1
|
Yang X, Sun E, Zhai H, Wang T, Wang S, Gao Y, Hou Q, Guan X, Li S, Li LF, Wu H, Luo Y, Li S, Sun Y, Zhao D, Li Y, Qiu HJ. The antibodies against the A137R protein drive antibody-dependent enhancement of African swine fever virus infection in porcine alveolar macrophages. Emerg Microbes Infect 2024; 13:2377599. [PMID: 38973388 PMCID: PMC11259084 DOI: 10.1080/22221751.2024.2377599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/04/2024] [Indexed: 07/09/2024]
Abstract
African swine fever virus (ASFV) is the causative agent of African swine fever (ASF), a highly contagious disease that can kill up to 100% of domestic pigs and wild boars. It has been shown that the pigs inoculated with some ASF vaccine candidates display more severe clinical signs and die earlier than do pigs not immunized. We hypothesize that antibody-dependent enhancement (ADE) of ASFV infection may be caused by the presence of some unidentified antibodies. In this study, we found that the ASFV-encoded structural protein A137R (pA137R) can be recognized by the anti-ASFV positive sera, indicating that the anti-pA137R antibodies are induced in the ASFV-infected pigs. Interestingly, our results demonstrated that the anti-pA137R antibodies produced in rabbits or pigs enhanced viral replication of different ASFV strains in primary porcine alveolar macrophages (PAMs), the target cells of ASFV. Mechanistic investigations revealed that anti-pA137R antibodies were able to promote the attachment of ASFV to PAMs and two types of Fc gamma receptors (FcγRs), FcγRII and FcγRIII, mediated the ADE of ASFV infection. Taken together, anti-pA137R antibodies are able to drive ASFV ADE in PAMs. These findings shed new light on the roles of anti-ASFV antibodies and have implications for the pathophysiology of the disease and the development of ASF vaccines.
Collapse
Affiliation(s)
- Xiaoke Yang
- State Key Laboratory for Animal Disease Control and Prevention, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, CAAS, Harbin, People’s Republic of China
| | - Encheng Sun
- State Key Laboratory for Animal Disease Control and Prevention, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, CAAS, Harbin, People’s Republic of China
- Institute of Western Agriculture, CAAS, Changji, People’s Republic of China
| | - Huanjie Zhai
- State Key Laboratory for Animal Disease Control and Prevention, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, CAAS, Harbin, People’s Republic of China
| | - Tao Wang
- State Key Laboratory for Animal Disease Control and Prevention, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, CAAS, Harbin, People’s Republic of China
| | - Shida Wang
- State Key Laboratory for Animal Disease Control and Prevention, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, CAAS, Harbin, People’s Republic of China
| | - Yuxuan Gao
- State Key Laboratory for Animal Disease Control and Prevention, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, CAAS, Harbin, People’s Republic of China
| | - Qinghe Hou
- State Key Laboratory for Animal Disease Control and Prevention, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, CAAS, Harbin, People’s Republic of China
| | - Xiangyu Guan
- State Key Laboratory for Animal Disease Control and Prevention, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, CAAS, Harbin, People’s Republic of China
| | - Shuwen Li
- State Key Laboratory for Animal Disease Control and Prevention, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, CAAS, Harbin, People’s Republic of China
| | - Lian-Feng Li
- State Key Laboratory for Animal Disease Control and Prevention, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, CAAS, Harbin, People’s Republic of China
| | - Hongxia Wu
- State Key Laboratory for Animal Disease Control and Prevention, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, CAAS, Harbin, People’s Republic of China
| | - Yuzi Luo
- State Key Laboratory for Animal Disease Control and Prevention, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, CAAS, Harbin, People’s Republic of China
| | - Su Li
- State Key Laboratory for Animal Disease Control and Prevention, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, CAAS, Harbin, People’s Republic of China
| | - Yuan Sun
- State Key Laboratory for Animal Disease Control and Prevention, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, CAAS, Harbin, People’s Republic of China
| | - Dongming Zhao
- State Key Laboratory for Animal Disease Control and Prevention, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, CAAS, Harbin, People’s Republic of China
| | - Yongfeng Li
- State Key Laboratory for Animal Disease Control and Prevention, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, CAAS, Harbin, People’s Republic of China
| | - Hua-Ji Qiu
- State Key Laboratory for Animal Disease Control and Prevention, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, CAAS, Harbin, People’s Republic of China
| |
Collapse
|
2
|
Miranda-López A, González-Ortega O, Govea-Alonso DO, Betancourt-Mendiola L, Comas-García M, Rosales-Mendoza S. Rational design and production of a chimeric antigen targeting Zika virus that induces neutralizing antibodies in mice. Vaccine 2024; 42:3674-3683. [PMID: 38749821 DOI: 10.1016/j.vaccine.2024.04.080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/14/2024] [Accepted: 04/25/2024] [Indexed: 06/07/2024]
Abstract
The Zika virus (ZIKV) is considered a public health problem worldwide due to its association with the development of microcephaly and the Guillain-Barré syndrome. Currently, there is no specific treatment or vaccine approved to combat this disease, and thus, developing safe and effective vaccines is a relevant goal. In this study, a multi-epitope protein called rpZDIII was designed based on a series of ZIKV antigenic sequences, a bacterial carrier, and linkers. The analysis of the predicted 3D structure of the rpZDIII chimeric antigen was performed on the AlphaFold 2 server, and it was produced in E. coli and purified from inclusion bodies, followed by solubilization and refolding processes. The yield achieved for rpZDIII was 11 mg/L in terms of pure soluble recombinant protein per liter of fermentation. rpZDIII was deemed immunogenic since it induced serum IgG and IgM responses in mice upon subcutaneous immunization in a three-dose scheme. Moreover, sera from mice immunized with rpZDIII showed neutralizing activity against ZIKV. Therefore, this study reveals rpZDIII as a promising immunogen for the development of a rationally designed multi-epitope vaccine against ZIKV, and completion of its preclinical evaluation is guaranteed.
Collapse
Affiliation(s)
- Arleth Miranda-López
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, SLP 78210, México
| | - Omar González-Ortega
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, SLP 78210, México; Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550, Lomas 2ª. Sección, San Luis Potosí 78210 México
| | - Dania O Govea-Alonso
- Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550, Lomas 2ª. Sección, San Luis Potosí 78210 México
| | - Lourdes Betancourt-Mendiola
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, SLP 78210, México; Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550, Lomas 2ª. Sección, San Luis Potosí 78210 México
| | - Mauricio Comas-García
- Sección de Microscopía de Alta Resolución, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550, Lomas 2ª. Sección, San Luis Potosí 78210, México; Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, Av. Parque Chapultepec 1570, San Luis, S.L.P., San Luis Potosí 78210, México.
| | - Sergio Rosales-Mendoza
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, SLP 78210, México; Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550, Lomas 2ª. Sección, San Luis Potosí 78210 México.
| |
Collapse
|
3
|
Rzymski P, Szuster-Ciesielska A, Dzieciątkowski T, Gwenzi W, Fal A. mRNA vaccines: The future of prevention of viral infections? J Med Virol 2023; 95:e28572. [PMID: 36762592 DOI: 10.1002/jmv.28572] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023]
Abstract
Messenger RNA (mRNA) vaccines against COVID-19 are the first authorized biological preparations developed using this platform. During the pandemic, their administration has been proven to be a life-saving intervention. Here, we review the main advantages of using mRNA vaccines, identify further technological challenges to be met during the development of the mRNA platform, and provide an update on the clinical progress on leading mRNA vaccine candidates against different viruses that include influenza viruses, human immunodeficiency virus 1, respiratory syncytial virus, Nipah virus, Zika virus, human cytomegalovirus, and Epstein-Barr virus. The prospects and challenges of manufacturing mRNA vaccines in low-income countries are also discussed. The ongoing interest and research in mRNA technology are likely to overcome some existing challenges for this technology (e.g., related to storage conditions and immunogenicity of some components of lipid nanoparticles) and enhance the portfolio of vaccines against diseases for which classical formulations are already authorized. It may also open novel pathways of protection against infections and their consequences for which no safe and efficient immunization methods are currently available.
Collapse
Affiliation(s)
- Piotr Rzymski
- Department of Environmental Medicine, Poznan University of Medical Sciences, Poznań, Poland.,Integrated Science Association (ISA), Universal Scientific Education and Research Network (USERN), Poznań, Poland
| | - Agnieszka Szuster-Ciesielska
- Department of Virology and Immunology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | | | - Willis Gwenzi
- Alexander von Humboldt Fellow & Guest Professor, Grassland Science and Renewable Plant Resources, Faculty of Organic Agricultural Sciences, Universität Kassel, Witzenhausen, Germany.,Alexander von Humboldt Fellow & Guest Professor, Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Potsdam, Germany
| | - Andrzej Fal
- Collegium Medicum, Warsaw Faculty of Medicine, Cardinal Stefan Wyszynski University, Warsaw, Poland.,Department of Public Health, Wrocław Medical University, Wrocław, Poland
| |
Collapse
|
4
|
He L, Sun W, Yang L, Liu W, Li J. A multiple-target mRNA-LNP vaccine induces protective immunity against experimental multi-serotype DENV in mice. Virol Sin 2022; 37:746-757. [PMID: 35835315 PMCID: PMC9583182 DOI: 10.1016/j.virs.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 07/04/2022] [Indexed: 11/23/2022] Open
Abstract
Dengue virus (DENV) is a mosquito-borne virus with a rapid spread to humans, causing mild to potentially fatal illness in hundreds of millions of people each year. Due to the large number of serotypes of the virus, there remains an unmet need to develop protective vaccines for a broad spectrum of the virus. Here, we constructed a modified mRNA vaccine containing envelope domain III (E-DIII) and non-structural protein 1 (NS1) coated with lipid nanoparticles. This multi-target vaccine induced a robust antiviral immune response and increased neutralizing antibody titers that blocked all four types of DENV infection in vitro without significant antibody-dependent enhancement (ADE). In addition, there was more bias for Th1 than Th2 in the exact E-DIII and NS1-specific T cell responses after a single injection. Importantly, intramuscular immunization limited DENV transmission in vivo and eliminated vascular leakage. Our findings highlight that chimeric allogeneic structural and non-structural proteins can be effective targets for DENV vaccine and that they can prevent the further development of congenital DENV syndrome.
Collapse
Affiliation(s)
- Lihong He
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenqiang Sun
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China; Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, Guangdong, 518000, China
| | - Limin Yang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wenjun Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China; Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, Guangdong, 518000, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Institute of Microbiology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Jing Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
5
|
Yang X, Zhang X, Zhao X, Yuan M, Zhang K, Dai J, Guan X, Qiu HJ, Li Y. Antibody-Dependent Enhancement: ″Evil″ Antibodies Favorable for Viral Infections. Viruses 2022; 14:v14081739. [PMID: 36016361 PMCID: PMC9412366 DOI: 10.3390/v14081739] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 12/16/2022] Open
Abstract
The pandemics caused by emerging viruses such as severe acute respiratory syndrome coronavirus 2 result in severe disruptions to public health. Vaccines and antibody drugs play essential roles in the control and prevention of emerging infectious diseases. However, in contrast with the neutralizing antibodies (NAbs), sub- or non-NAbs may facilitate the virus to enter the cells and enhance viral infection, which is termed antibody-dependent enhancement (ADE). The ADE of most virus infections is mediated by the Fc receptors (FcRs) expressed on the myeloid cells, while others are developed by other mechanisms, such as complement receptor-mediated ADE. In this review, we comprehensively analyzed the characteristics of the viruses inducing FcRs-mediated ADE and the new molecular mechanisms of ADE involved in the virus entry, immune response, and transcription modulation, which will provide insights into viral pathogenicity and the development of safer vaccines and effective antibody drugs against the emerging viruses inducing ADE.
Collapse
Affiliation(s)
- Xiaoke Yang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Xin Zhang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Xiaotian Zhao
- College of Animal Science and Animal Medicine, Tianjin Agricultural University, Tianjin 300384, China
| | - Mengqi Yuan
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Kehui Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Jingwen Dai
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Xiangyu Guan
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Hua-Ji Qiu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
- College of Animal Science and Animal Medicine, Tianjin Agricultural University, Tianjin 300384, China
- Correspondence: (H.-J.Q.); (Y.L.)
| | - Yongfeng Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
- Correspondence: (H.-J.Q.); (Y.L.)
| |
Collapse
|
6
|
Genotype-Dependent Immunogenicity of Dengue Virus Type 2 Asian I and Asian/American Genotypes in Common Marmoset ( Callithrix jacchus): Discrepancy in Neutralizing and Infection-Enhancing Antibody Levels between Genotypes. Microorganisms 2021; 9:microorganisms9112196. [PMID: 34835327 PMCID: PMC8618970 DOI: 10.3390/microorganisms9112196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/18/2021] [Accepted: 10/18/2021] [Indexed: 12/04/2022] Open
Abstract
Owing to genotype-specific neutralizing antibodies, analyzing differences in the immunogenic variation among dengue virus (DENV) genotypes is central to effective vaccine development. Herein, we characterized the viral kinetics and antibody response induced by DENV type 2 Asian I (AI) and Asian/American (AA) genotypes using marmosets (Callithrix jacchus) as models. Two groups of marmosets were inoculated with AI and AA genotypes, and serial plasma samples were collected. Viremia levels were determined using quantitative reverse transcription-PCR, plaque assays, and antigen enzyme-linked immunosorbent assay (ELISA). Anti-DENV immunoglobulin M and G antibodies, neutralizing antibody titer, and antibody-dependent enhancement (ADE) activity were determined using ELISA, plaque reduction neutralization test, and ADE assay, respectively. The AI genotype induced viremia for a longer duration, but the AA genotype induced higher levels of viremia. After four months, the neutralizing antibody titer induced by the AA genotype remained high, but that induced by the AI genotype waned. ADE activity toward Cosmopolitan genotypes was detected in marmosets inoculated with the AI genotype. These findings indicate discrepancies between heterologous genotypes that influence neutralizing antibodies and viremia in marmosets, a critical issue in vaccine development.
Collapse
|
7
|
Influence of obesity on serum levels of SARS-CoV-2-specific antibodies in COVID-19 patients. PLoS One 2021; 16:e0245424. [PMID: 33760825 PMCID: PMC7990309 DOI: 10.1371/journal.pone.0245424] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 02/25/2021] [Indexed: 12/13/2022] Open
Abstract
SARS-CoV-2 (Severe Acute Respiratory Syndrome Corona Virus-2), cause of COVID-19 (Coronavirus Disease of 2019), represents a significant risk to people living with pre-existing conditions associated with exacerbated inflammatory responses and consequent dysfunctional immunity. In this paper, we have evaluated the influence of obesity, a condition associated with chronic systemic inflammation, on the secretion of SARS-CoV-2-specific IgG antibodies in the blood of COVID-19 patients. Our hypothesis is that obesity is associated with reduced amounts of specific IgG antibodies. Results have confirmed our hypothesis and have shown that SARS-CoV-2 IgG antibodies are negatively associated with Body Mass Index (BMI) in COVID-19 obese patients, as expected based on the known influence of obesity on humoral immunity. Antibodies in COVID-19 obese patients are also negatively associated with serum levels of pro-inflammatory and metabolic markers of inflammaging and pulmonary inflammation, such as SAA (serum amyloid A protein), CRP (C-reactive protein), and ferritin, but positively associated with NEFA (nonesterified fatty acids). These results altogether could help to identify an inflammatory signature with strong predictive value for immune dysfunction. Inflammatory markers identified may subsequently be targeted to improve humoral immunity in individuals with obesity and in individuals with other chronic inflammatory conditions.
Collapse
|
8
|
Cui G, Si L, Wang Y, Zhou J, Yan H, Jiang L. Antibody-dependent enhancement (ADE) of dengue virus: Identification of the key amino acid that is vital in DENV vaccine research. J Gene Med 2021; 23:e3297. [PMID: 33217097 PMCID: PMC7900978 DOI: 10.1002/jgm.3297] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/15/2020] [Accepted: 11/15/2020] [Indexed: 12/24/2022] Open
Abstract
Background The antibody‐dependent enhancement (ADE) of dengue virus (DENV) has critically restricted vaccine development. Prior research suggested pr4 as the probable ADE epitope of DENV. Methods Chimeric DENV was constructed by replacing the DENV pr4 gene with the corresponding Japanese encephalitis virus (JEV) gene to determine whether it can reduce ADE activities. An alanine scanning method and bioinformatics analysis were utilized to identify the amino acid of pr4 that was crucial as an ADE epitope. Results Chimeric virus reduced ADE and virulence. The amino acids at the following locations on the mutant peptides showed significantly reduced binding ability to prM antibody: pr4.5 (position 5 – leucine), pr4.6 (position 6 – leucine), pr4.7 (position 7 – phenyalanine) and pr4.16 (position 16 – cysteine). The four amino acids had formed a pocket‐like structure, which could increase the possibility of binding to an antibody. Conclusions ADE activities could be reduced by replacing the DENV pr4 gene with the corresponding JEV gene. Leucine at position 5, leucine at position 6, phenyalanine at position 7 and cysteine at position 16 were the key amino acid sites in the ADE response of DENV. The occurrence of ADE can potentially be reduced by the replacement of key amino acids, hence highlighting its possible contribution to dengue vaccine design, paving a way for future vaccine research.
Collapse
Affiliation(s)
- Guohui Cui
- Key Laboratory for Tropic Diseases Control, Ministry of Education of China, Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Lulu Si
- Department of Gynaecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, China
| | - Ying Wang
- Institute of Nanomedicine Technology, Department of Laboratory Medicine, Institutional Key Laboratory of Clinical Laboratory Diagnostics, Weifang Medical University, Weifang, Shandong, China
| | - Junmei Zhou
- Key Laboratory for Tropic Diseases Control, Ministry of Education of China, Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Huijun Yan
- Key Laboratory for Tropic Diseases Control, Ministry of Education of China, Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Lifang Jiang
- Key Laboratory for Tropic Diseases Control, Ministry of Education of China, Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
9
|
Xu L, Ma Z, Li Y, Pang Z, Xiao S. Antibody dependent enhancement: Unavoidable problems in vaccine development. Adv Immunol 2021; 151:99-133. [PMID: 34656289 PMCID: PMC8438590 DOI: 10.1016/bs.ai.2021.08.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In some cases, antibodies can enhance virus entry and replication in cells. This phenomenon is called antibody-dependent infection enhancement (ADE). ADE not only promotes the virus to be recognized by the target cell and enters the target cell, but also affects the signal transmission in the target cell. Early formalin-inactivated virus vaccines such as aluminum adjuvants (RSV and measles) have been shown to induce ADE. Although there is no direct evidence that there is ADE in COVID-19, this potential risk is a huge challenge for prevention and vaccine development. This article focuses on the virus-induced ADE phenomenon and its molecular mechanism. It also summarizes various attempts in vaccine research and development to eliminate the ADE phenomenon, and proposes to avoid ADE in vaccine development from the perspective of antigens and adjuvants.
Collapse
|
10
|
Sánchez-Zuno GA, Matuz-Flores MG, González-Estevez G, Nicoletti F, Turrubiates-Hernández FJ, Mangano K, Muñoz-Valle JF. A review: Antibody-dependent enhancement in COVID-19: The not so friendly side of antibodies. Int J Immunopathol Pharmacol 2021; 35:20587384211050199. [PMID: 34632844 PMCID: PMC8512237 DOI: 10.1177/20587384211050199] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 09/14/2021] [Indexed: 12/23/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), represents an unprecedented global public health emergency with economic and social consequences. One of the main concerns in the development of vaccines is the antibody-dependent enhancement phenomenon, better known as ADE. In this review, we provide an overview of SARS-CoV-2 infection as well as the immune response generated by the host. On the bases of this principle, we also describe what is known about the ADE phenomenon in various viral infections and its possible role as a limiting factor in the development of new vaccines and therapeutic strategies.
Collapse
Affiliation(s)
- Gabriela Athziri Sánchez-Zuno
- Instituto de Investigación en
Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de
Guadalajara, Guadalajara, México
| | - Mónica Guadalupe Matuz-Flores
- Instituto de Investigación en
Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de
Guadalajara, Guadalajara, México
| | - Guillermo González-Estevez
- Instituto de Investigación en
Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de
Guadalajara, Guadalajara, México
| | - Ferdinando Nicoletti
- Department of Biomedical and
Biotechnological Sciences, University of Catania, Catania, Italy
| | | | - Katia Mangano
- Department of Biomedical and
Biotechnological Sciences, University of Catania, Catania, Italy
| | - José Francisco Muñoz-Valle
- Instituto de Investigación en
Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de
Guadalajara, Guadalajara, México
| |
Collapse
|