1
|
Han T, Tong W, Xie J, Guo X, Zhang L. FOXF2 suppressed esophageal squamous cell carcinoma by reducing M2 TAMs via modulating RNF144A-FTO axis. Int Immunopharmacol 2024; 143:113422. [PMID: 39447407 DOI: 10.1016/j.intimp.2024.113422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/08/2024] [Accepted: 10/13/2024] [Indexed: 10/26/2024]
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the deadliest cancers because of its high invasiveness and low survival. Tumor-associated macrophages (TAMs) are closely associated with the tumor cell proliferation, metastasis and immunosuppression. As a member of the FOX family, forkhead box F2 (FOXF2) was down-regulated in ESCC. However, its role in ESCC and TAMs, as well as the underlying mechanism, remains unclear. We found that differentially expressed genes (DEGs) in ESCC were enriched in proliferation, migration, macrophage and cancer pathways. Among these DEGs, FOXF2 caught our eyes. FOXF2 was down-regulated in ESCC. Overexpression FOXF2 inhibited the proliferation of ESCC cells and the M2 polarization of TAMs, but silenced FOXF2 reversed these results. Notably, FOXF2 promoted the transcription of ring finger protein 144A (RNF144A), which is an E3 ubiquitin ligase, causing the ubiquitination and degradation of FTO Alpha-Ketoglutarate Dependent Dioxygenase (FTO), an N6-methyladenosine (m6A) demethylase. Furthermore, overexpression of FTO abolished the effects of FOXF2 on TAM polarization. In conclusion, FOXF2 alleviates ESCC via promoting the transcription of RNF144A which results in the ubiquitylation and degradation of FTO. Targeting FOXF2/RNF144A/FOT axis might be a possible strategy for the treatment of ESCC.
Collapse
Affiliation(s)
- Tianci Han
- Department of Thoracic Surgery, Cancer Hospital of Dalian University of Technology, Shenyang 110042, China; Department of Thoracic Surgery, Liaoning Cancer Hospital & Institute, Shenyang 110042, China
| | - Wei Tong
- Department of Thoracic Surgery, Cancer Hospital of Dalian University of Technology, Shenyang 110042, China; Department of Thoracic Surgery, Liaoning Cancer Hospital & Institute, Shenyang 110042, China
| | - Junwei Xie
- Department of Thoracic Surgery, Cancer Hospital of Dalian University of Technology, Shenyang 110042, China; Department of Thoracic Surgery, Liaoning Cancer Hospital & Institute, Shenyang 110042, China
| | - Xiaoqi Guo
- Liaoning University of Traditional Chinese Medicine, Shenyang 110847, China
| | - Liang Zhang
- Department of Thoracic Surgery, Cancer Hospital of Dalian University of Technology, Shenyang 110042, China; Department of Thoracic Surgery, Liaoning Cancer Hospital & Institute, Shenyang 110042, China.
| |
Collapse
|
2
|
Huang L, Shen Q, Yu K, Yang J, Li X. RBPMS-AS1 sponges miR-19a-3p to restrain cervical cancer cells via enhancing PLCL1-mediated pyroptosis. Biotechnol Appl Biochem 2024. [PMID: 39300709 DOI: 10.1002/bab.2667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/31/2024] [Indexed: 09/22/2024]
Abstract
Cervical cancer (CC) poses a threat to human health. Enhancing pyroptosis can prevent the proliferation and epithelial-mesenchymal transition (EMT) of tumor cells. This study aims to reveal the candidates that modulate pyroptosis in CC. Accordingly, the common microRNAs (miRNAs/miRs) that were sponged by RBPMS antisense RNA 1 (RBPMS-AS1) and could target Phospholipase C-Like 1 (PLCL1) were intersected. The expression of PBPMS-AS1/miR-19a-3p (candidate miRNA)/PLCL1 was predicted in cervical squamous cell carcinoma (CESC), by which the expression location of RBPMS-AS1 and the binding between RBPMS-AS1/PLCL1 and miR-19a-3p were analyzed. The targeting relationship between RBPMS-AS1/PLCL1 and miR-19a-3p was confirmed by dual-luciferase reporter assay. After the transfection, cell counting kit-8 assay, colony formation assay, quantitative reverse transcription PCR, and Western blot were implemented for cell viability and proliferation analysis as well as gene and protein expression quantification analysis. Based on the results, RBPMS-AS1 and PLCL1 were lowly expressed, yet miR-19a-3p was highly expressed in CESC. RBPMS-AS1 overexpression diminished the proliferation and expressions of N-cadherin, vimentin, and miR-19a-3p, yet enhanced those of E-cadherin, PLCL1, and pyroptosis-relevant proteins (inteleukin-1β, caspase-1, and gasdermin D N-terminal). However, the above RBPMS-AS1 overexpression-induced effects were counteracted in the presence of miR-19a-3p. There also existed a targeting relationship and negative interplay between PLCL1 and miR-19a-3p. In short, RBPMS-AS1 sponges miR-19a-3p and represses the growth and EMT of CC cells via enhancing PLCL1-mediated pyroptosis.
Collapse
Affiliation(s)
- Lina Huang
- Department of Gynecology, The Affiliated Women and Children's Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Qinqin Shen
- Department of Gynecology, The Affiliated Women and Children's Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Kun Yu
- Department of Gynecology, The Affiliated Women and Children's Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Jie Yang
- Department of Gynecology, The Affiliated Women and Children's Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Xiuxiu Li
- Department of Science and Education, The Affiliated Women and Children's Hospital of Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
3
|
Lin Y, Zhao W, Lv Z, Xie H, Li Y, Zhang Z. The functions and mechanisms of long non-coding RNA in colorectal cancer. Front Oncol 2024; 14:1419972. [PMID: 39026978 PMCID: PMC11254705 DOI: 10.3389/fonc.2024.1419972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/18/2024] [Indexed: 07/20/2024] Open
Abstract
CRC poses a significant challenge in the global health domain, with a high number of deaths attributed to this disease annually. If CRC is detected only in its advanced stages, the difficulty of treatment increases significantly. Therefore, biomarkers for the early detection of CRC play a crucial role in improving patient outcomes and increasing survival rates. The development of a reliable biomarker for early detection of CRC is particularly important for timely diagnosis and treatment. However, current methods for CRC detection, such as endoscopic examination, blood, and stool tests, have certain limitations and often only detect cases in the late stages. To overcome these constraints, researchers have turned their attention to molecular biomarkers, which are considered a promising approach to improving CRC detection. Non-invasive methods using biomarkers such as mRNA, circulating cell-free DNA, microRNA, LncRNA, and proteins can provide more reliable diagnostic information. These biomarkers can be found in blood, tissue, stool, and volatile organic compounds. Identifying molecular biomarkers with high sensitivity and specificity for the early and safe, economic, and easily measurable detection of CRC remains a significant challenge for researchers.
Collapse
Affiliation(s)
- Yuning Lin
- Medical Laboratory, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, China
| | - Wenzhen Zhao
- Medical Laboratory, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, China
| | - Zhenyi Lv
- Medical Laboratory, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, China
| | - Hongyan Xie
- Medical Laboratory, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, China
| | - Ying Li
- Ultrasonography Department, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Zhongying Zhang
- Medical Laboratory, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, China
| |
Collapse
|
4
|
Mohajeri Khorasani A, Mohammadi S, Raghibi A, Haj Mohammad Hassani B, Bazghandi B, Mousavi P. miR-17-92a-1 cluster host gene: a key regulator in colorectal cancer development and progression. Clin Exp Med 2024; 24:85. [PMID: 38662056 PMCID: PMC11045601 DOI: 10.1007/s10238-024-01331-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/14/2024] [Indexed: 04/26/2024]
Abstract
Colorectal cancer (CRC), recognized among the five most prevalent malignancies and most deadly cancers, manifests multifactorial influences stemming from environmental exposures, dietary patterns, age, and genetic predisposition. Although substantial progress has been made in comprehending the etiology of CRC, the precise genetic components driving its pathogenesis remain incompletely elucidated. Within the expansive repertoire of non-coding RNAs, particular focus has centered on the miR-17-92a-1 cluster host gene (MIR17HG) and its associated miRNAs, which actively participate in diverse cellular processes and frequently exhibit heightened expression in various solid tumors, notably CRC. Therefore, the primary objective of this research is to undertake an extensive inquiry into the regulatory mechanisms, structural features, functional attributes, and potential diagnostic and therapeutic implications associated with this cluster in CRC. Furthermore, the intricate interplay between this cluster and the development and progression of CRC will be explored. Our findings underscore the upregulation of the miR-17-92a-1 cluster host gene (MIR17HG) and its associated miRNAs in CRC compared to normal tissues, thus implying their profound involvement in the progression of CRC. Collectively, these molecules are implicated in critical oncogenic processes, encompassing metastatic activity, regulation of apoptotic pathways, cellular proliferation, and drug resistance. Consequently, these findings shed illuminating insights into the potential of MIR17HG and its associated miRNAs as promising targets for therapeutic interventions in the management of CRC.
Collapse
Affiliation(s)
- Amirhossein Mohajeri Khorasani
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
- Student Research Committee, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Samane Mohammadi
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
- Student Research Committee, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Alireza Raghibi
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Behzad Haj Mohammad Hassani
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
- Student Research Committee, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Behina Bazghandi
- Protein Research Center, Shahid Beheshti University, Tehran, Iran
| | - Pegah Mousavi
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| |
Collapse
|
5
|
Lee YJ, Kim WR, Park EG, Lee DH, Kim JM, Shin HJ, Jeong HS, Roh HY, Kim HS. Exploring the Key Signaling Pathways and ncRNAs in Colorectal Cancer. Int J Mol Sci 2024; 25:4548. [PMID: 38674135 PMCID: PMC11050203 DOI: 10.3390/ijms25084548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/19/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
Colorectal cancer (CRC) is the third most prevalent cancer to be diagnosed, and it has a substantial mortality rate. Despite numerous studies being conducted on CRC, it remains a significant health concern. The disease-free survival rates notably decrease as CRC progresses, emphasizing the urgency for effective diagnostic and therapeutic approaches. CRC development is caused by environmental factors, which mostly lead to the disruption of signaling pathways. Among these pathways, the Wingless/Integrated (Wnt) signaling pathway, Phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) signaling pathway, Mitogen-Activated Protein Kinase (MAPK) signaling pathway, Transforming Growth Factor-β (TGF-β) signaling pathway, and p53 signaling pathway are considered to be important. These signaling pathways are also regulated by non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs). They have emerged as crucial regulators of gene expression in CRC by changing their expression levels. The altered expression patterns of these ncRNAs have been implicated in CRC progression and development, suggesting their potential as diagnostic and therapeutic targets. This review provides an overview of the five key signaling pathways and regulation of ncRNAs involved in CRC pathogenesis that are studied to identify promising avenues for diagnosis and treatment strategies.
Collapse
Affiliation(s)
- Yun Ju Lee
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (Y.J.L.); (W.R.K.); (E.G.P.); (D.H.L.); (J.-m.K.); (H.J.S.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
| | - Woo Ryung Kim
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (Y.J.L.); (W.R.K.); (E.G.P.); (D.H.L.); (J.-m.K.); (H.J.S.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
| | - Eun Gyung Park
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (Y.J.L.); (W.R.K.); (E.G.P.); (D.H.L.); (J.-m.K.); (H.J.S.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
| | - Du Hyeong Lee
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (Y.J.L.); (W.R.K.); (E.G.P.); (D.H.L.); (J.-m.K.); (H.J.S.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
| | - Jung-min Kim
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (Y.J.L.); (W.R.K.); (E.G.P.); (D.H.L.); (J.-m.K.); (H.J.S.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
| | - Hae Jin Shin
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (Y.J.L.); (W.R.K.); (E.G.P.); (D.H.L.); (J.-m.K.); (H.J.S.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
| | - Hyeon-su Jeong
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (Y.J.L.); (W.R.K.); (E.G.P.); (D.H.L.); (J.-m.K.); (H.J.S.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
| | - Hyun-Young Roh
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - Heui-Soo Kim
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
6
|
Azizidoost S, Ghaedrahmati F, Sheykhi-Sabzehpoush M, Uddin S, Ghafourian M, Mousavi Salehi A, Keivan M, Cheraghzadeh M, Nazeri Z, Farzaneh M, Khoshnam SE. The role of LncRNA MCM3AP-AS1 in human cancer. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2023; 25:33-47. [PMID: 36002764 DOI: 10.1007/s12094-022-02904-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 07/18/2022] [Indexed: 01/07/2023]
Abstract
Long noncoding RNAs (lncRNA) play pivotal roles in every level of gene and genome regulation. MCM3AP-AS1 is a lncRNA that has an oncogenic role in several kinds of cancers. Aberrant expression of MCM3AP-AS1 has been reported to be involved in the progression of diverse malignancies, including colorectal, cervical, prostate, lymphoma, lung, ovary, liver, bone, and breast cancers. It is generally believed that MCM3AP-AS1 expression is associated with cancer cell growth, proliferation, angiogenesis, and metastasis. MCM3AP-AS1 by targeting various signaling pathways and microRNAs (miRNAs) presents an important role in cancer pathogenesis. MCM3AP-AS1 as a competitive endogenous RNA has the ability to sponge miRNA, inhibit their expressions, and bind to different target mRNAs related to cancer development. Therefore, MCM3AP-AS1 by targeting several signaling pathways, including the FOX family, Wnt, EGF, and VEGF can be a potent target for cancer prediction and diagnosis. In this review, we will summarize the role of MCM3AP-AS1 in various human cancers.
Collapse
Affiliation(s)
- Shirin Azizidoost
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Farhoodeh Ghaedrahmati
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Shahab Uddin
- Translational Research Institute and Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Mehri Ghafourian
- Department of Immunology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Abdolah Mousavi Salehi
- Department of Immunology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mona Keivan
- Fertility and Infertility Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Maryam Cheraghzadeh
- Department of Biochemistry, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Zahra Nazeri
- Department of Biochemistry, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Seyed Esmaeil Khoshnam
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
7
|
Zangouei AS, Tolue Ghasaban F, Dalili A, Akhlaghipour I, Moghbeli M. MicroRNAs as the pivotal regulators of Forkhead box protein family during gastrointestinal tumor progression and metastasis. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
8
|
The Prognostic Value of lncRNA MCM3AP-AS1 on Clinical Outcomes in Various Cancers: A Meta- and Bioinformatics Analysis. DISEASE MARKERS 2022; 2022:4466776. [PMID: 35783010 PMCID: PMC9249515 DOI: 10.1155/2022/4466776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 05/25/2022] [Indexed: 11/18/2022]
Abstract
Background. MCM3AP antisense RNA 1 (MCM3AP-AS1) is a newly identified potential tumor biomarker. Nevertheless, the prognostic value of MCM3AP-AS1 in cancer has been inconsistent in the available studies. We performed this meta-analysis to identify the prognostic role of MCM3AP-AS1 in various cancers. Methods. We searched PubMed, Web of Science, EMBASE, and the Cochrane Library databases to screen relevant studies. Hazard ratios (HR) or odds ratios (OR) and corresponding 95% confidence intervals (CI) were used to evaluate the relationship between aberrant MCM3AP-AS1 expression and survival and clinicopathological features (CFS) of cancer patients. A meta-analysis was performed using STATA 12.0 software. Additionally, results were validated by an online database based on The Cancer Genome Atlas (TCGA). Subsequently, we analyzed the MCM3AP-AS1-related genes and molecular mechanisms based on the MEM database. Results. Our results showed that overexpression of MCM3AP-AS1 was related to poor overall survival (OS) (
, 95% CI, 1.52–2.64,
) and relapse-free survival (RFS) (
, 95% CI 1.56–6.88,
). In addition, MCM3AP-AS1 overexpression was associated with TNM stage, differentiation grade, and lymph node metastasis, but not significantly with age, gender, and tumor size. In addition, MCM3AP-AS1 overexpression was verified by the GEPIA online database to be associated with poorer survival. The further functional investigation suggested that MCM3AP-AS1 may be involved in several cancer-related pathways. Conclusions. The overexpression of MCM3AP-AS1 was related to poor survival and CFS. MCM3AP-AS1 may be considered a novel prognostic marker and therapeutic target in various cancers.
Collapse
|
9
|
Ma T, Wu FH, Wu HX, Fa Q, Chen Y. Long Non-Coding RNA MCM3AP-AS1: A Crucial Role in Human Malignancies. Pathol Oncol Res 2022; 28:1610194. [PMID: 35783356 PMCID: PMC9243217 DOI: 10.3389/pore.2022.1610194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 05/31/2022] [Indexed: 12/09/2022]
Abstract
The incidence of cancer continues to grow and is one of the leading causes of death in the world. Long noncoding RNAs (LncRNAs) is a group of RNA transcripts greater than 200 nucleotides in length, and although it cannot encode proteins, it can regulate different biological functions by controlling gene expression, transcription factors, etc. LncRNA micro-chromosome maintenance protein 3-associated protein antisense RNA 1 (MCM3AP-AS1) is involved in RNA processing and cell cycle-related functions, and MCM3AP-AS1 is dysregulated in expression in various types of cancers. This biomarker is involved in many processes related to carcinogens, such as cell proliferation, apoptosis, cell cycle, and migration. In this review, we summarize the roles of MCM3AP-AS1 in different human cancers and its biological functions with a view to providing ideas for future research.
Collapse
Affiliation(s)
- Tao Ma
- Department of Hematology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Fa-Hong Wu
- Department of General Surgery Hepatic-Biliary-Pancreatic Institute, Lanzhou University Second Hospital, Lanzhou, China
| | - Hong-Xia Wu
- Department of Nuclear Medicine, Lanzhou University Second Hospital, Lanzhou, China
| | - Qiong Fa
- Department of Nuclear Medicine, The 940th Hospital of the People’s Liberation Army Joint Service Support Force, Lanzhou, China
| | - Yan Chen
- Department of Hematology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- *Correspondence: Yan Chen,
| |
Collapse
|
10
|
Xu H, Lu G, Zhou S, Fang F. MicroRNA-19a-3p Acts as an Oncogene in Gastric Cancer and Exerts the Effect by Targeting SMOC2. Appl Biochem Biotechnol 2022; 194:3833-3842. [PMID: 35543855 DOI: 10.1007/s12010-022-03944-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2022] [Indexed: 11/09/2022]
Abstract
MicroRNAs are reported to be involved in tumor development. This study aims to investigate the biological functions and molecular mechanisms of microRNA-19a-3p in gastric cancer cells. TCGA-based expression analysis and qRT-PCR assay illustrated that microRNA-19a-3p was overexpressed in gastric cancer. MTT and Transwell assays indicated that microRNA-19a-3p could strengthen the proliferation, migration, and invasion of gastric cancer cells. SMOC2 was bioinformatically predicted as the target of microRNA-19a-3p, followed by identified using a dual-luciferase assay. The effects of microRNA-19a-3p/SMOC2 regulatory axis on gastric cancer cells were examined by MTT and Transwell assays as well. Concludingly, this study demonstrated that microRNA-19a-3p could promote the aggressive cell phenotypes of gastric cancer cells by targeting SMOC2.
Collapse
Affiliation(s)
- Hui Xu
- Department of General Surgery, Tonglu First People's Hospital, No.338 Xuesheng Road, Hangzhou, Zhejiang, 311500, People's Republic of China
| | - Guochun Lu
- Department of General Surgery, Tonglu First People's Hospital, No.338 Xuesheng Road, Hangzhou, Zhejiang, 311500, People's Republic of China
| | - Shengkun Zhou
- Department of General Surgery, Tonglu First People's Hospital, No.338 Xuesheng Road, Hangzhou, Zhejiang, 311500, People's Republic of China
| | - Fu Fang
- Department of General Surgery, Tonglu First People's Hospital, No.338 Xuesheng Road, Hangzhou, Zhejiang, 311500, People's Republic of China.
| |
Collapse
|
11
|
Jorgensen BG, Ro S. MicroRNAs and 'Sponging' Competitive Endogenous RNAs Dysregulated in Colorectal Cancer: Potential as Noninvasive Biomarkers and Therapeutic Targets. Int J Mol Sci 2022; 23:ijms23042166. [PMID: 35216281 PMCID: PMC8876324 DOI: 10.3390/ijms23042166] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 01/28/2022] [Accepted: 02/02/2022] [Indexed: 12/13/2022] Open
Abstract
The gastrointestinal (GI) tract in mammals is comprised of dozens of cell types with varied functions, structures, and histological locations that respond in a myriad of ways to epigenetic and genetic factors, environmental cues, diet, and microbiota. The homeostatic functioning of these cells contained within this complex organ system has been shown to be highly regulated by the effect of microRNAs (miRNA). Multiple efforts have uncovered that these miRNAs are often tightly influential in either the suppression or overexpression of inflammatory, apoptotic, and differentiation-related genes and proteins in a variety of cell types in colorectal cancer (CRC). The early detection of CRC and other GI cancers can be difficult, attributable to the invasive nature of prophylactic colonoscopies. Additionally, the levels of miRNAs associated with CRC in biofluids can be contradictory and, therefore, must be considered in the context of other inhibiting competitive endogenous RNAs (ceRNA) such as lncRNAs and circRNAs. There is now a high demand for disease treatments and noninvasive screenings such as testing for bloodborne or fecal miRNAs and their inhibitors/targets. The breadth of this review encompasses current literature on well-established CRC-related miRNAs and the possibilities for their use as biomarkers in the diagnoses of this potentially fatal GI cancer.
Collapse
|
12
|
Wang B, Chen J, Lin C, Liu R, Wang L, Yuan C. MCM3AP-AS1: A LncRNA Participating in the Tumorigenesis of Cancer Through Multiple Pathways. Mini Rev Med Chem 2022; 22:2138-2145. [DOI: 10.2174/1389557522666220214100718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/17/2021] [Accepted: 12/13/2021] [Indexed: 11/22/2022]
Abstract
Background:
More and more shreds of evidence show that the occurrence and development of tumors are closely related to the abnormal expression of LncRNA. A large number of experiments have found that overexpression or under-expression of MCM3AP-AS1 can affect the occurrence and development of cancer cells in varying degrees, such as proliferation, invasion, and translocation. Besides, MCM3AP-AS1 may become a promising target for many tumor biotherapies. This article reviews the pathophysiological functions and molecular mechanisms of MCM3AP-AS1 in various tumors.
Methods:
This paper systematically summarizes the published literatures in PubMed. The molecular mechanism of MCM3AP-AS1 in a variety of tumors is reviewed.
Results:
The abnormal expression of MCM3AP-AS1 in different tumors is closely related to tumor proliferation, invasion, and migration. MCM3AP-AS1 mediates or participates in related signaling pathways to regulate the expression of targeted miRNAs and proteins. MCM3AP-AS1 plays a vital role in tumor diagnosis and treatment.
Conclusion:
LncRNA MCM3AP-AS1 is a feasible tumor marker and a potential therapeutic target for many kinds of tumors.
Collapse
Affiliation(s)
- Bei Wang
- College of Medical Science, China Three Gorges University, Yichang 443002, China
| | - Jinlan Chen
- College of Medical Science, China Three Gorges University, Yichang 443002, China
| | - Chen Lin
- College of Medical Science, China Three Gorges University, Yichang 443002, China
| | - Ru Liu
- College of Medical Science, China Three Gorges University, Yichang 443002, China
| | - Lu Wang
- College of Medical Science, China Three Gorges University, Yichang 443002, China
| | - Chengfu Yuan
- College of Medical Science, China Three Gorges University, Yichang 443002, China
- College of Traditional Chinese Medicine, China Three Gorges University, Yichang 443002, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China
| |
Collapse
|
13
|
Fan Y, Dong X, Li M, Liu P, Zheng J, Li H, Zhang Y. LncRNA KRT19P3 Is Involved in Breast Cancer Cell Proliferation, Migration and Invasion. Front Oncol 2022; 11:799082. [PMID: 35059320 PMCID: PMC8763666 DOI: 10.3389/fonc.2021.799082] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/08/2021] [Indexed: 12/13/2022] Open
Abstract
Long non-coding RNAs (LncRNAs) have already been taken as critical regulatory molecules in breast carcinoma (BC). Besides, the progression of BC is closely associated with the immune system. However, the relationship between lncRNAs and the tumor immune system in BC has not been fully studied. LncRNA KRT19P3 has been reported to inhibit the progression of gastric cancer. In the present study, we first discovered that KRT19P3 was downregulated in BC tissues compared with para cancer tissue. Then we showed that KRT19P3 could be used as a marker to differentiate BC from para cancer tissue. Increased expression of KRT19P3 markedly inhibited the proliferation, migration, and invasion rate of BC cells in vitro and tumor growth of BC in vivo. Conversely, KRT19P3 knockdown by siRNA markedly promoted the proliferation, migration, and invasion rate of BC cells after being transfected. Comparison of clinical parameters showed an inverse relationship between the expression of KRT19P3 and pathological grade. Furthermore, immunohistochemistry (IHC) was applied to reveal the positive rate of the expression of Ki-67, programmed death-ligand 1 (PD-L1), and CD8 in BC tissues. Correlation analysis showed that Ki-67 and PD-L1 were inversely proportional to KRT19P3 but CD8 was directly proportional to KRT19P3. In conclusion, this study demonstrated that lncRNA KRT19P3 inhibits BC progression, and may affect the expression of PD-L1 in BC, which in turn affects CD8+ T (CD8 positive Cytotoxic T lymphocyte) cells in the immune microenvironment.
Collapse
Affiliation(s)
- Yanping Fan
- Pathology Department, First Affiliated Hospital of Weifang Medical University (Weifang People's Hospital), Weifang, China.,Department of Basic Medicine, Weifang Medical University, Weifang, China
| | - Xiaotong Dong
- Pathology Department, First Affiliated Hospital of Weifang Medical University (Weifang People's Hospital), Weifang, China.,Department of Basic Medicine, Weifang Medical University, Weifang, China
| | - Meizeng Li
- Pathology Department, First Affiliated Hospital of Weifang Medical University (Weifang People's Hospital), Weifang, China.,Department of Basic Medicine, Weifang Medical University, Weifang, China
| | - Pengju Liu
- School of Economics, Qingdao University, Qingdao, China
| | - Jie Zheng
- Department of Basic Medicine, Weifang Medical University, Weifang, China
| | - Hongli Li
- Department of Basic Medicine, Weifang Medical University, Weifang, China
| | - Yunxiang Zhang
- Pathology Department, First Affiliated Hospital of Weifang Medical University (Weifang People's Hospital), Weifang, China
| |
Collapse
|
14
|
Li T, Huang S, Yan W, Zhang Y, Guo Q. FOXF2 Regulates PRUNE2 Transcription in the Pathogenesis of Colorectal Cancer. Technol Cancer Res Treat 2022; 21:15330338221118717. [PMID: 35929169 PMCID: PMC9358570 DOI: 10.1177/15330338221118717] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background: Forkhead box F2, a member of the Forkhead box transcription factor superfamily, plays an important role in several types of cancer. However, the mechanisms of Forkhead box F2 in the progression of colorectal cancer remain unclear. PRUNE2 is closely associated with prostate cancer, neuroblastoma, glioblastoma, and melanoma. The relationship between Forkhead box F2 and PRUNE2 in colorectal cancer remains unknown. Method: We investigated the effects of Forkhead box F2 upregulation on colorectal cancer cell behavior in vitro using Cell Counting Kit-8, colony formation, flow cytometry, Transwell, reverse transcription quantitative polymerase chain reaction and Western blot analyses. Nude mouse xenografts were established to investigate the effect of Forkhead box F2 upregulation on the growth of colorectal cancer cells. Dual-luciferase reporter assays were performed to confirm the Forkhead box F2 regulation of PRUNE2 transcription. A series of in vitro assays was performed in cells with Forkhead box F2 upregulation and PRUNE2 knockdown to elucidate the function and regulatory effects of Forkhead box F2 on PRUNE2 transcription in colorectal cancer. Results: Forkhead box F2 was downregulated in colorectal cancer tissues compared with adjacent tissues. Forkhead box F2 overexpression significantly suppressed the proliferation and invasion of colorectal cancer cells in vitro and in vivo. Moreover, Forkhead box F2 directly targeted PRUNE2 to promote its transcription in colorectal cancer cells. Furthermore, PRUNE2 mediated the Forkhead box F2-regulated proliferation and invasion of colorectal cancer cells. Additionally, we demonstrated a significant positive correlation between Forkhead box F2 and PRUNE2 mRNA levels in colorectal cancer tissues. Conclusion: These results indicated that Forkhead box F2 and PRUNE2 in combination may serve as a prognostic biomarker for colorectal cancer and that Forkhead box F2 upregulation inhibits the proliferation and invasion of colorectal cancer cells by upregulating PRUNE2.
Collapse
Affiliation(s)
- Ting Li
- Faculty of Environmental Science and Engineering, 47910Kunming University of Science and Technology, Kunming, Yunnan, China.,Department of Gastroenterology, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China.,Department of Gastroenterology, The Affiliated Hospital of Kunming University of Science and Technology, China.,Medical School, 47910Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Silin Huang
- Medical School, 47910Kunming University of Science and Technology, Kunming, Yunnan, China.,Department of Gastroenterology, South China Hospital, Health Science Center, Shenzhen University, Shenzhen, China
| | - Wei Yan
- Faculty of Environmental Science and Engineering, 47910Kunming University of Science and Technology, Kunming, Yunnan, China.,Faculty of Life Science and Technology, 47910Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yu Zhang
- Department of Gastroenterology, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China.,Department of Gastroenterology, The Affiliated Hospital of Kunming University of Science and Technology, China
| | - Qiang Guo
- Department of Gastroenterology, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China.,Department of Gastroenterology, The Affiliated Hospital of Kunming University of Science and Technology, China
| |
Collapse
|
15
|
Saygili H, Bozgeyik I, Yumrutas O, Akturk E, Bagis H. Differential Expression of Long Noncoding RNAs in Patients with Coronary Artery Disease. Mol Syndromol 2021; 12:372-378. [PMID: 34899146 DOI: 10.1159/000517077] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/06/2021] [Indexed: 12/14/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) constitute the largest class of noncoding RNAs and play significant roles in the development of cardiovascular pathologies. In the present study, we aimed to evaluate whether 4 candidate lncRNAs - MIAT, MEG3, MALAT1, and MCM3AP-AS1 - have distinct expression levels in patients with obstructive coronary artery disease (CAD) and reveal the diagnostic and therapeutic potentials of these lncRNAs for CAD. A total of 90 patients who subjected to coronary angiography were enrolled. Relative expression of lncRNAs were assayed using qRT-PCR methodology. As a result, MIAT was downregulated, while MEG3 was upregulated in CAD patients. Receiver operating characteristic curves demonstrated that these lncRNAs have a high potential to provide sensitive and specific diagnosis of CAD. The calculated area under curve levels indicated that MIAT and MEG3 have high diagnostic value for detecting the presence of significant CAD. However, MALAT1 and MCM3AP-AS1 levels were not sufficiently reliable for CAD development in our cases. Here, we demonstrate that MIAT and MEG3 were differentially expressed in our patients and might be promising biomarkers and therapeutic targets for CAD. These results indicate that MIAT and MEG3 could play chief roles in CAD development.
Collapse
Affiliation(s)
- Hamide Saygili
- Department of Medical Genetics, Faculty of Medicine, Adiyaman University, Adiyaman, Turkey
| | - Ibrahim Bozgeyik
- Department of Medical Biology, Faculty of Medicine, Adiyaman University, Adiyaman, Turkey
| | - Onder Yumrutas
- Department of Medical Biology, Faculty of Medicine, Adiyaman University, Adiyaman, Turkey
| | - Erdal Akturk
- Department of Cardiology, Faculty of Medicine, Adiyaman University, Adiyaman, Turkey
| | - Haydar Bagis
- Department of Medical Genetics, Faculty of Medicine, Adiyaman University, Adiyaman, Turkey
| |
Collapse
|
16
|
Yu X, Zheng Q, Zhang Q, Zhang S, He Y, Guo W. MCM3AP-AS1: An Indispensable Cancer-Related LncRNA. Front Cell Dev Biol 2021; 9:752718. [PMID: 34692706 PMCID: PMC8529123 DOI: 10.3389/fcell.2021.752718] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/22/2021] [Indexed: 12/24/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are a class of RNA molecules with transcripts longer than 200 nucleotides that have no protein-coding ability. MCM3AP-AS1, a novel lncRNA, is aberrantly expressed in human cancers. It is significantly associated with many clinical characteristics, such as tumor size, tumor-node-metastasis (TNM) stage, and pathological grade. Additionally, it considerably promotes or suppresses tumor progression by controlling the biological functions of cells. MCM3AP-AS1 is a promising biomarker for cancer diagnosis, prognosis evaluation, and treatment. In this review, we briefly summarized the published studies on the expression, biological function, and regulatory mechanisms of MCM3AP-AS1. We also discussed the clinical applications of MCM3AP-AS1 as a biomarker.
Collapse
Affiliation(s)
- Xiao Yu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China.,Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, China
| | - Qingyuan Zheng
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China.,Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, China
| | - Qiyao Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China.,Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, China
| | - Shuijun Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China.,Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, China
| | - Yuting He
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China.,Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, China
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China.,Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, China
| |
Collapse
|
17
|
Zhu D, Wu X, Xue Q. Long non-coding RNA CASC2 restrains high glucose-induced proliferation, inflammation and fibrosis in human glomerular mesangial cells through mediating miR-135a-5p/TIMP3 axis and JNK signaling. Diabetol Metab Syndr 2021; 13:89. [PMID: 34446088 PMCID: PMC8393478 DOI: 10.1186/s13098-021-00709-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 08/12/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Diabetic nephropathy (DN) is a common complication of diabetes. Long non-coding RNA (lncRNA) cancer susceptibility candidate 2 (CASC2) is reported to exert a protective role in DN by a previous study. The working mechanism underlying the protective role of CASC2 in DN progression was further explored in this study. METHODS The expression of CASC2 and microRNA-135a-5p (miR-135a-5p) was determined by real-time quantitative polymerase chain reaction (RT-qPCR). Cell proliferation ability was assessed by Cell Counting Kit-8 (CCK8) assay and 5-ethynyl-29-deoxyuridine (EDU) assay. Enzyme-linked immunosorbent assay (ELISA) was conducted to analyze the production of inflammatory cytokines in the supernatant. Western blot assay was performed to analyze protein expression. Dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay were performed to verify the target relationship between miR-135a-5p and CASC2 or tissue inhibitors of metalloproteinase 3 (TIMP3). RESULTS High glucose (HG) treatment reduced the expression of CASC2 in human glomerular mesangial cells (HMCs) in a time-dependent manner. CASC2 overexpression suppressed HG-induced proliferation, inflammation and fibrosis in HMCs. miR-135a-5p was validated as a target of CASC2, and CASC2 restrained HG-induced influences in HMCs partly by down-regulating miR-135a-5p. miR-135a-5p bound to the 3' untranslated region (3'UTR) of TIMP3, and CASC2 positively regulated TIMP3 expression by sponging miR-135a-5p in HMCs. miR-135a-5p silencing inhibited HG-induced effects in HMCs partly by up-regulating its target TIMP3. CASC2 overexpression suppressed HG-induced activation of Jun N-terminal Kinase (JNK) signaling partly through mediating miR-135a-5p/TIMP3 signaling. CONCLUSIONS In conclusion, CASC2 alleviated proliferation, inflammation and fibrosis in DN cell model by sponging miR-135a-5p to induce TIMP3 expression.
Collapse
Affiliation(s)
- Dongju Zhu
- Department of Nephrology, The Affiliated Hospital, Panzhihua University, Panzhihua, 617000, Sichuan, China.
| | - Xiang Wu
- Department of Pediatrics, Panzhihua Central Hospital, Panzhihua, 617000, Sichuan, China
| | - Qian Xue
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400000, China
| |
Collapse
|