1
|
Tian Y, Zhao Y, Yin C, Tan S, Wang X, Yang C, Zhang TD, Zhang X, Ye F, Xu J, Wu X, Ding L, Zhang J, Pei J, Wang XT, Zhang RX, Xu J, Wang W, Filipe CD, Hoare T, Yin DC, Qian A, Deng X. Polyvinylamine with moderate binding affinity as a highly effective vehicle for RNA delivery. J Control Release 2022; 345:20-37. [DOI: 10.1016/j.jconrel.2022.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 12/13/2022]
|
2
|
Javed MN, Akhter MH, Taleuzzaman M, Faiyazudin M, Alam MS. Cationic nanoparticles for treatment of neurological diseases. FUNDAMENTALS OF BIONANOMATERIALS 2022:273-292. [DOI: 10.1016/b978-0-12-824147-9.00010-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
|
3
|
Charbe NB, Amnerkar ND, Ramesh B, Tambuwala MM, Bakshi HA, Aljabali AA, Khadse SC, Satheeshkumar R, Satija S, Metha M, Chellappan DK, Shrivastava G, Gupta G, Negi P, Dua K, Zacconi FC. Small interfering RNA for cancer treatment: overcoming hurdles in delivery. Acta Pharm Sin B 2020; 10:2075-2109. [PMID: 33304780 PMCID: PMC7714980 DOI: 10.1016/j.apsb.2020.10.005] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/24/2020] [Accepted: 10/08/2020] [Indexed: 12/11/2022] Open
Abstract
In many ways, cancer cells are different from healthy cells. A lot of tactical nano-based drug delivery systems are based on the difference between cancer and healthy cells. Currently, nanotechnology-based delivery systems are the most promising tool to deliver DNA-based products to cancer cells. This review aims to highlight the latest development in the lipids and polymeric nanocarrier for siRNA delivery to the cancer cells. It also provides the necessary information about siRNA development and its mechanism of action. Overall, this review gives us a clear picture of lipid and polymer-based drug delivery systems, which in the future could form the base to translate the basic siRNA biology into siRNA-based cancer therapies.
Collapse
Key Words
- 1,3-propanediol, PEG-b-PDMAEMA-b-Ppy
- 2-propylacrylicacid, PAH-b-PDMAPMA-b-PAH
- APOB, apolipoprotein B
- AQP-5, aquaporin-5
- AZEMA, azidoethyl methacrylate
- Atufect01, β-l-arginyl-2,3-l-diaminopropionicacid-N-palmityl-N-oleyl-amide trihydrochloride
- AuNPs, gold nanoparticles
- B-PEI, branched polyethlenimine
- BMA, butyl methacrylate
- CFTR, cystic fibrosis transmembrane conductance regulator gene
- CHEMS, cholesteryl hemisuccinate
- CHOL, cholesterol
- CMC, critical micelles concentration
- Cancer
- DC-Chol, 3β-[N-(N′,N′-dimethylaminoethane)carbamoyl]cholesterol
- DMAEMA, 2-dimethylaminoethyl methacrylate
- DNA, deoxyribonucleic acid
- DOPC, dioleylphosphatidyl choline
- DOPE, dioleylphosphatidyl ethanolamine
- DOTAP, N-[1-(2,3-dioleoyloxy)propyl]-N,N,N-trimethylammonium methyl-sulfate
- DOTMA, N-[1-(2,3-dioleyloxy)propy]-N,N,N-trimethylammoniumchloride
- DOX, doxorubicin
- DSGLA, N,N-dis-tearyl-N-methyl-N-2[N′-(N2-guanidino-l-lysinyl)] aminoethylammonium chloride
- DSPC, 1,2-distearoyl-sn-glycero-3-phosphocholine
- DSPE, 1,2-distearoyl-sn-glycero-3-phosphorylethanolamine
- DSPE-MPEG, 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] (ammonium salt)
- DSPE-PEG-Mal: 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[maleimide(polyethylene glycol)-2000] (mmmonium salt), EPR
- Liposomes
- Micelles
- N-acetylgalactosamine, HIF-1α
- Nanomedicine
- PE-PCL-b-PNVCL, pentaerythritol polycaprolactone-block-poly(N-vinylcaprolactam)
- PLA, poly-l-arginine
- PLGA, poly lactic-co-glycolic acid
- PLK-1, polo-like kinase 1
- PLL, poly-l-lysine
- PPES-b-PEO-b-PPES, poly(4-(phenylethynyl)styrene)-block-PEO-block-poly(4-(phenylethynyl)styrene)
- PTX, paclitaxel
- PiRNA, piwi-interacting RNA
- Polymer
- RES, reticuloendothelial system
- RGD, Arg-Gly-Asp peptide
- RISC, RNA-induced silencing complex
- RNA, ribonucleic acid
- RNAi, RNA interference
- RNAse III, ribonuclease III enzyme
- SEM, scanning electron microscope
- SNALP, stable nucleic acid-lipid particles
- SiRNA, short interfering rNA
- Small interfering RNA (siRNA)
- S–Au, thio‒gold
- TCC, transitional cell carcinoma
- TEM, transmission electron microscopy
- Tf, transferrin
- Trka, tropomyosin receptor kinase A
- USPIO, ultra-small superparamagnetic iron oxide nanoparticles
- UV, ultraviolet
- VEGF, vascular endothelial growth factor
- ZEBOV, Zaire ebola virus
- enhanced permeability and retention, Galnac
- hypoxia-inducible factor-1α, KSP
- kinesin spindle protein, LDI
- lipid-protamine-DNA/hyaluronic acid, MDR
- lysine ethyl ester diisocyanate, LPD/LPH
- messenger RNA, MTX
- methotrexate, NIR
- methoxy polyethylene glycol-polycaprolactone, mRNA
- methoxypoly(ethylene glycol), MPEG-PCL
- micro RNA, MPEG
- multiple drug resistance, MiRNA
- nanoparticle, NRP-1
- near-infrared, NP
- neuropilin-1, PAA
- poly(N,N-dimethylacrylamide), PDO
- poly(N-isopropyl acrylamide), pentaerythritol polycaprolactone-block-poly(N-isopropylacrylamide)
- poly(acrylhydrazine)-block-poly(3-dimethylaminopropyl methacrylamide)-block-poly(acrylhydrazine), PCL
- poly(ethylene glycol)-block-poly(2-dimethylaminoethyl methacrylate)-block poly(pyrenylmethyl methacrylate), PEG-b-PLL
- poly(ethylene glycol)-block-poly(l-lysine), PEI
- poly(ethylene oxide)-block-poly(2-(diethylamino)ethyl methacrylate)-stat-poly(methoxyethyl methacrylate), PEO-b-PCL
- poly(ethylene oxide)-block-poly(Ε-caprolactone), PE-PCL-b-PNIPAM
- poly(Ε-caprolactone), PCL-PEG
- poly(Ε-caprolactone)-polyethyleneglycol-poly(l-histidine), PCL-PEI
- polycaprolactone-polyethyleneglycol, PCL-PEG-PHIS
- polycaprolactone-polyethylenimine, PDMA
- polyethylenimine, PEO-b-P(DEA-Stat-MEMA
Collapse
Affiliation(s)
- Nitin Bharat Charbe
- Departamento de Quimica Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- Sri Adichunchunagiri College of Pharmacy, Sri Adichunchunagiri University, BG Nagar, Karnataka 571418, India
| | - Nikhil D. Amnerkar
- Adv V. R. Manohar Institute of Diploma in Pharmacy, Nagpur, Maharashtra 441110, India
| | - B. Ramesh
- Sri Adichunchunagiri College of Pharmacy, Sri Adichunchunagiri University, BG Nagar, Karnataka 571418, India
| | - Murtaza M. Tambuwala
- School of Pharmacy and Pharmaceutical Science, Ulster University, Coleraine, Northern Ireland BT52 1SA, UK
| | - Hamid A. Bakshi
- School of Pharmacy and Pharmaceutical Science, Ulster University, Coleraine, Northern Ireland BT52 1SA, UK
| | - Alaa A.A. Aljabali
- Faculty of Pharmacy, Department of Pharmaceutics and Pharmaceutical Technology, Yarmouk University, Irbid 21163, Jordan
| | - Saurabh C. Khadse
- Department of Pharmaceutical Chemistry, R.C. Patel Institute of Pharmaceutical Education and Research, Dist. Dhule, Maharashtra 425 405, India
| | - Rajendran Satheeshkumar
- Departamento de Quimica Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Saurabh Satija
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411 Punjab, India
| | - Meenu Metha
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411 Punjab, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Garima Shrivastava
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi, New Delhi 110016, India
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Jaipur 302017, India
| | - Poonam Negi
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI) and School of Biomedical Sciences and Pharmacy, University of Newcastle, NSW 2308, Australia
| | - Flavia C. Zacconi
- Departamento de Quimica Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 4860, Chile
| |
Collapse
|
4
|
Chen L, Bai M, Du R, Wang H, Deng Y, Xiao A, Gan X. The non-viral vectors and main methods of loading siRNA onto the titanium implants and their application. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 31:2152-2168. [PMID: 32646287 DOI: 10.1080/09205063.2020.1793706] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Surface modification of titanium implants by siRNA is quite efficient for improving implant osseointegration. Loading siRNA onto their surface is a crucial factor for siRNA-functionalized implants to realize their biological function. Direct binding of siRNA to implants has low siRNA binding and releasing rate, so usually it needs to be mediated by vectors. Polymeric, nonmaterial-mediated and lipid-based vectors are types of non-viral vectors which are commonly used for delivering siRNA. Three major methods of loading process, namely simple physical adsorption, layer-by-layer assembly and electrodeposition, are also summarized. A brief introduction, the basic principle and the general procedure of each method are included. The loading efficiency, which can be measured both qualitatively and quantitatively, together with gene knockdown efficiency, cytotoxicity assay and osteogenesis of the three methods are compared. A good many applications in osteogenesis have also been described in this review.
Collapse
Affiliation(s)
- Liangrui Chen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Mingxuan Bai
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Ruiyu Du
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Hao Wang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Yi Deng
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, P.R. China.,State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Anqi Xiao
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Xueqi Gan
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, P.R. China
| |
Collapse
|
5
|
Javanmardi S, Tamaddon AM, Aghamaali MR, Ghahramani L, Abolmaali SS. Redox-sensitive, PEG-shielded carboxymethyl PEI nanogels silencing MicroRNA-21, sensitizes resistant ovarian cancer cells to cisplatin. Asian J Pharm Sci 2020; 15:69-82. [PMID: 32175019 PMCID: PMC7066047 DOI: 10.1016/j.ajps.2018.10.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/04/2018] [Accepted: 10/29/2018] [Indexed: 11/28/2022] Open
Abstract
A series of branched polyethylenimine (PEI) modifications including PEGylation (PEG2k-PEI) for steric shielding, redox-sensitive crosslinking for synthesis PEG2k-PEI-ss nanogels and subsequent carboxymethylation (PEG2k-CMPEI-ss) for modulation of the polymer pka have been introduced for cellular delivery of Anti-miR-21. The synthesis was characterized using 1H NMR, FTIR, TNBS, potentiometric titration, particle size and ζ potential. Loading of Anti-miR-21 at various N/P ratios was investigated by gel retardation, ethidium bromide dye exclusion, heparin sulfate competition and DNase I digestion experiments. The miR-21 silencing was measured by stem-loop RT PCR in A2780 ovarian cancer cell lines whether it is sensitive to resistant to cisplatin. It has been shown that PEG2k-CMPEI-ss was well suited for delivery of Anti-miR-21 in terms of nucleic acid loading, preservation against extracellular matrix and nucleases and sequence-specific silencing of miRNA-21 in vitro. Moreover, it has been demonstrated that pre-treating cells with Anti-miR-21 loaded nanogels can sensitize them to cis-Pt even at non-toxic concentraions. The results indicate that PEG2k-CMPEI-ss mediated microRNA delivery can be considered as a novel strategy for ovarian cancer therapy.
Collapse
Affiliation(s)
- Sanaz Javanmardi
- Department of Biology, Faculty of Science, University of Guilan, Rasht 64891, Iran
| | - Ali Mohammad Tamaddon
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz 71345, Iran
- School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71345, Iran
| | | | - Ladan Ghahramani
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz 71345, Iran
| | - Samira Sadat Abolmaali
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz 71345, Iran
- School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71345, Iran
| |
Collapse
|
6
|
Bauer M, Tauhardt L, Lambermont-Thijs HM, Kempe K, Hoogenboom R, Schubert US, Fischer D. Rethinking the impact of the protonable amine density on cationic polymers for gene delivery: A comparative study of partially hydrolyzed poly(2-ethyl-2-oxazoline)s and linear poly(ethylene imine)s. Eur J Pharm Biopharm 2018; 133:112-121. [DOI: 10.1016/j.ejpb.2018.10.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 09/11/2018] [Accepted: 10/03/2018] [Indexed: 01/04/2023]
|
7
|
Rafael D, Gener P, Andrade F, Seras-Franzoso J, Montero S, Fernández Y, Hidalgo M, Arango D, Sayós J, Florindo HF, Abasolo I, Schwartz S, Videira M. AKT2 siRNA delivery with amphiphilic-based polymeric micelles show efficacy against cancer stem cells. Drug Deliv 2018; 25:961-972. [PMID: 29667444 PMCID: PMC6060707 DOI: 10.1080/10717544.2018.1461276] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Development of RNA interference-based therapies with appropriate therapeutic window remains a challenge for advanced cancers. Because cancer stem cells (CSC) are responsible of sustaining the metastatic spread of the disease to distal organs and the progressive gain of resistance of advanced cancers, new anticancer therapies should be validated specifically for this subpopulation of cells. A new amphihilic-based gene delivery system that combines Pluronic® F127 micelles with polyplexes spontaneously formed by electrostatic interaction between anionic siRNA and cationic polyethylenimine (PEI) 10K, was designed (PM). Resultant PM gather the requirements for an efficient and safe transport of siRNA in terms of its physicochemical characteristics, internalization capacity, toxicity profile and silencing efficacy. PM were loaded with a siRNA against AKT2, an important oncogene involved in breast cancer tumorigenesis, with a special role in CSC malignancy. Efficacy of siAKT2-PM was validated in CSC isolated from two breast cancer cell lines: MCF-7 and Triple Negative MDA-MB-231 corresponding to an aggressive subtype of breast cancer. In both cases, we observed significant reduction on cell invasion capacity and strong inhibition of mammosphere formation after treatment. These results prompt AKT2 inhibition as a powerful therapeutic target against CSC and pave the way to the appearance of more effective nanomedicine-based gene therapies aimed to prevent CSC-related tumor recurrence.
Collapse
Affiliation(s)
- Diana Rafael
- a Research Institute for Medicines and Pharmaceutical Sciences, Faculdade de Farmácia , Universidade de Lisboa (iMed.ULisboa) , Lisbon , Portugal.,b Drug Delivery and Targeting Group , Molecular Biology and Biochemistry Research Centre for Nanomedicine (CIBBIM-Nanomedicine), Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona , Barcelona , Spain
| | - Petra Gener
- b Drug Delivery and Targeting Group , Molecular Biology and Biochemistry Research Centre for Nanomedicine (CIBBIM-Nanomedicine), Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona , Barcelona , Spain.,c Networking Research Centre for Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III , Zaragoza , Spain
| | - Fernanda Andrade
- c Networking Research Centre for Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III , Zaragoza , Spain
| | - Joaquin Seras-Franzoso
- b Drug Delivery and Targeting Group , Molecular Biology and Biochemistry Research Centre for Nanomedicine (CIBBIM-Nanomedicine), Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona , Barcelona , Spain
| | - Sara Montero
- b Drug Delivery and Targeting Group , Molecular Biology and Biochemistry Research Centre for Nanomedicine (CIBBIM-Nanomedicine), Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona , Barcelona , Spain
| | - Yolanda Fernández
- b Drug Delivery and Targeting Group , Molecular Biology and Biochemistry Research Centre for Nanomedicine (CIBBIM-Nanomedicine), Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona , Barcelona , Spain.,c Networking Research Centre for Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III , Zaragoza , Spain.,d Functional Validation and Preclinical Research (FVPR) , CIBBIM-Nanomedicine, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona , Barcelona , Spain
| | - Manuel Hidalgo
- e Division of Hematology and Oncology , Rosenberg Clinical Cancer Center Beth Israel Deaconess Medical Center , Boston , MA , USA
| | - Diego Arango
- f Biomedical Research in Digestive Tract Tumors, CIBBIM-Nanomedicine, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona , Barcelona , Spain
| | - Joan Sayós
- g Immune Regulation and Immunotherapy , CIBBIM-Nanomedicine, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona , Barcelona , Spain
| | - Helena F Florindo
- a Research Institute for Medicines and Pharmaceutical Sciences, Faculdade de Farmácia , Universidade de Lisboa (iMed.ULisboa) , Lisbon , Portugal
| | - Ibane Abasolo
- b Drug Delivery and Targeting Group , Molecular Biology and Biochemistry Research Centre for Nanomedicine (CIBBIM-Nanomedicine), Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona , Barcelona , Spain.,c Networking Research Centre for Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III , Zaragoza , Spain.,d Functional Validation and Preclinical Research (FVPR) , CIBBIM-Nanomedicine, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona , Barcelona , Spain
| | - Simó Schwartz
- b Drug Delivery and Targeting Group , Molecular Biology and Biochemistry Research Centre for Nanomedicine (CIBBIM-Nanomedicine), Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona , Barcelona , Spain.,c Networking Research Centre for Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III , Zaragoza , Spain
| | - Mafalda Videira
- a Research Institute for Medicines and Pharmaceutical Sciences, Faculdade de Farmácia , Universidade de Lisboa (iMed.ULisboa) , Lisbon , Portugal
| |
Collapse
|
8
|
Rafael D, Andrade F, Montero S, Gener P, Seras-Franzoso J, Martínez F, González P, Florindo H, Arango D, Sayós J, Abasolo I, Videira M, Schwartz Jr. S. Rational Design of a siRNA Delivery System: ALOX5 and Cancer Stem Cells as Therapeutic Targets. PRECISION NANOMEDICINE 2018. [DOI: 10.29016/180629.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The search for an ideal gene delivery system is a long and laborious process in which several factors from the first idea to final formulation, including main challenges, peaks and troughs, should be deeply taken into consideration to ensure adequate biological safety and in vivo efficacy endpoints. Arachidonate 5-lipoxygenase (ALOX5), a crucial player related with cancer development and in particular with cancer stem cells malignancy. In this work we describe the process behind the development of a small interfering RNA (siRNA) delivery system to inhibit ALOX5 in cancer stem cells (CSC), as a model target gene. We started by screening chitosan polyplexes, among different types of chitosan in different complexation conditions. Due to the low silencing efficacy obtained, chitosan polyplexes were combined with Pluronic®-based polymeric micelles with recognized advantages regarding gene transfection. We tested different types of polymeric particles to improve the biological efficacy of chitosan polyplexes. Nevertheless, limited transfection efficiency was still detected. The well-established polyethyleneimine (PEI) cationic polymer was used in substitution of chitosan, in combination with polymeric micelles, originating PEI-siRNA-Pluronic® systems. The presence of Pluronic® F127 in the formulation showed to be of utmost importance because not only the silencing activity of the polyplexes was improved, but also PEI-associated toxicity was clearly reduced. This, allowed to increase the amount of PEI inside the system and its overall efficacy. Indeed, different types of PEI, N/P ratios and preparation methods were tested until an optimal formulation composed by PEI 10k branched-based polyplexes at an N/P ratio of 50 combined with micelles of Pluronic® F127 was selected. This combined micelle presented adequate technological properties, safety profile, and biological efficacy, resulting in high ALOX5 gene silencing and strong reduction of invasion and transformation capabilities of a stem cell subpopulation isolated from MDA-MB-231 triple negative breast cancer cells.
Collapse
Affiliation(s)
- Diana Rafael
- Research Institute for Medicines and Pharmaceutical Sciences, Faculdade de Farmácia, Universidade de Lisboa
| | - Fernanda Andrade
- Molecular Biology and Biochemistry Research Centre for Nanomedicine (CIBBIM-Nanomedicine), Vall d’Hebron Institut de Recerca, Universitat Autònoma de Barcelona
| | - Sara Montero
- Molecular Biology and Biochemistry Research Centre for Nanomedicine (CIBBIM-Nanomedicine), Vall d’Hebron Institut de Recerca, Universitat Autònoma de Barcelona
| | - Petra Gener
- Molecular Biology and Biochemistry Research Centre for Nanomedicine (CIBBIM-Nanomedicine), Vall d’Hebron Institut de Recerca, Universitat Autònoma de Barcelona
| | - Joaquin Seras-Franzoso
- Molecular Biology and Biochemistry Research Centre for Nanomedicine (CIBBIM-Nanomedicine), Vall d’Hebron Institut de Recerca, Universitat Autònoma de Barcelona
| | - Francesc Martínez
- Molecular Biology and Biochemistry Research Centre for Nanomedicine (CIBBIM-Nanomedicine), Vall d’Hebron Institut de Recerca, Universitat Autònoma de Barcelona
| | - Patricia González
- Networking Research Centre for Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, Zaragoza
| | - Helena Florindo
- Research Institute for Medicines and Pharmaceutical Sciences, Faculdade de Farmácia, Universidade de Lisboa
| | - Diego Arango
- Biomedical Research in Digestive Tract Tumors, CIBBIM-Nanomedicine, Vall d’Hebron Institut de Recerca, Universitat Autònoma de Barcelona,
| | - Joan Sayós
- Immune Regulation and Immunotherapy, CIBBIM-Nanomedicine, Vall d’Hebron Institut de Recerca, Universitat Autònoma de Barcelona
| | - Ibane Abasolo
- Functional Validation & Preclinical Research (FVPR), CIBBIM-Nanomedicine, Vall d’Hebron Institut de Recerca, Universitat Autònoma de Barcelona
| | - Mafalda Videira
- Research Institute for Medicines and Pharmaceutical Sciences, Faculdade de Farmácia, Universidade de Lisboa (iMed.ULisboa), Lisbon
| | - Simó Schwartz Jr.
- Molecular Biology and Biochemistry Research Centre for Nanomedicine (CIBBIM-Nanomedicine), Vall d’Hebron Institut de Recerca
| |
Collapse
|
9
|
Malaekeh-Nikouei B, Gholami L, Asghari F, Askarian S, Barzegar S, Rezaee M, Kazemi Oskuee R. Viral vector mimicking and nucleus targeted nanoparticles based on dexamethasone polyethylenimine nanoliposomes: Preparation and evaluation of transfection efficiency. Colloids Surf B Biointerfaces 2018; 165:252-261. [PMID: 29494955 DOI: 10.1016/j.colsurfb.2018.02.043] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 12/16/2017] [Accepted: 02/17/2018] [Indexed: 12/11/2022]
Abstract
Non-viral vectors such as polymers and liposomes have been used as gene delivery systems to overcome intrinsic problems of viral vectors, but transfection efficiency of these vectors is lower than viral vectors. In the present study, we tried to design non-viral gene delivery vectors that mimic the viral vectors using the benefits of both cationic liposomes and cationic polymer vectors along with targeting glucocorticoid receptors to enhance cellular trafficking of vectors. Cationic liposomes containing DOTAP and cholesterol were prepared by thin-film hydration following extrusion method. Dexamethasone mesylate was synthesized and then conjugated to polyethylenimine through a one-step reaction. A novel gene delivery system, Lipopolyplex was developed by premixing liposome and different molecular weight of bPEI-Dexa as carriers followed by addition of plasmid at three different carrier/pDNA (C/P) weight ratios. The resulted complexes were characterized for their size, zeta potential and ability of DNA condensation. Transfection efficiency of vectors in neuro2A was determined by Luciferase reporter gene assay. Also, the toxicity of gene carriers was investigated in this cell line. Mean particle size of prepared complexes was less than 200 nm and there was no significant difference in their size by increasing the molecular weight of PEIs. All complexes had positive surface charge. Complete condensation of DNA was occurred at C/P ratio of one for all complexes. Lipopolyplexes were more efficient than polyplexes and lipoplexes alone and transfection efficiency was improved by adding dexamethasone. The complexes containing liposome, PEI 10 kDa and dexamethasone (PEI10:Lipo:Dexa(0.05)) had the highest transfection activity about 40-fold and 3.6-fold in comparison with PEI10 and PEI10:Lipo, respectively. Furthermore, the non-viral vectors described in this study showed low cytotoxicity. The results of this study confirmed that PEI in combination with liposome forms lipopolyplex with low toxicity and enhanced transfection efficiency. Moreover, using dexamethasone, in combination with lipopolyplex might be useful to increase the gene delivery potential of these lipopolyplexes.
Collapse
Affiliation(s)
- Bizhan Malaekeh-Nikouei
- Nanotechnology Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Gholami
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fariba Asghari
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeedeh Askarian
- Research Center of Advanced Technologies in Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran; Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeedeh Barzegar
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehdi Rezaee
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Kazemi Oskuee
- Targeted Drug Delivery Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
10
|
Rezaee M, Gholami L, Gildeh MS, Ramezani M, Kazemi Oskuee R. Charge reduction: an efficient strategy to reduce toxicity and increase the transfection efficiency of high molecular weight polyethylenimine. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2018. [DOI: 10.1007/s40005-018-0388-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Dréan M, Debuigne A, Jérôme C, Goncalves C, Midoux P, Rieger J, Guégan P. Poly(N-methylvinylamine)-Based Copolymers for Improved Gene Transfection. Macromol Biosci 2018; 18:e1700353. [DOI: 10.1002/mabi.201700353] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 12/14/2017] [Indexed: 12/23/2022]
Affiliation(s)
- Mathilde Dréan
- Institut Parisien de Chimie Moléculaire (IPCM); Sorbonne Université, CNRS; 4 Place Jussieu 75005 Paris France
- Center for Education and Research on Macromolecules (CERM); CESAM Research Unit; University of Liege (ULg); Sart-Tilman, Allée de la Chimie 3, Bat. B6a 4000 Liège Belgium
| | - Antoine Debuigne
- Center for Education and Research on Macromolecules (CERM); CESAM Research Unit; University of Liege (ULg); Sart-Tilman, Allée de la Chimie 3, Bat. B6a 4000 Liège Belgium
| | - Christine Jérôme
- Center for Education and Research on Macromolecules (CERM); CESAM Research Unit; University of Liege (ULg); Sart-Tilman, Allée de la Chimie 3, Bat. B6a 4000 Liège Belgium
| | - Cristine Goncalves
- Centre Biophysique Moléculaire; UPR4301 CNRS; Rue Charles Sadron; 45071 Orléans Cedex 2 France
| | - Patrick Midoux
- Centre Biophysique Moléculaire; UPR4301 CNRS; Rue Charles Sadron; 45071 Orléans Cedex 2 France
| | - Jutta Rieger
- Institut Parisien de Chimie Moléculaire (IPCM); Sorbonne Université, CNRS; 4 Place Jussieu 75005 Paris France
| | - Philippe Guégan
- Institut Parisien de Chimie Moléculaire (IPCM); Sorbonne Université, CNRS; 4 Place Jussieu 75005 Paris France
| |
Collapse
|
12
|
Omar R, Yang J, Liu H, Davies NM, Gong Y. Hepatic Stellate Cells in Liver Fibrosis and siRNA-Based Therapy. Rev Physiol Biochem Pharmacol 2017; 172:1-37. [PMID: 27534415 DOI: 10.1007/112_2016_6] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Hepatic fibrosis is a reversible wound-healing response to either acute or chronic liver injury caused by hepatitis B or C, alcohol, and toxic agents. Hepatic fibrosis is characterized by excessive accumulation and reduced degradation of extracellular matrix (ECM). Excessive accumulation of ECM alters the hepatic architecture leading to liver fibrosis and cirrhosis. Cirrhosis results in failure of common functions of the liver. Hepatic stellate cells (HSC) play a major role in the development of liver fibrosis as HSC are the main source of the excessive production of ECM in an injured liver. RNA interference (RNAi) is a recently discovered therapeutic tool that may provide a solution to manage multiple diseases including liver fibrosis through silencing of specific gene expression in diseased cells. However, gene silencing using small interfering RNA (siRNA) is encountering many challenges in the body after systemic administration. Efficient and stable siRNA delivery to the target cells is a key issue for the development of siRNA therapeutic. For that reason, various viral and non-viral carriers for liver-targeted siRNA delivery have been developed. This review will cover the current strategies for the treatment of liver fibrosis as well as discussing non-viral approaches such as cationic polymers and lipid-based nanoparticles for targeted delivery of siRNA to the liver.
Collapse
Affiliation(s)
- Refaat Omar
- College of Pharmacy, Faculty of Health Sciences, University of Manitoba, 750 McDermot Avenue, Winnipeg, MB, Canada, R3E 0T5
| | - Jiaqi Yang
- College of Pharmacy, Faculty of Health Sciences, University of Manitoba, 750 McDermot Avenue, Winnipeg, MB, Canada, R3E 0T5
| | - Haoyuan Liu
- College of Pharmacy, Faculty of Health Sciences, University of Manitoba, 750 McDermot Avenue, Winnipeg, MB, Canada, R3E 0T5
| | - Neal M Davies
- College of Pharmacy, Faculty of Health Sciences, University of Manitoba, 750 McDermot Avenue, Winnipeg, MB, Canada, R3E 0T5
- Faculty of Pharmacy & Pharmaceutical Sciences, University of Alberta, 8613-114 Street, Edmonton, AB, Canada, T6G 2H1
| | - Yuewen Gong
- College of Pharmacy, Faculty of Health Sciences, University of Manitoba, 750 McDermot Avenue, Winnipeg, MB, Canada, R3E 0T5.
| |
Collapse
|
13
|
Hall A, Lächelt U, Bartek J, Wagner E, Moghimi SM. Polyplex Evolution: Understanding Biology, Optimizing Performance. Mol Ther 2017; 25:1476-1490. [PMID: 28274797 DOI: 10.1016/j.ymthe.2017.01.024] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 01/25/2017] [Accepted: 01/25/2017] [Indexed: 02/06/2023] Open
Abstract
Polyethylenimine (PEI) is a gold standard polycationic transfectant. However, the highly efficient transfecting activity of PEI and many of its derivatives is accompanied by serious cytotoxic complications and safety concerns at innate immune levels, which impedes the development of therapeutic polycationic nucleic acid carriers in general and their clinical applications. In recent years, the dilemma between transfection efficacy and adverse PEI activities has been addressed from in-depth investigations of cellular processes during transfection and elucidation of molecular mechanisms of PEI-mediated toxicity and translation of these integrated events to chemical engineering of novel PEI derivatives with an improved benefit-to-risk ratio. This review addresses these perspectives and discusses molecular events pertaining to dynamic and multifaceted PEI-mediated cytotoxicity, including membrane destabilization, mitochondrial dysfunction, and perturbations of glycolytic flux and redox homeostasis as well as chemical strategies for the generation of better tolerated polycations. We further examine the effect of PEI and its derivatives on complement activation and interaction with Toll-like receptors. These perspectives are intended to lay the foundation for an improved understanding of interlinked mechanisms controlling transfection and toxicity and their translation for improved engineering of polycation-based transfectants.
Collapse
Affiliation(s)
- Arnaldur Hall
- Genome Integrity Unit, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark
| | - Ulrich Lächelt
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität, 81377 Munich, Germany; Nanosystems Initiative Munich, 80799 Munich, Germany
| | - Jiri Bartek
- Genome Integrity Unit, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark; Department of Medical Biochemistry and Biophysics, Science for Life Laboratory, Karolinska Institute, 171 65 Solna, Sweden
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität, 81377 Munich, Germany; Nanosystems Initiative Munich, 80799 Munich, Germany.
| | - Seyed Moein Moghimi
- School of Medicine, Pharmacy and Health, Durham University, Queen's Campus, Stockton-on-Tees TS17 6BH, UK.
| |
Collapse
|
14
|
Nia AH, Eshghi H, Abnous K, Ramezani M. The intracellular delivery of plasmid DNA using cationic reducible carbon nanotube — Disulfide conjugates of polyethylenimine. Eur J Pharm Sci 2017; 100:176-186. [DOI: 10.1016/j.ejps.2017.01.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 12/31/2016] [Accepted: 01/13/2017] [Indexed: 12/16/2022]
|
15
|
Dréan M, Debuigne A, Goncalves C, Jérôme C, Midoux P, Rieger J, Guégan P. Use of Primary and Secondary Polyvinylamines for Efficient Gene Transfection. Biomacromolecules 2017; 18:440-451. [DOI: 10.1021/acs.biomac.6b01526] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mathilde Dréan
- Sorbonne Universités,
UPMC Univ Paris 06, CNRS, Institut Parisien de Chimie Moléculaire,
Equipe Chimie des Polymères, 4 Place Jussieu, F-75005 Paris, France
- Center
for Education and Research on Macromolecules (CERM), Department of
Chemistry, University of Liege (ULg), Sart-Tilman, Allée de la
Chimie 3, Bat. B6a, B-4000 Liège, Belgium
| | - Antoine Debuigne
- Center
for Education and Research on Macromolecules (CERM), Department of
Chemistry, University of Liege (ULg), Sart-Tilman, Allée de la
Chimie 3, Bat. B6a, B-4000 Liège, Belgium
| | - Cristine Goncalves
- Centre de Biophysique
Moléculaire, UPR4301 CNRS, Rue
Charles Sadron, 45071 Orléans Cedex 2, France
| | - Christine Jérôme
- Center
for Education and Research on Macromolecules (CERM), Department of
Chemistry, University of Liege (ULg), Sart-Tilman, Allée de la
Chimie 3, Bat. B6a, B-4000 Liège, Belgium
| | - Patrick Midoux
- Centre de Biophysique
Moléculaire, UPR4301 CNRS, Rue
Charles Sadron, 45071 Orléans Cedex 2, France
| | - Jutta Rieger
- Sorbonne Universités,
UPMC Univ Paris 06, CNRS, Institut Parisien de Chimie Moléculaire,
Equipe Chimie des Polymères, 4 Place Jussieu, F-75005 Paris, France
| | - Philippe Guégan
- Sorbonne Universités,
UPMC Univ Paris 06, CNRS, Institut Parisien de Chimie Moléculaire,
Equipe Chimie des Polymères, 4 Place Jussieu, F-75005 Paris, France
| |
Collapse
|
16
|
Wang F, Gao L, Meng LY, Xie JM, Xiong JW, Luo Y. A Neutralized Noncharged Polyethylenimine-Based System for Efficient Delivery of siRNA into Heart without Toxicity. ACS APPLIED MATERIALS & INTERFACES 2016; 8:33529-33538. [PMID: 27960377 DOI: 10.1021/acsami.6b13295] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Cationic polymers constitute an important class of materials in development of delivery vehicles for nucleic acid-based therapeutics. Among them, polyethylenimine (PEI) has been a classical cationic carrier intensively studied for therapeutic delivery of DNA, RNA, and short RNA molecules to treat diseases. However, the development of PEI for in vivo applications has been hampered by the inherent problems associated with the material, particularly its cytotoxicity and the instability of the nucleic acid complexation systems formed via electrostatic interactions. Here, we demonstrate a strategy to modify PEI polymers via hydrazidation to create neutralized, stable, and multifunctional system for delivering siRNA molecules. Through substitution of the primary amino groups of PEI with neutral hydrazide groups, cross-linked nanoparticles with surface decorated with a model targeting ligands were generated. The neutral cross-linked siRNA nanoparticles not only showed favorable biocompatibility and cell internalization efficiency in vitro but also allowed for significant tissue uptake and gene silencing efficiency in zebrafish heart in vivo. Our study suggests transformation of conventional branched PEI into a neutral polymer that can lead to a new category of nonviral carriers, and the resulting functional delivery systems may be further explored for development of siRNA therapeutics for treating cardiovascular disease/injury.
Collapse
Affiliation(s)
- Fang Wang
- Department of Biomedical Engineering, College of Engineering, ‡Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, and State Key Laboratory of Natural and Biomimetic Drugs, and §School of Life Sciences, Peking University , Beijing, China 100871
| | - Lu Gao
- Department of Biomedical Engineering, College of Engineering, ‡Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, and State Key Laboratory of Natural and Biomimetic Drugs, and §School of Life Sciences, Peking University , Beijing, China 100871
| | - Liu-Yi Meng
- Department of Biomedical Engineering, College of Engineering, ‡Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, and State Key Laboratory of Natural and Biomimetic Drugs, and §School of Life Sciences, Peking University , Beijing, China 100871
| | - Jing-Ming Xie
- Department of Biomedical Engineering, College of Engineering, ‡Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, and State Key Laboratory of Natural and Biomimetic Drugs, and §School of Life Sciences, Peking University , Beijing, China 100871
| | - Jing-Wei Xiong
- Department of Biomedical Engineering, College of Engineering, ‡Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, and State Key Laboratory of Natural and Biomimetic Drugs, and §School of Life Sciences, Peking University , Beijing, China 100871
| | - Ying Luo
- Department of Biomedical Engineering, College of Engineering, ‡Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, and State Key Laboratory of Natural and Biomimetic Drugs, and §School of Life Sciences, Peking University , Beijing, China 100871
| |
Collapse
|
17
|
Dehshahri A, Sadeghpour H, Keykhaee M, Khalvati B, Sheikhsaran F. Enhanced Delivery of Plasmid Encoding Interleukin-12 Gene by Diethylene Triamine Penta-Acetic Acid (DTPA)-Conjugated PEI Nanoparticles. Appl Biochem Biotechnol 2016; 179:251-69. [PMID: 26801817 DOI: 10.1007/s12010-016-1991-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 01/12/2016] [Indexed: 12/15/2022]
Abstract
Recombinant therapeutic proteins have been considered as an efficient category of medications used for the treatment of various diseases. Despite their effectiveness, there are some reports on the systemic adverse effects of recombinant therapeutic proteins limiting their wide clinical applications. Among different cytokines used for cancer immunotherapy, interleukin-12 (IL-12) has shown great ability as a powerful antitumor and antiangiogenic agent. However, significant toxic reactions following the systemic administration of IL-12 have led researchers to seek for alternative approaches such as the delivery and local expression of the IL-12 gene inside the tumor tissues. In order to transfer the plasmid encoding IL-12 gene, the most extensively investigated polycationic polymer, polyethylenimine (PEI), was modified by diethylene triamine penta-acetic acid (DTPA) to modulate the hydrophobic-hydrophilic balance of the polymer as well as its toxicity. DTPA-conjugated PEI derivatives were able to form complexes in the size range around 100-180 nm with great condensation ability and protection of the plasmid against enzymatic degradation. The highest gene transfer ability was achieved by the DTPA-conjugated PEI at the conjugation degree of 0.1 % where the level of IL-12 production increased up to twofold compared with that of the unmodified PEI. Results of the present study demonstrated that modulation of the surface positive charge of PEI along with the improvement of the polymer hydrophobic balance could be considered as a successful strategy to develop safe and powerful nanocarriers.
Collapse
Affiliation(s)
- Ali Dehshahri
- Department of Pharmaceutical Biotechnology, Shiraz School of Pharmacy, Shiraz University of Medical Sciences, P.O.Box 71345-1583, Shiraz, Iran. .,Pharmaceutical Sciences Research Center, Shiraz School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran. .,Center for Nanotechnology in Drug Delivery, Shiraz School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Hossein Sadeghpour
- Department of Medicinal Chemistry, Shiraz School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Keykhaee
- Department of Pharmaceutical Biotechnology, Shiraz School of Pharmacy, Shiraz University of Medical Sciences, P.O.Box 71345-1583, Shiraz, Iran
| | - Bahman Khalvati
- Department of Pharmaceutical Biotechnology, Shiraz School of Pharmacy, Shiraz University of Medical Sciences, P.O.Box 71345-1583, Shiraz, Iran
| | - Fatemeh Sheikhsaran
- Department of Pharmaceutical Biotechnology, Shiraz School of Pharmacy, Shiraz University of Medical Sciences, P.O.Box 71345-1583, Shiraz, Iran
| |
Collapse
|
18
|
Neuhaus B, Tosun B, Rotan O, Frede A, Westendorf AM, Epple M. Nanoparticles as transfection agents: a comprehensive study with ten different cell lines. RSC Adv 2016. [DOI: 10.1039/c5ra25333k] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The performance of transfection agents to deliver nucleic acids into cells strongly depends on the cell type.
Collapse
Affiliation(s)
- Bernhard Neuhaus
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE)
- University of Duisburg-Essen
- 45117 Essen
- Germany
| | - Benjamin Tosun
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE)
- University of Duisburg-Essen
- 45117 Essen
- Germany
| | - Olga Rotan
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE)
- University of Duisburg-Essen
- 45117 Essen
- Germany
| | - Annika Frede
- Institute of Medical Microbiology
- University Hospital Essen
- University of Duisburg-Essen
- Essen
- Germany
| | - Astrid M. Westendorf
- Institute of Medical Microbiology
- University Hospital Essen
- University of Duisburg-Essen
- Essen
- Germany
| | - Matthias Epple
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE)
- University of Duisburg-Essen
- 45117 Essen
- Germany
| |
Collapse
|
19
|
Santos JCC, Moreno PMD, Mansur AAP, Leiro V, Mansur HS, Pêgo AP. Functionalized chitosan derivatives as nonviral vectors: physicochemical properties of acylated N,N,N-trimethyl chitosan/oligonucleotide nanopolyplexes. SOFT MATTER 2015; 11:8113-8125. [PMID: 26335751 DOI: 10.1039/c5sm01403d] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Cationic polymers have recently attracted attention due to their proven potential for nonviral gene delivery. In this study, we report novel biocompatible nanocomplexes produced using chemically functionalized N,N,N-trimethyl chitosan (TMC) with different N-acyl chain lengths (C5-C18) associated with single-stranded oligonucleotides. The TMC derivatives were synthesized by covalent coupling reactions of quaternized chitosan with n-pentanoic (C5), n-decanoic (C10), and n-octadecanoic (C18) fatty acids, which were extensively characterized by Fourier transform-infrared spectroscopy (FT-IR) and proton nuclear magnetic resonance ((1)H NMR). These N-acylated TMC derivatives (TMCn) were used as cationic polymeric matrices for encapsulating anionic 18-base single-stranded thiophosphorylated oligonucleotides (ssONs), leading to the formation of polyplexes further characterized by zeta potential (ZP), dynamic light scattering (DLS), binding affinity, transfection efficiency and in vitro cytotoxicity assays. The results demonstrated that the length of the grafted hydrophobic N-acyl chain and the relative amino:phosphate groups ratio (N/P ratio) between the TMC derivatives and ssON played crucial roles in determining the physicochemical properties of the obtained nanocomplexes. While none of the tested derivatives showed appreciable cytotoxicity, the type of acyl chain had a remarkable influence on the cell transfection capacity of TMC-ssON nanocomplexes with the derivatives based on stearic acid showing the best performance based on the results of in vitro assays using a model cell line expressing luciferase (HeLa/Luc705).
Collapse
Affiliation(s)
- Joyce C C Santos
- Center of Nanoscience, Nanotechnology and Innovation-CeNano2I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, Av. Antônio Carlos, 6627 - Escola de Engenharia - Bloco 2 - sala 2233, Pampulha, Belo Horizonte/MG 31.270-901, Brazil.
| | | | | | | | | | | |
Collapse
|
20
|
Hashemi M, Parhiz H, Mokhtarzadeh A, Tabatabai SM, Farzad SA, Shirvan HR, Ramezani M. Preparation of Effective and Safe Gene Carriers by Grafting Alkyl Chains to Generation 5 Polypropyleneimine. AAPS PharmSciTech 2015; 16:1002-12. [PMID: 25609375 DOI: 10.1208/s12249-015-0284-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 01/05/2015] [Indexed: 01/11/2023] Open
Abstract
Gene therapy is a novel method to treat a variety of diseases including genetic disorders and cancer. Nonviral gene carriers have now gained considerable attention as gene carrier systems. Polyamidoamine (PAMAM) and polypropyleneimine (PPI) are the two most widely used denderimers in gene delivery studies. The aim of the current study was to investigate the effects of modification of generation 5 polypropyleneimine (G5 PPI) dendrimers with alkanoate groups as hydrophobic moieties on DNA transfection and cytotoxicity. Six, 10, and 16 carbon derivatives of bromoalkanoic acids were conjugated onto PPI with 10%, 30%, and 50% of surface amine grafting. Ethidium bromide exclusion assay results proved the ability of modified carriers to condense DNA. Transfection assay showed higher DNA delivery potential for 30% and 50% grafting with decanoate moieties compared to native G5 PPI and Superfect(TM). 3-(4,5-Dimethylthiazol-2-yl)-2,5-di phenyltetrazolium bromide (MTT) and apoptosis experiments showed lower toxicity for modified carriers compared to unmodified PPI. The hemolytic effect of grafted carriers was not significantly different from G5 PPI. Size and zeta potential measurements revealed that polyplex size was less than 200 nm and electrical charges were in the range 14-25 mV. The hydrophobic modifications improved transfection activity and toxicity of G5 PPI without negatively affecting hemocompatibility. These modified carriers are therefore promising candidates for further in vivo investigations.
Collapse
|
21
|
Safari F, Tamaddon AM, Zarghami N, Abolmali S, Akbarzadeh A. Polyelectrolyte complexes of hTERT siRNA and polyethyleneimine: Effect of degree of PEG grafting on biological and cellular activity. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2015; 44:1561-8. [DOI: 10.3109/21691401.2015.1064936] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Fatemeh Safari
- Medical Biotechnology Department, Tabriz Advanced Medical Science Faculty, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali M. Tamaddon
- Center for Pharmaceutical Nanotechnology and Biomaterials, Shiraz Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nosratollah Zarghami
- Medical Biotechnology Department, Tabriz Advanced Medical Science Faculty, Tabriz University of Medical Sciences, Tabriz, Iran
| | - S. Abolmali
- Center for Pharmaceutical Nanotechnology and Biomaterials, Shiraz Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abolfazl Akbarzadeh
- Medical Biotechnology Department, Tabriz Advanced Medical Science Faculty, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
22
|
Mohammadi M, Salmasi Z, Hashemi M, Mosaffa F, Abnous K, Ramezani M. Single-walled carbon nanotubes functionalized with aptamer and piperazine-polyethylenimine derivative for targeted siRNA delivery into breast cancer cells. Int J Pharm 2015; 485:50-60. [PMID: 25712164 DOI: 10.1016/j.ijpharm.2015.02.031] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Revised: 02/07/2015] [Accepted: 02/10/2015] [Indexed: 12/23/2022]
Abstract
Epithelial cell adhesion molecule (EpCAM) is a glycosylated type 1 membrane protein which is frequently over expressed in most solid tumors and it has recently been identified as a cancer stem cell (CSC) marker. Specific targeting of CSCs using nano-carriers would enhance treatment efficacy of cancer. In this study, we used a RNA aptamer against EpCAM (EpDT3) attached physically to our newly synthesized non-viral vector, based on single-walled carbon nanotube (SWNT) conjugated to piperazine-polyethylenimine derivative. The DNA transfection efficiency and siRNA delivery activity of the synthesized vector was investigated against upregulated BCL9l, which has been associated with breast and colorectal cancers. The complexes of the vector-aptamer/siRNA could specifically induce apoptosis by more than 20% in MCF-7 cell line as a positive EpCAM than MDA-MB-231 cells which are EpCAM negative. The decrease of BCL9l protein level was observed with western blot analysis in MCF-7 cells indicating the targeted silencing activity of the complex.
Collapse
Affiliation(s)
- Marzieh Mohammadi
- Pharmaceutical Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, P.O. Box 91775-1365, Iran
| | - Zahra Salmasi
- Pharmaceutical Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, P.O. Box 91775-1365, Iran
| | - Maryam Hashemi
- Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, P.O. Box 91775-1365, Iran
| | - Fatemeh Mosaffa
- Biotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, P.O. Box 91775-1365, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, P.O. Box 91775-1365, Iran.
| | - Mohammad Ramezani
- Pharmaceutical Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, P.O. Box 91775-1365, Iran.
| |
Collapse
|
23
|
Navarro G, Pan J, Torchilin VP. Micelle-like nanoparticles as carriers for DNA and siRNA. Mol Pharm 2015; 12:301-13. [PMID: 25557580 DOI: 10.1021/mp5007213] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Gene therapy represents a potential efficient approach of disease prevention and therapy. However, due to their poor in vivo stability, gene molecules need to be associated with delivery systems to overcome extracellular and intracellular barriers and allow access to the site of action. Cationic polymeric nanoparticles are popular carriers for small interfering RNA (siRNA) and DNA-based therapeutics for which efficient and safe delivery are important factors that need to be optimized. Micelle-like nanoparticles (MNP) (half micelles, half polymeric nanoparticles) can overcome some of the disadvantages of such cationic carriers by unifying in one single carrier the best of both delivery systems. In this review, we will discuss how the unique properties of MNP including self-assembly, condensation and protection of nucleic acids, improved cell association and gene transfection, and low toxicity may contribute to the successful application of siRNA- and DNA-based therapeutics into the clinic. Recent developments of MNP involving the addition of stimulus-sensitive functions to respond specifically to pathological or externally applied "triggers" (e.g., temperature, pH or enzymatic catalysis, light, or magnetic fields) will be discussed. Finally, we will overview the use of MNP as two-in-one carriers for the simultaneous delivery of different agents (small molecules, imaging agents) and nucleic acid combinations.
Collapse
Affiliation(s)
- Gemma Navarro
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University , Boston, Massachusetts 02115, United States
| | | | | |
Collapse
|
24
|
|
25
|
Jin X, Leclercq L, Cottet H. Determination of polymer log D distributions by micellar and microemulsion electrokinetic chromatography. J Chromatogr A 2014; 1318:244-50. [PMID: 24209298 DOI: 10.1016/j.chroma.2013.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 10/01/2013] [Accepted: 10/04/2013] [Indexed: 10/26/2022]
Abstract
The characterization of the hydrophobicity of polymer compounds in solution remains a challenging issue of importance, especially for biomedical or pharmaceutical applications. To our knowledge, there is no data of polymer hydrophobicity (log D) in the literature. In this work, for the first time, the log D distributions of cationic polymers were characterized using micellar or microemulsion electrokinetic chromatography at physiological pH. The log D distributions of the polymer samples were obtained from the electrophoretic/chromatographic retardation of the polymer derivatives in presence of neutral micelles (or neutral microemulsion), using small cationic molecules for calibration. Separating electrolytes were based on a TRIS–chloride buffer containing a neutral surfactant (polyoxyethyleneglycoldodecyl ether) for the formation of micelles (in water) or microemulsion (in water/n-pentanol mixture).The log D distributions obtained at pH 7.4 using this method were in good agreement with the chemical structures of cationic polypeptides: poly(lys, phe) 1:1 > poly(lys, tyr) 1:1 > poly(lys, trp) 4:1 > poly(lys, ser)3:1 > poly(l-lysine), where x:y represents the molar ratio of each amino acid in the copolymer. Weight average octanol–water log D values and the dispersion of the log D distribution were also defined and determined for each polymer sample.
Collapse
|
26
|
Kim HJ, Miyata K, Nomoto T, Zheng M, Kim A, Liu X, Cabral H, Christie RJ, Nishiyama N, Kataoka K. siRNA delivery from triblock copolymer micelles with spatially-ordered compartments of PEG shell, siRNA-loaded intermediate layer, and hydrophobic core. Biomaterials 2014; 35:4548-56. [DOI: 10.1016/j.biomaterials.2014.02.016] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 02/09/2014] [Indexed: 12/17/2022]
|
27
|
Maury B, Gonçalves C, Tresset G, Zeghal M, Cheradame H, Guégan P, Pichon C, Midoux P. Influence of pDNA availability on transfection efficiency of polyplexes in non-proliferative cells. Biomaterials 2014; 35:5977-85. [PMID: 24768195 DOI: 10.1016/j.biomaterials.2014.04.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 04/01/2014] [Indexed: 02/05/2023]
Abstract
We succeeded in visualizing plasmid DNA (pDNA) in the nucleus and cytosol of non-proliferative cells after transfection with linear polyethylenemine (lPEI) and histidinylated lPEI (His16-lPEI). This was possible with confocal microscope by using pDNA labelled with quantum dots. Indeed pDNA labelled with Cy3 leads to false positive nuclear localization because the saturation of the fluorescence signal overestimated the volume occupied by Cy3-pDNA. Moreover, Cy3 brightness was too weak to detect low amount of pDNA. About 20 to 40 pDNA copies were detected in the nucleus after the transfection of pDNA labelled with quantum dots. Transfection efficiency and cellular imaging data suggested that the cytosolic availability of pDNA, including endosome escape and/or polyplexes dissociation, is crucial for its nuclear delivery. In vitro transcription assay and transfection of cells allowing cytosolic gene expression concluded to better cytosolic availability of pDNA within His16-lPEI polyplexes. Cryo-TEM analyses revealed that His16-lPEI polyplexes exhibited a spherical shape and an amorphous internal structure which differed from the high degree of order of lPEI polyplexes. Altogether, this comparative study indicated that the high transfection efficiency of non-proliferative cells with His16-lPEI polyplexes was related to the amorphous structure and the facilitated dissociation of the assemblies.
Collapse
Affiliation(s)
- Benoit Maury
- Centre de Biophysique Moléculaire, CNRS UPR4301, Inserm et Université d'Orléans, 45071 Orléans cedex 02, France.
| | - Cristine Gonçalves
- Centre de Biophysique Moléculaire, CNRS UPR4301, Inserm et Université d'Orléans, 45071 Orléans cedex 02, France
| | - Guillaume Tresset
- Laboratoire de Physique des Solides, Université Paris-Sud, CNRS, 91405 Orsay cedex, France
| | - Mehdi Zeghal
- Laboratoire de Physique des Solides, Université Paris-Sud, CNRS, 91405 Orsay cedex, France
| | - Hervé Cheradame
- Laboratoire Analyse et Modélisation pour la Biologie et l'Environnement, CNRS UMR8587 Université d'Evry Val d'Essonne, Evry, France
| | - Philippe Guégan
- Laboratoire de Chimie des Polymères, Sorbonne Universités, UPMC Univ Paris 06, UMR 8232, IPCM, Chimie des Polymères, F-75005 Paris, France; CNRS, UMR 8232, IPCM, Chimie des Polymères, F-75005 Paris, France
| | - Chantal Pichon
- Centre de Biophysique Moléculaire, CNRS UPR4301, Inserm et Université d'Orléans, 45071 Orléans cedex 02, France
| | - Patrick Midoux
- Centre de Biophysique Moléculaire, CNRS UPR4301, Inserm et Université d'Orléans, 45071 Orléans cedex 02, France.
| |
Collapse
|
28
|
Gonçalves C, Berchel M, Gosselin MP, Malard V, Cheradame H, Jaffrès PA, Guégan P, Pichon C, Midoux P. Lipopolyplexes comprising imidazole/imidazolium lipophosphoramidate, histidinylated polyethyleneimine and siRNA as efficient formulation for siRNA transfection. Int J Pharm 2014; 460:264-72. [DOI: 10.1016/j.ijpharm.2013.11.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 11/01/2013] [Indexed: 02/05/2023]
|
29
|
Videira M, Arranja A, Rafael D, Gaspar R. Preclinical development of siRNA therapeutics: towards the match between fundamental science and engineered systems. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2013; 10:689-702. [PMID: 24333589 DOI: 10.1016/j.nano.2013.11.018] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 11/21/2013] [Accepted: 11/24/2013] [Indexed: 12/14/2022]
Abstract
UNLABELLED The evolution of synthetic RNAi faces the paradox of interfering with the human biological environment. Due to the fact that all cell physiological processes can be target candidates, silencing a precise biological pathway could be challenging if target selectivity is not properly addressed. Molecular biology has provided scientific tools to suppress some of the most critical issues in gene therapy, while setting the standards for siRNA clinical application. However, the protein down-regulation through the mRNA silencing is intimately related to the sequence-specific siRNA ability to interact accurately with the potential target. Moreover, its in vivo biological fate is highly dependent on the successful design of a vehicle able to overcome both extracellular and intracellular barriers. Anticipating a great deal of innovation, crucial to meet the challenges involved in the RNAi therapeutics, the present review intends to build up a synopsis on the delivery strategies currently developed. FROM THE CLINICAL EDITOR This review discusses recent progress and pertinent limiting factors related to the use of siRNA-s as efficient protein-specific "silencing" agents, focusing on targeted delivery not only to cells of interest, but to the proper intracellular destination.
Collapse
Affiliation(s)
- M Videira
- iMed.UL - Research Institute for Medicines and Pharmaceutical Sciences, Faculty of Pharmacy, University of Lisbon, Av. Professor Gama Pinto, 1649-003 Lisbon, Portugal.
| | - A Arranja
- iMed.UL - Research Institute for Medicines and Pharmaceutical Sciences, Faculty of Pharmacy, University of Lisbon, Av. Professor Gama Pinto, 1649-003 Lisbon, Portugal
| | - D Rafael
- iMed.UL - Research Institute for Medicines and Pharmaceutical Sciences, Faculty of Pharmacy, University of Lisbon, Av. Professor Gama Pinto, 1649-003 Lisbon, Portugal
| | - R Gaspar
- iMed.UL - Research Institute for Medicines and Pharmaceutical Sciences, Faculty of Pharmacy, University of Lisbon, Av. Professor Gama Pinto, 1649-003 Lisbon, Portugal
| |
Collapse
|
30
|
Meng Q, Yin Q, Li Y. Nanocarriers for siRNA delivery to overcome cancer multidrug resistance. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/s11434-013-6030-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
31
|
Navarro G, Essex S, Sawant RR, Biswas S, Nagesha D, Sridhar S, de ILarduya CT, Torchilin VP. Phospholipid-modified polyethylenimine-based nanopreparations for siRNA-mediated gene silencing: implications for transfection and the role of lipid components. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2013; 10:411-9. [PMID: 23928214 DOI: 10.1016/j.nano.2013.07.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 07/15/2013] [Accepted: 07/22/2013] [Indexed: 01/05/2023]
Abstract
UNLABELLED The clinical application of gene silencing mediated by small interfering RNA (siRNA) has been limited by the lack of efficient and safe carriers. Phospholipid modification of low molecular weight polyethylenimine (PEI 1.8 kDa) dramatically increased its gene down-regulation capacity while keeping cytotoxicity levels low. The silencing efficacy was highly dependent on the nature of the lipid grafted to PEI and the polymer/siRNA ratio employed. Phosphoethanolamine (DOPE and DPPE) and phosphocholine (PC) conjugation did not change the physicochemical properties and siRNA binding capacity of PEI complexes but had a large impact on their transfection and ability to down-regulate Green Fluorescent Protein (GFP) expression (60%, 30% and 5% decrease of GFP expression respectively). We found that the micelle-forming structure of DOPE and DPPE-PEI dramatically changed PEI's interaction with cell membranes and played a key role in promoting PEI 1.8 kDa transfection, completely ineffective in the absence of the lipid modification. FROM THE CLINICAL EDITOR While siRNA-based gene silencing methods could have numerous clinical applications, efficient delivery remains a major challenge. This team reports that DOPE-PEI and DPPE-PEI based micelle-forming nanostructures may be able to provide an efficient vector for siRNA transfection.
Collapse
Affiliation(s)
- Gemma Navarro
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA, USA
| | - Sean Essex
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA, USA
| | - Rupa R Sawant
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA, USA
| | - Swati Biswas
- Department of Pharmacy, Birla Institute of Technology and Sciences-Pilani., Hyderabad Campus Jawahar Nagar, Shameerpet Mandal. Hyderabad-500078. AP., India
| | - Dattatri Nagesha
- Department of Pharmaceutics, JSS College of Pharmacy, JSS University S. S. Nagar, Mysore 570 015
| | - Srinivas Sridhar
- Electronic Materials Research Institute, Northeastern University, Boston, MA, USA
| | - Conchita Tros de ILarduya
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Navarra, Pamplona, Spain
| | - Vladimir P Torchilin
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA, USA.
| |
Collapse
|
32
|
Gomez JP, Pichon C, Midoux P. Ability of plasmid DNA complexed with histidinylated lPEI and lPEI to cross in vitro lung and muscle vascular endothelial barriers. Gene 2013; 525:182-90. [DOI: 10.1016/j.gene.2013.03.055] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Revised: 02/21/2013] [Accepted: 03/07/2013] [Indexed: 11/29/2022]
|
33
|
Huang SJ, Wang TP, Lue SI, Wang LF. Pentablock copolymers of pluronic F127 and modified poly(2-dimethyl amino)ethyl methacrylate for internalization mechanism and gene transfection studies. Int J Nanomedicine 2013; 8:2011-27. [PMID: 23745045 PMCID: PMC3671801 DOI: 10.2147/ijn.s44222] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Cationic polymers are one of the major nonviral gene delivery vectors investigated in the past decade. In this study, we synthesized several cationic copolymers using atom transfer radical polymerization (ATRP) for gene delivery vectors: pluronic F127-poly(dimethylaminoethyl methacrylate) (PF127-pDMAEMA), pluronic F127-poly (dimethylaminoethyl methacrylate-tert-butyl acrylate) (PF127-p(DMAEMA-tBA)), and pluronic F127-poly(dimethylaminoethyl methacrylate-acrylic acid) (PF127-p(DMAEMA-AA)). The copolymers showed high buffering capacity and efficiently complexed with plasmid deoxyribonucleic acid (pDNA) to form nanoparticles 80–180 nm in diameter and with positive zeta potentials. In the absence of 10% fetal bovine serum, PF127-p(DMAEMA-AA) showed the highest gene expression and the lowest cytotoxicity in 293T cells. After acrylic acid groups had been linked with a fluorescent dye, the confocal laser scanning microscopic image showed that PF127-p(DMAEMA-AA)/pDNA could efficiently enter the cells. Both clathrin-mediated and caveolae-mediated endocytosis mechanisms were involved. Our results showed that PF127-p(DMAEMA-AA) has great potential to be a gene delivery vector.
Collapse
Affiliation(s)
- Shih-Jer Huang
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | | | | |
Collapse
|
34
|
Alkane-modified low-molecular-weight polyethylenimine with enhanced gene silencing for siRNA delivery. Int J Pharm 2013; 450:44-52. [PMID: 23608201 DOI: 10.1016/j.ijpharm.2013.04.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 02/23/2013] [Accepted: 04/08/2013] [Indexed: 11/23/2022]
Abstract
Small interfering RNA (siRNA) has tremendous potential as a therapeutic agent for diverse diseases; however, due to its susceptibility to degradation and poor cellular uptake, the low efficiency of administration has been the most important limiting factor for clinical applications of siRNA. Herein, we synthesized alkyl chain modified low-molecular-weight polyethylenimines (LMW PEIs) and found that hydrophobically modified PEIs displayed enhanced efficiency in siRNA-mediated knockdown of target genes. To elucidate the mechanism for increased delivery, we characterized the polymers' physicochemical properties and bioactivity via nuclear magnetic resonance (NMR), gel retardation assay, dynamic laser scattering (DLS) analysis, confocal laser scanning microscopy and flow cytometry. The hydrophobic modification reduced siRNA binding affinity but facilitated the formation of nanoparticles in contrast to the original PEI. The PEIs with eight and thirteen alkyl tails were able to self-assemble into nanoparticles and yielded higher cellular uptake, which leaded to even similar efficiencies of 80-90% knockdown as Lipofectamine™ 2000 control. These results suggested that the status of polymers in aqueous solution, which depended on the degree of hydrophobic modification, played an important role in the uptake of siRNA. Therefore, we provided new information on the role of hydrophobic content in the enhanced gene silencing activity.
Collapse
|
35
|
Yang S, Chen Y, Ahmadie R, Ho EA. Advancements in the field of intravaginal siRNA delivery. J Control Release 2013; 167:29-39. [PMID: 23298612 DOI: 10.1016/j.jconrel.2012.12.023] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 12/14/2012] [Accepted: 12/17/2012] [Indexed: 12/17/2022]
Abstract
The vaginal tract is a suitable site for the administration of both local and systemic acting drugs. There are numerous vaginal products on the market such as those approved for contraception, treatment of yeast infection, hormonal replacement therapy, and feminine hygiene. Despite the potential in drug delivery, the vagina is a complex and dynamic organ that requires greater understanding. The recent discovery that injections of double stranded RNA (dsRNA) in Caenorhabditis elegans (C. elegans) results in potent gene specific silencing, was a major scientific revolution. This phenomenon known as RNA interference (RNAi), is believed to protect host genome against invasion by mobile genetic elements such as transposons and viruses. Gene silencing or RNAi has opened new potential opportunities to study the function of a gene in an organism. Furthermore, its therapeutic potential is being investigated in the field of sexually transmitted infections such as human immunodeficiency virus (HIV) and other diseases such as age-related macular degeneration (AMD), diabetes, hypercholesterolemia, respiratory disease, and cancer. This review will focus on the therapeutic potential of siRNA for the treatment and/or prevention of infectious diseases such as HIV, HPV, and HSV within the vaginal tract. Specifically, formulation design parameters to improve siRNA stability and therapeutic efficacy in the vaginal tract will be discussed along with challenges, advancements, and future directions of the field.
Collapse
Affiliation(s)
- Sidi Yang
- Faculty of Pharmacy, University of Manitoba, 750 McDermot Ave, Winnipeg, Manitoba, Canada
| | | | | | | |
Collapse
|
36
|
Maitani Y, Ishigaki K, Nakazawa Y, Aragane D, Akimoto T, Iwamizu M, Kai T, Hayashi K. Polyethylenimine combined with liposomes and with decreased numbers of primary amine residues strongly enhanced therapeutic antiviral efficiency against herpes simplex virus type 2 in a mouse model. J Control Release 2013; 166:139-46. [PMID: 23298614 DOI: 10.1016/j.jconrel.2012.12.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 12/05/2012] [Accepted: 12/18/2012] [Indexed: 01/21/2023]
Abstract
The development of antiviral agents that have novel mechanisms of action is urgently required in the topical therapy of herpes simplex virus type 2 (HSV-2) infections. We reported previously that topical application of branched 3610-Da polyethylenimine (PEI) exhibited preventative antiviral activity. In this study, to develop therapeutic anti-HSV-2 agents, the most potent PEI combined with ~200 nm-sized liposomes with or without oleic acid (liposomes/PEI) was selected in vitro and further evaluated using in vivo studies. The mechanism of action in vivo was elucidated using PEIs with decreased numbers of primary amine residues, resulting from ethylene carbonate treatment, and polyallylamine, a linear polyamine consisting of primary amines. Cytotoxicity and antiviral activity in vitro, and the appearance of acute herpetic disease and virus yields in mice intravaginally administered with liposomes/PEI were evaluated in cell culture assays and a mouse genital herpes model, respectively. In addition, the cellular association of liposome/PEI was examined by flow cytometry and confocal microscopy. PEI showed higher antiviral activity postinfection than preinfection in vivo. Liposome/PEI and PEI with decreased numbers of primary amine residues at a dose of 0.2 mg PEI/mouse exhibited more potent therapeutic antiviral activity than acyclovir and PEI alone without acute lesion appearance or toxicity pre- or postinfection, but polyallylamine was moderately effective only preinfection. Liposome concentrations were important for the effectiveness of liposome/PEI. This finding suggests that PEI combined with liposomes and with slightly decreased numbers of primary amines may be an effective vaginally administrated antiviral drug, and secondary and tertiary amine residues of PEI may contribute to the inhibitory efficiency against viral infection.
Collapse
Affiliation(s)
- Yoshie Maitani
- Institute of Medicinal Chemistry, Hoshi University, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Samal SK, Dash M, Van Vlierberghe S, Kaplan DL, Chiellini E, van Blitterswijk C, Moroni L, Dubruel P. Cationic polymers and their therapeutic potential. Chem Soc Rev 2012; 41:7147-94. [PMID: 22885409 DOI: 10.1039/c2cs35094g] [Citation(s) in RCA: 469] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The last decade has witnessed enormous research focused on cationic polymers. Cationic polymers are the subject of intense research as non-viral gene delivery systems, due to their flexible properties, facile synthesis, robustness and proven gene delivery efficiency. Here, we review the most recent scientific advances in cationic polymers and their derivatives not only for gene delivery purposes but also for various alternative therapeutic applications. An overview of the synthesis and preparation of cationic polymers is provided along with their inherent bioactive and intrinsic therapeutic potential. In addition, cationic polymer based biomedical materials are covered. Major progress in the fields of drug and gene delivery as well as tissue engineering applications is summarized in the present review.
Collapse
Affiliation(s)
- Sangram Keshari Samal
- Polymer Chemistry & Biomaterials Research Group, Ghent University, Krijgslaan 281, S4-Bis, B-9000 Ghent, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Zhou L, Chen Z, Chi W, Yang X, Wang W, Zhang B. Mono-methoxy-poly(3-hydroxybutyrate-co-4-hydroxybutyrate)-graft-hyper-branched polyethylenimine copolymers for siRNA delivery. Biomaterials 2012; 33:2334-44. [DOI: 10.1016/j.biomaterials.2011.11.060] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 11/22/2011] [Indexed: 12/17/2022]
|
39
|
Gene transfer by chemical vectors, and endocytosis routes of polyplexes, lipoplexes and lipopolyplexes in a myoblast cell line. Biomaterials 2012; 33:2980-90. [PMID: 22243799 DOI: 10.1016/j.biomaterials.2011.12.027] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 12/13/2011] [Indexed: 11/23/2022]
Abstract
Chemical vectors are widely developed for providing safe DNA delivery systems. It is well admitted that their endocytosis and intracellular trafficking are critical for the transfection efficiency. Here, we have compared the endocytic pathways of lipoplexes, polyplexes and lipopolyplexes formed with carriers of various chemical compositions. Engineered C2C12 mouse myoblast cells expressing Rab5-EGFP, Rab7-EGFP or Cav1-GFP were used to monitor the location of the plasmid DNA into the endocytic compartments by real time fluorescence confocal microscopy. We observed that (i) DNA complexes made with dioleyl succinyl paromomycin:O,O-dioleyl-N-histamine phosphoramidate (DOSP/MM27) liposomes or histidinylated lPEI (His-lPEI) allowing the highest transfection efficiency displayed a positive ζ potential and were internalized by clathrin-mediated endocytosis, (ii) DOSP/MM27 lipoplexes were 6-times more internalized than His-lPEI polyplexes, (iii) all negatively charged DNA complexes lead to less efficient transfection and entered the cells via caveolae and (iv) lipopolyplexes allowing high transfection efficiency were weakly internalized via caveolae. Our results indicate that the transfection efficiency is better correlated with the nature of the endocytic pathway than with the uptake efficacy. This study shows also that engineered cells expressing specific fluorescent compartments are convenient tools to monitor endocytosis of a fluorescent plasmid DNA by real time fluorescence confocal microscopy.
Collapse
|
40
|
Scholz C, Wagner E. Therapeutic plasmid DNA versus siRNA delivery: common and different tasks for synthetic carriers. J Control Release 2011; 161:554-65. [PMID: 22123560 DOI: 10.1016/j.jconrel.2011.11.014] [Citation(s) in RCA: 246] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 11/10/2011] [Accepted: 11/13/2011] [Indexed: 01/22/2023]
Abstract
Gene therapy offers great opportunities for the treatment of severe diseases including cancer. In recent years the design of synthetic carriers for nucleic acid delivery has become a research field of increasing interest. Studies on the delivery of plasmid DNA (pDNA) have brought up a variety of gene delivery vehicles. The more recently emerged gene silencing strategy by the intracellular delivery of small interfering RNA (siRNA) takes benefit from existing expertise in pDNA transfer. Despite common properties however, delivery of siRNA also faces distinct challenges due to apparent differences in size, stability of the formed nucleic acid complexes, the location and mechanism of action. This review emphasizes the common aspects and main differences between pDNA and siRNA delivery, taking into consideration a wide spectrum of polymer-based, lipidic and peptide carriers. Challenges and opportunities which result from these differences as well as the recent progress made in the optimization of carrier design are presented.
Collapse
Affiliation(s)
- Claudia Scholz
- Pharmaceutical Biotechnology, Center for System-based Drug Research, and Center for NanoScience, Ludwig-Maximilians-Universität, Butenandtstrasse 5-13, 81377 Munich, Germany
| | | |
Collapse
|
41
|
Abstract
This review will cover the current strategies that are being adopted to efficiently deliver small interfering RNA using nonviral vectors, including the use of polymers such as polyethylenimine, poly(lactic-co-glycolic acid), polypeptides, chitosan, cyclodextrin, dendrimers, and polymers-containing different nanoparticles. The article will provide a brief and concise account of underlying principle of these polymeric vectors and their structural and functional modifications which were intended to serve different purposes to affect efficient therapeutic outcome of small-interfering RNA delivery. The modifications of these polymeric vectors will be discussed with reference to stimuli-responsiveness, target specific delivery, and incorporation of nanoconstructs such as carbon nanotubes, gold nanoparticles, and silica nanoparticles. The emergence of small-interfering RNA as the potential therapeutic agent and its mode of action will also be mentioned in a nutshell.
Collapse
Affiliation(s)
- Kaushik Singha
- Department of Chemistry, BK School of Molecular Science, Polymer Research Institute, Pohang University of Science and Technology, Pohang, Korea
| | | | | |
Collapse
|
42
|
Bertrand E, Gonçalves C, Billiet L, Gomez JP, Pichon C, Cheradame H, Midoux P, Guégan P. Histidinylated linear PEI: a new efficient non-toxic polymer for gene transfer. Chem Commun (Camb) 2011; 47:12547-9. [PMID: 22020088 DOI: 10.1039/c1cc15716g] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A series of linear polyethylenimine (lPEI) substituted with histidine residue (His-lPEI) was synthesized using the Michael reaction in order to provide new highly efficient vectors for gene therapy applications (up to 95% of transfected cells) with remarkable low cytotoxicity compared to lPEI-based polyplexes.
Collapse
Affiliation(s)
- Emilie Bertrand
- Laboratoire LAMBE équipe MPI, UMR 8587, Université d'Evry Val d'Essonne, Evry, France
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Nimesh S, Gupta N, Chandra R. Strategies and advances in nanomedicine for targeted siRNA delivery. Nanomedicine (Lond) 2011; 6:729-46. [PMID: 21718181 DOI: 10.2217/nnm.11.15] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
siRNA are a rapidly emerging class of new therapeutic molecules for the treatment of inherited and acquired diseases. However, poor cellular uptake and instability in physiological conditions limits its therapeutic potential, hence a need to develop a delivery system that can protect and efficiently transport siRNA to the target cells has arisen. Nanoparticles have been proposed as suitable delivery vectors with reduced cytotoxicity and enhanced efficacy. These delivery vectors form condensed complexes with siRNA which, in turn, provides protection to siRNA against enzymatic degradation and further leads to tissue and cellular targeting. Nanoparticles derived from polymers, such as chitosan and polyethylenimine have found numerous applications owing to ease of manipulation, high stability, low cost and high gene carrying capability. This article focuses on various aspects of nanomedicine based siRNA delivery with emphasis on targeted delivery to tumors.
Collapse
Affiliation(s)
- Surendra Nimesh
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, Montreal, Quebec, Canada.
| | | | | |
Collapse
|
44
|
Zhang Z, Fang X, Hao J, Li Y, Sha X. Triolein-based polycation lipid nanocarrier for efficient gene delivery: characteristics and mechanism. Int J Nanomedicine 2011; 6:2235-44. [PMID: 22114487 PMCID: PMC3215164 DOI: 10.2147/ijn.s24720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
We proposed to develop a polycation lipid nanocarrier (PLN) with higher transfection efficiency than our previously described polycation nanostrucutred lipid nanocarrier (PNLC). PLN was composed of triolein, cetylated low-molecular-weight polyethylenimine, and dioleoyl phosphatidylethanolamine. The physicochemical properties of PLN and the PLN/DNA complexes (PDC) were characterized. The in vitro transfection was performed in human lung adenocarcinoma (SPC-A1) cells, and the intracellular mechanism was investigated as well. The measurements indicated that PLN and PDC are homogenous nanometer-sized particles with a positive charge. The transfection efficiency of PDC significantly increased with the content of triolein and was higher than that of PNLC and commercial Lipofectamine™ 2000. In particular, the transfection of PLN in the presence of 10% serum was more effective than that in its absence. With the help of specific inhibitors of chlorpromazine and filipin, the clathrin-dependent endocytosis pathway was determined to be the main contributor to the successful transfection mediated by PLN in SPC-A1 cells. The captured images verified that the fluorescent PDC was localized in the lysosomes and nuclei after endocytosis. Thus, PLN represents a novel efficient nonviral gene delivery vector.
Collapse
Affiliation(s)
- Zhiwen Zhang
- Key Laboratory of Smart Drug Delivery, Ministry of Education and PLA, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, People's Republic of China
| | | | | | | | | |
Collapse
|
45
|
Abstract
SiRNA is the trigger of RNA interference, a mechanism discovered in the late 1990s. To release the therapeutic potential of this versatile but large and fragile molecule, excipients are used which either interact by electrostatic interaction, passively encapsulate siRNA or are covalently attached to enable specific and safe delivery of the drug substance. Controlling the delicate balance between protective complexation and release of siRNA at the right point and time is done by understanding excipients–siRNA interactions. These can be lipids, polymers such as PEI, PLGA, Chitosans, Cyclodextrins, as well as aptamers and peptides. This review describes the mechanisms of interaction of the most commonly used siRNA delivery vehicles, and looks at the results of their clinical and preclinical studies.
Collapse
Affiliation(s)
- Katharina Bruno
- Novartis Pharma AG, Technical Research & Development (TRD), Pharmaceutical and Analytical Development (PHAD), CH-4057 Basel, Switzerland.
| |
Collapse
|
46
|
|
47
|
Philipp A, Meyer M, Zintchenko A, Wagner E. Functional modification of amide-crosslinked oligoethylenimine for improved siRNA delivery. REACT FUNCT POLYM 2011. [DOI: 10.1016/j.reactfunctpolym.2010.10.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
48
|
Functional Polymer Conjugates for Medicinal Nucleic Acid Delivery. POLYMERS IN NANOMEDICINE 2011. [DOI: 10.1007/12_2011_148] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|