1
|
Valamparamban GF, Spéder P. Homemade: building the structure of the neurogenic niche. Front Cell Dev Biol 2023; 11:1275963. [PMID: 38107074 PMCID: PMC10722289 DOI: 10.3389/fcell.2023.1275963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/16/2023] [Indexed: 12/19/2023] Open
Abstract
Neural stem/progenitor cells live in an intricate cellular environment, the neurogenic niche, which supports their function and enables neurogenesis. The niche is made of a diversity of cell types, including neurons, glia and the vasculature, which are able to signal to and are structurally organised around neural stem/progenitor cells. While the focus has been on how individual cell types signal to and influence the behaviour of neural stem/progenitor cells, very little is actually known on how the niche is assembled during development from multiple cellular origins, and on the role of the resulting topology on these cells. This review proposes to draw a state-of-the art picture of this emerging field of research, with the aim to expose our knowledge on niche architecture and formation from different animal models (mouse, zebrafish and fruit fly). We will span its multiple aspects, from the existence and importance of local, adhesive interactions to the potential emergence of larger-scale topological properties through the careful assembly of diverse cellular and acellular components.
Collapse
Affiliation(s)
| | - Pauline Spéder
- Institut Pasteur, Université Paris Cité, CNRS UMR3738, Structure and Signals in the Neurogenic Niche, Paris, France
| |
Collapse
|
2
|
Casalini A, Gentile L, Emmanuele P, Brusa R, Elmi A, Parmeggiani A, Galosi L, Roncarati A, Mordenti O. Effects of Environmental Enrichment on the Behavior of Octopus vulgaris in a Recirculating Aquaculture System. Animals (Basel) 2023; 13:1862. [PMID: 37889785 PMCID: PMC10251970 DOI: 10.3390/ani13111862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/15/2023] [Accepted: 06/01/2023] [Indexed: 10/29/2023] Open
Abstract
Octopus vulgaris is a commercially valuable species. It is overexploited in the natural environment and is considered to be an innovative species for aquaculture. However, large-scale farming is generally designed only based on economic requirements, disregarding any form of enrichment that induces the natural behavior of aquatic species. Although many studies have shown the influence of environmental enrichment on terrestrial vertebrates, fish, and cephalopod mollusks, information on the effect of environmental enrichment on the body patterns of O. vulgaris is limited. Therefore, in this study, we assessed how different environmental conditions (Basic vs. Enriched) affect sub-adults of O. vulgaris kept in recirculation systems, through qualitative-quantitative studies of the main body patterns and their potential application in the commercial production of this species. The results indicated that octopuses kept in the enriched environment showed several body patterns and gained a significantly higher weight than those kept in the basic environment. The body patterns displayed by the individuals kept in the basic environment were similar to those exhibited under situations of hostility and inter/intra-specific conflict. Hence, the environment of octopuses needs to be enriched, especially for the large-scale production of this species.
Collapse
Affiliation(s)
- Antonio Casalini
- Department of Veterinary Medical Sciences—DIMEVET, University of Bologna, Via Tolara di Sopra 50, Ozzano dell’Emilia, 40064 Bologna, Italy; (A.C.); (P.E.); (R.B.); (A.E.); (A.P.); (O.M.)
| | - Laura Gentile
- Department of Veterinary Medical Sciences—DIMEVET, University of Bologna, Via Tolara di Sopra 50, Ozzano dell’Emilia, 40064 Bologna, Italy; (A.C.); (P.E.); (R.B.); (A.E.); (A.P.); (O.M.)
| | - Pietro Emmanuele
- Department of Veterinary Medical Sciences—DIMEVET, University of Bologna, Via Tolara di Sopra 50, Ozzano dell’Emilia, 40064 Bologna, Italy; (A.C.); (P.E.); (R.B.); (A.E.); (A.P.); (O.M.)
| | - Riccardo Brusa
- Department of Veterinary Medical Sciences—DIMEVET, University of Bologna, Via Tolara di Sopra 50, Ozzano dell’Emilia, 40064 Bologna, Italy; (A.C.); (P.E.); (R.B.); (A.E.); (A.P.); (O.M.)
| | - Alberto Elmi
- Department of Veterinary Medical Sciences—DIMEVET, University of Bologna, Via Tolara di Sopra 50, Ozzano dell’Emilia, 40064 Bologna, Italy; (A.C.); (P.E.); (R.B.); (A.E.); (A.P.); (O.M.)
| | - Albamaria Parmeggiani
- Department of Veterinary Medical Sciences—DIMEVET, University of Bologna, Via Tolara di Sopra 50, Ozzano dell’Emilia, 40064 Bologna, Italy; (A.C.); (P.E.); (R.B.); (A.E.); (A.P.); (O.M.)
| | - Livio Galosi
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Circonvallazione 93/95, 62024 Matelica, Italy; (L.G.); (A.R.)
| | - Alessandra Roncarati
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Circonvallazione 93/95, 62024 Matelica, Italy; (L.G.); (A.R.)
| | - Oliviero Mordenti
- Department of Veterinary Medical Sciences—DIMEVET, University of Bologna, Via Tolara di Sopra 50, Ozzano dell’Emilia, 40064 Bologna, Italy; (A.C.); (P.E.); (R.B.); (A.E.); (A.P.); (O.M.)
| |
Collapse
|
3
|
Lee CJ, Lee HY, Yu YS, Ryu KB, Lee H, Kim K, Shin SY, Gil YC, Cho SJ. Brain compartmentalization based on transcriptome analyses and its gene expression in Octopus minor. Brain Struct Funct 2023:10.1007/s00429-023-02647-6. [PMID: 37138199 DOI: 10.1007/s00429-023-02647-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/17/2023] [Indexed: 05/05/2023]
Abstract
Coleoid cephalopods have a high intelligence, complex structures, and large brain. The cephalopod brain is divided into supraesophageal mass, subesophageal mass and optic lobe. Although much is known about the structural organization and connections of various lobes of octopus brain, there are few studies on the brain of cephalopod at the molecular level. In this study, we demonstrated the structure of an adult Octopus minor brain by histomorphological analyses. Through visualization of neuronal and proliferation markers, we found that adult neurogenesis occurred in the vL and posterior svL. We also obtained specific 1015 genes by transcriptome of O. minor brain and selected OLFM3, NPY, GnRH, and GDF8 genes. The expression of genes in the central brain showed the possibility of using NPY and GDF8 as molecular marker of compartmentation in the central brain. This study will provide useful information for establishing a molecular atlas of cephalopod brain.
Collapse
Affiliation(s)
- Chan-Jun Lee
- Department of Biological Sciences and Biotechnology, College of Natural Sciences, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Hae-Youn Lee
- Department of Biological Sciences and Biotechnology, College of Natural Sciences, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Yun-Sang Yu
- Department of Biological Sciences and Biotechnology, College of Natural Sciences, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Kyoung-Bin Ryu
- Clinical Research Division, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju, Chungbuk, 28159, Republic of Korea
| | - Hyerim Lee
- Department of Biological Sciences and Biotechnology, College of Natural Sciences, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Kyunghwan Kim
- Department of Biological Sciences and Biotechnology, College of Natural Sciences, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Song Yub Shin
- Department of Cellular and Molecular Medicine, School of Medicine, Chosun University, Gwangju, 61452, Republic of Korea.
| | - Young-Chun Gil
- Department of Anatomy, College of Medicine, Chungbuk National University, Cheongju, 28644, Republic of Korea.
| | - Sung-Jin Cho
- Department of Biological Sciences and Biotechnology, College of Natural Sciences, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea.
| |
Collapse
|
4
|
Gutnick T, Neef A, Cherninskyi A, Ziadi-Künzli F, Di Cosmo A, Lipp HP, Kuba MJ. Recording electrical activity from the brain of behaving octopus. Curr Biol 2023; 33:1171-1178.e4. [PMID: 36827988 DOI: 10.1016/j.cub.2023.02.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/25/2023] [Accepted: 02/01/2023] [Indexed: 02/25/2023]
Abstract
Octopuses, which are among the most intelligent invertebrates,1,2,3,4 have no skeleton and eight flexible arms whose sensory and motor activities are at once autonomous and coordinated by a complex central nervous system.5,6,7,8 The octopus brain contains a very large number of neurons, organized into numerous distinct lobes, the functions of which have been proposed based largely on the results of lesioning experiments.9,10,11,12,13 In other species, linking brain activity to behavior is done by implanting electrodes and directly correlating electrical activity with observed animal behavior. However, because the octopus lacks any hard structure to which recording equipment can be anchored, and because it uses its eight flexible arms to remove any foreign object attached to the outside of its body, in vivo recording of electrical activity from untethered, behaving octopuses has thus far not been possible. Here, we describe a novel technique for inserting a portable data logger into the octopus and implanting electrodes into the vertical lobe system, such that brain activity can be recorded for up to 12 h from unanesthetized, untethered octopuses and can be synchronized with simultaneous video recordings of behavior. In the brain activity, we identified several distinct patterns that appeared consistently in all animals. While some resemble activity patterns in mammalian neural tissue, others, such as episodes of 2 Hz, large amplitude oscillations, have not been reported. By providing an experimental platform for recording brain activity in behaving octopuses, our study is a critical step toward understanding how the brain controls behavior in these remarkable animals.
Collapse
Affiliation(s)
- Tamar Gutnick
- Okinawa Institute of Science and Technology, Graduate University, Physics and Biology Unit, 904 0495 Okinawa, Japan; Department of Biology, University of Naples Federico II, Via Cintia 26, 80126 Napoli, Italy.
| | - Andreas Neef
- Göttingen Campus Institute for Dynamics of Biological Networks, 37073 Göttingen, Germany; Max Planck Institute for Dynamics and Self-Organization, 37077 Göttingen, Germany; Bernstein Center for Computational Neuroscience, 37073 Göttingen, Germany; Institute for the Dynamics of Complex Systems, University of Göttingen, 37075 Göttingen, Germany; Max Planck Institute for Multidisciplinary Sciences, 37075 Göttingen, Germany; Center for Biostructural Imaging of Neurodegeneration, 37075 Göttingen, Germany
| | | | - Fabienne Ziadi-Künzli
- Okinawa Institute of Science and Technology, Graduate University, Nonlinear and Non-equilibrium Physics Unit, Okinawa 904-0495, Japan
| | - Anna Di Cosmo
- Department of Biology, University of Naples Federico II, Via Cintia 26, 80126 Napoli, Italy
| | - Hans-Peter Lipp
- Institute of Evolutionary Medicine, Faculty of Medicine, University of Zurich, 8057 Zurich, Switzerland
| | - Michael J Kuba
- Okinawa Institute of Science and Technology, Graduate University, Physics and Biology Unit, 904 0495 Okinawa, Japan; Department of Biology, University of Naples Federico II, Via Cintia 26, 80126 Napoli, Italy
| |
Collapse
|
5
|
Rossi GS, Labbé D, Wright PA. Out of water in the dark: Plasticity in visual structures and function in an amphibious fish. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2022; 337:776-784. [PMID: 35727120 DOI: 10.1002/jez.2636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/20/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
Many fishes encounter periods of prolonged darkness within their lifetime, yet the consequences for the visual system are poorly understood. We used an amphibious fish (Kryptolebias marmoratus) that occupies dark terrestrial environments during seasonal droughts to test whether exposure to prolonged darkness diminishes visual performance owing to reduced optic tectum (OT) size and/or neurogenesis. We performed a 3-week acclimation with a 2 ×$\times $ 2 factorial design, in which fish were either acclimated to a 12 h:12 h or 0 h:24 h light:dark photoperiod in water or in air. We found that water-exposed fish had poorer visual acuity when acclimated to the dark, while air-acclimated fish had poorer visual acuity regardless of photoperiod. The ability of K. marmoratus to capture aerial prey from water followed a similar trend, suggesting that good vision is important for hunting effectively. Changes in visual acuity did not result from changes in OT size, but air-acclimated fish had 37% fewer proliferating cells in the OT than water-acclimated fish. As K. marmoratus are unable to eat on land, reducing cell proliferation in the OT may serve as a mechanism to reduce maintenance costs associated with the visual system. Overall, we suggest that prolonged darkness and air exposure can impair vision in K. marmoratus, and that changes in visual performance may be mediated, in part, by OT neurogenesis. More broadly, we show that plastic changes to the visual system of fishes can have potential consequences for organismal performance and fitness.
Collapse
Affiliation(s)
- Giulia S Rossi
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
- Department of Biological Sciences, University of Toronto Scarborough, Scarborough, Ontario, Canada
| | - Daniel Labbé
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
- School of Earth and Ocean Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Patricia A Wright
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
6
|
Macartney EL, Lagisz M, Nakagawa S. The Relative Benefits of Environmental Enrichment on Learning and Memory are Greater When Stressed: A Meta-analysis of Interactions in Rodents. Neurosci Biobehav Rev 2022; 135:104554. [PMID: 35149103 DOI: 10.1016/j.neubiorev.2022.104554] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/24/2022] [Accepted: 01/30/2022] [Indexed: 12/11/2022]
Abstract
Environmental enrichment ("EE") is expected to alleviate the negative effects of stress on cognitive performance. However, there are complexities associated with interpreting interactions that obscure determining the benefit EE may play in mitigating the negative effects of stress. To clarify these complexities, we conducted a systematic review with meta-analysis on the main and interactive effects of EE and stress on learning and memory in rodents. We show that EE and stress interact 'synergistically' where EE provides a greater relative benefit to stressed individuals compared to those reared in conventional housing. Importantly, EE can fully-compensate for the negative effects of stress where stressed individuals with EE performed equally to enriched individuals without a stress manipulation. Additionally, we show the importance of other mediating factors, including the order of treatment exposure, duration and type of stress, type of EE, and type of cognitive assays used. This study not only quantifies the interactions between EE and stress, but also provides a clear example for how to conduct and interpret meta-analysis of interactions.
Collapse
Affiliation(s)
- Erin L Macartney
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, Australia Kensington Campus, UNSW, Sydney, NSW 2052.
| | - Malgorzata Lagisz
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, Australia Kensington Campus, UNSW, Sydney, NSW 2052
| | - Shinichi Nakagawa
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, Australia Kensington Campus, UNSW, Sydney, NSW 2052
| |
Collapse
|
7
|
Malerba F. Why Are We Scientists? Drawing Inspiration From Rita Levi-Montalcini. Front Cell Neurosci 2022; 15:741984. [PMID: 35126056 PMCID: PMC8814914 DOI: 10.3389/fncel.2021.741984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 12/02/2021] [Indexed: 11/15/2022] Open
Abstract
In 2007, drawing inspiration from her previous experiments on chick embryos, Rita Levi-Montalcini, at the age of 98, proposed a new project, and a research group, in which I was included, was formed at the European Brain Research Institute (EBRI). Looking back on this experience, I can say that Professor Levi-Montalcini’s approach and the relationships she formed with my colleagues and me, contributed to my growth as a researcher. With her welcoming and warm-hearted disposition, she taught me how to consider other people’s ideas without prejudice, to reason and not to exclude any hypothesis. I also learned from her how to overcome those difficulties that are so frequent in the research field, always keeping in mind the starting point and looking toward the objective, with a factual optimism. I was just a young researcher and deeply flattered that a Nobel Laureate, with an incredible career and extraordinary life, treated me as her equal. My experience with Professor Levi-Montalcini has also provided me with a reliable path to follow, and when I encounter difficulties and challenges, I ask myself what would she have done. This approach has always helped me to move forward. Indeed, I believe the best way to celebrate Rita Levi-Montalcini as a woman in neuroscience is to recount how her exceptional example is a constant reminder as to why I have chosen to be a scientist. I hope she will always continue to be a source of inspiration for scientists in the future.
Collapse
|
8
|
Kawashima S, Ikeda Y. Evaluation of Visual and Tactile Perception by Plain-Body Octopus ( Callistoctopus aspilosomatis) of Prey-Like Objects. Zoolog Sci 2021; 38:495-505. [PMID: 34854281 DOI: 10.2108/zs210037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 09/12/2021] [Indexed: 11/17/2022]
Abstract
We investigated the characteristic features of perception in octopuses by examining multisensory information from an object simulating prey, which provided different visual and tactile stimuli. In experiments, we presented plain-body octopus with four kinds of models, namely, the Lifelike crab, the Embedded crab, the Translucent crab, and the Black cuboid. These models contain different amounts of visual and tactile information that a crab originally contains: the Lifelike crab resembles a crab both visually and tactilely, the Embedded crab resembles a crab visually but provides different tactile information, the Translucent crab provides tactile information of a crab but contains less visual information, and the Black cuboid lacks both visual and tactile information of a crab. Among these four models, octopuses contacted most with the Lifelike crab, which was similar to their behavior with a crab. Indeed, octopuses were fastest to contact the Lifelike crab and had the longest duration of contacting it among the four models. Octopuses contacted the Embedded crab more than the Translucent crab, both of which had contrasting visuo-tactile information compared to that of a crab. Quickness of octopuses to contact and duration of contact with the Embedded crab were more similar to those with the Lifelike crab than to those with the Translucent crab. Furthermore, octopuses contacted the Black cuboid least among the models. These results suggest that octopuses compositely detect both visual and tactile information in order to perceive an object. Furthermore, octopuses possess the potential priority either for visual or tactile information, by which they process the target object.
Collapse
Affiliation(s)
- Sumire Kawashima
- Graduate School of Engineering and Science, University of the Ryukyus, Senbaru, Nishihara, Okinawa 903-0213, Japan
| | - Yuzuru Ikeda
- Faculty of Science, University of the Ryukyus, Senbaru, Nishihara, Okinawa 903-0213, Japan,
| |
Collapse
|
9
|
Loss CM, Melleu FF, Domingues K, Lino-de-Oliveira C, Viola GG. Combining Animal Welfare With Experimental Rigor to Improve Reproducibility in Behavioral Neuroscience. Front Behav Neurosci 2021; 15:763428. [PMID: 34916915 PMCID: PMC8671008 DOI: 10.3389/fnbeh.2021.763428] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/18/2021] [Indexed: 02/05/2023] Open
Affiliation(s)
- Cássio Morais Loss
- Molecular and Behavioral Neuroscience Laboratory, Departamento de Farmacologia, Universidade Federal de São Paulo, São Paulo, Brazil
- National Institute for Translational Medicine (INCT-TM), National Council for Scientific and Technological Development (CNPq/CAPES/FAPESP), Ribeirão Preto, Brazil
| | | | - Karolina Domingues
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Cilene Lino-de-Oliveira
- Departamento de Ciências Fisiológicas do Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | | |
Collapse
|
10
|
Jacobs B, Rally H, Doyle C, O'Brien L, Tennison M, Marino L. Putative neural consequences of captivity for elephants and cetaceans. Rev Neurosci 2021; 33:439-465. [PMID: 34534428 DOI: 10.1515/revneuro-2021-0100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/02/2021] [Indexed: 12/20/2022]
Abstract
The present review assesses the potential neural impact of impoverished, captive environments on large-brained mammals, with a focus on elephants and cetaceans. These species share several characteristics, including being large, wide-ranging, long-lived, cognitively sophisticated, highly social, and large-brained mammals. Although the impact of the captive environment on physical and behavioral health has been well-documented, relatively little attention has been paid to the brain itself. Here, we explore the potential neural consequences of living in captive environments, with a focus on three levels: (1) The effects of environmental impoverishment/enrichment on the brain, emphasizing the negative neural consequences of the captive/impoverished environment; (2) the neural consequences of stress on the brain, with an emphasis on corticolimbic structures; and (3) the neural underpinnings of stereotypies, often observed in captive animals, underscoring dysregulation of the basal ganglia and associated circuitry. To this end, we provide a substantive hypothesis about the negative impact of captivity on the brains of large mammals (e.g., cetaceans and elephants) and how these neural consequences are related to documented evidence for compromised physical and psychological well-being.
Collapse
Affiliation(s)
- Bob Jacobs
- Laboratory of Quantitative Neuromorphology, Neuroscience Program, Colorado College, Colorado Springs, CO, 80903, USA
| | - Heather Rally
- Foundation to Support Animal Protection, Norfolk, VA, 23510, USA
| | - Catherine Doyle
- Performing Animal Welfare Society, P.O. Box 849, Galt, CA, 95632, USA
| | - Lester O'Brien
- Palladium Elephant Consulting Inc., 2408 Pinewood Dr. SE, Calgary, AB, T2B1S4, Canada
| | - Mackenzie Tennison
- Department of Psychology, University of Washington, Seattle, WA, 98195, USA
| | - Lori Marino
- Whale Sanctuary Project, Kanab, UT, 84741, USA
| |
Collapse
|
11
|
Di Cosmo A, Pinelli C, Scandurra A, Aria M, D’Aniello B. Research Trends in Octopus Biological Studies. Animals (Basel) 2021; 11:ani11061808. [PMID: 34204419 PMCID: PMC8233767 DOI: 10.3390/ani11061808] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 12/02/2022] Open
Abstract
Simple Summary Octopuses represent model studies for different fields of scientific inquiry. We provide a bibliometric analysis on biological research trends in octopuses studies by using bibliometrix, a new and powerful R-tool. The analysis was executed from January 1985 to December 2020 including scientific products reported in Web of Science (WoS) database. The main results showed an increasing effort in research involving octopuses with a greater number of journals reporting research on these animals, as well as countries, institutions, and researchers involved. Some research themes lost importance over time, while some new themes appeared recently. Current data provide significant insight into the evolving trends in octopuses studies. Abstract Octopuses represent interesting model studies for different fields of scientific inquiry. The present study provides a bibliometric analysis on research trends in octopuses biological studies. The analysis was executed from January 1985 to December 2020 including scientific products reported in the Web of Science database. The period of study was split into two blocks (“earlier period” (EP): 1985−2010; “recent period” (RP): 2011−2020) to analyze the evolution of the research topics over time. All publications of interest were identified by using the following query: ((AK = octopus) OR (AB = octopus) OR (TI = octopus)). Data information was converted into an R-data frame using bibliometrix. Octopuses studies appeared in 360 different sources in EP, while they increased to 408 in RP. Sixty countries contributed to the octopuses studies in the EP, while they were 78 in the RP. The number of affiliations also increased between EP and RP, with 835 research centers involved in the EP and 1399 in the RP. In the EP 5 clusters (i.e., “growth and nutrition”, “pollution impact”, “morphology”, “neurobiology”, “biochemistry”) were represented in a thematic map, according to their centrality and density ranking. In the RP the analysis identified 4 clusters (i.e., “growth and nutrition”, “ecology”, “pollution impact”, “genes, behavior, and brain evolution”). The UK with Ireland, and the USA with Canada shared the highest number of publications in the EP, while in the RP, Spain and Portugal were the leading countries. The current data provide significant insight into the evolving trends in octopuses studies.
Collapse
Affiliation(s)
- Anna Di Cosmo
- Department of Biology, University of Naples Federico II, via Cinthia, 80126 Naples, Italy; (A.S.); (B.D.)
- Correspondence:
| | - Claudia Pinelli
- Department of Environmental, Biological and Pharmaceutical Sciences & Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy;
| | - Anna Scandurra
- Department of Biology, University of Naples Federico II, via Cinthia, 80126 Naples, Italy; (A.S.); (B.D.)
| | - Massimo Aria
- Department of Economics and Statistics, University of Naples Federico II, via Cinthia, 80126 Naples, Italy;
| | - Biagio D’Aniello
- Department of Biology, University of Naples Federico II, via Cinthia, 80126 Naples, Italy; (A.S.); (B.D.)
| |
Collapse
|
12
|
Rossi GS, Wright PA. Does leaving water make fish smarter? Terrestrial exposure and exercise improve spatial learning in an amphibious fish. Proc Biol Sci 2021; 288:20210603. [PMID: 34130503 DOI: 10.1098/rspb.2021.0603] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Amphibious fishes transition between aquatic and terrestrial habitats, and must therefore learn to navigate two dramatically different environments. We used the amphibious killifish Kryptolebias marmoratus to test the hypothesis that the spatial learning ability of amphibious fishes would be altered by exposure to terrestrial environments because of neural plasticity in the brain region linked to spatial cognition (dorsolateral pallium). We subjected fish to eight weeks of fluctuating air-water conditions or terrestrial exercise before assessing spatial learning using a bifurcating T-maze, and neurogenesis in the dorsolateral pallium by immunostaining for proliferating cell nuclear antigen. In support of our hypothesis, we found that air-water fluctuations and terrestrial exercise improved some markers of spatial learning. Moreover, air-water and exercised fish had 39% and 46% more proliferating cells in their dorsolateral pallium relative to control fish, respectively. Overall, our findings suggest that fish with more terrestrial tendencies may have a cognitive advantage over those that remain in water, which ultimately may influence their fitness in both aquatic and terrestrial settings. More broadly, understanding the factors that promote neural and behavioural plasticity in extant amphibious fishes may provide insights into how ancestral fishes successfully colonized novel terrestrial environments before giving rise to land-dwelling tetrapods.
Collapse
Affiliation(s)
- Giulia S Rossi
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Patricia A Wright
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| |
Collapse
|
13
|
Wang M, Tang JJ, Wang LX, Yu J, Zhang L, Qiao C. Hydrogen sulfide enhances adult neurogenesis in a mouse model of Parkinson's disease. Neural Regen Res 2021; 16:1353-1358. [PMID: 33318417 PMCID: PMC8284305 DOI: 10.4103/1673-5374.301026] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Hydrogen sulfide (H2S) is regarded to be a protectant against diseases of the central nervous system and cardiovascular system. However, the mechanism by which H2S elicits neuroprotective effects in the progression of Parkinson's disease (PD) remains unclear. To investigate the role of H2S in delaying the pathological process of PD, we used the most common sodium hydrosulfide (NaHS) as an H2S donor and established a mouse model of PD induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/probenecid (MPTP/p) in the present study. Our results show that H2S reduced neuronal loss during the progression of PD. Notably, we found that H2S exhibited protective effects on dopaminergic neurons. Excitingly, H2S also increased the proliferation of neural stem cells in the subventricular zone. Next, we evaluated whether the neuroprotective effects of H2S on dopaminergic neurons in PD are dependent on adult nerve regeneration by treating primary adult neural stem cells cultured ex vivo with 1-methyl-4-phenylpyridine. Our results show that H2S could prevent nerve injury induced by 1-methyl-4-phenylpyridine, promote the growth of neurospheres, and promote neurogenesis by regulating Akt/glycogen synthase kinase-3β/β-catenin pathways in adult neural stem cells. These findings confirm that H2S can increase neurogenesis in an adult mouse model of PD by regulating the Akt/glycogen synthase kinase-3β/β-catenin signaling pathway. This study was approved by the Animal Care and Use Committee of Nanjing Medical University, China (IACUC Approval No. 1601153-3).
Collapse
Affiliation(s)
- Min Wang
- Department of Geriatrics, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Juan-Juan Tang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Lin-Xiao Wang
- Laboratory of Neurological Diseases, Department of Neurology, the Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu Province, China
| | - Jun Yu
- Laboratory of Reproductive Medicine, The Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Li Zhang
- Department of Geriatrics, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Chen Qiao
- Department of Clinical Pharmacy, The Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, Jiangsu Province, China
| |
Collapse
|
14
|
Cognitive Stimulation Induces Differential Gene Expression in Octopus vulgaris: The Key Role of Protocadherins. BIOLOGY 2020; 9:biology9080196. [PMID: 32751499 PMCID: PMC7465212 DOI: 10.3390/biology9080196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/24/2020] [Accepted: 07/25/2020] [Indexed: 11/16/2022]
Abstract
Octopuses are unique invertebrates, with sophisticated and flexible behaviors controlled by a high degree of brain plasticity, learning, and memory. Moreover, in Octopus vulgaris, it has been demonstrated that animals housed in an enriched environment show adult neurogenesis in specific brain areas. Firstly, we evaluated the optimal acclimatization period needed for an O. vulgaris before starting a cognitive stimulation experiment. Subsequently, we analyzed differential gene expression in specific brain areas in adult animals kept in tested (enriched environment), wild (naturally enriched environment), and control conditions (unenriched environment). We selected and sequenced three protocadherin genes (PCDHs) involved in the development and maintenance of the nervous system; three Pax genes that control cell specification and tissue differentiation; the Elav gene, an earliest marker for neural cells; and the Zic1 gene, involved in early neural formation in the brain. In this paper, we evaluated gene expression levels in O. vulgaris under different cognitive stimulations. Our data shows that Oct-PCDHs genes are upregulated in the learning and lower motor centers in the brain of both tested and wild animals (higher in the latter). Combining these results with our previous studies on O. vulgaris neurogenesis, we proposed that PCDH genes may be involved in adult neurogenesis processes, and related with their cognitive abilities.
Collapse
|
15
|
Kotsyuba E, Kalachev A, Kameneva P, Dyachuk V. Distribution of Molecules Related to Neurotransmission in the Nervous System of the Mussel Crenomytilus grayanus. Front Neuroanat 2020; 14:35. [PMID: 32714154 PMCID: PMC7344229 DOI: 10.3389/fnana.2020.00035] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 06/02/2020] [Indexed: 11/13/2022] Open
Abstract
In bivalves neurotransmitters are involved in a variety of behaviors, but their diversity and distribution in the nervous system of these organisms remains somewhat unclear. Here, we first examined immunohistochemically the distributions of neurons containing different neurotransmitters, neuropeptides, and related enzymes, as well as the proliferative status of neurons in the ganglia of the mussel Crenomytilus grayanus. H-Phe-Met-Arg-Phe-NH2 (FMRFamide), choline acetyltransferase (ChAT), γ-aminobutyric acid (GABA) and tyrosine hydroxylase (TH) were found to be expressed by neurons in all the ganglia, whereas serotonin (5-HT) neurons were found only in the cerebropleural and pedal, but not visceral ganglia. Moreover, incubation of living mussels in the presence of a 5-HT precursor (5-HTP) confirmed the absence of 5-HT-containing neurons from the visceral ganglia, indicating that the "serotonin center" of the visceral nervous system is located in the cerebral ganglia. Furthermore, immunostaining of molecules related to neurotransmission together with α-acetylated tubulin demonstrated that this cytoskeletal protein may be a potential pan-neuronal marker in bivalves. Adult mussel neurons do not proliferate, but a population of proliferating PCNA-LIP cells which do not express any of the neurotransmitters examined, perhaps glia cells, was detected in the ganglia. These novel findings suggest that the nervous system of bivalves contains a broad variety of signal molecules most likely involved in the regulation of different physiological and behavioral processes. In addition, proliferating cells may maintain and renew glial cells and neurons throughout the lives of bivalves.
Collapse
Affiliation(s)
- Elena Kotsyuba
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
| | - Alexander Kalachev
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
| | - Polina Kameneva
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
| | - Vyacheslav Dyachuk
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
- Department of Nanophotonics and Metamaterials, ITMO University, St. Petersburg, Russia
| |
Collapse
|
16
|
Sensorial Hierarchy in Octopus vulgaris's Food Choice: Chemical vs. Visual. Animals (Basel) 2020; 10:ani10030457. [PMID: 32164232 PMCID: PMC7143185 DOI: 10.3390/ani10030457] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 02/28/2020] [Accepted: 03/05/2020] [Indexed: 12/01/2022] Open
Abstract
Simple Summary Coleoids are cephalopods endowed with a highly sophisticated nervous system with keen sense organs and an exceptionally large brain that includes more than 30 differentiated lobes. Within this group, Octopus vulgaris, well known as an intelligent soft-bodied animal, has a significant number of lobes in the nervous system dedicated to decoding and integrating visual, tactile, and chemosensory perceptions. In this study, we aimed to understand the key role of chemical and visual cues during food selection in O. vulgaris. We first defined the preferred food, and subsequently, we set up five different problem-solving tasks, in which the animal’s choice is guided by visual and chemosensory signals, either alone or together, to evaluate whether individual O. vulgaris uses a sensorial hierarchy. Our behavioural experiments show that this species does integrate different sensory information from chemical and visual cues during food selection; however, our results indicate that chemical perception provides accurate and faster information leading to food choice. This research opens new perspectives on O. vulgaris’ predation strategies. Abstract Octopus vulgaris possesses highly sophisticated sense organs, processed by the nervous system to generate appropriate behaviours such as finding food, avoiding predators, identifying conspecifics, and locating suitable habitat. Octopus uses multiple sensory modalities during the searching and selection of food, in particular, the chemosensory and visual cues. Here, we examined food choice in O. vulgaris in two ways: (1) We tested octopus’s food preference among three different kinds of food, and established anchovy as the preferred choice (66.67%, Friedman test p < 0.05); (2) We exposed octopus to a set of five behavioural experiments in order to establish the sensorial hierarchy in food choice, and to evaluate the performance based on the visual and chemical cues, alone or together. Our data show that O. vulgaris integrates sensory information from chemical and visual cues during food choice. Nevertheless, food choice resulted in being more dependent on chemical cues than visual ones (88.9%, Friedman test p < 0.05), with a consistent decrease of the time spent identifying the preferred food. These results define the role played by the senses with a sensorial hierarchy in food choice, opening new perspectives on the O. vulgaris’ predation strategies in the wild, which until today were considered to rely mainly on visual cues.
Collapse
|
17
|
Juárez OE, López-Galindo L, Pérez-Carrasco L, Lago-Lestón A, Rosas C, Di Cosmo A, Galindo-Sánchez CE. Octopus maya white body show sex-specific transcriptomic profiles during the reproductive phase, with high differentiation in signaling pathways. PLoS One 2019; 14:e0216982. [PMID: 31095623 PMCID: PMC6522055 DOI: 10.1371/journal.pone.0216982] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 05/02/2019] [Indexed: 12/13/2022] Open
Abstract
White bodies (WB), multilobulated soft tissue that wraps the optic tracts and optic lobes, have been considered the hematopoietic organ of the cephalopods. Its glandular appearance and its lobular morphology suggest that different parts of the WB may perform different functions, but a detailed functional analysis of the octopus WB is lacking. The aim of this study is to describe the transcriptomic profile of WB to better understand its functions, with emphasis on the difference between sexes during reproductive events. Then, validation via qPCR was performed using different tissues to find out tissue-specific transcripts. High differentiation in signaling pathways was observed in the comparison of female and male transcriptomic profiles. For instance, the expression of genes involved in the androgen receptor-signaling pathway were detected only in males, whereas estrogen receptor showed higher expression in females. Highly expressed genes in males enriched oxidation-reduction and apoptotic processes, which are related to the immune response. On the other hand, expression of genes involved in replicative senescence and the response to cortisol were only detected in females. Moreover, the transcripts with higher expression in females enriched a wide variety of signaling pathways mediated by molecules like neuropeptides, integrins, MAPKs and receptors like TNF and Toll-like. In addition, these putative neuropeptide transcripts, showed higher expression in females' WB and were not detected in other analyzed tissues. These results suggest that the differentiation in signaling pathways in white bodies of O. maya influences the physiological dimorphism between females and males during the reproductive phase.
Collapse
Affiliation(s)
- Oscar E. Juárez
- Departamento de Biotecnología Marina, Centro de Investigación Científica y de Educación Superior de Ensenada, Zona Playitas, Ensenada, Baja California, México
| | - Laura López-Galindo
- Departamento de Biotecnología Marina, Centro de Investigación Científica y de Educación Superior de Ensenada, Zona Playitas, Ensenada, Baja California, México
| | - Leonel Pérez-Carrasco
- Departamento de Biotecnología Marina, Centro de Investigación Científica y de Educación Superior de Ensenada, Zona Playitas, Ensenada, Baja California, México
| | - Asunción Lago-Lestón
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada, Zona Playitas, Ensenada, Baja California, México
| | - Carlos Rosas
- Unidad Académica Sisal, Universidad Nacional Autónoma de México, Puerto de Abrigo s/n, Sisal, Yucatán, México
| | - Anna Di Cosmo
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, Napoli, Italia
| | - Clara E. Galindo-Sánchez
- Departamento de Biotecnología Marina, Centro de Investigación Científica y de Educación Superior de Ensenada, Zona Playitas, Ensenada, Baja California, México
| |
Collapse
|
18
|
Winlow W, Polese G, Moghadam HF, Ahmed IA, Di Cosmo A. Sense and Insensibility - An Appraisal of the Effects of Clinical Anesthetics on Gastropod and Cephalopod Molluscs as a Step to Improved Welfare of Cephalopods. Front Physiol 2018; 9:1147. [PMID: 30197598 PMCID: PMC6117391 DOI: 10.3389/fphys.2018.01147] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 07/31/2018] [Indexed: 12/24/2022] Open
Abstract
Recent progress in animal welfare legislation stresses the need to treat cephalopod molluscs, such as Octopus vulgaris, humanely, to have regard for their wellbeing and to reduce their pain and suffering resulting from experimental procedures. Thus, appropriate measures for their sedation and analgesia are being introduced. Clinical anesthetics are renowned for their ability to produce unconsciousness in vertebrate species, but their exact mechanisms of action still elude investigators. In vertebrates it can prove difficult to specify the differences of response of particular neuron types given the multiplicity of neurons in the CNS. However, gastropod molluscs such as Aplysia, Lymnaea, or Helix, with their large uniquely identifiable nerve cells, make studies on the cellular, subcellular, network and behavioral actions of anesthetics much more feasible, particularly as identified cells may also be studied in culture, isolated from the rest of the nervous system. To date, the sorts of study outlined above have never been performed on cephalopods in the same way as on gastropods. However, criteria previously applied to gastropods and vertebrates have proved successful in developing a method for humanely anesthetizing Octopus with clinical doses of isoflurane, i.e., changes in respiratory rate, color pattern and withdrawal responses. However, in the long term, further refinements will be needed, including recordings from the CNS of intact animals in the presence of a variety of different anesthetic agents and their adjuvants. Clues as to their likely responsiveness to other appropriate anesthetic agents and muscle relaxants can be gained from background studies on gastropods such as Lymnaea, given their evolutionary history.
Collapse
Affiliation(s)
- William Winlow
- Department of Biology, University of Naples Federico II, Naples, Italy
- Institute of Ageing and Chronic Diseases, University of Liverpool, Liverpool, United Kingdom
- NPC Newton, Preston, United Kingdom
| | - Gianluca Polese
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Hadi-Fathi Moghadam
- Department of Physiology, Faculty of Medicine, Physiology Research Centre, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Anna Di Cosmo
- Department of Biology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
19
|
Deryckere A, Seuntjens E. The Cephalopod Large Brain Enigma: Are Conserved Mechanisms of Stem Cell Expansion the Key? Front Physiol 2018; 9:1160. [PMID: 30246785 PMCID: PMC6110919 DOI: 10.3389/fphys.2018.01160] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 08/02/2018] [Indexed: 12/19/2022] Open
Abstract
Within the clade of mollusks, cephalopods have developed an unusually large and complex nervous system. The increased complexity of the cephalopod centralized "brain" parallels an amazing amount of complex behaviors that culminate in one order, the octopods. The mechanisms that enable evolution of expanded brains in invertebrates remain enigmatic. While expression mapping of known molecular pathways demonstrated the conservation of major neurogenesis pathways and revealed neurogenic territories, it did not explain why cephalopods could massively increase their brain size compared to other mollusks. Such an increase is reminiscent of the expansion of the cerebral cortex in mammalians, which have enlarged their number and variety of neurogenic stem cells. We hypothesize that similar mechanisms might be at play in cephalopods and that focusing on the stem cell biology of cephalopod neurogenesis and genetic innovations might be smarter strategies to uncover the mechanism that has driven cephalopod brain expansion.
Collapse
Affiliation(s)
| | - Eve Seuntjens
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| |
Collapse
|
20
|
Di Cosmo A, Bertapelle C, Porcellini A, Polese G. Magnitude Assessment of Adult Neurogenesis in the Octopus vulgaris Brain Using a Flow Cytometry-Based Technique. Front Physiol 2018; 9:1050. [PMID: 30116204 PMCID: PMC6082961 DOI: 10.3389/fphys.2018.01050] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 07/16/2018] [Indexed: 12/11/2022] Open
Abstract
Adult neurogenesis is widespread among metazoans, it occurs in animals with a network nervous system, as cnidarians, and in animals with a complex and centralized brain, such as mammals, non-mammalian vertebrates, ecdysozoans, and a lophotrochozoan, Octopus vulgaris. Nevertheless, there are important differences among taxa, especially in the number of the regions involved and in cell proliferation rate during the life-cycle. The comparative evaluation of adult neurogenesis among different brain regions is an arduous task to achieve with only stereological techniques. However, in Octopus vulgaris we recently confirmed the presence of active proliferation in the learning-memory centers, multisensory integration centers, and the motor centers of the adult brain. Here, using a flow cytometry technique, we provide a method to quantify the active proliferation in octopus nervous system using a BrdU in vitro administration without exposing the animals to stress or painful injections usually used. This method is in line with the current animal welfare regulations regarding cephalopods, and the flow cytometry-based technique enabled us to measure adult neurogenesis more quickly and reliably than histological techniques, with the additional advantage of processing multiple samples in parallel. Flow cytometry is thus an appropriate technique for measuring and comparing adult neurogenesis in animals that are in a different physiological and/or environmental contexts. A BrdU immunoreactivity distribution, to define the neurogenic areas, and the effective penetration in vitro of the BrdU is also provided.
Collapse
Affiliation(s)
- Anna Di Cosmo
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Carla Bertapelle
- Department of Biology, University of Naples Federico II, Naples, Italy
| | | | - Gianluca Polese
- Department of Biology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
21
|
Maselli V, Xu F, Syed NI, Polese G, Di Cosmo A. A Novel Approach to Primary Cell Culture for Octopus vulgaris Neurons. Front Physiol 2018; 9:220. [PMID: 29666582 PMCID: PMC5891582 DOI: 10.3389/fphys.2018.00220] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 02/27/2018] [Indexed: 11/26/2022] Open
Abstract
Octopus vulgaris is a unique model system for studying complex behaviors in animals. It has a large and centralized nervous system made up of lobes that are involved in controlling various sophisticated behaviors. As such, it may be considered as a model organism for untangling the neuronal mechanisms underlying behaviors—including learning and memory. However, despite considerable efforts, Octopus lags behind its other counterparts vis-à-vis its utility in deciphering the cellular, molecular and synaptic mechanisms underlying various behaviors. This study represents a novel approach designed to establish a neuronal cell culture protocol that makes this species amenable to further exploitation as a model system. Here we developed a protocol that enables dissociation of neurons from two specific Octopus' brain regions, the vertical-superior frontal system and the optic lobes, which are involved in memory, learning, sensory integration and adult neurogenesis. In particular, cells dissociated with enzyme papain and cultured on Poly-D-Lysine-coated dishes with L15-medium and fetal bovine serum yielded high neuronal survival, axon growth, and re-growth after injury. This model was also explored to define optimal culture conditions and to demonstrate the regenerative capabilities of adult Octopus neurons after axotomy. This study thus further underscores the importance of Octopus neurons as a model system for deciphering fundamental molecular and cellular mechanism of complex brain function and underlying behaviors.
Collapse
Affiliation(s)
- Valeria Maselli
- Department of Biology, University of Naples Federico II, Napoli, Italy
| | - Fenglian Xu
- Department of Biology, Saint Louis University, Saint Louis, MO, United States
| | - Naweed I Syed
- Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Gianluca Polese
- Department of Biology, University of Naples Federico II, Napoli, Italy
| | - Anna Di Cosmo
- Department of Biology, University of Naples Federico II, Napoli, Italy
| |
Collapse
|
22
|
Di Cosmo A, Maselli V, Polese G. Octopus vulgaris: An Alternative in Evolution. Results Probl Cell Differ 2018; 65:585-598. [DOI: 10.1007/978-3-319-92486-1_26] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|