1
|
Baran Z, Çetinkaya M, Baran Y. Mesenchymal Stem Cells in Cancer Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1474:149-177. [PMID: 39470980 DOI: 10.1007/5584_2024_824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
The mesenchymal stem/stromal cells (MSCs) are multipotent cells that were initially discovered in the bone marrow in the late 1960s but have so far been discovered in almost all tissues of the body. The multipotent property of MSCs enables them to differentiate into various cell types and lineages, such as adipocytes, chondrocytes, and osteocytes. The immunomodulation capacity and tumor-targeting features of MSCs made their use crucial for cell-based therapies in cancer treatment, yet limited advancement could be observed in translational medicine prospects due to the need for more information regarding the controversial roles of MSCs in crosstalk tumors. In this review, we discuss the therapeutic potential of MSCs, the controversial roles played by MSCs in cancer progression, and the anticancer therapeutic strategies that are in association with MSCs. Finally, the clinical trials designed for the direct use of MSCs for cancer therapy or for their use in decreasing the side effects of other cancer therapies are also mentioned in this review to evaluate the current status of MSC-based cancer therapies.
Collapse
Affiliation(s)
- Züleyha Baran
- Laboratory of Molecular Pharmacology, Department of Pharmacology, Anadolu University, Eskişehir, Turkey
| | - Melisa Çetinkaya
- Laboratory of Cancer Genetics, Department of Molecular Biology and Genetics, İzmir Institute of Technology, İzmir, Turkey
| | - Yusuf Baran
- Laboratory of Cancer Genetics, Department of Molecular Biology and Genetics, İzmir Institute of Technology, İzmir, Turkey.
| |
Collapse
|
2
|
Afkhami H, Yarahmadi A, Bostani S, Yarian N, Haddad MS, Lesani SS, Aghaei SS, Zolfaghari MR. Converging frontiers in cancer treatment: the role of nanomaterials, mesenchymal stem cells, and microbial agents-challenges and limitations. Discov Oncol 2024; 15:818. [PMID: 39707033 DOI: 10.1007/s12672-024-01590-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/14/2024] [Indexed: 12/23/2024] Open
Abstract
Globally, people widely recognize cancer as one of the most lethal diseases due to its high mortality rates and lack of effective treatment options. Ongoing research into cancer therapies remains a critical area of inquiry, holding significant social relevance. Currently used treatment, such as chemotherapy, radiation, or surgery, often suffers from other problems like damaging side effects, inaccuracy, and the lack of ability to clear tumors. Conventional cancer therapies are usually imprecise and ineffective and usually develop resistance to treatments and cancer recurs. Cancer patients need fresh and innovative treatment that can reduce side effects while maximizing effectiveness. In recent decades several breakthroughs in these, and other areas of medical research, have paved the way for new avenues of fighting cancer including more focused and more effective alternatives. This study reviews exciting possibilities for mesenchymal stem cells (MSCs), nanomaterials, and microbial agents in the modern realm of cancer treatment. Nanoparticles (NPs) have demonstrated surprisingly high potential. They improve drug delivery systems (DDS) significantly, enhance imaging techniques remarkably, and target cancer cells selectively while protecting healthy tissues. MSCs play a double role in tissue repair and are a vehicle for novel cancer treatments such as gene treatments or NPs loaded with therapeutic agents. Additionally, therapies utilizing microbial agents, particularly those involving bacteria, offer an inventive approach to cancer treatment. This review investigates the potential of nanomaterials, MSCs, and microbial agents in addressing the shortcomings of conventional cancer therapies. We will also discuss the challenges and limitations of using these therapeutic approaches.
Collapse
Affiliation(s)
- Hamed Afkhami
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Aref Yarahmadi
- Department of Biology, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
| | - Shoroq Bostani
- Department of Microbiology, Qom Branch, Islamic Azad University, Qom, Iran
| | - Nahid Yarian
- Department of Microbiology, Qom Branch, Islamic Azad University, Qom, Iran
| | | | - Shima Sadat Lesani
- Department of Microbiology, Qom Branch, Islamic Azad University, Qom, Iran
| | | | | |
Collapse
|
3
|
Shams F, Pourjabbar B, Hashemi N, Farahmandian N, Golchin A, Nuoroozi G, Rahimpour A. Current progress in engineered and nano-engineered mesenchymal stem cells for cancer: From mechanisms to therapy. Biomed Pharmacother 2023; 167:115505. [PMID: 37716113 DOI: 10.1016/j.biopha.2023.115505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/18/2023] Open
Abstract
Mesenchymal stem cells (MSCs), as self-renewing multipotent stromal cells, have been considered promising agents for cancer treatment. A large number of studies have demonstrated the valuable properties of MSC-based treatment, such as low immunogenicity and intrinsic tumor-trophic migratory properties. To enhance the potency of MSCs for therapeutic purposes, equipping MSCs with targeted delivery functions using genetic engineering is highly beneficial. Genetically engineered MSCs can express tumor suppressor agents such as pro-apoptotic, anti-proliferative, anti-angiogenic factors and act as ideal delivery vehicles. MSCs can also be loaded with nanoparticle drugs for increased efficacy and externally moderated targeting. Moreover, exosomes secreted by MSCs have important physiological properties, so they can contribute to intercellular communication and transfer cargo into targeted tumor cells. The precise role of genetically modified MSCs in tumor environments is still up for debate, but the beginning of clinical trials has been confirmed by promising results from preclinical investigations of MSC-based gene therapy for a wide range of malignancies. This review highlights the advanced techniques of engineering/nano-engineering and MSC-derived exosomes in tumor-targeted therapy.
Collapse
Affiliation(s)
- Forough Shams
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, 1968917313 Tehran, Iran
| | - Bahareh Pourjabbar
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nader Hashemi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, 1968917313 Tehran, Iran
| | - Navid Farahmandian
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Golchin
- Cellular & Molecular Research Center, Cellular & Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia 57157993313, Iran; Department of Clinical Biochemistry & Applied Cell Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia 57157993313, Islamic Republic of Iran
| | - Ghader Nuoroozi
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azam Rahimpour
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Slama Y, Ah-Pine F, Khettab M, Arcambal A, Begue M, Dutheil F, Gasque P. The Dual Role of Mesenchymal Stem Cells in Cancer Pathophysiology: Pro-Tumorigenic Effects versus Therapeutic Potential. Int J Mol Sci 2023; 24:13511. [PMID: 37686315 PMCID: PMC10488262 DOI: 10.3390/ijms241713511] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are multipotent cells involved in numerous physiological events, including organogenesis, the maintenance of tissue homeostasis, regeneration, or tissue repair. MSCs are increasingly recognized as playing a major, dual, and complex role in cancer pathophysiology through their ability to limit or promote tumor progression. Indeed, these cells are known to interact with the tumor microenvironment, modulate the behavior of tumor cells, influence their functions, and promote distant metastasis formation through the secretion of mediators, the regulation of cell-cell interactions, and the modulation of the immune response. This dynamic network can lead to the establishment of immunoprivileged tissue niches or the formation of new tumors through the proliferation/differentiation of MSCs into cancer-associated fibroblasts as well as cancer stem cells. However, MSCs exhibit also therapeutic effects including anti-tumor, anti-proliferative, anti-inflammatory, or anti-oxidative effects. The therapeutic interest in MSCs is currently growing, mainly due to their ability to selectively migrate and penetrate tumor sites, which would make them relevant as vectors for advanced therapies. Therefore, this review aims to provide an overview of the double-edged sword implications of MSCs in tumor processes. The therapeutic potential of MSCs will be reviewed in melanoma and lung cancers.
Collapse
Affiliation(s)
- Youssef Slama
- Unité de Recherche Études Pharmaco-Immunologiques (EPI), Université de La Réunion, CHU de La Réunion, Allée des Topazes, 97400 Saint-Denis, La Réunion, France; (F.A.-P.); (M.K.); (P.G.)
- Service de Radiothérapie, Clinique Sainte-Clotilde, Groupe Clinifutur, 127 Route de Bois de Nèfles, 97400 Saint-Denis, La Réunion, France; (M.B.); (F.D.)
- Laboratoire Interdisciplinaire de Recherche en Santé (LIRS), RunResearch, Clinique Sainte-Clotilde, 127 Route de Bois de Nèfles, 97400 Saint-Denis, La Réunion, France;
| | - Franck Ah-Pine
- Unité de Recherche Études Pharmaco-Immunologiques (EPI), Université de La Réunion, CHU de La Réunion, Allée des Topazes, 97400 Saint-Denis, La Réunion, France; (F.A.-P.); (M.K.); (P.G.)
- Service d’Anatomie et Cytologie Pathologiques, CHU de La Réunion sites SUD—Saint-Pierre, Avenue François Mitterrand, 97448 Saint-Pierre Cedex, La Réunion, France
| | - Mohamed Khettab
- Unité de Recherche Études Pharmaco-Immunologiques (EPI), Université de La Réunion, CHU de La Réunion, Allée des Topazes, 97400 Saint-Denis, La Réunion, France; (F.A.-P.); (M.K.); (P.G.)
- Service d’Oncologie Médicale, CHU de La Réunion sites SUD—Saint-Pierre, Avenue François Mitterrand, 97448 Saint-Pierre Cedex, La Réunion, France
| | - Angelique Arcambal
- Laboratoire Interdisciplinaire de Recherche en Santé (LIRS), RunResearch, Clinique Sainte-Clotilde, 127 Route de Bois de Nèfles, 97400 Saint-Denis, La Réunion, France;
| | - Mickael Begue
- Service de Radiothérapie, Clinique Sainte-Clotilde, Groupe Clinifutur, 127 Route de Bois de Nèfles, 97400 Saint-Denis, La Réunion, France; (M.B.); (F.D.)
- Laboratoire Interdisciplinaire de Recherche en Santé (LIRS), RunResearch, Clinique Sainte-Clotilde, 127 Route de Bois de Nèfles, 97400 Saint-Denis, La Réunion, France;
| | - Fabien Dutheil
- Service de Radiothérapie, Clinique Sainte-Clotilde, Groupe Clinifutur, 127 Route de Bois de Nèfles, 97400 Saint-Denis, La Réunion, France; (M.B.); (F.D.)
- Laboratoire Interdisciplinaire de Recherche en Santé (LIRS), RunResearch, Clinique Sainte-Clotilde, 127 Route de Bois de Nèfles, 97400 Saint-Denis, La Réunion, France;
| | - Philippe Gasque
- Unité de Recherche Études Pharmaco-Immunologiques (EPI), Université de La Réunion, CHU de La Réunion, Allée des Topazes, 97400 Saint-Denis, La Réunion, France; (F.A.-P.); (M.K.); (P.G.)
| |
Collapse
|
5
|
Rahimi A, Esmaeili Y, Dana N, Dabiri A, Rahimmanesh I, Jandaghain S, Vaseghi G, Shariati L, Zarrabi A, Javanmard SH, Cordani M. A comprehensive review on novel targeted therapy methods and nanotechnology-based gene delivery systems in melanoma. Eur J Pharm Sci 2023:106476. [PMID: 37236377 DOI: 10.1016/j.ejps.2023.106476] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/17/2023] [Accepted: 05/22/2023] [Indexed: 05/28/2023]
Abstract
Melanoma, a malignant form of skin cancer, has been swiftly increasing in recent years. Although there have been significant advancements in clinical treatment underlying a well-understanding of melanoma-susceptible genes and the molecular basis of melanoma pathogenesis, the permanency of response to therapy is frequently constrained by the emergence of acquired resistance and systemic toxicity. Conventional therapies, including surgical resection, chemotherapy, radiotherapy, and immunotherapy, have already been used to treat melanoma and are dependent on the cancer stage. Nevertheless, ineffective side effects and the heterogeneity of tumors pose major obstacles to the therapeutic treatment of malignant melanoma through such strategies. In light of this, advanced therapies including nucleic acid therapies (ncRNA, aptamers), suicide gene therapies, and gene therapy using tumor suppressor genes, have lately gained immense attention in the field of cancer treatment. Furthermore, nanomedicine and targeted therapy based on gene editing tools have been applied to the treatment of melanoma as potential cancer treatment approaches nowadays. Indeed, nanovectors enable delivery of the therapeutic agents into the tumor sites by passive or active targeting, improving therapeutic efficiency and minimizing adverse effects. Accordingly, in this review, we summarized the recent findings related to novel targeted therapy methods as well as nanotechnology-based gene systems in melanoma. We also discussed current issues along with potential directions for future research, paving the way for the next-generation of melanoma treatments.
Collapse
Affiliation(s)
- Azadeh Rahimi
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Yasaman Esmaeili
- Biosensor Research Center, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran
| | - Nasim Dana
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Arezou Dabiri
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ilnaz Rahimmanesh
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Setareh Jandaghain
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Golnaz Vaseghi
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran; Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 8158388994, Iran
| | - Laleh Shariati
- Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering & Natural Sciences, Istinye University, Istanbul 34396, Turkey
| | - Shaghayegh Haghjooy Javanmard
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Marco Cordani
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University, 28040 Madrid, Spain; Instituto de Investigaciones Sanitarias San Carlos (IdISSC), 28040 Madrid, Spain.
| |
Collapse
|
6
|
Wang M, Li J, Wang D, Xin Y, Liu Z. The effects of mesenchymal stem cells on the chemotherapy of colorectal cancer. Biomed Pharmacother 2023; 160:114373. [PMID: 36753960 DOI: 10.1016/j.biopha.2023.114373] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023] Open
Abstract
Colorectal cancer (CRC) has been the third commonest cancer in the world. The prognosis of patients with CRC is related to the molecular subtypes and gene mutations, which is prone to recurrence, metastasis, and drug resistance. Mesenchymal stem cells (MSCs) are a group of progenitor ones with the capabilities of self-renewal, multi-directional differentiation, and tissue re-population, which could be isolated from various kinds of tissues and be differentiated into diverse cell types. In recent years, MSCs are applied for mechanisms study of tissue repairing, graft-versus-host disease (GVHD) and autoimmune-related disease, and tumor development, with the advantages of anti-inflammation, multi-lineage differentiation, and homing capability. Integrating the chemotherapy and MSCs therapy might provide a novel treatment approach for CRC patients. In this review, we summarize the current progress in the integrated treatment of integrating the MSCs and chemotherapy for CRC.
Collapse
Affiliation(s)
- Meiqi Wang
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Jiannan Li
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Dongxin Wang
- Department of Anesthesiology, Jilin Cancer Hospital, Jilin, China
| | - Ying Xin
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Zhuo Liu
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China.
| |
Collapse
|
7
|
Wang Y, Fang J, Liu B, Shao C, Shi Y. Reciprocal regulation of mesenchymal stem cells and immune responses. Cell Stem Cell 2022; 29:1515-1530. [DOI: 10.1016/j.stem.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/19/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022]
|
8
|
Tibensky M, Jakubechova J, Altanerova U, Pastorakova A, Rychly B, Baciak L, Mravec B, Altaner C. Gene-Directed Enzyme/Prodrug Therapy of Rat Brain Tumor Mediated by Human Mesenchymal Stem Cell Suicide Gene Extracellular Vesicles In Vitro and In Vivo. Cancers (Basel) 2022; 14:cancers14030735. [PMID: 35159002 PMCID: PMC8833758 DOI: 10.3390/cancers14030735] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 01/14/2023] Open
Abstract
Simple Summary Extracellular vesicles— exosomes—secreted by human mesenchymal stem/stromal cells are able to cross the blood–brain barrier and internalize glioblastoma cells. We prepared exosomes possessing a gene message, the product of which is able to convert nontoxic 5-fluorocytosine to cytotoxic drug 5-fluorouracil. Such therapeutic exosomes administered intranasally, intraperitoneally, or subcutaneously to rats bearing intracerebral glioblastoma cells inhibited their growth. The treatment cured a significant number of animals. Abstract MSC-driven, gene-directed enzyme prodrug therapy (GDEPT) mediated by extracellular vesicles (EV) represents a new paradigm—cell-free GDEPT tumor therapy. In this study, we tested the efficacy of yeast cytosine deaminase::uracilphosphoribosyl transferase (yCD::UPRT-MSC)-exosomes, in the form of conditioned medium (CM) to inhibit the growth of C6 glioblastoma cells both in vitro and in vivo. MSCs isolated from human adipose tissue, umbilical cord, or dental pulp engineered to express the yCD::UPRT gene secreted yCD::UPRT-MSC-exosomes that in the presence of the prodrug 5-fluorocytosine (5-FC), inhibited the growth of rat C6 glioblastoma cells and human primary glioblastoma cells in vitro in a dose-dependent manner. CM from these cells injected repeatedly either intraperitoneally (i.p.) or subcutaneously (s.c.), applied intranasally (i.n.), or infused continuously by an ALZET osmotic pump, inhibited the growth of cerebral C6 glioblastomas in rats. A significant number of rats were cured when CM containing yCD::UPRT-MSC-exosomes conjugated with 5-FC was repeatedly injected i.p. or applied i.n. Cured rats were subsequently resistant to challenges with higher doses of C6 cells. Our data have shown that cell-free GDEPT tumor therapy mediated by the yCD::UPRT-MSC suicide gene EVs for high-grade glioblastomas represents a safer and more practical approach that is worthy of further investigation.
Collapse
Affiliation(s)
- Miroslav Tibensky
- Institute of Physiology, Faculty of Medicine, Comenius University, 81372 Bratislava, Slovakia; (M.T.); (B.M.)
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, 84505 Bratislava, Slovakia
| | - Jana Jakubechova
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, 84505 Bratislava, Slovakia;
- Department of Stem Cell Preparation, St. Elisabeth Cancer Institute, 84505 Bratislava, Slovakia;
| | - Ursula Altanerova
- Department of Stem Cell Preparation, St. Elisabeth Cancer Institute, 84505 Bratislava, Slovakia;
| | - Andrea Pastorakova
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, 81108 Bratislava, Slovakia;
| | - Boris Rychly
- Alpha Medical, Ltd., 82606 Bratislava, Slovakia;
| | - Ladislav Baciak
- Central Laboratories, Slovak University of Technology, 81237 Bratislava, Slovakia;
| | - Boris Mravec
- Institute of Physiology, Faculty of Medicine, Comenius University, 81372 Bratislava, Slovakia; (M.T.); (B.M.)
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, 84505 Bratislava, Slovakia
| | - Cestmir Altaner
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, 84505 Bratislava, Slovakia;
- Department of Stem Cell Preparation, St. Elisabeth Cancer Institute, 84505 Bratislava, Slovakia;
- Correspondence:
| |
Collapse
|
9
|
Abstract
The multipotent mesenchymal stem/stromal cells (MSCs), initially discovered from bone marrow in 1976, have been identified in nearly all tissues of human body now. The multipotency of MSCs allows them to give rise to osteocytes, chondrocytes, adipocytes, and other lineages. Moreover, armed with the immunomodulation capacity and tumor-homing property, MSCs are of special relevance for cell-based therapies in the treatment of cancer. However, hampered by lack of knowledge about the controversial roles that MSC plays in the crosstalk with tumors, limited progress has been made with regard to translational medicine. Therefore, in this review, we discuss the prospects of MSC-associated anticancer strategies in light of therapeutic mechanisms and signal transduction pathways. In addition, the clinical trials designed to appraise the efficacy and safety of MSC-based anticancer therapies will be assessed according to published data.
Collapse
Affiliation(s)
- Tianxia Lan
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China
| | - Min Luo
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China.
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China.
| |
Collapse
|
10
|
Rat Adipose-Derived Stromal Cells (ADSCs) Increases the Glioblastoma Growth and Decreases the Animal Survival. Stem Cell Rev Rep 2021; 18:1495-1509. [PMID: 34403074 DOI: 10.1007/s12015-021-10227-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2021] [Indexed: 12/22/2022]
Abstract
Many studies have shown that mesenchymal stromal cells (MSCs) and their secreted factors may modulate the biology of tumor cells. However, how these interactions happen in vivo remains unclear. In the present study, we investigated the effects of rat adipose-derived stromal cells (ADSCs) and their conditioned medium (ADSC-CM) in glioma tumor growth and malignancy in vivo. Our results showed that when we co-injected C6 cells plus ADSCs into the rat brains, the tumors generated were larger and the animals exhibited shorter survival, when compared with tumors of the animals that received only C6 cells or C6 cells pre-treated with ADSC-CM. We further showed that the animals that received C6 plus ADSC did not present enhanced expression of CD73 (a gene highly expressed in ADSCs), indicating that the tumor volume observed in these animals was not a mere consequence of the higher density of cells administered in this group. Finally, we showed that the animals that received C6 + ADSC presented tumors with larger necrosis areas and greater infiltration of immune cells. These results indicate that the immunoregulatory properties of ADSCs and its contribution to tumor stroma can support tumor growth leading to larger zones of necrosis, recruitment of immune cells, thus facilitating tumor progression. Our data provide new insights into the way by which ADSCs and tumor cells interact and highlight the importance of understanding the fate and roles of MSCs in tumor sites in vivo, as well as their intricate crosstalk with cancer cells.
Collapse
|
11
|
Ding Y, Wang C, Sun Z, Wu Y, You W, Mao Z, Wang W. Mesenchymal Stem Cells Engineered by Nonviral Vectors: A Powerful Tool in Cancer Gene Therapy. Pharmaceutics 2021; 13:pharmaceutics13060913. [PMID: 34205513 PMCID: PMC8235299 DOI: 10.3390/pharmaceutics13060913] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/09/2021] [Accepted: 06/16/2021] [Indexed: 12/14/2022] Open
Abstract
Due to their "tumor homing" and "immune privilege" characteristics, the use of mesenchymal stem cells (MSCs) has been proposed as a novel tool against cancer. MSCs are genetically engineered in vitro and then utilized to deliver tumoricidal agents, including prodrugs and bioactive molecules, to tumors. The genetic modification of MSCs can be achieved by various vectors, and in most cases viral vectors are used; however, viruses may be associated with carcinogenesis and immunogenicity, restricting their clinical translational potential. As such, nonviral vectors have emerged as a potential solution to address these limitations and have gradually attracted increasing attention. In this review, we briefly revisit the current knowledge about MSC-based cancer gene therapy. Then, we summarize the advantages and challenges of nonviral vectors for MSC transfection. Finally, we discuss recent advances in the development of new nonviral vectors, which have provided promising strategies to overcome obstacles in the gene modulation of MSCs.
Collapse
Affiliation(s)
- Yuan Ding
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China; (Y.D.); (C.W.); (Z.S.); (Y.W.); (W.Y.)
- Key Laboratory, Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou 310009, China
- Research Center, Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou 310009, China
- Clinical Medicine Innovation Center, Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease, Zhejiang University, Hangzhou 310009, China
- Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Hangzhou 310009, China
- Cancer Center, Zhejiang University, Hangzhou 310009, China
| | - Chenyang Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China; (Y.D.); (C.W.); (Z.S.); (Y.W.); (W.Y.)
- Key Laboratory, Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou 310009, China
- Research Center, Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou 310009, China
- Clinical Medicine Innovation Center, Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease, Zhejiang University, Hangzhou 310009, China
- Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Hangzhou 310009, China
- Cancer Center, Zhejiang University, Hangzhou 310009, China
| | - Zhongquan Sun
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China; (Y.D.); (C.W.); (Z.S.); (Y.W.); (W.Y.)
- Key Laboratory, Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou 310009, China
- Research Center, Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou 310009, China
- Clinical Medicine Innovation Center, Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease, Zhejiang University, Hangzhou 310009, China
- Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Hangzhou 310009, China
- Cancer Center, Zhejiang University, Hangzhou 310009, China
| | - Yingsheng Wu
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China; (Y.D.); (C.W.); (Z.S.); (Y.W.); (W.Y.)
- Key Laboratory, Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou 310009, China
- Research Center, Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou 310009, China
- Clinical Medicine Innovation Center, Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease, Zhejiang University, Hangzhou 310009, China
- Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Hangzhou 310009, China
- Cancer Center, Zhejiang University, Hangzhou 310009, China
| | - Wanlu You
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China; (Y.D.); (C.W.); (Z.S.); (Y.W.); (W.Y.)
- Key Laboratory, Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou 310009, China
- Research Center, Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou 310009, China
- Clinical Medicine Innovation Center, Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease, Zhejiang University, Hangzhou 310009, China
- Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Hangzhou 310009, China
- Cancer Center, Zhejiang University, Hangzhou 310009, China
| | - Zhengwei Mao
- Key Laboratory, Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou 310009, China
- MOE Key Laboratory, Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Correspondence: (Z.M.); (W.W.); Tel.: +86-15168215834 (Z.M.); +86-0571-87783820 (W.W.)
| | - Weilin Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China; (Y.D.); (C.W.); (Z.S.); (Y.W.); (W.Y.)
- Key Laboratory, Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou 310009, China
- Research Center, Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou 310009, China
- Clinical Medicine Innovation Center, Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease, Zhejiang University, Hangzhou 310009, China
- Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Hangzhou 310009, China
- Cancer Center, Zhejiang University, Hangzhou 310009, China
- Correspondence: (Z.M.); (W.W.); Tel.: +86-15168215834 (Z.M.); +86-0571-87783820 (W.W.)
| |
Collapse
|
12
|
Mercer-Smith AR, Findlay IA, Bomba HN, Hingtgen SD. Intravenously Infused Stem Cells for Cancer Treatment. Stem Cell Rev Rep 2021; 17:2025-2041. [PMID: 34138421 DOI: 10.1007/s12015-021-10192-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2021] [Indexed: 01/14/2023]
Abstract
Despite the recent influx of immunotherapies and small molecule drugs to treat tumors, cancer remains a leading cause of death in the United States, in large part due to the difficulties of treating metastatic cancer. Stem cells, which are inherently tumoritropic, provide a useful drug delivery vehicle to target both primary and metastatic tumors. Intravenous infusions of stem cells carrying or secreting therapeutic payloads show significant promise in the treatment of cancer. Stem cells may be engineered to secrete cytotoxic products, loaded with oncolytic viruses or nanoparticles containing small molecule drugs, or conjugated with immunotherapies. Herein we describe these preclinical and clinical studies, discuss the distribution and migration of stem cells following intravenous infusion, and examine both the limitations of and the methods to improve the migration and therapeutic efficacy of tumoritropic, therapeutic stem cells.
Collapse
Affiliation(s)
- Alison R Mercer-Smith
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, North Carolina, Chapel Hill, 27599, USA
| | - Ingrid A Findlay
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, North Carolina, Chapel Hill, 27599, USA
| | - Hunter N Bomba
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, North Carolina, Chapel Hill, 27599, USA
| | - Shawn D Hingtgen
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, North Carolina, Chapel Hill, 27599, USA. .,Department of Neurosurgery, The University of North Carolina at Chapel Hill, North Carolina, Chapel Hill, 27599, USA.
| |
Collapse
|
13
|
Ivolgin DA, Kudlay DA. Mesenchymal multipotent stromal cells and cancer safety: two sides of the same coin or a double-edged sword (review of foreign literature). RUSSIAN JOURNAL OF PEDIATRIC HEMATOLOGY AND ONCOLOGY 2021; 8:64-84. [DOI: 10.21682/2311-1267-2021-8-1-64-84] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Knowledge about the mechanisms of action of mesenchymal multipotent stromal cells (MSC) has undergone a significant evolution since their discovery. From the first attempts to use the remarkable properties of MSC in restoring the functions of organs and tissues, the most important question arose – how safe their use would be? One of the aspects of safety of the use of such biomaterial is tumorogenicity and oncogenicity. Numerous studies have shown that the mechanisms by which MSC realize their regenerative potential can, in principle, have a stimulating effect on tumor cells. This review presents specific mechanisms that have a potentially pro-tumor effect, which include the homing of MSC to the tumor site, support for replicative and proliferative signaling of both cancer cells and cancer stem cells, angiogenesis, and effects on the epithelial-mesenchymal transition. Along with pro-tumor mechanisms, the mechanisms of possible antitumor action are also described – direct suppression of tumor growth, loading and transportation of chemotherapeutic agents, oncolytic viruses, genetic modifications for targeting cancer, delivery of “suicide genes” to the tumor. Also, in conclusion, a small review of the current clinical trials of MSC as antitumor agents for malignant neoplasms of various localization (gastrointestinal tract, lungs, ovaries) is given.
Collapse
Affiliation(s)
- D. A. Ivolgin
- I.I. Mechnikov North-Western State Medical University, Ministry of Health of Russia
| | - D. A. Kudlay
- JSC “GENERIUM”;
I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia (Sechenov University);
National Research Center – Institute of Immunology Federal Medical-Biological Agency of Russia
| |
Collapse
|
14
|
Sunami Y, Böker V, Kleeff J. Targeting and Reprograming Cancer-Associated Fibroblasts and the Tumor Microenvironment in Pancreatic Cancer. Cancers (Basel) 2021; 13:697. [PMID: 33572223 PMCID: PMC7915918 DOI: 10.3390/cancers13040697] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 02/07/2023] Open
Abstract
Pancreatic cancer is the fourth leading cause of cancer deaths in the United States both in female and male, and is projected to become the second deadliest cancer by 2030. The overall five-year survival rate remains at around 10%. Pancreatic cancer exhibits a remarkable resistance to established therapeutic options such as chemotherapy and radiotherapy, due to dense stromal tumor microenvironment. Cancer-associated fibroblasts are the major stromal cell type and source of extracellular matrix proteins shaping a physical and metabolic barrier thereby reducing therapeutic efficacy. Targeting cancer-associated fibroblasts has been considered a promising therapeutic strategy. However, depleting cancer-associated fibroblasts may also have tumor-promoting effects due to their functional heterogeneity. Several subtypes of cancer-associated fibroblasts have been suggested to exhibit tumor-restraining function. This review article summarizes recent preclinical and clinical investigations addressing pancreatic cancer therapy through targeting specific subtypes of cancer-associated fibroblasts, deprogramming activated fibroblasts, administration of mesenchymal stem cells, as well as reprogramming tumor-promoting cancer-associated fibroblasts to tumor-restraining cancer-associated fibroblasts. Further, inter-cellular mediators between cancer-associated fibroblasts and the surrounding tissue microenvironment are discussed. It is important to increase our understanding of cancer-associated fibroblast heterogeneity and the tumor microenvironment for more specific and personalized therapies for pancreatic cancer patients in the future.
Collapse
Affiliation(s)
- Yoshiaki Sunami
- Department of Visceral, Vascular and Endocrine Surgery, Martin-Luther-University Halle-Wittenberg, University Medical Center Halle, 06120 Halle, Germany; (V.B.); (J.K.)
| | | | | |
Collapse
|
15
|
Pawitan JA, Bui TA, Mubarok W, Antarianto RD, Nurhayati RW, Dilogo IH, Oceandy D. Enhancement of the Therapeutic Capacity of Mesenchymal Stem Cells by Genetic Modification: A Systematic Review. Front Cell Dev Biol 2020; 8:587776. [PMID: 33195245 PMCID: PMC7661472 DOI: 10.3389/fcell.2020.587776] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/01/2020] [Indexed: 12/13/2022] Open
Abstract
Background The therapeutic capacity of mesenchymal stem cells (also known as mesenchymal stromal cells/MSCs) depends on their ability to respond to the need of the damaged tissue by secreting beneficial paracrine factors. MSCs can be genetically engineered to express certain beneficial factors. The aim of this systematic review is to compile and analyze published scientific literatures that report the use of engineered MSCs for the treatment of various diseases/conditions, to discuss the mechanisms of action, and to assess the efficacy of engineered MSC treatment. Methods We retrieved all published studies in PubMed/MEDLINE and Cochrane Library on July 27, 2019, without time restriction using the following keywords: “engineered MSC” and “therapy” or “manipulated MSC” and “therapy.” In addition, relevant articles that were found during full text search were added. We identified 85 articles that were reviewed in this paper. Results Of the 85 articles reviewed, 51 studies reported the use of engineered MSCs to treat tumor/cancer/malignancy/metastasis, whereas the other 34 studies tested engineered MSCs in treating non-tumor conditions. Most of the studies reported the use of MSCs in animal models, with only one study reporting a trial in human subjects. Thirty nine studies showed that the expression of beneficial paracrine factors would significantly enhance the therapeutic effects of the MSCs, whereas thirty three studies showed moderate effects, and one study in humans reported no effect. The mechanisms of action for MSC-based cancer treatment include the expression of “suicide genes,” induction of tumor cell apoptosis, and delivery of cytokines to induce an immune response against cancer cells. In the context of the treatment of non-cancerous diseases, the mechanism described in the reviewed papers included the expression of angiogenic, osteogenic, and growth factors. Conclusion The therapeutic capacity of MSCs can be enhanced by inducing the expression of certain paracrine factors by genetic modification. Genetically engineered MSCs have been used successfully in various animal models of diseases. However, the results should be interpreted cautiously because animal models might not perfectly represent real human diseases. Therefore, further studies are needed to explore the translational potential of genetically engineered MSCs.
Collapse
Affiliation(s)
- Jeanne Adiwinata Pawitan
- Department of Histology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia.,Stem Cell Medical Technology Integrated Service Unit, Dr. Cipto Mangunkusumo General Hospital, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia.,Stem Cell and Tissue Engineering Research Center, Indonesia Medical Education and Research Institute, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Thuy Anh Bui
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, United Kingdom
| | - Wildan Mubarok
- Division of Chemical Engineering, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Japan
| | - Radiana Dhewayani Antarianto
- Department of Histology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia.,Stem Cell and Tissue Engineering Research Center, Indonesia Medical Education and Research Institute, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Retno Wahyu Nurhayati
- Stem Cell and Tissue Engineering Research Center, Indonesia Medical Education and Research Institute, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia.,Department of Biochemistry and Molecular Biology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Ismail Hadisoebroto Dilogo
- Stem Cell Medical Technology Integrated Service Unit, Dr. Cipto Mangunkusumo General Hospital, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia.,Stem Cell and Tissue Engineering Research Center, Indonesia Medical Education and Research Institute, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia.,Department of Orthopaedic and Traumatology, Dr. Cipto Mangunkusumo General Hospital, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Delvac Oceandy
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, United Kingdom.,Department of Biomedical Science, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
16
|
Golinelli G, Mastrolia I, Aramini B, Masciale V, Pinelli M, Pacchioni L, Casari G, Dall'Ora M, Soares MBP, Damasceno PKF, Silva DN, Dominici M, Grisendi G. Arming Mesenchymal Stromal/Stem Cells Against Cancer: Has the Time Come? Front Pharmacol 2020; 11:529921. [PMID: 33117154 PMCID: PMC7553050 DOI: 10.3389/fphar.2020.529921] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 09/08/2020] [Indexed: 12/11/2022] Open
Abstract
Since mesenchymal stromal/stem cells (MSCs) were discovered, researchers have been drawn to study their peculiar biological features, including their immune privileged status and their capacity to selectively migrate into inflammatory areas, including tumors. These properties make MSCs promising cellular vehicles for the delivery of therapeutic molecules in the clinical setting. In recent decades, the engineering of MSCs into biological vehicles carrying anticancer compounds has been achieved in different ways, including the loading of MSCs with chemotherapeutics or drug functionalized nanoparticles (NPs), genetic modifications to force the production of anticancer proteins, and the use of oncolytic viruses. Recently, it has been demonstrated that wild-type and engineered MSCs can release extracellular vesicles (EVs) that contain therapeutic agents. Despite the enthusiasm for MSCs as cyto-pharmaceutical agents, many challenges, including controlling the fate of MSCs after administration, must still be considered. Preclinical results demonstrated that MSCs accumulate in lung, liver, and spleen, which could prevent their engraftment into tumor sites. For this reason, physical, physiological, and biological methods have been implemented to increase MSC concentration in the target tumors. Currently, there are more than 900 registered clinical trials using MSCs. Only a small fraction of these are investigating MSC-based therapies for cancer, but the number of these clinical trials is expected to increase as technology and our understanding of MSCs improve. This review will summarize MSC-based antitumor therapies to generate an increasing awareness of their potential and limits to accelerate their clinical translation.
Collapse
Affiliation(s)
- Giulia Golinelli
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Ilenia Mastrolia
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Beatrice Aramini
- Division of Thoracic Surgery, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Valentina Masciale
- Division of Thoracic Surgery, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Massimo Pinelli
- Division of Plastic Surgery, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Lucrezia Pacchioni
- Division of Plastic Surgery, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Giulia Casari
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Massimiliano Dall'Ora
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Milena Botelho Pereira Soares
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil.,Health Institute of Technology, SENAI-CIMATEC, Salvador, Brazil
| | - Patrícia Kauanna Fonseca Damasceno
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil.,Health Institute of Technology, SENAI-CIMATEC, Salvador, Brazil
| | - Daniela Nascimento Silva
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil.,Health Institute of Technology, SENAI-CIMATEC, Salvador, Brazil
| | - Massimo Dominici
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy.,Rigenerand srl, Modena, Italy
| | - Giulia Grisendi
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy.,Rigenerand srl, Modena, Italy
| |
Collapse
|
17
|
A highly efficient non-viral process for programming mesenchymal stem cells for gene directed enzyme prodrug cancer therapy. Sci Rep 2020; 10:14257. [PMID: 32868813 PMCID: PMC7458920 DOI: 10.1038/s41598-020-71224-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 07/23/2020] [Indexed: 12/14/2022] Open
Abstract
Mesenchymal stem cells (MSCs) driven gene-directed enzyme prodrug therapy has emerged as a potential strategy for cancer treatment. The tumour-nesting properties of MSCs enable these vehicles to target tumours and metastases with effective therapies. A crucial step in engineering MSCs is the delivery of genetic material with low toxicity and high efficiency. Due to the low efficiency of current transfection methods, viral vectors are used widely to modify MSCs in preclinical and clinical studies. We show, for the first time, the high transfection efficiency (> 80%) of human adipose tissue derived-MSCs (AT-MSCs) using a cost-effective and off-the-shelf Polyethylenimine, in the presence of histone deacetylase 6 inhibitor and fusogenic lipids. Notably, the phenotypes of MSCs remained unchanged post-modification. AT-MSCs engineered with a fused transgene, yeast cytosine deaminase::uracil phosphoribosyltransferase (CDy::UPRT) displayed potent cytotoxic effects against breast, glioma, gastric cancer cells in vitro. The efficiency of eliminating gastric cell lines were effective even when using 7-day post-transfected AT-MSCs, indicative of the sustained expression and function of the therapeutic gene. In addition, significant inhibition of temozolomide resistant glioma tumour growth in vivo was observed with a single dose of therapeutic MSC. This study demonstrated an efficient non-viral modification process for MSC-based prodrug therapy.
Collapse
|
18
|
Schmidtova S, Dorssers LCJ, Kalavska K, Gillis AJM, Oosterhuis JW, Stoop H, Miklikova S, Kozovska Z, Burikova M, Gercakova K, Durinikova E, Chovanec M, Mego M, Kucerova L, Looijenga LHJ. Napabucasin overcomes cisplatin resistance in ovarian germ cell tumor-derived cell line by inhibiting cancer stemness. Cancer Cell Int 2020; 20:364. [PMID: 32774158 PMCID: PMC7397611 DOI: 10.1186/s12935-020-01458-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 07/25/2020] [Indexed: 02/08/2023] Open
Abstract
Background Cisplatin resistance of ovarian yolk sac tumors (oYST) is a clinical challenge due to dismal patient prognosis, even though the disease is extremely rare. We investigated potential association between cisplatin resistance and cancer stem cell (CSC) markers in chemoresistant oYST cells and targeting strategies to overcome resistance in oYST. Methods Chemoresistant cells were derived from chemosensitive human oYST cells by cultivation in cisplatin in vitro. Derivative cells were characterized by chemoresistance, functional assays, flow cytometry, gene expression and protein arrays focused on CSC markers. RNAseq, methylation and microRNA profiling were performed. Quail chorioallantoic membranes (CAM) with implanted oYST cells were used to analyze the micro-tumor extent and interconnection with the CAM. Tumorigenicity in vivo was determined on immunodeficient mouse model. Chemoresistant cells were treated by inhibitors intefering with the CSC properties to examine the chemosensitization to cisplatin. Results Long-term cisplatin exposure resulted in seven-fold higher IC50 value in resistant cells, cross-resistance to oxaliplatin and carboplatin, and increased migratory capacity, invasiveness and tumorigenicity, associated with hypomethylation of differentially methylated genes/promotors. Resistant cells exhibited increased expression of prominin-1 (CD133), ATP binding cassette subfamily G member 2 (ABCG2), aldehyde dehydrogenase 3 isoform A1 (ALDH3A1), correlating with reduced gene and promoter methylation, as well as increased expression of ALDH1A3 and higher overall ALDH enzymatic activity, rendering them cross-resistant to DEAB, disulfiram and napabucasin. Salinomycin and tunicamycin were significantly more toxic to resistant cells. Pretreatment with napabucasin resensitized the cells to cisplatin and reduced their tumorigenicity in vivo. Conclusions The novel chemoresistant cells represent unique model of refractory oYST. CSC markers are associated with cisplatin resistance being possible targets in chemorefractory oYST.
Collapse
Affiliation(s)
- Silvia Schmidtova
- Department of Molecular Oncology, Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia.,Translational Research Unit, Faculty of Medicine, Comenius University, Klenova 1, 833 10 Bratislava, Slovakia
| | - Lambert C J Dorssers
- Department of Pathology, Laboratory for Experimental Patho-Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Katarina Kalavska
- Department of Molecular Oncology, Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia.,Translational Research Unit, Faculty of Medicine, Comenius University, Klenova 1, 833 10 Bratislava, Slovakia.,2nd Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, Klenova 1, 833 10 Bratislava, Slovakia
| | - Ad J M Gillis
- Department of Pathology, Laboratory for Experimental Patho-Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands.,Princess Maxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands
| | - J Wolter Oosterhuis
- Department of Pathology, Laboratory for Experimental Patho-Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Hans Stoop
- Department of Pathology, Laboratory for Experimental Patho-Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Svetlana Miklikova
- Department of Molecular Oncology, Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia
| | - Zuzana Kozovska
- Department of Molecular Oncology, Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia
| | - Monika Burikova
- Department of Molecular Oncology, Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia
| | - Katarina Gercakova
- Department of Molecular Oncology, Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia
| | - Erika Durinikova
- Department of Molecular Oncology, Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia
| | - Michal Chovanec
- Translational Research Unit, Faculty of Medicine, Comenius University, Klenova 1, 833 10 Bratislava, Slovakia.,2nd Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, Klenova 1, 833 10 Bratislava, Slovakia
| | - Michal Mego
- Translational Research Unit, Faculty of Medicine, Comenius University, Klenova 1, 833 10 Bratislava, Slovakia.,2nd Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, Klenova 1, 833 10 Bratislava, Slovakia
| | - Lucia Kucerova
- Department of Molecular Oncology, Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia
| | - Leendert H J Looijenga
- Department of Pathology, Laboratory for Experimental Patho-Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands.,Princess Maxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands
| |
Collapse
|
19
|
Paris JL, Vallet-Regí M. Mesoporous Silica Nanoparticles for Co-Delivery of Drugs and Nucleic Acids in Oncology: A Review. Pharmaceutics 2020; 12:E526. [PMID: 32521800 PMCID: PMC7356816 DOI: 10.3390/pharmaceutics12060526] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 05/31/2020] [Accepted: 06/05/2020] [Indexed: 12/31/2022] Open
Abstract
Mesoporous silica nanoparticles have attracted much attention in recent years as drug and gene delivery systems for biomedical applications. Among their most beneficial features for biomedicine, we can highlight their biocompatibility and their outstanding textural properties, which provide a great loading capacity for many types of cargos. In the context of cancer nanomedicine, combination therapy and gene transfection/silencing have recently been highlighted as two of its most promising fields. In this review, we aim to provide an overview of the different small molecule drug-nucleic acid co-delivery combinations that have been developed using mesoporous silica nanoparticles as carriers. By carefully selecting the chemotherapeutic drug and nucleic acid cargos to be co-delivered by mesoporous silica nanoparticles, different therapeutic goals can be achieved by overcoming resistance mechanisms, combining different cytotoxic mechanisms, or providing an additional antiangiogenic effect. The examples here presented highlight the great promise of this type of strategies for the development of future therapeutics.
Collapse
Affiliation(s)
- Juan L Paris
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Civil, 29009 Málaga, Spain
- Nanostructures for Diagnosing and Treatment of Allergic Diseases Laboratory, Andalusian Center for Nanomedicine and Biotechnology-BIONAND, 29590 Málaga, Spain
| | - María Vallet-Regí
- Departamento de Química en Ciencias Farmacéuticas (Unidad Docente de Química Inorgánica y Bioinorgánica), Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28040 Madrid, Spain
- Centro de Investigación Biomédicaen Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| |
Collapse
|
20
|
Pastorakova A, Jakubechova J, Altanerova U, Altaner C. Suicide Gene Therapy Mediated with Exosomes Produced by Mesenchymal Stem/Stromal Cells Stably Transduced with HSV Thymidine Kinase. Cancers (Basel) 2020; 12:E1096. [PMID: 32354013 PMCID: PMC7281242 DOI: 10.3390/cancers12051096] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/08/2020] [Accepted: 04/24/2020] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) prepared from various human tissues were stably transduced with the suicide gene herpes simplex virus thymidine kinase (HSVTK) by means of retrovirus infection. HSVTK-transduced MSCs express the suicide gene and in prodrug ganciclovir (GCV) presence induced cell death by intracellular conversion of GCV to GCV-triphosphate. The homogenous population of HSVTK-MSCs were found to release exosomes having mRNA of the suicide gene in their cargo. The exosomes were easily internalized by the tumor cells and the presence of ganciclovir caused their death in a dose-dependent manner. Efficient tumor cell killing of glioma cell lines and primary human glioblastoma cells mediated by HSVTK-MSC exosomes is reported. Exosomes produced by suicide gene transduced MSCs represent a new class of highly selective tumor cell targeted drug acting intracellular with curative potential.
Collapse
Affiliation(s)
- Andrea Pastorakova
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia
| | - Jana Jakubechova
- Stem Cell Preparation Laboratory, St. Elisabeth Cancer Institute, Heydukova 10, 812 50 Bratislava, Slovakia
| | - Ursula Altanerova
- Stem Cell Preparation Laboratory, St. Elisabeth Cancer Institute, Heydukova 10, 812 50 Bratislava, Slovakia
| | - Cestmir Altaner
- Stem Cell Preparation Laboratory, St. Elisabeth Cancer Institute, Heydukova 10, 812 50 Bratislava, Slovakia
- Biomedical Center, Cancer Research Institute, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia
| |
Collapse
|
21
|
Chu DT, Nguyen TT, Tien NLB, Tran DK, Jeong JH, Anh PG, Thanh VV, Truong DT, Dinh TC. Recent Progress of Stem Cell Therapy in Cancer Treatment: Molecular Mechanisms and Potential Applications. Cells 2020; 9:cells9030563. [PMID: 32121074 PMCID: PMC7140431 DOI: 10.3390/cells9030563] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 02/26/2020] [Accepted: 02/26/2020] [Indexed: 02/07/2023] Open
Abstract
The insufficient and unspecific target of traditional therapeutic approaches in cancer treatment often leads to therapy resistance and cancer recurrence. Over the past decades, accumulating discoveries about stem cell biology have provided new potential approaches to cure cancer patients. Stem cells possess unique biological actions, including self-renewal, directional migration, differentiation, and modulatory effects on other cells, which can be utilized as regenerative medicine, therapeutic carriers, drug targeting, and generation of immune cells. In this review, we emphasize the mechanisms underlying the use of various types of stem cells in cancer treatment. In addition, we summarize recent progress in the clinical applications of stem cells, as well as common risks of this therapy. We finally give general directions for future studies, aiming to improve overall outcomes in the fight against cancer.
Collapse
Affiliation(s)
- Dinh-Toi Chu
- Department of Human and Animal Physiology, Faculty of Biology, Hanoi National University of Education, Hanoi 100000, Vietnam
- Correspondence: (D.-T.C.); (T.C.D.); Tel.: +84966409783 (D.-T.C.)
| | - Tiep Tien Nguyen
- College of Pharmacy, Yeungnam University, 280 Daehak-ro, Gyeongsan-si, Gyeongbuk-do 38541, Korea; (T.T.N.); (J.-H.J.)
| | - Nguyen Le Bao Tien
- Institute of Orthopaedics and Trauma Surgery, Viet Duc Hospital, Hanoi 100000, Vietnam; (N.L.B.T.); (V.V.T.)
| | - Dang-Khoa Tran
- Department of Anatomy, University of Medicine Pham Ngoc Thach, Ho Chi Minh City 700000, Vietnam;
| | - Jee-Heon Jeong
- College of Pharmacy, Yeungnam University, 280 Daehak-ro, Gyeongsan-si, Gyeongbuk-do 38541, Korea; (T.T.N.); (J.-H.J.)
| | - Pham Gia Anh
- Oncology Department, Viet Duc Hospital, Hanoi 100000, Vietnam;
| | - Vo Van Thanh
- Institute of Orthopaedics and Trauma Surgery, Viet Duc Hospital, Hanoi 100000, Vietnam; (N.L.B.T.); (V.V.T.)
- Department of Surgery, Hanoi Medical University, Hanoi 100000, Vietnam
| | - Dang Tien Truong
- Department of Anatomy, Vietnam Military Medical University, Hanoi 100000, Vietnam;
| | - Thien Chu Dinh
- Institute for Research and Development, Duy Tan University, Danang 550000, Vietnam
- Correspondence: (D.-T.C.); (T.C.D.); Tel.: +84966409783 (D.-T.C.)
| |
Collapse
|
22
|
Therapeutic Mesenchymal Stromal Cells for Immunotherapy and for Gene and Drug Delivery. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 16:204-224. [PMID: 32071924 PMCID: PMC7012781 DOI: 10.1016/j.omtm.2020.01.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Mesenchymal stromal cells (MSCs) possess several fairly unique properties that, when combined, make them ideally suited for cellular-based immunotherapy and as vehicles for gene and drug delivery for a wide range of diseases and disorders. Key among these are: (1) their relative ease of isolation from a variety of tissues; (2) the ability to be expanded in culture without a loss of functionality, a property that varies to some degree with tissue source; (3) they are relatively immune-inert, perhaps obviating the need for precise donor/recipient matching; (4) they possess potent immunomodulatory functions that can be tailored by so-called licensing in vitro and in vivo; (5) the efficiency with which they can be modified with viral-based vectors; and (6) their almost uncanny ability to selectively home to damaged tissues, tumors, and metastases following systemic administration. In this review, we summarize the latest research in the immunological properties of MSCs, their use as immunomodulatory/anti-inflammatory agents, methods for licensing MSCs to customize their immunological profile, and their use as vehicles for transferring both therapeutic genes in genetic disease and drugs and genes designed to destroy tumor cells.
Collapse
|
23
|
Mesenchymal stem cells preserve their stem cell traits after exposure to antimetabolite chemotherapy. Stem Cell Res 2019; 40:101536. [PMID: 31437767 DOI: 10.1016/j.scr.2019.101536] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 06/29/2019] [Accepted: 08/12/2019] [Indexed: 12/14/2022] Open
|
24
|
Altaner C, Altanerova U, Jakubechova J. Intracellular acting tumor cell-targeted chemotherapy by MSC-suicide gene exosomes. Oncotarget 2019; 10:5573-5575. [PMID: 31608134 PMCID: PMC6771456 DOI: 10.18632/oncotarget.27135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 07/22/2019] [Indexed: 01/04/2023] Open
Affiliation(s)
- Cestmir Altaner
- Department of Molecular Oncology, Cancer Research Institute, Biomedical Center, Slovak Academy of Sciences, Bratislava, Slovakia; Stem Cell Preparation Department, St. Elisabeth Cancer Institute, Bratislava, Slovakia
| | - Ursula Altanerova
- Department of Molecular Oncology, Cancer Research Institute, Biomedical Center, Slovak Academy of Sciences, Bratislava, Slovakia; Stem Cell Preparation Department, St. Elisabeth Cancer Institute, Bratislava, Slovakia
| | - Jana Jakubechova
- Department of Molecular Oncology, Cancer Research Institute, Biomedical Center, Slovak Academy of Sciences, Bratislava, Slovakia; Stem Cell Preparation Department, St. Elisabeth Cancer Institute, Bratislava, Slovakia
| |
Collapse
|
25
|
Schmidtova S, Kalavska K, Gercakova K, Cierna Z, Miklikova S, Smolkova B, Buocikova V, Miskovska V, Durinikova E, Burikova M, Chovanec M, Matuskova M, Mego M, Kucerova L. Disulfiram Overcomes Cisplatin Resistance in Human Embryonal Carcinoma Cells. Cancers (Basel) 2019; 11:E1224. [PMID: 31443351 PMCID: PMC6769487 DOI: 10.3390/cancers11091224] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/20/2019] [Accepted: 08/20/2019] [Indexed: 12/17/2022] Open
Abstract
Cisplatin resistance in testicular germ cell tumors (TGCTs) is a clinical challenge. We investigated the underlying mechanisms associated with cancer stem cell (CSC) markers and modalities circumventing the chemoresistance. Chemoresistant models (designated as CisR) of human embryonal carcinoma cell lines NTERA-2 and NCCIT were derived and characterized using flow cytometry, gene expression, functional and protein arrays. Tumorigenicity was determined on immunodeficient mouse model. Disulfiram was used to examine chemosensitization of resistant cells. ALDH1A3 isoform expression was evaluated by immunohistochemistry in 216 patients' tissue samples. Chemoresistant cells were significantly more resistant to cisplatin, carboplatin and oxaliplatin compared to parental cells. NTERA-2 CisR cells exhibited altered morphology and increased tumorigenicity. High ALDH1A3 expression and increased ALDH activity were detected in both refractory cell lines. Disulfiram in combination with cisplatin showed synergy for NTERA-2 CisR and NCCIT CisR cells and inhibited growth of NTERA-2 CisR xenografts. Significantly higher ALDH1A3 expression was detected in TGCTs patients' tissue samples compared to normal testicular tissue. We characterized novel clinically relevant model of chemoresistant TGCTs, for the first time identified the ALDH1A3 as a therapeutic target in TGCTs and more importantly, showed that disulfiram represents a viable treatment option for refractory TGCTs.
Collapse
Affiliation(s)
- Silvia Schmidtova
- Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia.
| | - Katarina Kalavska
- Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia
- Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, Klenova 1, 833 10 Bratislava, Slovakia
- Translational Research Unit, Faculty of Medicine, Comenius University, Klenova 1, 833 10 Bratislava, Slovakia
| | - Katarina Gercakova
- Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia
| | - Zuzana Cierna
- Department of Pathology, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia
| | - Svetlana Miklikova
- Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia
| | - Bozena Smolkova
- Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia
| | - Verona Buocikova
- Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia
| | - Viera Miskovska
- Department of Oncology, Faculty of Medicine, Comenius University and St. Elisabeth Cancer Institute, Kolarska 12, 812 50 Bratislava, Slovakia
| | - Erika Durinikova
- Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia
| | - Monika Burikova
- Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia
| | - Michal Chovanec
- Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, Klenova 1, 833 10 Bratislava, Slovakia
- Translational Research Unit, Faculty of Medicine, Comenius University, Klenova 1, 833 10 Bratislava, Slovakia
| | - Miroslava Matuskova
- Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia
| | - Michal Mego
- Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, Klenova 1, 833 10 Bratislava, Slovakia
- Translational Research Unit, Faculty of Medicine, Comenius University, Klenova 1, 833 10 Bratislava, Slovakia
| | - Lucia Kucerova
- Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia
| |
Collapse
|
26
|
Cheng S, Nethi SK, Rathi S, Layek B, Prabha S. Engineered Mesenchymal Stem Cells for Targeting Solid Tumors: Therapeutic Potential beyond Regenerative Therapy. J Pharmacol Exp Ther 2019; 370:231-241. [PMID: 31175219 PMCID: PMC6640188 DOI: 10.1124/jpet.119.259796] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 06/05/2019] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have previously demonstrated considerable promise in regenerative medicine based on their ability to proliferate and differentiate into cells of different lineages. More recently, there has been a significant interest in using MSCs as cellular vehicles for targeted cancer therapy by exploiting their tumor homing properties. Initial studies focused on using genetically modified MSCs for targeted delivery of various proapoptotic, antiangiogenic, and therapeutic proteins to a wide variety of tumors. However, their use as drug delivery vehicles has been limited by poor drug load capacity. This review discusses various strategies for the nongenetic modification of MSCs that allows their use in tumor-targeted delivery of small molecule chemotherapeutic agents. SIGNIFICANCE STATEMENT: There has been considerable interest in exploiting the tumor homing potential of MSCs to develop them as a vehicle for the targeted delivery of cytotoxic agents to tumor tissue. The inherent tumor-tropic and drug-resistant properties make MSCs ideal carriers for toxic payload. While significant progress has been made in the area of the genetic modification of MSCs, studies focused on identification of molecular mechanisms that contribute to the tumor tropism along with optimization of the engineering conditions can further improve their effectiveness as drug delivery vehicles.
Collapse
Affiliation(s)
- Shen Cheng
- Departments of Experimental and Clinical Pharmacology (S.C., S.K.N., B.L., S.P.) and Pharmaceutics (S.R., S.P.), College of Pharmacy, University of Minnesota, Twin Cities, Minnesota
| | - Susheel Kumar Nethi
- Departments of Experimental and Clinical Pharmacology (S.C., S.K.N., B.L., S.P.) and Pharmaceutics (S.R., S.P.), College of Pharmacy, University of Minnesota, Twin Cities, Minnesota
| | - Sneha Rathi
- Departments of Experimental and Clinical Pharmacology (S.C., S.K.N., B.L., S.P.) and Pharmaceutics (S.R., S.P.), College of Pharmacy, University of Minnesota, Twin Cities, Minnesota
| | - Buddhadev Layek
- Departments of Experimental and Clinical Pharmacology (S.C., S.K.N., B.L., S.P.) and Pharmaceutics (S.R., S.P.), College of Pharmacy, University of Minnesota, Twin Cities, Minnesota
| | - Swayam Prabha
- Departments of Experimental and Clinical Pharmacology (S.C., S.K.N., B.L., S.P.) and Pharmaceutics (S.R., S.P.), College of Pharmacy, University of Minnesota, Twin Cities, Minnesota
| |
Collapse
|
27
|
Stamatopoulos A, Stamatopoulos T, Gamie Z, Kenanidis E, Ribeiro RDC, Rankin KS, Gerrand C, Dalgarno K, Tsiridis E. Mesenchymal stromal cells for bone sarcoma treatment: Roadmap to clinical practice. J Bone Oncol 2019; 16:100231. [PMID: 30956944 PMCID: PMC6434099 DOI: 10.1016/j.jbo.2019.100231] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 03/14/2019] [Accepted: 03/18/2019] [Indexed: 12/12/2022] Open
Abstract
Over the past few decades, there has been growing interest in understanding the molecular mechanisms of cancer pathogenesis and progression, as it is still associated with high morbidity and mortality. Current management of large bone sarcomas typically includes the complex therapeutic approach of limb salvage or sacrifice combined with pre- and postoperative multidrug chemotherapy and/or radiotherapy, and is still associated with high recurrence rates. The development of cellular strategies against specific characteristics of tumour cells appears to be promising, as they can target cancer cells selectively. Recently, Mesenchymal Stromal Cells (MSCs) have been the subject of significant research in orthopaedic clinical practice through their use in regenerative medicine. Further research has been directed at the use of MSCs for more personalized bone sarcoma treatments, taking advantage of their wide range of potential biological functions, which can be augmented by using tissue engineering approaches to promote healing of large defects. In this review, we explore the use of MSCs in bone sarcoma treatment, by analyzing MSCs and tumour cell interactions, transduction of MSCs to target sarcoma, and their clinical applications on humans concerning bone regeneration after bone sarcoma extraction.
Collapse
Key Words
- 5-FC, 5-fluorocytosine
- AAT, a1-antitrypsin
- APCs, antigen presenting cells
- ASC, adipose-derived stromal/stem cells
- Abs, antibodies
- Ang1, angiopoietin-1
- BD, bone defect
- BMMSCs, bone marrow-derived mesenchymal stromal cells
- Biology
- Bone
- CAM, cell adhesion molecules
- CCL5, chemokine ligand 5
- CCR2, chemokine receptor 2
- CD, classification determinants
- CD, cytosine deaminase
- CLUAP1, clusterin associated protein 1
- CSPG4, Chondroitin sulfate proteoglycan 4
- CX3CL1, chemokine (C-X3-C motif) ligand 1
- CXCL12/CXCR4, C-X-C chemokine ligand 12/ C-X-C chemokine receptor 4
- CXCL12/CXCR7, C-X-C chemokine ligand 12/ C-X-C chemokine receptor 7
- CXCR4, chemokine receptor type 4
- Cell
- DBM, Demineralized Bone Marrow
- DKK1, dickkopf-related protein 1
- ECM, extracellular matrix
- EMT, epithelial-mesenchymal transition
- FGF-2, fibroblast growth factors-2
- FGF-7, fibroblast growth factors-7
- GD2, disialoganglioside 2
- HER2, human epidermal growth factor receptor 2
- HGF, hepatocyte growth factor
- HMGB1/RACE, high mobility group box-1 protein/ receptor for advanced glycation end-products
- IDO, indoleamine 2,3-dioxygenase
- IFN-α, interferon alpha
- IFN-β, interferon beta
- IFN-γ, interferon gamma
- IGF-1R, insulin-like growth factor 1 receptor
- IL-10, interleukin-10
- IL-12, interleukin-12
- IL-18, interleukin-18
- IL-1b, interleukin-1b
- IL-21, interleukin-21
- IL-2a, interleukin-2a
- IL-6, interleukin-6
- IL-8, interleukin-8
- IL11RA, Interleukin 11 Receptor Subunit Alpha
- MAGE, melanoma antigen gene
- MCP-1, monocyte chemoattractant protein-1
- MMP-2, matrix metalloproteinase-2
- MMP2/9, matrix metalloproteinase-2/9
- MRP, multidrug resistance protein
- MSCs, mesenchymal stem/stromal cells
- Mesenchymal
- NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells
- OPG, osteoprotegerin
- Orthopaedic
- PBS, phosphate-buffered saline
- PDGF, platelet-derived growth factor
- PDX, patient derived xenograft
- PEDF, pigment epithelium-derived factor
- PGE2, prostaglandin E2
- PI3K/Akt, phosphoinositide 3-kinase/protein kinase B
- PTX, paclitaxel
- RANK, receptor activator of nuclear factor kappa-B
- RANKL, receptor activator of nuclear factor kappa-B ligand
- RBCs, red blood cells
- RES, reticuloendothelial system
- RNA, ribonucleic acid
- Regeneration
- SC, stem cells
- SCF, stem cells factor
- SDF-1, stromal cell-derived factor 1
- STAT-3, signal transducer and activator of transcription 3
- Sarcoma
- Stromal
- TAAs, tumour-associated antigens
- TCR, T cell receptor
- TGF-b, transforming growth factor beta
- TGF-b1, transforming growth factor beta 1
- TNF, tumour necrosis factor
- TNF-a, tumour necrosis factor alpha
- TRAIL, tumour necrosis factor related apoptosis-inducing ligand
- Tissue
- VEGF, vascular endothelial growth factor
- VEGFR, vascular endothelial growth factor receptor
- WBCs, white blood cell
- hMSCs, human mesenchymal stromal cells
- rh-TRAIL, recombinant human tumour necrosis factor related apoptosis-inducing ligand
Collapse
Affiliation(s)
- Alexandros Stamatopoulos
- Academic Orthopaedic Unit, Papageorgiou General Hospital, Aristotle University Medical School, West Ring Road of Thessaloniki, Pavlos Melas Area, N. Efkarpia, 56403 Thessaloniki, Greece
- Center of Orthopaedics and Regenerative Medicine (C.O.RE.), Center for Interdisciplinary Research and Innovation (C.I.R.I.), Aristotle University Thessaloniki, Greece
| | - Theodosios Stamatopoulos
- Academic Orthopaedic Unit, Papageorgiou General Hospital, Aristotle University Medical School, West Ring Road of Thessaloniki, Pavlos Melas Area, N. Efkarpia, 56403 Thessaloniki, Greece
- Center of Orthopaedics and Regenerative Medicine (C.O.RE.), Center for Interdisciplinary Research and Innovation (C.I.R.I.), Aristotle University Thessaloniki, Greece
| | - Zakareya Gamie
- Northern Institute for Cancer Research, Paul O'Gorman Building, Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Eustathios Kenanidis
- Academic Orthopaedic Unit, Papageorgiou General Hospital, Aristotle University Medical School, West Ring Road of Thessaloniki, Pavlos Melas Area, N. Efkarpia, 56403 Thessaloniki, Greece
- Center of Orthopaedics and Regenerative Medicine (C.O.RE.), Center for Interdisciplinary Research and Innovation (C.I.R.I.), Aristotle University Thessaloniki, Greece
| | - Ricardo Da Conceicao Ribeiro
- School of Mechanical and Systems Engineering, Stephenson Building, Claremont Road, Newcastle upon Tyne NE1 7RU, UK
| | - Kenneth Samora Rankin
- Northern Institute for Cancer Research, Paul O'Gorman Building, Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Craig Gerrand
- Royal National Orthopaedic Hospital, Brockley Hill, Stanmore, HA7 4LP, UK
| | - Kenneth Dalgarno
- School of Mechanical and Systems Engineering, Stephenson Building, Claremont Road, Newcastle upon Tyne NE1 7RU, UK
| | - Eleftherios Tsiridis
- Academic Orthopaedic Unit, Papageorgiou General Hospital, Aristotle University Medical School, West Ring Road of Thessaloniki, Pavlos Melas Area, N. Efkarpia, 56403 Thessaloniki, Greece
- Center of Orthopaedics and Regenerative Medicine (C.O.RE.), Center for Interdisciplinary Research and Innovation (C.I.R.I.), Aristotle University Thessaloniki, Greece
| |
Collapse
|
28
|
Kazlauskas A, Darinskas A, Meškys R, Tamašauskas A, Urbonavičius J. Isocytosine deaminase Vcz as a novel tool for the prodrug cancer therapy. BMC Cancer 2019; 19:197. [PMID: 30832616 PMCID: PMC6399854 DOI: 10.1186/s12885-019-5409-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 02/26/2019] [Indexed: 01/11/2023] Open
Abstract
Background The cytosine deaminase (CD)/5-fluorocytosine (5-FC) system is among the best explored enzyme/prodrug systems in the field of the suicide gene therapy. Recently, by the screening of the environmental metagenomic libraries we identified a novel isocytosine deaminase (ICD), termed Vcz, which is able of specifically converting a prodrug 5-fluoroisocytosine (5-FIC) into toxic drug 5-fluorouracil (5-FU). The aim of this study is to test the applicability of the ICD Vcz / 5-FIC pair as a potential suicide gene therapy tool. Methods Vcz-expressing human glioblastoma U87 and epithelial colorectal adenocarcinoma Caco-2 cells were treated with 5-FIC, and the Vcz-mediated cytotoxicity was evaluated by performing an MTT assay. In order to examine anti-tumor effects of the Vcz/5-FIC system in vivo, murine bone marrow-derived mesenchymal stem cells (MSC) were transduced with the Vcz-coding lentivirus and co-injected with 5-FIC or control reagents into subcutaneous GL261 tumors evoked in C57/BL6 mice. Results 5-FIC alone showed no significant toxic effects on U87 and Caco-2 cells at 100 μM concentration, whereas the number of cells of both cell lines that express Vcz cytosine deaminase gene decreased by approximately 60% in the presence of 5-FIC. The cytotoxic effects on cells were also induced by media collected from Vcz-expressing cells pre-treated with 5-FIC. The co-injection of the Vcz-transduced mesenchymal stem cells and 5-FIC have been shown to augment tumor necrosis and increase longevity of tumorized mice by 50% in comparison with control group animals. Conclusions We have confirmed that the novel ICD Vcz together with the non-toxic prodrug 5-FIC has a potential of being a new enzyme/prodrug system for suicide gene therapy. Electronic supplementary material The online version of this article (10.1186/s12885-019-5409-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Arunas Kazlauskas
- Laboratory of Molecular Neurooncology, Neuroscience Institute, Medical Academy, Lithuanian University of Health Sciences, Eiveniu str. 4, LT-50161, Kaunas, Lithuania.
| | - Adas Darinskas
- Laboratory of Immunology, National Cancer Institute, Santariskiu Str. 1, LT-08660, Vilnius, Lithuania
| | - Rolandas Meškys
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio al.7, LT-10222, Vilnius, Lithuania
| | - Arimantas Tamašauskas
- Laboratory of Molecular Neurooncology, Neuroscience Institute, Medical Academy, Lithuanian University of Health Sciences, Eiveniu str. 4, LT-50161, Kaunas, Lithuania
| | - Jaunius Urbonavičius
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio al.7, LT-10222, Vilnius, Lithuania.,Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, Sauletekio al.11, LT-10221, Vilnius, Lithuania
| |
Collapse
|
29
|
Abstract
Exosomes derived from human mesenchymal stem cells (MSCs) engineered to express the suicide gene yeast cytosine deaminase::uracil phosphoribosyl transferase (yCD::UPRT) represent a new therapeutic approach for tumor-targeted innovative therapy. The yCD::UPRT-MSC-exosomes carry mRNA of the suicide gene in their cargo. Upon internalization by tumor cells, the exosomes inhibit the growth of broad types of cancer cells in vitro, in the presence of a prodrug. Here we describe the method leading to the production and testing of these therapeutic exosomes. The described steps include the preparation of replication-deficient retrovirus possessing the yCD::UPRT suicide gene, and the preparation and selection of MSCs transduced with yCD::UPRT suicide gene. We present procedures to obtain exosomes possessing the ability to induce the death of tumor cells. In addition, we highlight methods for the evaluation of the suicide gene activity of yCD::UPRT-MSC-exosomes.
Collapse
Affiliation(s)
- Cestmir Altaner
- Department of Molecular Oncology, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia.
- Stem Cell Preparation Department, St. Elizabeth Cancer Institute, Bratislava, Slovakia.
| | - Ursula Altanerova
- Stem Cell Preparation Department, St. Elizabeth Cancer Institute, Bratislava, Slovakia
| |
Collapse
|
30
|
Paris JL, de la Torre P, Cabañas MV, Manzano M, Flores AI, Vallet-Regí M. Suicide-gene transfection of tumor-tropic placental stem cells employing ultrasound-responsive nanoparticles. Acta Biomater 2019; 83:372-378. [PMID: 30414488 DOI: 10.1016/j.actbio.2018.11.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 11/05/2018] [Accepted: 11/06/2018] [Indexed: 02/07/2023]
Abstract
A Trojan-horse strategy for cancer therapy employing tumor-tropic mesenchymal stem cells transfected with a non-viral nanovector is here presented. In this sense, ultrasound-responsive mesoporous silica nanoparticles were coated with a polycation (using two different molecular weights), providing them with gene transfection capabilities that were evaluated using two different plasmids. First, the expression of Green Fluorescent Protein was analyzed in Decidua-derived Mesenchymal Stem Cells after incubation with the silica nanoparticles. The most successful nanoparticle was then employed to induce the expression of two suicide genes: cytosine deaminase and uracil phosphoribosyl transferase, which allow the cells to convert a non-toxic pro-drug (5-fluorocytosine) into a toxic drug (5-Fluorouridine monophosphate). The effect of the production of the toxic final product was also evaluated in a cancer cell line (NMU cells) co-cultured with the transfected vehicle cells, Decidua-derived Mesenchymal Stem Cells. STATEMENT OF SIGNIFICANCE: Cell-mediated cancer therapy has recently attracted great interest. Tumor-homing cells can exert anticancer effects through innate capacities, via transfection with a therapeutic gene or acting as vehicles of therapeutic nanoparticles. In this work, an ultrasound-responsive mesoporous silica nanoparticle (capable of carrying an anticancer drug) is engineered to act as a non-viral transfection agent for tumor-tropic human placental mesenchymal stem cells. The successful transfection of the vehicle cells is evaluated employing different expression plasmids. After transfection with two suicide genes, the vehicle cells are capable of converting a non-toxic pro-drug into a highly toxic molecule, which can also kill surrounding cancer cells in an in vitro co-culture model. This work opens the gate for a plethora of strategies in which both genes and drug-loaded nanoparticles can be transported towards tumor tissues by easily available human mesenchymal stem cells.
Collapse
Affiliation(s)
- Juan L Paris
- Dpto. Química en Ciencias Farmacéuticas, Facultad de Farmacia, UCM, Instituto de Investigación Sanitaria Hospital, 12 de Octubre (imas12), 28040 Madrid, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Paz de la Torre
- Grupo de Medicina Regenerativa, Instituto de Investigación Sanitaria Hospital, 12 de Octubre (imas12), Madrid, Spain
| | - M Victoria Cabañas
- Dpto. Química en Ciencias Farmacéuticas, Facultad de Farmacia, UCM, Instituto de Investigación Sanitaria Hospital, 12 de Octubre (imas12), 28040 Madrid, Spain
| | - Miguel Manzano
- Dpto. Química en Ciencias Farmacéuticas, Facultad de Farmacia, UCM, Instituto de Investigación Sanitaria Hospital, 12 de Octubre (imas12), 28040 Madrid, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Ana I Flores
- Grupo de Medicina Regenerativa, Instituto de Investigación Sanitaria Hospital, 12 de Octubre (imas12), Madrid, Spain.
| | - María Vallet-Regí
- Dpto. Química en Ciencias Farmacéuticas, Facultad de Farmacia, UCM, Instituto de Investigación Sanitaria Hospital, 12 de Octubre (imas12), 28040 Madrid, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain.
| |
Collapse
|
31
|
Christodoulou I, Goulielmaki M, Devetzi M, Panagiotidis M, Koliakos G, Zoumpourlis V. Mesenchymal stem cells in preclinical cancer cytotherapy: a systematic review. Stem Cell Res Ther 2018; 9:336. [PMID: 30526687 PMCID: PMC6286545 DOI: 10.1186/s13287-018-1078-8] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal stem cells (MSC) comprise a heterogeneous population of rapidly proliferating cells that can be isolated from adult (e.g., bone marrow, adipose tissue) as well as fetal (e.g., umbilical cord) tissues (termed bone marrow (BM)-, adipose tissue (AT)-, and umbilical cord (UC)-MSC, respectively) and are capable of differentiation into a wide range of non-hematopoietic cell types. An additional, unique attribute of MSC is their ability to home to tumor sites and to interact with the local supportive microenvironment which rapidly conceptualized into MSC-based experimental cancer cytotherapy at the turn of the century. Towards this purpose, both naïve (unmodified) and genetically modified MSC (GM-MSC; used as delivery vehicles for the controlled expression and release of antitumorigenic molecules) have been employed using well-established in vitro and in vivo cancer models, albeit with variable success. The first approach is hampered by contradictory findings regarding the effects of naïve MSC of different origins on tumor growth and metastasis, largely attributed to inherent biological heterogeneity of MSC as well as experimental discrepancies. In the second case, although the anti-cancer effect of GM-MSC is markedly improved over that of naïve cells, it is yet apparent that some protocols are more efficient against some types of cancer than others. Regardless, in order to maximize therapeutic consistency and efficacy, a deeper understanding of the complex interaction between MSC and the tumor microenvironment is required, as well as examination of the role of key experimental parameters in shaping the final cytotherapy outcome. This systematic review represents, to the best of our knowledge, the first thorough evaluation of the impact of experimental anti-cancer therapies based on MSC of human origin (with special focus on human BM-/AT-/UC-MSC). Importantly, we dissect the commonalities and differences as well as address the shortcomings of work accumulated over the last two decades and discuss how this information can serve as a guide map for optimal experimental design implementation ultimately aiding the effective transition into clinical trials.
Collapse
Affiliation(s)
- Ioannis Christodoulou
- Institute of Biological Research and Biotechnology, National Hellenic Research Foundation (NHRF), Konstantinou 48 Av., 116 35, Athens, Greece
| | - Maria Goulielmaki
- Institute of Biological Research and Biotechnology, National Hellenic Research Foundation (NHRF), Konstantinou 48 Av., 116 35, Athens, Greece
| | - Marina Devetzi
- Institute of Biological Research and Biotechnology, National Hellenic Research Foundation (NHRF), Konstantinou 48 Av., 116 35, Athens, Greece
| | | | | | - Vassilis Zoumpourlis
- Institute of Biological Research and Biotechnology, National Hellenic Research Foundation (NHRF), Konstantinou 48 Av., 116 35, Athens, Greece.
| |
Collapse
|
32
|
Lu JH, Peng BY, Chang CC, Dubey NK, Lo WC, Cheng HC, Wang JR, Wei HJ, Deng WP. Tumor-Targeted Immunotherapy by Using Primary Adipose-Derived Stem Cells and an Antigen-Specific Protein Vaccine. Cancers (Basel) 2018; 10:E446. [PMID: 30445793 PMCID: PMC6266266 DOI: 10.3390/cancers10110446] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 11/09/2018] [Accepted: 11/12/2018] [Indexed: 12/12/2022] Open
Abstract
Cancer is a leading cause of mortality and a major public health problem worldwide. For biological therapy against cancer, we previously developed a unique immunotherapeutic platform by combining mesenchymal stem cells with an antigen-specific protein vaccine. However, this system possesses a few limitations, such as improperly immortalized mesenchymal stem cells (MSCs) along with transfected oncogenic antigens in them. To overcome the limitations of this platform for future clinical application, we freshly prepared primary adipose-derived stem cells (ADSCs) and modified the E7' antigen (E7') as a non-oncogenic protein. Either subcutaneously co-inoculated with cancer cells or systemically administered after tumor growth, ADSC labeled with enhanced green fluorescent protein (eGFP) and combined with modified E7' (ADSC-E7'-eGFP) cells showed significant antitumor activity when combined with the protein vaccine in both colon and lung cancer in mice. Specifically, this combined therapy inhibited tumor through inducing cell apoptosis. The significantly reduced endothelial cell markers, CD31 and vascular endothelial growth factor (VEGF), indicated strongly inhibited tumor angiogenesis. The activated immune system was demonstrated through the response of CD4+ T and natural killer (NK) cells, and a notable antitumor activity might be contributed by CD8+ T cells. Conclusively, these evidences imply that this promising immunotherapeutic platform might be a potential candidate for the future clinical application against cancer.
Collapse
Affiliation(s)
- Jui-Hua Lu
- Graduate Institute of Biomedical Materials and Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan.
- Stem Cell Research Center, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan.
| | - Bou-Yue Peng
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan.
- Department of Dentistry, Taipei Medical University Hospital, Taipei 110, Taiwan.
| | - Chun-Chao Chang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei 110i, Taiwan.
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Taipei Medical University School of Medicine, Taipei 110, Taiwan.
| | - Navneet Kumar Dubey
- Ceramics and Biomaterials Research Group, Advanced Institute of Materials Science, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam.
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam.
| | - Wen-Cheng Lo
- Department of Neurosurgery, Taipei Medical University Hospital, Taipei 110, Taiwan.
- Division of Neurosurgery, Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Hsin-Chung Cheng
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan.
| | - Joseph R Wang
- Department of Periodontics, College of Dental Medicine, Columbia University, New York 10032, USA.
| | - Hong-Jian Wei
- Stem Cell Research Center, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan.
- School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan.
| | - Win-Ping Deng
- Stem Cell Research Center, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan.
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan.
- Graduate Institute of Basic Medicine, Fu Jen Catholic University, New Taipei City 110, Taiwan.
| |
Collapse
|
33
|
Altanerova U, Jakubechova J, Benejova K, Priscakova P, Pesta M, Pitule P, Topolcan O, Kausitz J, Zduriencikova M, Repiska V, Altaner C. Prodrug suicide gene therapy for cancer targeted intracellular by mesenchymal stem cell exosomes. Int J Cancer 2018; 144:897-908. [PMID: 30098225 DOI: 10.1002/ijc.31792] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/26/2018] [Accepted: 07/23/2018] [Indexed: 12/14/2022]
Abstract
The natural behavior of mesenchymal stem cells (MSCs) and their exosomes in targeting tumors is a promising approach for curative therapy. Human tumor tropic mesenchymal stem cells (MSCs) isolated from various tissues and MSCs engineered to express the yeast cytosine deaminase::uracil phosphoribosyl transferase suicide fusion gene (yCD::UPRT-MSCs) released exosomes in conditional medium (CM). Exosomes from all tissue specific yCD::UPRT-MSCs contained mRNA of the suicide gene in the exosome's cargo. When the CM was applied to tumor cells, the exosomes were internalized by recipient tumor cells and in the presence of the prodrug 5-fluorocytosine (5-FC) effectively triggered dose-dependent tumor cell death by endocytosed exosomes via an intracellular conversion of the prodrug 5-FC to 5-fluorouracil. Exosomes were found to be responsible for the tumor inhibitory activity. The presence of microRNAs in exosomes produced from naive MSCs and from suicide gene transduced MSCs did not differ significantly. MicroRNAs from yCD::UPRT-MSCs were not associated with therapeutic effect. MSC suicide gene exosomes represent a new class of tumor cell targeting drug acting intracellular with curative potential.
Collapse
Affiliation(s)
- Ursula Altanerova
- St. Elisabeth Cancer Institute, Stem Cell Preparation Department, Bratislava, Slovakia
| | - Jana Jakubechova
- St. Elisabeth Cancer Institute, Stem Cell Preparation Department, Bratislava, Slovakia
| | - Katarina Benejova
- St. Elisabeth Cancer Institute, Stem Cell Preparation Department, Bratislava, Slovakia
| | - Petra Priscakova
- Faculty of Medicine, Institute of Medical Biology, Genetics and Clinical Genetics, University Hospital Bratislava, Comenius University in Bratislava, Bratislava, Slovakia
| | - Martin Pesta
- Department of Biology, Faculty of Medicine in Pilsen, Charles University in Prague, Pilsen, Czech Republic.,Laboratory of tumor biology, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Prague, Czech Republic.,University Hospital in Pilsen, Department of Nuclear Medicine - Immunoanalytic Laboratory, Pilsen, Czech Republic
| | - Pavel Pitule
- Laboratory of tumor biology, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Prague, Czech Republic
| | - Ondrej Topolcan
- University Hospital in Pilsen, Department of Nuclear Medicine - Immunoanalytic Laboratory, Pilsen, Czech Republic
| | - Juraj Kausitz
- St. Elisabeth Cancer Institute, Stem Cell Preparation Department, Bratislava, Slovakia
| | - Martina Zduriencikova
- Cancer Research Institute, Biomedical Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Vanda Repiska
- Faculty of Medicine, Institute of Medical Biology, Genetics and Clinical Genetics, University Hospital Bratislava, Comenius University in Bratislava, Bratislava, Slovakia
| | - Cestmir Altaner
- St. Elisabeth Cancer Institute, Stem Cell Preparation Department, Bratislava, Slovakia.,Cancer Research Institute, Biomedical Center, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
34
|
Cytotoxic response of 5-fluorouracil-resistant cells to gene- and cell-directed enzyme/prodrug treatment. Cancer Gene Ther 2018; 25:285-299. [DOI: 10.1038/s41417-018-0030-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 05/25/2018] [Accepted: 06/03/2018] [Indexed: 02/08/2023]
|
35
|
Liu L, Zhang SX, Liao W, Farhoodi HP, Wong CW, Chen CC, Ségaliny AI, Chacko JV, Nguyen LP, Lu M, Polovin G, Pone EJ, Downing TL, Lawson DA, Digman MA, Zhao W. Mechanoresponsive stem cells to target cancer metastases through biophysical cues. Sci Transl Med 2018; 9:9/400/eaan2966. [PMID: 28747514 DOI: 10.1126/scitranslmed.aan2966] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 03/23/2017] [Accepted: 06/06/2017] [Indexed: 12/13/2022]
Abstract
Despite decades of effort, little progress has been made to improve the treatment of cancer metastases. To leverage the central role of the mechanoenvironment in cancer metastasis, we present a mechanoresponsive cell system (MRCS) to selectively identify and treat cancer metastases by targeting the specific biophysical cues in the tumor niche in vivo. Our MRCS uses mechanosensitive promoter-driven mesenchymal stem cell (MSC)-based vectors, which selectively home to and target cancer metastases in response to specific mechanical cues to deliver therapeutics to effectively kill cancer cells, as demonstrated in a metastatic breast cancer mouse model. Our data suggest a strong correlation between collagen cross-linking and increased tissue stiffness at the metastatic sites, where our MRCS is specifically activated by the specific cancer-associated mechano-cues. MRCS has markedly reduced deleterious effects compared to MSCs constitutively expressing therapeutics. MRCS indicates that biophysical cues, specifically matrix stiffness, are appealing targets for cancer treatment due to their long persistence in the body (measured in years), making them refractory to the development of resistance to treatment. Our MRCS can serve as a platform for future diagnostics and therapies targeting aberrant tissue stiffness in conditions such as cancer and fibrotic diseases, and it should help to elucidate mechanobiology and reveal what cells "feel" in the microenvironment in vivo.
Collapse
Affiliation(s)
- Linan Liu
- Sue and Bill Gross Stem Cell Research Center, 845 Health Sciences Road, University of California, Irvine, Irvine, CA 92697, USA.,Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, USA.,Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA 92697, USA.,Edwards Life Sciences Center for Advanced Cardiovascular Technology, University of California, Irvine, Irvine, CA 92697, USA.,Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, USA.,Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Shirley X Zhang
- Sue and Bill Gross Stem Cell Research Center, 845 Health Sciences Road, University of California, Irvine, Irvine, CA 92697, USA.,Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, USA.,Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA 92697, USA.,Edwards Life Sciences Center for Advanced Cardiovascular Technology, University of California, Irvine, Irvine, CA 92697, USA.,Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, USA.,Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Wenbin Liao
- Sue and Bill Gross Stem Cell Research Center, 845 Health Sciences Road, University of California, Irvine, Irvine, CA 92697, USA.,Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, USA.,Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA 92697, USA.,Edwards Life Sciences Center for Advanced Cardiovascular Technology, University of California, Irvine, Irvine, CA 92697, USA.,Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, USA.,Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Henry P Farhoodi
- Sue and Bill Gross Stem Cell Research Center, 845 Health Sciences Road, University of California, Irvine, Irvine, CA 92697, USA.,Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, USA.,Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA 92697, USA.,Edwards Life Sciences Center for Advanced Cardiovascular Technology, University of California, Irvine, Irvine, CA 92697, USA.,Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, USA.,Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Chi W Wong
- Sue and Bill Gross Stem Cell Research Center, 845 Health Sciences Road, University of California, Irvine, Irvine, CA 92697, USA.,Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, USA.,Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA 92697, USA.,Edwards Life Sciences Center for Advanced Cardiovascular Technology, University of California, Irvine, Irvine, CA 92697, USA.,Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, USA.,Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Claire C Chen
- Sue and Bill Gross Stem Cell Research Center, 845 Health Sciences Road, University of California, Irvine, Irvine, CA 92697, USA.,Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, USA.,Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA 92697, USA.,Edwards Life Sciences Center for Advanced Cardiovascular Technology, University of California, Irvine, Irvine, CA 92697, USA.,Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, USA.,Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Aude I Ségaliny
- Sue and Bill Gross Stem Cell Research Center, 845 Health Sciences Road, University of California, Irvine, Irvine, CA 92697, USA.,Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, USA.,Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA 92697, USA.,Edwards Life Sciences Center for Advanced Cardiovascular Technology, University of California, Irvine, Irvine, CA 92697, USA.,Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, USA.,Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Jenu V Chacko
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, USA
| | - Lily P Nguyen
- Sue and Bill Gross Stem Cell Research Center, 845 Health Sciences Road, University of California, Irvine, Irvine, CA 92697, USA.,Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, USA.,Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA 92697, USA.,Edwards Life Sciences Center for Advanced Cardiovascular Technology, University of California, Irvine, Irvine, CA 92697, USA.,Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, USA.,Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Mengrou Lu
- Sue and Bill Gross Stem Cell Research Center, 845 Health Sciences Road, University of California, Irvine, Irvine, CA 92697, USA.,Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, USA.,Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA 92697, USA.,Edwards Life Sciences Center for Advanced Cardiovascular Technology, University of California, Irvine, Irvine, CA 92697, USA.,Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, USA.,Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - George Polovin
- Sue and Bill Gross Stem Cell Research Center, 845 Health Sciences Road, University of California, Irvine, Irvine, CA 92697, USA.,Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, USA.,Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA 92697, USA.,Edwards Life Sciences Center for Advanced Cardiovascular Technology, University of California, Irvine, Irvine, CA 92697, USA.,Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, USA.,Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Egest J Pone
- Sue and Bill Gross Stem Cell Research Center, 845 Health Sciences Road, University of California, Irvine, Irvine, CA 92697, USA.,Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, USA.,Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA 92697, USA.,Edwards Life Sciences Center for Advanced Cardiovascular Technology, University of California, Irvine, Irvine, CA 92697, USA.,Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, USA.,Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Timothy L Downing
- Sue and Bill Gross Stem Cell Research Center, 845 Health Sciences Road, University of California, Irvine, Irvine, CA 92697, USA.,Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, USA
| | - Devon A Lawson
- Sue and Bill Gross Stem Cell Research Center, 845 Health Sciences Road, University of California, Irvine, Irvine, CA 92697, USA.,Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA 92697, USA.,Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697, USA
| | - Michelle A Digman
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, USA.,Laboratory for Fluorescence Dynamics, University of California, Irvine, Irvine, CA 92697, USA.,Centre for Bioactive Discovery in Health and Ageing, School of Science and Technology, University of New England, Armidale, New South Wales 2351, Australia
| | - Weian Zhao
- Sue and Bill Gross Stem Cell Research Center, 845 Health Sciences Road, University of California, Irvine, Irvine, CA 92697, USA. .,Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, USA.,Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA 92697, USA.,Edwards Life Sciences Center for Advanced Cardiovascular Technology, University of California, Irvine, Irvine, CA 92697, USA.,Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, USA.,Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| |
Collapse
|
36
|
Layek B, Sadhukha T, Panyam J, Prabha S. Nano-Engineered Mesenchymal Stem Cells Increase Therapeutic Efficacy of Anticancer Drug Through True Active Tumor Targeting. Mol Cancer Ther 2018; 17:1196-1206. [PMID: 29592881 DOI: 10.1158/1535-7163.mct-17-0682] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 01/10/2018] [Accepted: 03/09/2018] [Indexed: 12/18/2022]
Abstract
Tumor-targeted drug delivery has the potential to improve therapeutic efficacy and mitigate non-specific toxicity of anticancer drugs. However, current drug delivery approaches rely on inefficient passive accumulation of the drug carrier in the tumor. We have developed a unique, truly active tumor-targeting strategy that relies on engineering mesenchymal stem cells (MSC) with drug-loaded nanoparticles. Our studies using the A549 orthotopic lung tumor model show that nano-engineered MSCs carrying the anticancer drug paclitaxel (PTX) home to tumors and create cellular drug depots that release the drug payload over several days. Despite significantly lower doses of PTX, nano-engineered MSCs resulted in significant inhibition of tumor growth and superior survival. Anticancer efficacy of nano-engineered MSCs was confirmed in immunocompetent C57BL/6 albino female mice bearing orthotopic Lewis Lung Carcinoma (LL/2-luc) tumors. Furthermore, at doses that resulted in equivalent therapeutic efficacy, nano-engineered MSCs had no effect on white blood cell count, whereas PTX solution and PTX nanoparticle treatments caused leukopenia. Biodistribution studies showed that nano-engineered MSCs resulted in greater than 9-fold higher AUClung of PTX (1.5 μg.day/g) than PTX solution and nanoparticles (0.2 and 0.1 μg.day/g tissue, respectively) in the target lung tumors. Furthermore, the lung-to-liver and the lung-to-spleen ratios of PTX were several folds higher for nano-engineered MSCs relative to those for PTX solution and nanoparticle groups, suggesting that nano-engineered MSCs demonstrate significantly less off-target deposition. In summary, our results demonstrate that nano-engineered MSCs can serve as an efficient carrier for tumor-specific drug delivery and significantly improved anti-cancer efficacy of conventional chemotherapeutic drugs. Mol Cancer Ther; 17(6); 1196-206. ©2018 AACR.
Collapse
Affiliation(s)
- Buddhadev Layek
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota
| | - Tanmoy Sadhukha
- Albany Molecular Research Inc., Albany, New York.,Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota
| | - Jayanth Panyam
- Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota
| | - Swayam Prabha
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota. .,Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
37
|
Chulpanova DS, Kitaeva KV, Tazetdinova LG, James V, Rizvanov AA, Solovyeva VV. Application of Mesenchymal Stem Cells for Therapeutic Agent Delivery in Anti-tumor Treatment. Front Pharmacol 2018; 9:259. [PMID: 29615915 PMCID: PMC5869248 DOI: 10.3389/fphar.2018.00259] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 03/08/2018] [Indexed: 12/15/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are non-hematopoietic progenitor cells, which can be isolated from different types of tissues including bone marrow, adipose tissue, tooth pulp, and placenta/umbilical cord blood. There isolation from adult tissues circumvents the ethical concerns of working with embryonic or fetal stem cells, whilst still providing cells capable of differentiating into various cell lineages, such as adipocytes, osteocytes and chondrocytes. An important feature of MSCs is the low immunogenicity due to the lack of co-stimulatory molecules expression, meaning there is no need for immunosuppression during allogenic transplantation. The tropism of MSCs to damaged tissues and tumor sites makes them a promising vector for therapeutic agent delivery to tumors and metastatic niches. MSCs can be genetically modified by virus vectors to encode tumor suppressor genes, immunomodulating cytokines and their combinations, other therapeutic approaches include MSCs priming/loading with chemotherapeutic drugs or nanoparticles. MSCs derived membrane microvesicles (MVs), which play an important role in intercellular communication, are also considered as a new therapeutic agent and drug delivery vector. Recruited by the tumor, MSCs can exhibit both pro- and anti-oncogenic properties. In this regard, for the development of new methods for cancer therapy using MSCs, a deeper understanding of the molecular and cellular interactions between MSCs and the tumor microenvironment is necessary. In this review, we discuss MSC and tumor interaction mechanisms and review the new therapeutic strategies using MSCs and MSCs derived MVs for cancer treatment.
Collapse
Affiliation(s)
- Daria S Chulpanova
- OpenLab Gene and Cell Technologies, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Kristina V Kitaeva
- OpenLab Gene and Cell Technologies, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Leysan G Tazetdinova
- OpenLab Gene and Cell Technologies, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Victoria James
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, United Kingdom
| | - Albert A Rizvanov
- OpenLab Gene and Cell Technologies, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Valeriya V Solovyeva
- OpenLab Gene and Cell Technologies, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| |
Collapse
|
38
|
Visweswaran M, Arfuso F, Dilley RJ, Newsholme P, Dharmarajan A. The inhibitory influence of adipose tissue-derived mesenchymal stem cell environment and Wnt antagonism on breast tumour cell lines. Int J Biochem Cell Biol 2018; 95:63-72. [DOI: 10.1016/j.biocel.2017.12.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 12/15/2017] [Accepted: 12/19/2017] [Indexed: 12/12/2022]
|
39
|
Engineering Hematopoietic Cells for Cancer Immunotherapy: Strategies to Address Safety and Toxicity Concerns. J Immunother 2017; 39:249-59. [PMID: 27488725 DOI: 10.1097/cji.0000000000000134] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Advances in cancer immunotherapies utilizing engineered hematopoietic cells have recently generated significant clinical successes. Of great promise are immunotherapies based on chimeric antigen receptor-engineered T (CAR-T) cells that are targeted toward malignant cells expressing defined tumor-associated antigens. CAR-T cells harness the effector function of the adaptive arm of the immune system and redirect it against cancer cells, overcoming the major challenges of immunotherapy, such as breaking tolerance to self-antigens and beating cancer immune system-evasion mechanisms. In early clinical trials, CAR-T cell-based therapies achieved complete and durable responses in a significant proportion of patients. Despite clinical successes and given the side effect profiles of immunotherapies based on engineered cells, potential concerns with the safety and toxicity of various therapeutic modalities remain. We discuss the concerns associated with the safety and stability of the gene delivery vehicles for cell engineering and with toxicities due to off-target and on-target, off-tumor effector functions of the engineered cells. We then overview the various strategies aimed at improving the safety of and resolving toxicities associated with cell-based immunotherapies. Integrating failsafe switches based on different suicide gene therapy systems into engineered cells engenders promising strategies toward ensuring the safety of cancer immunotherapies in the clinic.
Collapse
|
40
|
Marofi F, Vahedi G, Biglari A, Esmaeilzadeh A, Athari SS. Mesenchymal Stromal/Stem Cells: A New Era in the Cell-Based Targeted Gene Therapy of Cancer. Front Immunol 2017; 8:1770. [PMID: 29326689 PMCID: PMC5741703 DOI: 10.3389/fimmu.2017.01770] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 11/27/2017] [Indexed: 02/06/2023] Open
Abstract
In recent years, in light of the promising potentials of mesenchymal stromal/stem cells (MSCs) for carrying therapeutic anticancer genes, a complete revisitation on old chemotherapy-based paradigms has been established. This review attempted to bring forward and introduce the novel therapeutic opportunities of using genetically engineered MSCs. The simplicities and advantages of MSCs for medical applications make them a unique and promising option in the case of cancer therapy. Some of the superiorities of using MSCs as therapeutic gene micro-carriers are the easy cell-extraction procedures and their abundant proliferation capacity in vitro without losing their main biological properties. Targeted therapy by using MSCs as the delivery vehicles of therapeutic genes is a new approach in the treatment of various types of cancers. Some of the distinct properties of MSCs, such as tumor-tropism, non-immunogenicity, stimulatory effect on the anti-inflammatory molecules, inhibitory effect on inflammatory responses, non-toxicity against the normal tissues, and easy processes for the clinical use, have formed the basis of attention to MSCs. They can be easily used for the treatment of damaged or injured tissues, regenerative medicine, and immune disorders. This review focused on the drugability of MSCs and their potential for the delivery of candidate anticancer genes. It also briefly reviewed the vectors and methods used for MSC-mediated gene therapy of malignancies. Also, the challenges, limitations, and considerations in using MSCs for gene therapy of cancer and the new methods developed for resolution of these problems are reviewed.
Collapse
Affiliation(s)
- Faroogh Marofi
- Department of Hematology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ghasem Vahedi
- Research Center for Food Hygiene and Safety, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Alireza Biglari
- Department of Genetics and Molecular Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Abdolreza Esmaeilzadeh
- Department of Immunology, Zanjan University of Medical Sciences, Zanjan, Iran.,Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | | |
Collapse
|
41
|
Xiang BY, Chen L, Wang XJ, Xiang C. Mesenchymal stem cells as therapeutic agents and in gene delivery for the treatment of glioma *. J Zhejiang Univ Sci B 2017; 18:737-746. [PMCID: PMC5611545 DOI: 10.1631/jzus.b1600337] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 11/22/2016] [Indexed: 06/13/2024]
Abstract
Mesenchymal stem cells (MSCs) are plastic-adherent cells with a characteristic surface phenotype and properties of self-renewal, differentiation, and high proliferative potential. The characteristics of MSCs and their tumor-tropic capability make them an ideal tool for use in cell-based therapies for cancer, including glioma. These cells can function either through a bystander effect or as a delivery system for genes and drugs. MSCs have been demonstrated to inhibit the growth of glioma and to improve survival following transplantation into the brain. We briefly review the current data regarding the use of MSCs in the treatment of glioma and discuss the potential strategies for development of a more specific and effective therapy.
Collapse
|
42
|
Mooney R, Abdul Majid A, Batalla J, Annala AJ, Aboody KS. Cell-mediated enzyme prodrug cancer therapies. Adv Drug Deliv Rev 2017; 118:35-51. [PMID: 28916493 DOI: 10.1016/j.addr.2017.09.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 08/15/2017] [Accepted: 09/06/2017] [Indexed: 02/08/2023]
Abstract
Cell-directed gene therapy is a promising new frontier for the field of targeted cancer therapies. Here we discuss the current pre-clinical and clinical use of cell-mediated enzyme prodrug therapy (EPT) directed against solid tumors and avenues for further development. We also discuss some of the challenges encountered upon translating these therapies to clinical trials. Upon sufficient development, cell-mediated enzyme prodrug therapy has the potential to maximize the distribution of therapeutic enzymes within the tumor environment, localizing conversion of prodrug to active drug at the tumor sites thereby decreasing off-target toxicities. New combinatorial possibilities are also promising. For example, when combined with viral gene-delivery vehicles, this may result in new hybrid vehicles that attain heretofore unmatched levels of therapeutic gene expression within the tumor.
Collapse
|
43
|
Moradian Tehrani R, Verdi J, Noureddini M, Salehi R, Salarinia R, Mosalaei M, Simonian M, Alani B, Ghiasi MR, Jaafari MR, Mirzaei HR, Mirzaei H. Mesenchymal stem cells: A new platform for targeting suicide genes in cancer. J Cell Physiol 2017; 233:3831-3845. [DOI: 10.1002/jcp.26094] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 07/11/2017] [Indexed: 12/30/2022]
Affiliation(s)
- Rana Moradian Tehrani
- Department of Applied Cell SciencesSchool of Medicine, Kashan University of Medical SciencesKashanIran
| | - Javad Verdi
- Department of Applied Cell SciencesSchool of Medicine, Kashan University of Medical SciencesKashanIran
- Department of Applied Cell Sciences School of Advanced Technologies in Medicine, Tehran University of Medical SciencesTehranIran
| | - Mahdi Noureddini
- Department of Applied Cell SciencesSchool of Medicine, Kashan University of Medical SciencesKashanIran
| | - Rasoul Salehi
- Department of Genetic and Molecular BiologyIsfahan University of Medical SciencesIsfahanIran
| | - Reza Salarinia
- Department of Medical Biotechnology and Molecular SciencesSchool of MedicineNorth Khorasan University of Medical SciencesBojnurdIran
| | - Meysam Mosalaei
- Department of Genetic and Molecular BiologyIsfahan University of Medical SciencesIsfahanIran
| | - Miganosh Simonian
- Department of Genetic and Molecular BiologyIsfahan University of Medical SciencesIsfahanIran
| | - Behrang Alani
- Department of Applied Cell SciencesSchool of Medicine, Kashan University of Medical SciencesKashanIran
| | - Moosa Rahimi Ghiasi
- Department of Genetic and Molecular BiologyIsfahan University of Medical SciencesIsfahanIran
| | - Mahmoud Reza Jaafari
- School of PharmacyNanotechnology Research CenterMashhad University of Medical SciencesMashhadIran
| | - Hamed Reza Mirzaei
- Department of Clinical Laboratory SciencesSchool of Allied Medical SciencesKashan University of Medical SciencesKashanIran
- Department of Immunology, School of MedicineTehran University of Medical SciencesTehranIran
- Clinical Research DivisionFred Hutchinson Cancer Research CenterSeattleWashington
| | - Hamed Mirzaei
- Department of Medical Biotechnology, School of MedicineMashhad University of Medical SciencesMashhadIran
| |
Collapse
|
44
|
Kucerova L, Durinikova E, Toro L, Cihova M, Miklikova S, Poturnajova M, Kozovska Z, Matuskova M. Targeted antitumor therapy mediated by prodrug-activating mesenchymal stromal cells. Cancer Lett 2017; 408:1-9. [PMID: 28838843 DOI: 10.1016/j.canlet.2017.08.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 08/09/2017] [Accepted: 08/11/2017] [Indexed: 12/14/2022]
Abstract
Mesenchymal stromal cells (MSCs) were introduced as tumor-targeted vehicles suitable for delivery of the gene-directed enzyme/prodrug therapy more than 10 years ago. Over these years key properties of tumor cells and MSCs, which are crucial for the treatment efficiency, were examined; and there are some critical issues to be considered for the maximum antitumor effect. Moreover, engineered MSCs expressing enzymes capable of activating non-toxic prodrugs achieved long-term curative effect even in metastatic and hard-to-treat tumor types in pre-clinical scenario(s). These gene-modified MSCs are termed prodrug-activating MSCs throughout the text and represent promising approach for further clinical application. This review summarizes major determinants to be considered for the application of the prodrug-activating MSCs in antitumor therapy in order to maximize therapeutic efficiency.
Collapse
Affiliation(s)
- Lucia Kucerova
- Laboratory of Molecular Oncology, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia.
| | - Erika Durinikova
- Laboratory of Molecular Oncology, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia
| | - Lenka Toro
- Laboratory of Molecular Oncology, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia
| | - Marina Cihova
- Laboratory of Molecular Oncology, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia
| | - Svetlana Miklikova
- Laboratory of Molecular Oncology, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia
| | - Martina Poturnajova
- Laboratory of Molecular Oncology, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia
| | - Zuzana Kozovska
- Laboratory of Molecular Oncology, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia
| | - Miroslava Matuskova
- Laboratory of Molecular Oncology, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia
| |
Collapse
|
45
|
Kalimuthu S, Oh JM, Gangadaran P, Zhu L, Lee HW, Jeon YH, Jeong SY, Lee SW, Lee J, Ahn BC. Genetically engineered suicide gene in mesenchymal stem cells using a Tet-On system for anaplastic thyroid cancer. PLoS One 2017; 12:e0181318. [PMID: 28727740 PMCID: PMC5519161 DOI: 10.1371/journal.pone.0181318] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 06/29/2017] [Indexed: 12/21/2022] Open
Abstract
Anaplastic thyroid cancer (ATC) is the most aggressive malignancy of the thyroid, during which undifferentiated tumors arise from the thyroid follicular epithelium. ATC has a very poor prognosis due to its aggressive behavior and poor response to conventional therapies. Gene-directed enzyme/prodrug therapy using genetically engineered mesenchymal stromal cells (MSC) is a promising therapeutic strategy. The doxycycline (DOX)-controlled Tet inducible system is the most widely utilized regulatory system and could be a useful tool for therapeutic gene-based therapies. For example, use a synthetic "tetracycline-on" switch system to control the expression of the therapeutic gene thymidine kinase, which converts prodrugs to active drugs. The aim of this study was to develop therapeutic MSCs, harboring an inducible suicide gene, and to validate therapeutic gene expression using optical molecular imaging of ATC. We designed the Tet-On system using a retroviral vector expressing herpes simplex virus thymidine kinase (HSV1-sr39TK) with dual reporters (eGFP-Fluc2). Mouse bone marrow-derived mesenchymal stromal cells (BM-MSC) were transduced using this system with (MSC-Tet-TK/Fluc2) or without (MSC-TK/Fluc) the Tet-On system. Transduced cells were screened and characterized. Engineered MSCs were co-cultured with ATC (CAL62/Rluc) cells in the presence of the prodrug ganciclovir (GCV) and stimulated with DOX. The efficiency of cell killing monitored by assessing Rluc (CAL62/Rluc) and Fluc (MSC-Tet-TK/Fluc and MSC-TK/Fluc) activities using IVIS imaging. Fluc activity increased in MSC-Tet-TK/Fluc cells in a dose dependent manner following DOX treatment (R2 = 0.95), whereas no signal was observed in untreated cells. eGFP could also be visualized after induction with DOX, and the HSV1-TK protein could be detected by western blotting. In MSC-TK/Fluc cells, the Fluc activity increased with increasing cell number (R2 = 0.98), and eGFP could be visualized by fluorescence microscopy. The Fluc activity and cell viability of MSC-Tet-TK/Fluc and MSC-TK/Fluc cells decreased significantly following GCV treatment. A bystander effect of the therapeutic cells confirmed in co-cultures of CAL62 cells, an anaplastic thyroid cancer cell line, with either MSC-Tet-TK/Fluc cells or MSC-TK/Fluc cells. The Rluc activity in MSC-Tet-TK/Fluc co-cultures, derived from the CAL62/Rluc cells, decreased significantly with GCV treatment of DOX treated cultures, whereas no significant changes were observed in untreated cultures. In addition, the Fluc activity of MSC-Tet-TK/Fluc cells also decreased significantly with DOX treatment whereas no signal was present in untreated cultures. A bystander effect also be demonstrated in co-cultures with MSC-TK/Fluc cells and CAL62/Rluc; both the Rluc activity and the Fluc activity were significantly decreased following GCV treatment. We have successfully developed a Tet-On system of gene-directed enzyme/prodrug delivery using MSCs. We confirmed the therapeutic bystander effect in CAL62/Rluc cells with respect to MSC-Tet-TK/Fluc and MSC-TK/Fluc cells after GCV treatment with and without DOX. Our results confirm the therapeutic efficiency of a suicide gene, with or without the Tet-On system, for ATC therapy. In addition, our findings provide an innovative therapeutic approach for using the Tet-On system to eradicate tumors by simple, repeated administration of MSC-Tet-TK/Fluc cells with DOX and GCV.
Collapse
Affiliation(s)
- Senthilkumar Kalimuthu
- Department of Nuclear Medicine, Kyungpook National University School of Medicine/Hospital, Daegu, Republic of Korea
| | - Ji Min Oh
- Department of Nuclear Medicine, Kyungpook National University School of Medicine/Hospital, Daegu, Republic of Korea
| | - Prakash Gangadaran
- Department of Nuclear Medicine, Kyungpook National University School of Medicine/Hospital, Daegu, Republic of Korea
| | - Liya Zhu
- Department of Nuclear Medicine, Kyungpook National University School of Medicine/Hospital, Daegu, Republic of Korea
| | - Ho Won Lee
- Department of Nuclear Medicine, Kyungpook National University School of Medicine/Hospital, Daegu, Republic of Korea
| | - Yong Hyun Jeon
- Department of Nuclear Medicine, Kyungpook National University School of Medicine/Hospital, Daegu, Republic of Korea
| | - Shin Young Jeong
- Department of Nuclear Medicine, Kyungpook National University School of Medicine/Hospital, Daegu, Republic of Korea
| | - Sang-Woo Lee
- Department of Nuclear Medicine, Kyungpook National University School of Medicine/Hospital, Daegu, Republic of Korea
| | - Jaetae Lee
- Department of Nuclear Medicine, Kyungpook National University School of Medicine/Hospital, Daegu, Republic of Korea
| | - Byeong-Cheol Ahn
- Department of Nuclear Medicine, Kyungpook National University School of Medicine/Hospital, Daegu, Republic of Korea
| |
Collapse
|
46
|
Mesenchymal stem cells induce epithelial mesenchymal transition in melanoma by paracrine secretion of transforming growth factor-β. Melanoma Res 2017; 27:74-84. [DOI: 10.1097/cmr.0000000000000325] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
47
|
iPS-derived MSCs from an expandable bank to deliver a prodrug-converting enzyme that limits growth and metastases of human breast cancers. Cell Death Discov 2017; 3:16064. [PMID: 28179988 PMCID: PMC5292869 DOI: 10.1038/cddiscovery.2016.64] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 06/11/2016] [Indexed: 12/12/2022] Open
Abstract
One attractive strategy to treat cancers is to deliver an exogenous enzyme that will convert a non-toxic compound to a highly toxic derivative. The strategy was tested with viral vectors but was disappointing because the efficiency of transduction into tumor cells was too low. Recent reports demonstrated that the limitation can be addressed by using tissue-derived mesenchymal stromal cells (MSCs) to deliver enzyme/prodrug systems that kill adjacent cancer cells through bystander effects. Here we addressed the limitation that tissue-derived MSCs vary in their properties and are difficult to generate in the large numbers needed for clinical applications. We prepared a Feeder Stock of MSCs from induced pluripotent stem cells (iPSs) that provided an extensively expandable source of standardized cells. We then transduced the iPS-derived MSCs to express cytosine deaminase and injected them locally into a mouse xenogeneic model of human breast cancer. After administration of the prodrug (5-fluorocytosine), the transduced iPS-MSCs both limited growth of preformed tumors and decreased lung metastases.
Collapse
|
48
|
Shi Y, Du L, Lin L, Wang Y. Tumour-associated mesenchymal stem/stromal cells: emerging therapeutic targets. Nat Rev Drug Discov 2016; 16:35-52. [PMID: 27811929 DOI: 10.1038/nrd.2016.193] [Citation(s) in RCA: 331] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mesenchymal stem cells, also known as mesenchymal stromal cells (MSCs), exist in many tissues and are known to actively migrate to sites of tissue injury, where they participate in wound repair. Tumours can be considered "wounds that never heal" and, in response to cues from a tumour, MSCs are continuously recruited to and become integral components of the tumour microenvironment. Recently, it has become apparent that such tumour-associated MSCs (TA-MSCs) have an active role in tumour initiation, promotion, progression and metastasis. In this Review, we discuss recent advances in our understanding of the pathogenic role of TA-MSCs in regulating the survival, proliferation, migration and drug resistance of tumour cells, as well as the influence of MSCs on the immune status of the tumour microenvironment. Moreover, we discuss therapeutic approaches that target TA-MSC upstream or downstream modulators or use MSCs as vehicles for the delivery of tumoricidal agents. It is anticipated that new insights into the functions of TA-MSCs will lead to the development of novel therapeutic strategies against tumours.
Collapse
Affiliation(s)
- Yufang Shi
- The First Affiliated Hospital of Soochow University and Jiangsu Engineering Research Center for Tumor Immunotherapy, Institutes for Translational Medicine and Suzhou Key Laboratory of Tumor Microenvironment and Pathology, Soochow University, 199 Renai Road, Suzhou, Jiangsu 215123, China.,Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey 08901, USA.,Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, 320 Yueyang Road, Shanghai 200031, China
| | - Liming Du
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, 320 Yueyang Road, Shanghai 200031, China
| | - Liangyu Lin
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, 320 Yueyang Road, Shanghai 200031, China.,Shanghai Jiao Tong University School of Medicine, 280 Chongqing Road, Shanghai 200025, China
| | - Ying Wang
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, 320 Yueyang Road, Shanghai 200031, China
| |
Collapse
|
49
|
Krassikova LS, Karshieva SS, Cheglakov IB, Belyavsky AV. Combined treatment, based on lysomustine administration with mesenchymal stem cells expressing cytosine deaminase therapy, leads to pronounced murine Lewis lung carcinoma growth inhibition. J Gene Med 2016; 18:220-33. [DOI: 10.1002/jgm.2894] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 07/18/2016] [Accepted: 07/20/2016] [Indexed: 12/22/2022] Open
Affiliation(s)
- Lyudmila S. Krassikova
- Pushchino State Institute of Natural Sciences; Pushchino Russia
- Engelhardt Institute of Molecular Biology RAS; Moscow Russia
| | - Saida S. Karshieva
- Engelhardt Institute of Molecular Biology RAS; Moscow Russia
- N. N. Blokhin Cancer Research Center; Russia
| | - Ivan B. Cheglakov
- Engelhardt Institute of Molecular Biology RAS; Moscow Russia
- N. N. Blokhin Cancer Research Center; Russia
| | | |
Collapse
|
50
|
Nowakowski A, Drela K, Rozycka J, Janowski M, Lukomska B. Engineered Mesenchymal Stem Cells as an Anti-Cancer Trojan Horse. Stem Cells Dev 2016; 25:1513-1531. [PMID: 27460260 DOI: 10.1089/scd.2016.0120] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cell-based gene therapy holds a great promise for the treatment of human malignancy. Among different cells, mesenchymal stem cells (MSCs) are emerging as valuable anti-cancer agents that have the potential to be used to treat a number of different cancer types. They have inherent migratory properties, which allow them to serve as vehicles for delivering effective therapy to isolated tumors and metastases. MSCs have been engineered to express anti-proliferative, pro-apoptotic, and anti-angiogenic agents that specifically target different cancers. Another field of interest is to modify MSCs with the cytokines that activate pro-tumorigenic immunity or to use them as carriers for the traditional chemical compounds that possess the properties of anti-cancer drugs. Although there is still controversy about the exact function of MSCs in the tumor settings, the encouraging results from the preclinical studies of MSC-based gene therapy for a large number of tumors support the initiation of clinical trials.
Collapse
Affiliation(s)
- Adam Nowakowski
- 1 NeuroRepair Department, Mossakowski Medical Research Centre , Polish Academy of Sciences, Warsaw, Poland
| | - Katarzyna Drela
- 1 NeuroRepair Department, Mossakowski Medical Research Centre , Polish Academy of Sciences, Warsaw, Poland
| | - Justyna Rozycka
- 1 NeuroRepair Department, Mossakowski Medical Research Centre , Polish Academy of Sciences, Warsaw, Poland
| | - Miroslaw Janowski
- 1 NeuroRepair Department, Mossakowski Medical Research Centre , Polish Academy of Sciences, Warsaw, Poland .,2 Division of MR Research, Russel H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine , Baltimore, Maryland
| | - Barbara Lukomska
- 1 NeuroRepair Department, Mossakowski Medical Research Centre , Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|