22/2010] [Accepted: 04/20/2010] [Indexed: 01/29/2023]
Abstract
In non-mammalian vertebrates yolk deposition in the oocytes is a hormone-dependent, gender-specific process. Produced by the ovary under gonadotropin stimulation, Estradiol 17-beta (E(2)) plays a key role in the liver synthesis of vitellogenin (VTG) which in turn is taken up by vitellogenic oocytes in the ovary. In many species a negative role in liver synthesis of VTG in females is also played by progesterone. Experimental administration of E(2) induces the expression of the VTG silent gene also in the liver of males of all the species studied. However, the role of the two isoforms of estrogen receptors, ERalpha and beta, in this process is still unclear. In order to elucidate what kind of ER is involved in the liver synthesis of VTG in the lizard Podarcis sicula, we obtained by means of RT-PCR two fragments of 430bp and 130bp from total ovarian mRNA, encoding respectively for ERalpha and ERbeta. Expression analysis of these two specific isoforms of ERs in the liver showed that in non-breeding females, and in wildlife untreated males only ERbeta is expressed. In breeding vitellogenic females and in E(2)-treated males both alpha and beta receptors are expressed. Furthermore, in females experimentally treated with progesterone during the breeding period, expression of ERalpha disappears. Conversely, treatment of females with E(2) in the non-breeding period induces expression of ERalpha. Immunohistochemical analysis and Western blotting showed that the presence of irVTG in liver and plasma is always parallel to hepatic expression of ERalpha in all the different experimental conditions. Our data strongly suggest that expression of ERalpha may be necessary for VTG synthesis in Podarcis. The possible modulatory role of ERbeta is also discussed.
Collapse
Affiliation(s)
- Mariailaria Verderame
- Department of Biological Sciences, Evolutionary and Comparative Biology Division, University of Naples Federico II, Via Mezzocannone 8, 80134 Naples, Italy.
| | | |
Collapse
|
13
|
Abstract
Levonorgestrel-releasing Intrauterine System (LNG-IUS) is licensed for use as a contraceptive, for the treatment of heavy menstrual bleeding and during estrogen replacement therapy. It is publicized as a local source of progestogen with minimal systemic adverse effects. However, there is overwhelming evidence of elevated serum and tissue levels of levonorgestrel, and high discontinuation and dissatisfaction rates amongst users. The guidelines of The National Institute for Health and Clinical Excellence (NICE), United Kingdom recommended that the healthcare professionals should be aware that upto 60% of women discontinue using LNG-IUS within 5 years because of unscheduled bleeding, pain, and/or systemic progestogenic adverse effects. This article highlights these issues to healthcare professionals to ensure that the rates of adverse effects are not underestimated, and full information are made available to women to enable them making an informed choice.
Collapse
Affiliation(s)
- Ayman A A Ewies
- Obstetrics and Gynaecology Department, The Ipswich Hospital NHS Trust, Maternity Block, Heath Road, Ipswich, Suffolk, IP4 5PD, UK.
| |
Collapse
|
14
|
Kim N, Kim DK, Cho YJ, Moon DK, Kim WY. Carp vitellogenin detection by an optical waveguide lightmode spectroscopy biosensor. Biosens Bioelectron 2008; 24:391-6. [DOI: 10.1016/j.bios.2008.04.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 03/24/2008] [Accepted: 04/18/2008] [Indexed: 11/29/2022]
|
15
|
Tada N, Nakao A, Hoshi H, Saka M, Kamata Y. Vitellogenin, a biomarker for environmental estrogenic pollution, of Reeves' pond turtles: analysis of similarity for its amino acid sequence and cognate mRNA expression after exposure to estrogen. J Vet Med Sci 2008; 70:227-34. [PMID: 18388421 DOI: 10.1292/jvms.70.227] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Vitellogenin (VTG), a biomarker for environmental estrogenic pollution, can be detected in the bloodstream of oviparous animals before morphological and functional abnormalities appear due to exposure to environmental estrogens. Reports observing VTG in turtles have been limited. We therefore cloned and sequenced a partial cDNA of VTG in Reeves' pond turtle, Chinemys reevesii. The cloned cDNA fragment possessed the start codon and 2,229 bp, encoding 743 amino acid residues. A sequence of deduced amino acid from the cDNA did not contain a high serine content, such as that which exists in phosvitin. Two N-glycosylation sites were found in the sequence. The sequence was compared to those of two birds (chicken and herring gull), one amphibian (Xenopus), and five fishes (carp, zebrafish, eel, haddock, and red seabream). The C. reevesii VTG was similar to that of herring gull (78%, value of positives), chicken (76%), Xenopus (69%), eel (63%), red seabream (62%), haddock (62%), carp (62%), and zebrafish (61%). The phylogenetic tree showed that C. reevesii VTG existed between the amphibian and birds, and it was present far from fish VTGs. A reverse transcription-polymerase chain reaction method was employed to detect the mRNA expression of the C. reevesii VTG through the use of primers designed from our sequence. The VTG mRNA expression (292 bp) was proven in the total RNA extraction from the liver of the juvenile turtles which were treated with estradiol-17beta. The information herein would be useful for ecotoxicological studies using freshwater turtles and these findings are expected to contribute positively towards wildlife conservation.
Collapse
Affiliation(s)
- Noriko Tada
- Kyoto Prefectural Institute of Public Health and Environment, Fushimi-ku, Kyoto, Japan
| | | | | | | | | |
Collapse
|
16
|
Prisco M, Valiante S, Maddalena Di Fiore M, Raucci F, Del Giudice G, Romano M, Laforgia V, Limatola E, Andreuccetti P. Effect of 17beta-estradiol and progesterone on vitellogenesis in the spotted ray Torpedo marmorata Risso 1810 (Elasmobranchii: Torpediniformes): studies on females and on estrogen-treated males. Gen Comp Endocrinol 2008; 157:125-32. [PMID: 18555067 DOI: 10.1016/j.ygcen.2008.04.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2007] [Revised: 04/11/2008] [Accepted: 04/12/2008] [Indexed: 11/17/2022]
Abstract
The influence of 17beta-estradiol (E(2)) on vertebrate vitellogenesis is well ascertained. The aim of the present paper is to study the involvement of E(2) and progesterone (P) in the induction and regulation of vitellogenesis in females and experimental E(2)-treated males of Torpedo marmorata. We analyzed females in various stages of the reproductive cycle and E(2) experimentally treated males. The presence of vitellogenin was investigated in the plasma and in the liver by western blot and immunohistochemistry; its site of synthesis was investigated by in situ hybridization. The steroid levels in the plasma were measured by Enzyme Immunoassay. In treated males, E(2) induces in the liver the synthesis of VTG which is then secreted into the bloodstream as a 205-kDa polypeptide, the same that is found in the plasma of non-pregnant vitellogenic females. In females, E(2) is naturally present in the plasma and its level is correlated with VTG synthesis in the liver and with the female reproductive cycle. Indeed, large amounts of E(2) are only found in mature vitellogenic females, whose liver is involved in VTG synthesis and secretion. By contrast, small amounts of E(2) are evident in juveniles whose ovaries are lacking in vitellogenic follicles and in females preparing for ovulation. Low titers are also found in gravid females, whose liver is not engaged in VTG synthesis. We show that P, which is absent in untreated males and juvenile females, is evident in the blood serum of E(2)-treated males and sexually mature females. Interestingly, in treated males P appears in the plasma just 24h after the first injection of E(2) and its titer increases; a week after the last injections, the P level is similar to that recorded in non-gravid vitellogenic females. Finally, it is noteworthy that the highest titer of P was recorded in pregnant females. We demonstrate that in Torpedo vitellogenin synthesis, as in other vertebrates, is under the control of E(2) but also that this synthesis is probably under the control of progesterone.
Collapse
Affiliation(s)
- Marina Prisco
- Department of Biological Sciences, Evolutionary and Comparative Biology Division, University of Naples Federico II, Via Mezzocannone 8, 80134 Naples, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Katsu Y, Ichikawa R, Ikeuchi T, Kohno S, Guillette LJ, Iguchi T. Molecular cloning and characterization of estrogen, androgen, and progesterone nuclear receptors from a freshwater turtle (Pseudemys nelsoni). Endocrinology 2008; 149:161-73. [PMID: 17916628 PMCID: PMC2734501 DOI: 10.1210/en.2007-0938] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2007] [Accepted: 09/25/2007] [Indexed: 11/19/2022]
Abstract
Steroid hormones are essential for the normal function of many organ systems in vertebrates. Reproductive activity in females and males, such as the differentiation, growth, and maintenance of the reproductive system, requires signaling by the sex steroids. Although extensively studied in mammals and a few fish, amphibians, and bird species, the molecular mechanisms of sex steroid hormone (estrogens, androgens, and progestins) action are poorly understood in reptiles. Here we evaluate hormone receptor ligand interactions in a freshwater turtle, the red-belly slider (Pseudemys nelsoni), after the isolation of cDNAs encoding an estrogen receptor alpha (ERalpha), an androgen receptor (AR), and a progesterone receptor (PR). The full-length red-belly slider turtle (t)ERalpha, tAR, and tPR cDNAs were obtained using 5' and 3' rapid amplification cDNA ends. The deduced amino acid sequences showed high identity to the chicken orthologs (tERalpha, 90%; tAR, 71%; tPR, 71%). Using transient transfection assays of mammalian cells, tERalpha protein displayed estrogen-dependent activation of transcription from an estrogen-responsive element-containing promoter. The other receptor proteins, tAR and tPR, also displayed androgen- or progestin-dependent activation of transcription from androgen- and progestin-responsive murine mammary tumor virus promoters. We further examined the transactivation of tERalpha, tAR and tPR by ligands using a modified GAL4-transactivation system. We found that the GAL4-transactivation system was not suitable for the measurement of tAR and tPR transactivations. This is the first report of the full coding regions of a reptilian AR and PR and the examination of their transactivation by steroid hormones.
Collapse
Affiliation(s)
- Yoshinao Katsu
- Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
| | | | | | | | | | | |
Collapse
|
18
|
Nelson ER, Wiehler WB, Cole WC, Habibi HR. Homologous regulation of estrogen receptor subtypes in goldfish (Carassius auratus). Mol Reprod Dev 2007; 74:1105-12. [PMID: 17342729 DOI: 10.1002/mrd.20634] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
While considerable information is available on the physiological effects of estrogen, much less is known about the regulation of estrogen receptor (ER) subtypes, particularly in non-mammalian vertebrates. Using goldfish as primary experimental model, we investigated sex- and tissue-specific homologous regulation of ER subtypes (ERalpha, ERbetaI, and ERbetaII) by estradiol in vivo, in the liver and gonads. Treatment with estradiol, significantly upregulated transcript levels for all three types of ERs (ERalpha, ERbetaI, and ERbetaII) in the goldfish ovary and testis. In the goldfish liver, treatment with estradiol significantly increased ERalpha, ERbetaI transcript levels without affecting ERbetaII. In all cases increased ER transcript level was correlated with increased ER protein level determined by Western blot analysis, although we are not able to distinguish between ER subtypes. The results provide strong support for the hypothesis that homologous regulation of ERs is tissue- and gender-specific, and may be a mechanism for estrogen-mediated regulation of reproduction in goldfish.
Collapse
Affiliation(s)
- E R Nelson
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | | | | | | |
Collapse
|
19
|
Pinto PIS, Singh PB, Condeça JB, Teodósio HR, Power DM, Canário AVM. ICI 182,780 has agonistic effects and synergizes with estradiol-17 beta in fish liver, but not in testis. Reprod Biol Endocrinol 2006; 4:67. [PMID: 17192186 PMCID: PMC1769500 DOI: 10.1186/1477-7827-4-67] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2006] [Accepted: 12/27/2006] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND ICI 182,780 (ICI) belongs to a new class of antiestrogens developed to be pure estrogen antagonists and, in addition to its therapeutic use, it has been used to knock-out estrogen and estrogen receptor (ER) actions in several mammalian species. In the present study, the effects and mechanism of action of ICI were investigated in the teleost fish, sea bream (Sparus auratus). METHODS Three independent in vivo experiments were performed in which mature male tilapia (Oreochromis mossambicus) or sea bream received intra-peritoneal implants containing estradiol-17 beta (E2), ICI or a combination of both compounds. The effects of E2 and ICI on plasma calcium levels were measured and hepatic and testicular gene expression of the three ER subtypes, ER alpha, ER beta a and ER beta b, and the estrogen-responsive genes, vitellogenin II and choriogenin L, were analyzed by semi-quantitative RT-PCR in sea bream. RESULTS E2 treatment caused an increase in calcium levels in tilapia, while ICI alone had no noticeable effect, as expected. However, pretreatment with ICI synergistically potentiated the effect of E2 on plasma calcium in both species. ICI mimicked some E2 actions in gene expression in sea bream liver upregulating ER alpha, vitellogenin II and choriogenin L, although, unlike E2, it did not downregulate ER beta a and ER beta b. In contrast, no effects of E2 or ICI alone were detected in the expression of ERs in testis, while vitellogenin II and choriogenin L were upregulated by E2 but not ICI. Finally, pretreatment with ICI had a synergistic effect on the hepatic E2 down-regulation of ER beta b, but apparently blocked the ER alpha up-regulation by E2. CONCLUSION These results demonstrate that ICI has agonistic effects on several typical estrogenic responses in fish, but its actions are tissue-specific. The mechanisms for the ICI agonistic activity are still unknown; although the ICI induced up-regulation of ER alpha mRNA could be one of the factors contributing to the cellular response.
Collapse
Affiliation(s)
- Patrícia IS Pinto
- Centro de Ciências do Mar, CIMAR-Laboratório Associado, University of Algarve, Faro, Portugal
| | - Pratap B Singh
- Departmentof Zoology, T.D. College, Jaunpur-222002, India
| | - João B Condeça
- Centro de Ciências do Mar, CIMAR-Laboratório Associado, University of Algarve, Faro, Portugal
| | - Helena R Teodósio
- Centro de Ciências do Mar, CIMAR-Laboratório Associado, University of Algarve, Faro, Portugal
| | - Deborah M Power
- Centro de Ciências do Mar, CIMAR-Laboratório Associado, University of Algarve, Faro, Portugal
| | - Adelino VM Canário
- Centro de Ciências do Mar, CIMAR-Laboratório Associado, University of Algarve, Faro, Portugal
| |
Collapse
|
20
|
Vargas-Villavicencio JA, Larralde C, De León-Nava MA, Morales-Montor J. Regulation of the immune response to cestode infection by progesterone is due to its metabolism to estradiol. Microbes Infect 2005; 7:485-93. [PMID: 15804489 DOI: 10.1016/j.micinf.2004.12.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2004] [Revised: 12/09/2004] [Accepted: 12/10/2004] [Indexed: 11/21/2022]
Abstract
The aim of this work was to investigate the role of progesterone during Taenia crassiceps cysticercosis, and the immunological mechanisms involved in its effects, by relating progesterone treatment to whole parasite counts, to host humoral and cellular immune response, to the presence or absence of nuclear receptors to sex steroids in splenocytes, and to serum sex steroid levels in infected mice of both genders. Progesterone treatment increased parasite loads two-fold in females and three-fold in males compared with control mice. The expression of the Th2 cytokine profile (IL-4, IL-6 and IL-10) was markedly increased in infected mice of both genders, while progesterone treatment returned this expression to basal levels. However, the Th1 cytokine profile (IFN-gamma and TNF-alpha) was not affected by infection, whilst progesterone treatment increased the expression of both cytokines two-fold compared to uninfected, infected and placebo-treated mice. Testosterone serum levels decreased in infected male mice by 95%, and treatment with progesterone did not affect them. In females, no change in testosterone levels was observed. Progesterone levels increased three-fold only in progesterone-treated infected mice of both sexes, while estradiol levels in female and male progesterone-treated infected mice increased two-fold compared to infected control mice. The infection markedly induced the expression of progesterone receptor (PR) isoforms A and B in splenocytes of infected mice of both genders (five-fold). Metabolism of progesterone to estradiol was demonstrated by the use of the anti-estrogen tamoxifen, which reduced parasite loads 100% in infected mice of both sexes treated with progesterone. These results suggest that progesterone, possibly through its metabolism to estradiol, affects establishment, growth and reproduction of the helminth parasite T. crassiceps.
Collapse
Affiliation(s)
- José A Vargas-Villavicencio
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, U.N.A.M., AP 70228, Mexico D.F. 04510, Mexico
| | | | | | | |
Collapse
|
21
|
Rie MT, Kitana N, Lendas KA, Won SJ, Callard IP. Reproductive endocrine disruption in a sentinel species (Chrysemys picta) on Cape Cod, Massachusetts. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2005; 48:217-224. [PMID: 15719200 DOI: 10.1007/s00244-003-0246-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2003] [Accepted: 07/21/2004] [Indexed: 05/24/2023]
Abstract
Freshwater turtles (Chrysemys picta) were collected from two sites on Cape Cod, MA. One site (Moody Pond), adjacent to the Massachusetts Military Reservation (MMR), was considered potentially impacted by toxic agents deriving from contaminant point sources on the MMR. The second (reference) site (Washburn Pond), to the east of the MMR, was considered not impacted by these pollutants and was chosen as a control site. Plasma estradiol 17 beta and vitellogenin were significantly lower in female turtles from Moody Pond. Ovarian follicular analysis indicated a significant decrease in the >16.00-mm follicular cohort in Moody Pond female turtles compared with Washburn Pond animals. Although testicular weight was lower at the Moody Pond site, histology, plasma testosterone, and sperm number were similar to these parameters in Washburn Pond animals. The data suggest that in Moody Pond, the reproductive capacity of turtles may be negatively affected by contaminants from the MMR.
Collapse
Affiliation(s)
- M T Rie
- Department of Biology, Boston University, 5 Cummington St., Boston, MA 02215, USA
| | | | | | | | | |
Collapse
|
22
|
Lora NC, Novillo A, Callard IP. Synergistic role for pituitary growth hormone in the regulation of hepatic estrogen and progesterone receptors and vitellogenesis in female freshwater turtles, Chrysemys picta. Gen Comp Endocrinol 2005; 140:25-32. [PMID: 15596068 DOI: 10.1016/j.ygcen.2004.10.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2004] [Revised: 09/23/2004] [Accepted: 10/07/2004] [Indexed: 11/26/2022]
Abstract
Previous studies using the freshwater turtle Chrysemys picta have demonstrated that estradiol, progesterone (P), testosterone (T), and growth hormone (GH) regulate hepatic vitellogenin synthesis, suggesting a multihormonal regulation of vitellogenesis in the turtle. In this study we further investigated the interaction between estradiol-17beta (E) and growth hormone in the regulation of vitellogenin (vtg) in hypophysectomized post-reproductive female turtles (C. picta). Northern blot analysis was used to monitor the changes in vtg mRNA, ER mRNA, and PR mRNA expression; Western blot to determine changes in PR isoform expression and a homologous ELISA for measurement of plasma vtg. Compared to sham-operated controls, hypophysectomy did not reduce the hepatic levels of any parameters below the seasonal norm. Changes in these parameters in hypophysectomized animals after administration of GH alone, estrogen alone, or GH in combination with estrogen were well correlated. The effect of estrogen alone was greater than that of GH, and elevated all end-points analyzed. With the exception of plasma vitellogenin, the effect of GH plus estrogen was significantly greater than either hormone alone. In contrast to changes in ER mRNA, vtg mRNA, and vtg protein, the effect of estrogen and GH plus estrogen treatments on PRA mRNA and PRC mRNA, although significant, was relatively modest. However, changes in PRA and PRB protein were large (5- to 10-fold), and of similar magnitude to the changes in ER mRNA, vtg mRNA, and plasma vtg. Further, PRA and PRB protein levels appeared to be differentially affected. Thus, in sham and normal animals, only PRB was detected, and the levels were similar. After GH administration, PRB increased 4- to 5-fold, and PRA became detectable. Estrogen increased both isoforms of PR equally (approximately 6-fold), and some synergism was apparent when the two hormones were administered together, PR levels being the highest in this group (about an 8-fold increase). The results suggest that although estrogen is the primary regulatory factor involved in activation of vitellogenin synthesis, basal levels of all primary components of signaling pathways involved in vitellogenesis measured here may be maintained in the absence of either estrogen or GH, and that GH alone can activate transcription of some of these important transcription factors.
Collapse
|