1
|
Lund-Ricard Y, Calloch J, Glippa V, Vandenplas S, Huysseune A, Witten PE, Morales J, Boutet A. Postembryonic Maintenance of Nephron Progenitor Cells with Low Translational Activity in the Chondrichthyan Scyliorhinus canicula. J Am Soc Nephrol 2025; 36:571-586. [PMID: 39699552 PMCID: PMC11975252 DOI: 10.1681/asn.0000000558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 11/12/2024] [Indexed: 12/20/2024] Open
Abstract
Key Points Unlike mammals, chondrichthyan species exhibit postembryonic nephrogenesis, where new nephrons are continuously added in the kidney. Nephron progenitor cells in catsharks display slow cycling property, akin to other somatic stem cells, indicating their potential for tissue renewal and regeneration. Molecular analysis suggests a potential link between protein synthesis rate and nephron progenitor cell maintenance. Background While adult mammals are unable to grow new nephrons, cartilaginous fish kidneys display nephrogenesis throughout life. In this study, we investigated the molecular properties of nephron progenitor cells (NPCs) within the kidney of the catshark (Scyliorhinus canicula ). Methods We used branched DNA in situ hybridization to analyze markers expressed in catshark NPCs. Bromodesoxyuridine pulse-chase labeling was also performed to test whether NPCs are slow-cycling cells. To question the mechanisms allowing NPC maintenance in the catshark postembryonic kidney, we measured global protein synthesis rates using in vivo OP-puromycin incorporation. We also investigated the expression of two targets of the mammalian target of rapamycin pathway, an important signaling pathway for translation initiation. Results We found that NPCs express molecular markers previously identified in mice and teleost embryonic NPCs, such as the transcription factors Six2, Pax2, and Wt1. At postembryonic stages, these NPCs are integrated into a specific nephrogenic area of the kidney and contain slow-cycling cells. We also evidenced that NPCs have lower protein synthesis levels than the differentiated cells present in forming nephrons. Such transition from low to high translation rates has been previously observed in several populations of vertebrate stem cells as they undergo differentiation. Finally, we reported the phosphorylation of two targets of the mammalian target of rapamycin pathway, p4E-BP1 and pS6K1, in catshark differentiated epithelial cells but not in the NPCs. Conclusions This first molecular analysis of NPCs in a chondrichthyan species indicates that translation rate increases in NPCs as they differentiate into epithelial cells of the nephron. Podcast This article contains a podcast at https://dts.podtrac.com/redirect.mp3/www.asn-online.org/media/podcast/JASN/2025_01_22_ASN0000000558.mp3
Collapse
Affiliation(s)
- Yasmine Lund-Ricard
- Laboratory of Integrative Biology of Marine Models (LBI2M), Station Biologique, CNRS, Sorbonne Université, Roscoff, France
| | - Julien Calloch
- Laboratory of Integrative Biology of Marine Models (LBI2M), Station Biologique, CNRS, Sorbonne Université, Roscoff, France
| | - Virginie Glippa
- Laboratory of Integrative Biology of Marine Models (LBI2M), Station Biologique, CNRS, Sorbonne Université, Roscoff, France
| | - Sam Vandenplas
- Biology Department, Evolutionary Developmental Biology Group, Ghent University, Ghent, Belgium
| | - Ann Huysseune
- Biology Department, Evolutionary Developmental Biology Group, Ghent University, Ghent, Belgium
| | - P. Eckhard Witten
- Biology Department, Evolutionary Developmental Biology Group, Ghent University, Ghent, Belgium
| | - Julia Morales
- Laboratory of Integrative Biology of Marine Models (LBI2M), Station Biologique, CNRS, Sorbonne Université, Roscoff, France
| | - Agnès Boutet
- Laboratory of Integrative Biology of Marine Models (LBI2M), Station Biologique, CNRS, Sorbonne Université, Roscoff, France
| |
Collapse
|
2
|
Nicklin EF, Cohen KE, Cooper RL, Mitchell G, Fraser GJ. Evolution, development, and regeneration of tooth-like epithelial appendages in sharks. Dev Biol 2024; 516:221-236. [PMID: 39154741 DOI: 10.1016/j.ydbio.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 08/05/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
Sharks and their relatives are typically covered in highly specialized epithelial appendages embedded in the skin called dermal denticles; ancient tooth-like units (odontodes) composed of dentine and enamel-like tissues. These 'skin teeth' are remarkably similar to oral teeth of vertebrates and share comparable morphological and genetic signatures. Here we review the histological and morphological data from embryonic sharks to uncover characters that unite all tooth-like elements (odontodes), including teeth and skin denticles in sharks. In addition, we review the differences between the skin and oral odontodes that reflect their varied capacity for renewal. Our observations have begun to decipher the developmental and genetic shifts that separate these seemingly similar dental units, including elements of the regenerative nature in both oral teeth and the emerging skin denticles from the small-spotted catshark (Scyliorhinus canicula) and other chondrichthyan models. Ultimately, we ask what defines a tooth at both the molecular and morphological level. These insights aim to help us understand how nature makes, replaces and evolves a vast array of odontodes.
Collapse
Affiliation(s)
- Ella F Nicklin
- Department of Biology, University of Florida, Gainesville, USA
| | - Karly E Cohen
- Department of Biology, University of Florida, Gainesville, USA; Department of Biology, California State University Fullerton, Fullerton, USA
| | - Rory L Cooper
- Department of Genetics and Evolution, University of Geneva, Switzerland
| | - Gianna Mitchell
- Department of Biology, University of Florida, Gainesville, USA
| | - Gareth J Fraser
- Department of Biology, University of Florida, Gainesville, USA.
| |
Collapse
|
3
|
Huysseune A, Witten PE. Continuous tooth replacement: what can teleost fish teach us? Biol Rev Camb Philos Soc 2024; 99:797-819. [PMID: 38151229 DOI: 10.1111/brv.13045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 12/29/2023]
Abstract
Most tooth-bearing non-mammalian vertebrates have the capacity to replace their teeth throughout life. This capacity was lost in mammals, which replace their teeth only once at most. Not surprisingly, continuous tooth replacement has attracted much attention. Classical morphological studies (e.g. to analyse patterns of replacement) are now being complemented by molecular studies that investigate the expression of genes involved in tooth formation. This review focuses on ray-finned fish (actinopterygians), which have teeth often distributed throughout the mouth and pharynx, and more specifically on teleost fish, the largest group of extant vertebrates. First we highlight the diversity in tooth distribution and in tooth replacement patterns. Replacement tooth formation can start from a distinct (usually discontinuous and transient) dental lamina, but also in the absence of a successional lamina, e.g. from the surface epithelium of the oropharynx or from the outer dental epithelium of a predecessor tooth. The relationship of a replacement tooth to its predecessor is closely related to whether replacement is the result of a prepattern or occurs on demand. As replacement teeth do not necessarily have the same molecular signature as first-generation teeth, the question of the actual trigger for tooth replacement is discussed. Much emphasis has been laid in the past on the potential role of epithelial stem cells in initiating tooth replacement. The outcome of such studies has been equivocal, possibly related to the taxa investigated, and the permanent or transient nature of the dental lamina. Alternatively, replacement may result from local proliferation of undifferentiated progenitors, stimulated by hitherto unknown, perhaps mesenchymal, factors. So far, the role of the neurovascular link in continuous tooth replacement has been poorly investigated, despite the presence of a rich vascularisation surrounding actinopterygian (as well as chondrichthyan) teeth and despite a complete arrest of tooth replacement after nerve resection. Lastly, tooth replacement is possibly co-opted as a process to expand the number of teeth in a dentition ontogenetically whilst conserving features of the primary dentition. That neither a dental lamina, nor stem cells appear to be required for tooth replacement places teleosts in an advantageous position as models for tooth regeneration in humans, where the dental lamina regresses and epithelial stem cells are considered lost.
Collapse
Affiliation(s)
- Ann Huysseune
- Research Group Evolutionary Developmental Biology, Biology Department, Ghent University, K.L. Ledeganckstraat 35, Ghent, B-9000, Belgium
- Department of Zoology, Faculty of Science, Charles University, Vinicna 7, Prague, 128 44, Czech Republic
| | - P Eckhard Witten
- Research Group Evolutionary Developmental Biology, Biology Department, Ghent University, K.L. Ledeganckstraat 35, Ghent, B-9000, Belgium
| |
Collapse
|
4
|
Huang R, Tang L, Li R, Li Y, Zhan L, Huang X. Tooth pattern, development, and replacement in the yellow catfish, Pelteobagrus fulvidraco. J Morphol 2024; 285:e21657. [PMID: 38100745 DOI: 10.1002/jmor.21657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 12/17/2023]
Abstract
Studies of teleost teeth are important for understanding the evolution and mechanisms of tooth development, replacement, and regeneration. Here, we used gross specimens, microcomputed tomography, and histological analysis to characterize tooth structure, development, and resorption patterns in adult Pelteobagrus fulvidraco. The oral and pharyngeal teeth are villiform and conical. Multiple rows of dentition are densely distributed and the tooth germ is derived from the epithelium. P. fulvidraco exhibits a discontinuous and non-permanent dental lamina. Epithelial cells surround the teeth and are separated into distinct tooth units by mesenchymal tissue. Tooth development is completed in the form of independent tooth units. P. fulvidraco does not undergo simultaneous tooth replacement. Based on tooth development and resorption status, five forms of teeth are present in adult P. fulvidraco: developing tooth germs, accompanied by relatively immature tooth germs; mature and well-mineralized tooth accompanied by one tooth germ; teeth that have begun resorption, but not completely fractured; fractured teeth with only residual attachment to the underlying bone; and teeth that are completely resorbed and detached. Seven biological stages of a tooth in P. fulvidraco were also described.
Collapse
Affiliation(s)
- Rui Huang
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Li Tang
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| | - Ruiqi Li
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yongfeng Li
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Liping Zhan
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xiaofeng Huang
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
5
|
Pospisilova A, Stundl J, Brejcha J, Metscher BD, Psenicka M, Cerny R, Soukup V. The remarkable dynamics in the establishment, rearrangement, and loss of dentition during the ontogeny of the sterlet sturgeon. Dev Dyn 2021; 251:826-845. [PMID: 34846759 DOI: 10.1002/dvdy.444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/15/2021] [Accepted: 11/22/2021] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Sturgeons belong to an early-branching lineage often used as a proxy of ancestor-like traits of ray-finned fishes. However, many features of this lineage, such as the transitory presence and the eventual loss of dentition, exemplify specializations that, in fact, provide important information on lineage-specific evolutionary dynamics. RESULTS Here, we introduce a detailed overview of the dentition during the development of the sterlet sturgeon. The dentition is composed of tooth fields at oral, palatal, and anterior pharyngeal regions. Oral fields are single-rowed, non-renewed and are shed early. Palatal and pharyngeal fields are multi-rowed and renewed from the adjacent superficial epithelium without the presence of the successional dental lamina. The early loss of oral fields and subsequent establishment of palatal and pharyngeal fields leads to a translocation of the functional dentition from the front to the rear of the oropharyngeal cavity until the eventual loss of all teeth. CONCLUSIONS Our survey shows the sterlet dentition as a dynamic organ system displaying differential composition at different time points in the lifetime of this fish. These dynamics represent a conspicuous feature of sturgeons, unparalleled among extant vertebrates, and appropriate to scrutinize developmental and evolutionary underpinnings of vertebrate odontogenesis.
Collapse
Affiliation(s)
- Anna Pospisilova
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jan Stundl
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic.,Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA.,Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, University of South Bohemia in České Budějovice, Vodňany, Czech Republic
| | - Jindrich Brejcha
- Department of Philosophy and History of Science, Faculty of Science, Charles University, Prague, Czech Republic
| | - Brian D Metscher
- Department of Evolutionary Biology, University of Vienna, Vienna, Austria
| | - Martin Psenicka
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, University of South Bohemia in České Budějovice, Vodňany, Czech Republic
| | - Robert Cerny
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Vladimír Soukup
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
6
|
Huysseune A, Cerny R, Witten PE. The conundrum of pharyngeal teeth origin: the role of germ layers, pouches, and gill slits. Biol Rev Camb Philos Soc 2021; 97:414-447. [PMID: 34647411 PMCID: PMC9293187 DOI: 10.1111/brv.12805] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 12/15/2022]
Abstract
There are several competing hypotheses on tooth origins, with discussions eventually settling in favour of an 'outside-in' scenario, in which internal odontodes (teeth) derived from external odontodes (skin denticles) in jawless vertebrates. The evolution of oral teeth from skin denticles can be intuitively understood from their location at the mouth entrance. However, the basal condition for jawed vertebrates is arguably to possess teeth distributed throughout the oropharynx (i.e. oral and pharyngeal teeth). As skin denticle development requires the presence of ectoderm-derived epithelium and of mesenchyme, it remains to be answered how odontode-forming skin epithelium, or its competence, were 'transferred' deep into the endoderm-covered oropharynx. The 'modified outside-in' hypothesis for tooth origins proposed that this transfer was accomplished through displacement of odontogenic epithelium, that is ectoderm, not only through the mouth, but also via any opening (e.g. gill slits) that connects the ectoderm to the epithelial lining of the pharynx (endoderm). This review explores from an evolutionary and from a developmental perspective whether ectoderm plays a role in (pharyngeal) tooth and denticle formation. Historic and recent studies on tooth development show that the odontogenic epithelium (enamel organ) of oral or pharyngeal teeth can be of ectodermal, endodermal, or of mixed ecto-endodermal origin. Comprehensive data are, however, only available for a few taxa. Interestingly, in these taxa, the enamel organ always develops from the basal layer of a stratified epithelium that is at least bilayered. In zebrafish, a miniaturised teleost that only retains pharyngeal teeth, an epithelial surface layer with ectoderm-like characters is required to initiate the formation of an enamel organ from the basal, endodermal epithelium. In urodele amphibians, the bilayered epithelium is endodermal, but the surface layer acquires ectodermal characters, here termed 'epidermalised endoderm'. Furthermore, ectoderm-endoderm contacts at pouch-cleft boundaries (i.e. the prospective gill slits) are important for pharyngeal tooth initiation, even if the influx of ectoderm via these routes is limited. A balance between sonic hedgehog and retinoic acid signalling could operate to assign tooth-initiating competence to the endoderm at the level of any particular pouch. In summary, three characters are identified as being required for pharyngeal tooth formation: (i) pouch-cleft contact, (ii) a stratified epithelium, of which (iii) the apical layer adopts ectodermal features. These characters delimit the area in which teeth can form, yet cannot alone explain the distribution of teeth over the different pharyngeal arches. The review concludes with a hypothetical evolutionary scenario regarding the persisting influence of ectoderm on pharyngeal tooth formation. Studies on basal osteichthyans with less-specialised types of early embryonic development will provide a crucial test for the potential role of ectoderm in pharyngeal tooth formation and for the 'modified outside-in' hypothesis of tooth origins.
Collapse
Affiliation(s)
- Ann Huysseune
- Research Group Evolutionary Developmental Biology, Biology Department, Ghent University, K.L. Ledeganckstraat 35, Ghent, B-9000, Belgium
| | - Robert Cerny
- Department of Zoology, Faculty of Science, Charles University, Vinicna 7, Prague, 128 44, Czech Republic
| | - P Eckhard Witten
- Research Group Evolutionary Developmental Biology, Biology Department, Ghent University, K.L. Ledeganckstraat 35, Ghent, B-9000, Belgium
| |
Collapse
|
7
|
Square TA, Sundaram S, Mackey EJ, Miller CT. Distinct tooth regeneration systems deploy a conserved battery of genes. EvoDevo 2021; 12:4. [PMID: 33766133 PMCID: PMC7995769 DOI: 10.1186/s13227-021-00172-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 01/13/2021] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Vertebrate teeth exhibit a wide range of regenerative systems. Many species, including most mammals, reptiles, and amphibians, form replacement teeth at a histologically distinct location called the successional dental lamina, while other species do not employ such a system. Notably, a 'lamina-less' tooth replacement condition is found in a paraphyletic array of ray-finned fishes, such as stickleback, trout, cod, medaka, and bichir. Furthermore, the position, renewal potential, and latency times appear to vary drastically across different vertebrate tooth regeneration systems. The progenitor cells underlying tooth regeneration thus present highly divergent arrangements and potentials. Given the spectrum of regeneration systems present in vertebrates, it is unclear if morphologically divergent tooth regeneration systems deploy an overlapping battery of genes in their naïve dental tissues. RESULTS In the present work, we aimed to determine whether or not tooth progenitor epithelia could be composed of a conserved cell type between vertebrate dentitions with divergent regeneration systems. To address this question, we compared the pharyngeal tooth regeneration processes in two ray-finned fishes: zebrafish (Danio rerio) and threespine stickleback (Gasterosteus aculeatus). These two teleost species diverged approximately 250 million years ago and demonstrate some stark differences in dental morphology and regeneration. Here, we find that the naïve successional dental lamina in zebrafish expresses a battery of nine genes (bmpr1aa, bmp6, cd34, gli1, igfbp5a, lgr4, lgr6, nfatc1, and pitx2), while active Wnt signaling and Lef1 expression occur during early morphogenesis stages of tooth development. We also find that, despite the absence of a histologically distinct successional dental lamina in stickleback tooth fields, the same battery of nine genes (Bmpr1a, Bmp6, CD34, Gli1, Igfbp5a, Lgr4, Lgr6, Nfatc1, and Pitx2) are expressed in the basalmost endodermal cell layer, which is the region most closely associated with replacement tooth germs. Like zebrafish, stickleback replacement tooth germs additionally express Lef1 and exhibit active Wnt signaling. Thus, two fish systems that either have an organized successional dental lamina (zebrafish) or lack a morphologically distinct successional dental lamina (sticklebacks) deploy similar genetic programs during tooth regeneration. CONCLUSIONS We propose that the expression domains described here delineate a highly conserved "successional dental epithelium" (SDE). Furthermore, a set of orthologous genes is known to mark hair follicle epithelial stem cells in mice, suggesting that regenerative systems in other epithelial appendages may utilize a related epithelial progenitor cell type, despite the highly derived nature of the resulting functional organs.
Collapse
Affiliation(s)
- Tyler A Square
- Department of Molecular & Cell Biology, University of California, Berkeley, USA.
| | - Shivani Sundaram
- Department of Molecular & Cell Biology, University of California, Berkeley, USA
| | - Emma J Mackey
- Department of Molecular & Cell Biology, University of California, Berkeley, USA
| | - Craig T Miller
- Department of Molecular & Cell Biology, University of California, Berkeley, USA.
| |
Collapse
|
8
|
Jobbins M, Rücklin M, Argyriou T, Klug C. A large Middle Devonian eubrachythoracid 'placoderm' (Arthrodira) jaw from northern Gondwana. SWISS JOURNAL OF PALAEONTOLOGY 2021; 140:2. [PMID: 33488510 PMCID: PMC7809001 DOI: 10.1186/s13358-020-00212-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
For the understanding of the evolution of jawed vertebrates and jaws and teeth, 'placoderms' are crucial as they exhibit an impressive morphological disparity associated with the early stages of this process. The Devonian of Morocco is famous for its rich occurrences of arthrodire 'placoderms'. While Late Devonian strata are rich in arthrodire remains, they are less common in older strata. Here, we describe a large tooth-bearing jaw element of Leptodontichthys ziregensis gen. et sp. nov., an eubrachythoracid arthrodire from the Middle Devonian of Morocco. This species is based on a large posterior superognathal with a strong dentition. The jawbone displays features considered synapomorphies of Late Devonian eubrachythoracid arthrodires, with one posterior and one lateral row of conical teeth oriented postero-lingually. μCT-images reveal internal structures including pulp cavities and dentinous tissues. The posterior orientation of the teeth and the traces of a putative occlusal contact on the lingual side of the bone imply that these teeth were hardly used for feeding. Similar to Compagopiscis and Plourdosteus, functional teeth were possibly present during an earlier developmental stage and have been worn entirely. The morphological features of the jaw element suggest a close relationship with plourdosteids. Its size implies that the animal was rather large.
Collapse
Affiliation(s)
- Melina Jobbins
- Paläontologisches Institut und Museum, Universität Zürich, Karl-Schmid-Strasse 4, 8006 Zurich, Switzerland
| | | | - Thodoris Argyriou
- UMR 7207 (MNHN – Sorbonne Université – CNRS) Centre de Recherche en Paléontologie, Muséum National D’Histoire Naturelle, 57 rue Cuvier, 75231 Paris cedex 05, France
| | - Christian Klug
- Paläontologisches Institut und Museum, Universität Zürich, Karl-Schmid-Strasse 4, 8006 Zurich, Switzerland
| |
Collapse
|
9
|
Kriwet J. Novel Insights into Tooth Row Development: From Old Ideas to New Concepts. Bioessays 2020; 42:e2000045. [DOI: 10.1002/bies.202000045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Indexed: 11/05/2022]
Affiliation(s)
- Jürgen Kriwet
- Department of PaleontologyUniversity of Vienna Geozentrum Vienna 1090 Austria
| |
Collapse
|
10
|
Tonelli F, Bek JW, Besio R, De Clercq A, Leoni L, Salmon P, Coucke PJ, Willaert A, Forlino A. Zebrafish: A Resourceful Vertebrate Model to Investigate Skeletal Disorders. Front Endocrinol (Lausanne) 2020; 11:489. [PMID: 32849280 PMCID: PMC7416647 DOI: 10.3389/fendo.2020.00489] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 06/22/2020] [Indexed: 12/11/2022] Open
Abstract
Animal models are essential tools for addressing fundamental scientific questions about skeletal diseases and for the development of new therapeutic approaches. Traditionally, mice have been the most common model organism in biomedical research, but their use is hampered by several limitations including complex generation, demanding investigation of early developmental stages, regulatory restrictions on breeding, and high maintenance cost. The zebrafish has been used as an efficient alternative vertebrate model for the study of human skeletal diseases, thanks to its easy genetic manipulation, high fecundity, external fertilization, transparency of rapidly developing embryos, and low maintenance cost. Furthermore, zebrafish share similar skeletal cells and ossification types with mammals. In the last decades, the use of both forward and new reverse genetics techniques has resulted in the generation of many mutant lines carrying skeletal phenotypes associated with human diseases. In addition, transgenic lines expressing fluorescent proteins under bone cell- or pathway- specific promoters enable in vivo imaging of differentiation and signaling at the cellular level. Despite the small size of the zebrafish, many traditional techniques for skeletal phenotyping, such as x-ray and microCT imaging and histological approaches, can be applied using the appropriate equipment and custom protocols. The ability of adult zebrafish to remodel skeletal tissues can be exploited as a unique tool to investigate bone formation and repair. Finally, the permeability of embryos to chemicals dissolved in water, together with the availability of large numbers of small-sized animals makes zebrafish a perfect model for high-throughput bone anabolic drug screening. This review aims to discuss the techniques that make zebrafish a powerful model to investigate the molecular and physiological basis of skeletal disorders.
Collapse
Affiliation(s)
- Francesca Tonelli
- Biochemistry Unit, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Jan Willem Bek
- Department of Biomolecular Medicine, Center of Medical Genetics, Ghent University-University Hospital, Ghent, Belgium
| | - Roberta Besio
- Biochemistry Unit, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Adelbert De Clercq
- Department of Biomolecular Medicine, Center of Medical Genetics, Ghent University-University Hospital, Ghent, Belgium
| | - Laura Leoni
- Biochemistry Unit, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | | | - Paul J. Coucke
- Department of Biomolecular Medicine, Center of Medical Genetics, Ghent University-University Hospital, Ghent, Belgium
| | - Andy Willaert
- Department of Biomolecular Medicine, Center of Medical Genetics, Ghent University-University Hospital, Ghent, Belgium
| | - Antonella Forlino
- Biochemistry Unit, Department of Molecular Medicine, University of Pavia, Pavia, Italy
- *Correspondence: Antonella Forlino
| |
Collapse
|
11
|
Doeland M, Couzens AMC, Donoghue PCJ, Rücklin M. Tooth replacement in early sarcopterygians. ROYAL SOCIETY OPEN SCIENCE 2019; 6:191173. [PMID: 31827852 PMCID: PMC6894600 DOI: 10.1098/rsos.191173] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 10/22/2019] [Indexed: 06/10/2023]
Abstract
Teeth were an important innovation in vertebrate evolution but basic aspects of early dental evolution remain poorly understood. Teeth differ from other odontode organs, like scales, in their organized, sequential pattern of replacement. However, tooth replacement patterns also vary between the major groups of jawed vertebrates. Although tooth replacement in stem-osteichthyans and extant species has been intensively studied it has been difficult to resolve scenarios for the evolution of osteichthyan tooth replacement because of a dearth of evidence from living and fossil sarcopterygian fishes. Here we provide new anatomical data informing patterns of tooth replacement in the Devonian sarcopterygian fishes Onychodus, Eusthenopteron and Tiktaalik and the living coelacanth Latimeria based on microfocus- and synchrotron radiation-based X-ray microtomography. Early sarcopterygians generated replacement teeth on the jaw surface in a pattern similar to stem-osteichthyans, with damaged teeth resorbed and replacement teeth developed on the surface of the bone. However, resorption grades and development of replacement teeth vary spatially and temporally within the jaw. Particularly in Onychodus, where teeth were also shed through anterior rotation and resorption of bone at the base of the parasymphyseal tooth whorl, with new teeth added posteriorly. As tooth whorls are also present in more stem-osteichthyans, and statodont tooth whorls are present among acanthodians (putative stem-chondrichthyans), rotational replacement of the anterior dentition may be a stem-osteichthyan character. Our results suggest a more complex evolutionary history of tooth replacement.
Collapse
Affiliation(s)
- Mark Doeland
- Naturalis Biodiversity Center, Postbus 9517, 2300 RA Leiden, The Netherlands
- Institute of Biology, Universiteit Leiden, Silviusweg 72, 2333 BE Leiden, The Netherlands
| | - Aidan M. C. Couzens
- Naturalis Biodiversity Center, Postbus 9517, 2300 RA Leiden, The Netherlands
| | - Philip C. J. Donoghue
- School of Earth Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Martin Rücklin
- Naturalis Biodiversity Center, Postbus 9517, 2300 RA Leiden, The Netherlands
| |
Collapse
|
12
|
Haridy Y, Gee BM, Witzmann F, Bevitt JJ, Reisz RR. Retention of fish-like odontode overgrowth in Permian tetrapod dentition supports outside-in theory of tooth origins. Biol Lett 2019; 15:20190514. [PMID: 31506034 DOI: 10.1098/rsbl.2019.0514] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Teeth are often thought of as structures that line the margins of the mouth; however, tooth-like structures called odontodes are commonly found on the dermal bones of many Palaeozoic vertebrates including early jawless fishes. 'Odontode' is a generalized term for all tooth-like dentine structures that have homologous tissues and development. This definition includes true teeth and the odontodes of early 'fishes', which have been recently examined to gain new insights into the still unresolved origin of teeth. Two leading hypotheses are frequently referenced in this debate: the 'outside-in' hypothesis, which posits that dermal odontodes evolutionarily migrate into the oral cavity, and the 'inside-out' hypothesis, which posits that teeth originated in the oropharyngeal cavity and then moved outwards into the oral cavity. Here, we show that, unlike the well-known one-to-one replacement patterns of marginal dentition, the palatal dentition of the early Permian tetrapods, including the dissorophoid amphibian Cacops and the early reptile Captorhinus, is overgrown by a new layer of bone to which the newest teeth are then attached. This same overgrowth pattern has been well documented in dermal and oral odontodes (i.e. teeth) of early fishes. We propose that this pattern represents the primitive condition for vertebrates and may even predate the origin of jaws. Therefore, this pattern crosses the fish-tetrapod transition, and the retention of this ancestral pattern in the palatal dentition of early terrestrial tetrapods provides strong support for the 'outside-in' hypothesis of tooth origins.
Collapse
Affiliation(s)
- Yara Haridy
- Department of Biology, University of Toronto Mississauga, Ontario, Canada.,Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Berlin, Germany
| | - Bryan M Gee
- Department of Biology, University of Toronto Mississauga, Ontario, Canada
| | - Florian Witzmann
- Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Berlin, Germany
| | - Joseph J Bevitt
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation, New South Wales, Australia
| | - Robert R Reisz
- International Center of Future Science, Dinosaur Evolution Research Centre, Jilin University, Changchun, People's Republic of China
| |
Collapse
|
13
|
Atukorala ADS, Bhatia V, Ratnayake R. Craniofacial skeleton of MEXICAN tetra (Astyanax mexicanus): As a bone disease model. Dev Dyn 2018; 248:153-161. [PMID: 30450697 DOI: 10.1002/dvdy.4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 11/12/2018] [Accepted: 11/12/2018] [Indexed: 12/16/2022] Open
Abstract
A small fresh water fish, the Mexican tetra (Astyanax mexicanus) is a novel animal model in evolutionary developmental biology. The existence of morphologically distinct surface and cave morphs of this species allows simultaneous comparative analysis of phenotypic changes at different life stages. The cavefish harbors many favorable constructive traits (i.e., large jaws with an increased number of teeth, neuromast cells, enlarged olfactory pits and excess storage of adipose tissues) and regressive traits (i.e., reduced eye structures and pigmentation) which are essential for cave adaptation. A wide spectrum of natural craniofacial morphologies can be observed among the different cave populations. Recently, the Mexican tetra has been identified as a human disease model. The fully sequenced genome along with modern genome editing tools has allowed researchers to generate transgenic and targeted gene knockouts with phenotypes that resemble human pathological conditions. This review will discuss the anatomy of the craniofacial skeleton of A. mexicanus with a focus on morphologically variable facial bones, jaws that house continuously replacing teeth and pharyngeal skeleton. Furthermore, the possible applications of this model animal in identifying human congenital and metabolic skeletal disorders is addressed. Developmental Dynamics 248:153-161, 2019. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Atukorallaya Devi Sewvandini Atukorala
- Department of Oral Biology, Dr. Gerald Niznick College of Dentistry, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Vikram Bhatia
- Department of Oral Biology, Dr. Gerald Niznick College of Dentistry, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ravindra Ratnayake
- Department of Oral Biology, Dr. Gerald Niznick College of Dentistry, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
14
|
Tan WH, Witten PE, Winkler C, Au DWT, Huysseune A. Telomerase Expression in Medaka ( Oryzias melastigma) Pharyngeal Teeth. J Dent Res 2017; 96:678-684. [PMID: 28530472 DOI: 10.1177/0022034517694039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Nonmammalian vertebrates have the capacity of lifelong tooth replacement. In all vertebrates, tooth formation requires contact and interaction between the oral or pharyngeal epithelium and the underlying mesenchyme. To secure lifelong replacement, the presence of odontogenic stem cells has been postulated, particularly in the epithelial compartment. This study uses an advanced teleost fish species, the marine medaka Oryzias melastigma, a close relative to Oryzias latipes, to examine the expression and distribution of telomerase reverse transcriptase (Tert), the catalytic unit of telomerase, in developing pharyngeal teeth and to relate these data to the proliferative activity of the cells. The data are complemented by expression analysis of the pluripotency marker oct4 and bona fide stem cell marker lgr5. Tert distribution and tert expression in developing tooth germs show a dynamic spatiotemporal pattern. Tert is present first in the mesenchyme but is downregulated as the odontoblasts differentiate. In contrast, in the epithelial enamel organ, Tert is absent during early stages of tooth formation and upregulated first in ameloblasts. Later, Tert is expressed and immunolocalized throughout the entire inner enamel epithelium. The pattern of Tert distribution is largely mutually exclusive with that of proliferating cell nuclear antigen (PCNA) immunoreactivity: highly proliferative cells, as revealed by PCNA staining, are negative for Tert; conversely, PCNA-negative cells are Tert-positive. Only the early condensed mesenchyme is both Tert- and PCNA-positive. The absence of tert-positive cells in the epithelial compartment of early tooth germs is underscored by the absence of oct4- and lgr5-positive cells, suggesting ways other than stem cell involvement to secure continuous renewal.
Collapse
Affiliation(s)
- W H Tan
- 1 Department of Biological Sciences, National University of Singapore, Singapore and NUS Centre for Bioimaging Sciences (CBIS), Singapore
| | - P E Witten
- 2 Research Group Evolutionary Developmental Biology, Biology Department, Ghent University, Ghent, Belgium
| | - C Winkler
- 1 Department of Biological Sciences, National University of Singapore, Singapore and NUS Centre for Bioimaging Sciences (CBIS), Singapore
| | - D W T Au
- 3 State Key Laboratory in Marine Pollution, Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Hong Kong
| | - A Huysseune
- 2 Research Group Evolutionary Developmental Biology, Biology Department, Ghent University, Ghent, Belgium
| |
Collapse
|
15
|
Chen D, Blom H, Sanchez S, Tafforeau P, Märss T, Ahlberg PE. Development of cyclic shedding teeth from semi-shedding teeth: the inner dental arcade of the stem osteichthyan Lophosteus. ROYAL SOCIETY OPEN SCIENCE 2017; 4:161084. [PMID: 28573003 PMCID: PMC5451804 DOI: 10.1098/rsos.161084] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 04/21/2017] [Indexed: 06/07/2023]
Abstract
The numerous cushion-shaped tooth-bearing plates attributed to the stem group osteichthyan Lophosteus superbus, which are argued here to represent an early form of the osteichthyan inner dental arcade, display a previously unknown and presumably primitive mode of tooth shedding by basal hard tissue resorption. They carry regularly spaced, recumbent, gently recurved teeth arranged in transverse tooth files that diverge towards the lingual margin of the cushion. Three-dimensional reconstruction from propagation phase-contrast synchrotron microtomography (PPC-SRµCT) reveals remnants of the first-generation teeth embedded in the basal plate, a feature never previously observed in any taxon. These teeth were shed by semi-basal resorption with the periphery of their bases retained as dentine rings. The rings are highly overlapped, which evidences tooth shedding prior to adding the next first-generation tooth at the growing edge of the plate. The first generation of teeth is thus diachronous. Successor teeth at the same sites underwent cyclical replacing and shedding through basal resorption, producing stacks of buried resorption surfaces separated by bone of attachment. The number and spatial arrangement of resorption surfaces elucidates that basal resorption of replacement teeth had taken place at the older tooth sites before the addition of the youngest first-generation teeth at the lingual margin. Thus, the replacement tooth buds cannot have been generated by a single permanent dental lamina at the lingual edge of the tooth cushion, but must have arisen either from successional dental laminae associated with the individual predecessor teeth, or directly from the dental epithelium of these teeth. The virtual histological dissection of these Late Silurian microfossils broadens our understanding of the development of the gnathostome dental systems and the acquisition of the osteichthyan-type of tooth replacement.
Collapse
Affiliation(s)
- Donglei Chen
- Department of Organismal Biology, Uppsala University, Norbyvägen 18A, 752 36, Uppsala, Sweden
| | - Henning Blom
- Department of Organismal Biology, Uppsala University, Norbyvägen 18A, 752 36, Uppsala, Sweden
| | - Sophie Sanchez
- Department of Organismal Biology, Uppsala University, Norbyvägen 18A, 752 36, Uppsala, Sweden
- SciLifeLab, Uppsala University, Norbyvägen 18A, 752 36, Uppsala, Sweden
| | - Paul Tafforeau
- European Synchrotron Radiation Facility, 6 rue Jules Horowitz, 38043 Grenoble Cedex, France
| | - Tiiu Märss
- Estonian Marine Institute, University of Tartu, Mäealuse Street 14, 12618 Tallinn, Estonia
| | - Per E. Ahlberg
- Department of Organismal Biology, Uppsala University, Norbyvägen 18A, 752 36, Uppsala, Sweden
| |
Collapse
|
16
|
|
17
|
The stem osteichthyan Andreolepis and the origin of tooth replacement. Nature 2016; 539:237-241. [PMID: 27750278 DOI: 10.1038/nature19812] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 08/25/2016] [Indexed: 02/02/2023]
Abstract
The teeth of gnathostomes (jawed vertebrates) show rigidly patterned, unidirectional replacement that may or may not be associated with a shedding mechanism. These mechanisms, which are critical for the maintenance of the dentition, are incongruently distributed among extant gnathostomes. Although a permanent tooth-generating dental lamina is present in all chondrichthyans, many tetrapods and some teleosts, it is absent in the non-teleost actinopterygians. Tooth-shedding by basal hard tissue resorption occurs in most osteichthyans (including tetrapods) but not in chondrichthyans. Here we report a three-dimensional virtual dissection of the dentition of a 424-million-year-old stem osteichthyan, Andreolepis hedei, using propagation phase-contrast synchrotron microtomography, with a reconstruction of its growth history. Andreolepis, close to the common ancestor of all extant osteichthyans, shed its teeth by basal resorption but probably lacked a permanent dental lamina. This is the earliest documented instance of resorptive tooth shedding and may represent the primitive osteichthyan mode of tooth replacement.
Collapse
|
18
|
Ellis NA, Donde NN, Miller CT. Early development and replacement of the stickleback dentition. J Morphol 2016; 277:1072-83. [PMID: 27145214 PMCID: PMC5298556 DOI: 10.1002/jmor.20557] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 04/12/2016] [Accepted: 04/17/2016] [Indexed: 11/09/2022]
Abstract
Teeth have long served as a model system to study basic questions about vertebrate organogenesis, morphogenesis, and evolution. In nonmammalian vertebrates, teeth typically regenerate throughout adult life. Fish have evolved a tremendous diversity in dental patterning in both their oral and pharyngeal dentitions, offering numerous opportunities to study how morphology develops, regenerates, and evolves in different lineages. Threespine stickleback fish (Gasterosteus aculeatus) have emerged as a new system to study how morphology evolves, and provide a particularly powerful system to study the development and evolution of dental morphology. Here, we describe the oral and pharyngeal dentitions of stickleback fish, providing additional morphological, histological, and molecular evidence for homology of oral and pharyngeal teeth. Focusing on the ventral pharyngeal dentition in a dense developmental time course of lab-reared fish, we describe the temporal and spatial consensus sequence of early tooth formation. Early in development, this sequence is highly stereotypical and consists of seventeen primary teeth forming the early tooth field, followed by the first tooth replacement event. Comparing this detailed morphological and ontogenetic sequence to that described in other fish reveals that major changes to how dental morphology arises and regenerates have evolved across different fish lineages. J. Morphol. 277:1072-1083, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Nicholas A. Ellis
- Department of Molecular and Cell Biology, University of California-Berkeley, Berkeley CA, 94720, USA
| | - Nikunj N. Donde
- Department of Molecular and Cell Biology, University of California-Berkeley, Berkeley CA, 94720, USA
| | - Craig T. Miller
- Department of Molecular and Cell Biology, University of California-Berkeley, Berkeley CA, 94720, USA
| |
Collapse
|
19
|
Popa EM, Anthwal N, Tucker AS. Complex patterns of tooth replacement revealed in the fruit bat (Eidolon helvum). J Anat 2016; 229:847-856. [PMID: 27444818 DOI: 10.1111/joa.12522] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2016] [Indexed: 12/17/2022] Open
Abstract
How teeth are replaced during normal growth and development has long been an important question for comparative and developmental anatomy. Non-standard model animals have become increasingly popular in this field due to the fact that the canonical model laboratory mammal, the mouse, develops only one generation of teeth (monophyodonty), whereas the majority of mammals possess two generations of teeth (diphyodonty). Here we used the straw-coloured fruit bat (Eidolon helvum), an Old World megabat, which has two generations of teeth, in order to observe the development and replacement of tooth germs from initiation up to mineralization stages. Our morphological study uses 3D reconstruction of histological sections to uncover differing arrangements of the first and second-generation tooth germs during the process of tooth replacement. We show that both tooth germ generations develop as part of the dental lamina, with the first generation detaching from the lamina, leaving the free edge to give rise to a second generation. This separation was particularly marked at the third premolar locus, where the primary and replacement teeth become positioned side by side, unconnected by a lamina. The position of the replacement tooth, with respect to the primary tooth, varied within the mouth, with replacements forming posterior to or directly lingual to the primary tooth. Development of replacement teeth was arrested at some tooth positions and this appeared to be linked to the timing of tooth initiation and the subsequent rate of development. This study adds an additional species to the growing body of non-model species used in the study of tooth replacement, and offers a new insight into the development of the diphyodont condition.
Collapse
Affiliation(s)
- Elena M Popa
- Department of Craniofacial Development and Stem Cell Biology, King's College London, Guy's Hospital, London, UK
| | - Neal Anthwal
- Department of Craniofacial Development and Stem Cell Biology, King's College London, Guy's Hospital, London, UK
| | - Abigail S Tucker
- Department of Craniofacial Development and Stem Cell Biology, King's College London, Guy's Hospital, London, UK
| |
Collapse
|
20
|
Vandenplas S, Vandeghinste R, Boutet A, Mazan S, Huysseune A. Slow cycling cells in the continuous dental lamina of Scyliorhinus canicula: new evidence for stem cells in sharks. Dev Biol 2016; 413:39-49. [DOI: 10.1016/j.ydbio.2016.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 02/29/2016] [Accepted: 03/07/2016] [Indexed: 01/06/2023]
|
21
|
Vandenplas S, Willems M, Witten PE, Hansen T, Fjelldal PG, Huysseune A. Epithelial Label-Retaining Cells Are Absent during Tooth Cycling in Salmo salar and Polypterus senegalus. PLoS One 2016; 11:e0152870. [PMID: 27049953 PMCID: PMC4822771 DOI: 10.1371/journal.pone.0152870] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 03/21/2016] [Indexed: 01/17/2023] Open
Abstract
The Atlantic salmon (Salmo salar) and African bichir (Polypterus senegalus) are both actinopterygian fish species that continuously replace their teeth without the involvement of a successional dental lamina. Instead, they share the presence of a middle dental epithelium: an epithelial tier enclosed by inner and outer dental epithelium. It has been hypothesized that this tier could functionally substitute for a successional dental lamina and might be a potential niche to house epithelial stem cells involved in tooth cycling. Therefore, in this study we performed a BrdU pulse chase experiment on both species to (1) determine the localization and extent of proliferating cells in the dental epithelial layers, (2) describe cell dynamics and (3) investigate if label-retaining cells are present, suggestive for the putative presence of stem cells. Cells proliferate in the middle dental epithelium, outer dental epithelium and cervical loop at the lingual side of the dental organ to form a new tooth germ. Using long chase times, both in S. salar (eight weeks) and P. senegalus (eight weeks and twelve weeks), we could not reveal the presence of label-retaining cells in the dental organ. Immunostaining of P. senegalus dental organs for the transcription factor Sox2, often used as a stem cell marker, labelled cells in the zone of outer dental epithelium which grades into the oral epithelium (ODE transition zone) and the inner dental epithelium of a successor only. The location of Sox2 distribution does not provide evidence for epithelial stem cells in the dental organ and, more specifically, in the middle dental epithelium. Comparison of S. salar and P. senegalus reveals shared traits in tooth cycling and thus advances our understanding of the developmental mechanism that ensures lifelong replacement.
Collapse
Affiliation(s)
- Sam Vandenplas
- Evolutionary Developmental Biology, Ghent University, Ghent, Belgium
| | - Maxime Willems
- Pharmaceutical technology, Ghent University, Ghent, Belgium
| | - P. Eckhard Witten
- Evolutionary Developmental Biology, Ghent University, Ghent, Belgium
| | - Tom Hansen
- Institute of Marine Research (IMR), Matre Research Station, Matredal, Norway
| | - Per Gunnar Fjelldal
- Institute of Marine Research (IMR), Matre Research Station, Matredal, Norway
| | - Ann Huysseune
- Evolutionary Developmental Biology, Ghent University, Ghent, Belgium
- * E-mail:
| |
Collapse
|