1
|
Schmok JC, Yeo GW. Strategies for programmable manipulation of alternative splicing. Curr Opin Genet Dev 2024; 89:102272. [PMID: 39471777 DOI: 10.1016/j.gde.2024.102272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/26/2024] [Accepted: 10/03/2024] [Indexed: 11/01/2024]
Abstract
Alternative splicing (AS) plays a pivotal role in protein diversity and mRNA maturation. Programmable control of targeted AS events is of longstanding interest in RNA biology, promising correction of dysregulated splicing in disease and discovery of AS events. This review explores four main strategies for programmable splicing manipulation: (1) inhibiting splicing signals with antisense oligonucleotides (ASOs), exemplified by therapies approved by the U.S. Food and Drug Administration, (2) applying DNA-targeting clustered regularly interspaced short palindromic repeats systems to edit splicing signals, (3) using synthetic splicing factors, including synthetic proteins and ribonucleoproteins, inspired by natural RNA-binding proteins, and (4) guiding endogenous splicing machinery with bifunctional ASOs and engineered small nuclear RNAs. While ASOs remain clinically prominent, emerging technologies aim for broad, scalable, durable, and precise splicing modulation, holding promise for transformative advancements in RNA biology and therapeutic interventions.
Collapse
Affiliation(s)
- Jonathan C Schmok
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA; Sanford Stem Cell Institute Innovation Center and Stem Cell Program, University of California San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA; Sanford Stem Cell Institute Innovation Center and Stem Cell Program, University of California San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA; UCSD Center for RNA Technologies and Therapeutics, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
2
|
Fuller RN, Morcos A, Bustillos JG, Molina DC, Wall NR. Small non-coding RNAs and pancreatic ductal adenocarcinoma: Linking diagnosis, pathogenesis, drug resistance, and therapeutic potential. Biochim Biophys Acta Rev Cancer 2024; 1879:189153. [PMID: 38986720 DOI: 10.1016/j.bbcan.2024.189153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/12/2024]
Abstract
This review comprehensively investigates the intricate interplay between small non-coding RNAs (sncRNAs) and pancreatic ductal adenocarcinoma (PDAC), a devastating malignancy with limited therapeutic options. Our analysis reveals the pivotal roles of sncRNAs in various facets of PDAC biology, spanning diagnosis, pathogenesis, drug resistance, and therapeutic strategies. sncRNAs have emerged as promising biomarkers for PDAC, demonstrating distinct expression profiles in diseased tissues. sncRNA differential expression patterns, often detectable in bodily fluids, hold potential for early and minimally invasive diagnostic approaches. Furthermore, sncRNAs exhibit intricate involvement in PDAC pathogenesis, regulating critical cellular processes such as proliferation, apoptosis, and metastasis. Additionally, mechanistic insights into sncRNA-mediated pathogenic pathways illuminate novel therapeutic targets and interventions. A significant focus of this review is dedicated to unraveling sncRNA mechanisms underlying drug resistance in PDAC. Understanding these mechanisms at the molecular level is imperative for devising strategies to overcome drug resistance. Exploring the therapeutic landscape, we discuss the potential of sncRNAs as therapeutic agents themselves as their ability to modulate gene expression with high specificity renders them attractive candidates for targeted therapy. In summary, this review integrates current knowledge on sncRNAs in PDAC, offering a holistic perspective on their diagnostic, pathogenic, and therapeutic relevance. By elucidating the roles of sncRNAs in PDAC biology, this review provides valuable insights for the development of novel diagnostic tools and targeted therapeutic approaches, crucial for improving the prognosis of PDAC patients.
Collapse
Affiliation(s)
- Ryan N Fuller
- Department of Basic Science, Division of Biochemistry, Center for Health Disparity and Mol. Med., Loma Linda University, Loma Linda, CA 92350, USA; Department of Radiation Medicine, James M. Slater, MD Proton Treatment and Research Center, Loma Linda University, Loma Linda, CA 92350, USA
| | - Ann Morcos
- Department of Basic Science, Division of Biochemistry, Center for Health Disparity and Mol. Med., Loma Linda University, Loma Linda, CA 92350, USA; Department of Radiation Medicine, James M. Slater, MD Proton Treatment and Research Center, Loma Linda University, Loma Linda, CA 92350, USA
| | - Joab Galvan Bustillos
- Department of Basic Science, Division of Biochemistry, Center for Health Disparity and Mol. Med., Loma Linda University, Loma Linda, CA 92350, USA; Division of Surgical Oncology, Department of Surgery, Loma Linda University, Loma Linda, CA 92350, USA
| | - David Caba Molina
- Division of Surgical Oncology, Department of Surgery, Loma Linda University, Loma Linda, CA 92350, USA
| | - Nathan R Wall
- Department of Basic Science, Division of Biochemistry, Center for Health Disparity and Mol. Med., Loma Linda University, Loma Linda, CA 92350, USA; Department of Radiation Medicine, James M. Slater, MD Proton Treatment and Research Center, Loma Linda University, Loma Linda, CA 92350, USA.
| |
Collapse
|
3
|
Shimo T, Ueda O, Yamamoto S. Design and evaluation of antisense sequence length for modified mouse U7 small nuclear RNA to induce efficient pre-messenger RNA splicing modulation in vitro. PLoS One 2024; 19:e0305012. [PMID: 38980892 PMCID: PMC11232981 DOI: 10.1371/journal.pone.0305012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 05/21/2024] [Indexed: 07/11/2024] Open
Abstract
Pre-messenger RNA (pre-mRNA) splicing modulation is an attractive approach for investigating the mechanisms of genetic disorders caused by mis-splicing. Previous reports have indicated that a modified U7 small nuclear RNA (U7 snRNA) is a prospective tool for modulating splicing both in vitro and in vivo. To date, very few studies have investigated the role of antisense sequence length in modified U7 snRNA. In this study, we designed a series of antisense sequences with various lengths and evaluated their efficiency in inducing splicing modulation. To express modified U7 snRNAs, we constructed a series of plasmid DNA sequences which codes cytomegalovirus (CMV) enhancer, human U1 promoter, and modified mouse U7 snRNAs with antisense sequences of different lengths. We evaluated in vitro splicing modulation efficiency using a luciferase reporter system for simple and precise evaluation as well as reverse transcription-polymerase chain reaction to monitor splicing patterns. Our in vitro assay findings suggest that antisense sequences of modified mouse U7 snRNAs have an optimal length for efficient splicing modulation, which depends on the target exon. In addition, antisense sequences that were either too long or too short decreased splicing modulation efficiency. To confirm reproducibility, we performed an in vitro assay using two target genes, mouse Fas and mouse Dmd. Together, our data suggests that the antisense sequence length should be optimized for modified mouse U7 snRNAs to induce efficient splicing modulation.
Collapse
Affiliation(s)
- Takenori Shimo
- Research Division, Chugai Pharmaceutical Co., Ltd., Yokohama, Kanagawa, Japan
| | - Otoya Ueda
- Research Division, Chugai Pharmaceutical Co., Ltd., Yokohama, Kanagawa, Japan
| | - Satoshi Yamamoto
- Research Division, Chugai Pharmaceutical Co., Ltd., Yokohama, Kanagawa, Japan
| |
Collapse
|
4
|
Leng X, Zhang M, Xu Y, Wang J, Ding N, Yu Y, Sun S, Dai W, Xue X, Li N, Yang Y, Shi Z. Non-coding RNAs as therapeutic targets in cancer and its clinical application. J Pharm Anal 2024; 14:100947. [PMID: 39149142 PMCID: PMC11325817 DOI: 10.1016/j.jpha.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/12/2024] [Accepted: 02/01/2024] [Indexed: 08/17/2024] Open
Abstract
Cancer genomics has led to the discovery of numerous oncogenes and tumor suppressor genes that play critical roles in cancer development and progression. Oncogenes promote cell growth and proliferation, whereas tumor suppressor genes inhibit cell growth and division. The dysregulation of these genes can lead to the development of cancer. Recent studies have focused on non-coding RNAs (ncRNAs), including circular RNA (circRNA), long non-coding RNA (lncRNA), and microRNA (miRNA), as therapeutic targets for cancer. In this article, we discuss the oncogenes and tumor suppressor genes of ncRNAs associated with different types of cancer and their potential as therapeutic targets. Here, we highlight the mechanisms of action of these genes and their clinical applications in cancer treatment. Understanding the molecular mechanisms underlying cancer development and identifying specific therapeutic targets are essential steps towards the development of effective cancer treatments.
Collapse
Affiliation(s)
- Xuejiao Leng
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Mengyuan Zhang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yujing Xu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jingjing Wang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ning Ding
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yancheng Yu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Shanliang Sun
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Weichen Dai
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xin Xue
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Nianguang Li
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ye Yang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhihao Shi
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, Nanjing, 211198, China
| |
Collapse
|
5
|
Smargon AA, Pant D, Glynne S, Gomberg TA, Yeo GW. Small nuclear RNAs enhance protein-free RNA-programmable base conversion on mammalian coding transcripts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.12.598766. [PMID: 38915553 PMCID: PMC11195271 DOI: 10.1101/2024.06.12.598766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Endogenous U small nuclear RNAs (U snRNAs) form RNA-protein complexes responsible for eukaryotic processing of pre-mRNA into mature mRNA. Previous studies have demonstrated the utility of guide-programmable U snRNAs in targeted exon inclusion and exclusion. We investigated whether snRNAs can also enhance conversion of RNA bases over state-of-the-art RNA targeting technologies in human cells. When compared to adenosine deaminase acting on RNA (ADAR)-recruiting circular RNAs, we find that guided A>I snRNAs consistently increase adenosine-to-inosine editing efficiency for genes with higher exon counts, perturb substantially fewer genes in the transcriptome, and localize more persistently to the nucleus where ADAR is expressed. A>I snRNAs can also edit pre-mRNA 3' splice sites to promote splicing changes. Finally, snRNA fusions to H/ACA box snoRNAs (U>Ψ snRNAs) increase targeted RNA pseudouridylation efficiency. Altogether, our results advance the protein-free RNA base conversion toolbox and enhance minimally invasive RNA targeting technologies to treat genetic diseases.
Collapse
|
6
|
Zhou M, He X, Zhang J, Mei C, Zhong B, Ou C. tRNA-derived small RNAs in human cancers: roles, mechanisms, and clinical application. Mol Cancer 2024; 23:76. [PMID: 38622694 PMCID: PMC11020452 DOI: 10.1186/s12943-024-01992-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/02/2024] [Indexed: 04/17/2024] Open
Abstract
Transfer RNA (tRNA)-derived small RNAs (tsRNAs) are a new type of non-coding RNAs (ncRNAs) produced by the specific cleavage of precursor or mature tRNAs. tsRNAs are involved in various basic biological processes such as epigenetic, transcriptional, post-transcriptional, and translation regulation, thereby affecting the occurrence and development of various human diseases, including cancers. Recent studies have shown that tsRNAs play an important role in tumorigenesis by regulating biological behaviors such as malignant proliferation, invasion and metastasis, angiogenesis, immune response, tumor resistance, and tumor metabolism reprogramming. These may be new potential targets for tumor treatment. Furthermore, tsRNAs can exist abundantly and stably in various bodily fluids (e.g., blood, serum, and urine) in the form of free or encapsulated extracellular vesicles, thereby affecting intercellular communication in the tumor microenvironment (TME). Meanwhile, their abnormal expression is closely related to the clinicopathological features of tumor patients, such as tumor staging, lymph node metastasis, and poor prognosis of tumor patients; thus, tsRNAs can be served as a novel type of liquid biopsy biomarker. This review summarizes the discovery, production, and expression of tsRNAs and analyzes their molecular mechanisms in tumor development and potential applications in tumor therapy, which may provide new strategies for early diagnosis and targeted therapy of tumors.
Collapse
Affiliation(s)
- Manli Zhou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Xiaoyun He
- Departments of Ultrasound Imaging, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Jing Zhang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Cheng Mei
- Department of Blood Transfusion, Xiangya Hospital, Clinical Transfusion Research Center, Central South University, Changsha, Hunan, 410008, China.
| | - Baiyun Zhong
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Chunlin Ou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| |
Collapse
|
7
|
Suárez-Herrera N, Riswick IB, Vázquez-Domínguez I, Duijkers L, Karjosukarso DW, Piccolo D, Bauwens M, De Baere E, Cheetham ME, Garanto A, Collin RWJ. Proof-of-concept for multiple AON delivery by a single U7snRNA vector to restore splicing defects in ABCA4. Mol Ther 2024; 32:837-851. [PMID: 38243599 PMCID: PMC10928313 DOI: 10.1016/j.ymthe.2024.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/13/2023] [Accepted: 01/12/2024] [Indexed: 01/21/2024] Open
Abstract
The high allelic heterogeneity in Stargardt disease (STGD1) complicates the design of intervention strategies. A significant proportion of pathogenic intronic ABCA4 variants alters the pre-mRNA splicing process. Antisense oligonucleotides (AONs) are an attractive yet mutation-specific therapeutic strategy to restore these splicing defects. In this study, we experimentally assessed the potential of a splicing modulation therapy to target multiple intronic ABCA4 variants. AONs were inserted into U7snRNA gene cassettes and tested in midigene-based splice assays. Five potent antisense sequences were selected to generate a multiple U7snRNA cassette construct, and this combination vector showed substantial rescue of all of the splicing defects. Therefore, the combination cassette was used for viral synthesis and assessment in patient-derived photoreceptor precursor cells (PPCs). Simultaneous delivery of several modified U7snRNAs through a single AAV, however, did not show substantial splicing correction, probably due to suboptimal transduction efficiency in PPCs and/or a heterogeneous viral population containing incomplete AAV genomes. Overall, these data demonstrate the potential of the U7snRNA system to rescue multiple splicing defects, but also suggest that AAV-associated challenges are still a limiting step, underscoring the need for further optimization before implementing this strategy as a potential treatment for STGD1.
Collapse
Affiliation(s)
- Nuria Suárez-Herrera
- Radboud University Medical Center, Department of Human Genetics, 6525GA Nijmegen, the Netherlands
| | - Iris B Riswick
- Radboud University Medical Center, Department of Human Genetics, 6525GA Nijmegen, the Netherlands
| | - Irene Vázquez-Domínguez
- Radboud University Medical Center, Department of Human Genetics, 6525GA Nijmegen, the Netherlands
| | - Lonneke Duijkers
- Radboud University Medical Center, Department of Human Genetics, 6525GA Nijmegen, the Netherlands
| | - Dyah W Karjosukarso
- Radboud University Medical Center, Department of Human Genetics, 6525GA Nijmegen, the Netherlands
| | | | - Miriam Bauwens
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium; Center for Medical Genetics, Ghent University Hospital, 9000 Ghent, Belgium
| | - Elfride De Baere
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium; Center for Medical Genetics, Ghent University Hospital, 9000 Ghent, Belgium
| | | | - Alejandro Garanto
- Radboud University Medical Center, Department of Human Genetics, 6525GA Nijmegen, the Netherlands; Radboud University Medical Center, Amalia Children's Hospital, Department of Pediatrics, Nijmegen 6252GA, the Netherlands
| | - Rob W J Collin
- Radboud University Medical Center, Department of Human Genetics, 6525GA Nijmegen, the Netherlands.
| |
Collapse
|
8
|
Qiu H, Li G, Yuan J, Yang D, Ma Y, Wang F, Dai Y, Chang X. Efficient exon skipping by base-editor-mediated abrogation of exonic splicing enhancers. Cell Rep 2023; 42:113340. [PMID: 37906593 DOI: 10.1016/j.celrep.2023.113340] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 08/31/2023] [Accepted: 10/09/2023] [Indexed: 11/02/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a severe genetic disease caused by the loss of the dystrophin protein. Exon skipping is a promising strategy to treat DMD by restoring truncated dystrophin. Here, we demonstrate that base editors (e.g., targeted AID-mediated mutagenesis [TAM]) are able to efficiently induce exon skipping by disrupting functional redundant exonic splicing enhancers (ESEs). By developing an unbiased and high-throughput screening to interrogate exonic sequences, we successfully identify novel ESEs in DMD exons 51 and 53. TAM-CBE (cytidine base editor) induces near-complete skipping of the respective exons by targeting these ESEs in patients' induced pluripotent stem cell (iPSC)-derived cardiomyocytes. Combined with strategies to disrupt splice sites, we identify suitable single guide RNAs (sgRNAs) with TAM-CBE to efficiently skip most DMD hotspot exons without substantial double-stranded breaks. Our study thus expands the repertoire of potential targets for CBE-mediated exon skipping in treating DMD and other RNA mis-splicing diseases.
Collapse
Affiliation(s)
- Han Qiu
- Research Center for Industries of the Future, Westlake University, Hangzhou 310024, Zhejiang, China; Center for Genome Editing, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China; Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China; Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Geng Li
- Research Center for Industries of the Future, Westlake University, Hangzhou 310024, Zhejiang, China; Center for Genome Editing, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China; Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China
| | - Juanjuan Yuan
- Shunde Hospital, Southern Medical University, Foshan 528308, Guangdong, China
| | - Dian Yang
- Research Center for Industries of the Future, Westlake University, Hangzhou 310024, Zhejiang, China; Center for Genome Editing, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China; Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China
| | - Yunqing Ma
- Research Center for Industries of the Future, Westlake University, Hangzhou 310024, Zhejiang, China; Center for Genome Editing, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China; Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China
| | - Feng Wang
- Department of Laboratory Medicine, Ningbo Medical Center Lihuili Hospital, Ningbo 315040, Zhejiang, China
| | - Yi Dai
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China
| | - Xing Chang
- Research Center for Industries of the Future, Westlake University, Hangzhou 310024, Zhejiang, China; Center for Genome Editing, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China; Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China.
| |
Collapse
|
9
|
Mashima R, Takada S, Miyamoto Y. RNA-Based Therapeutic Technology. Int J Mol Sci 2023; 24:15230. [PMID: 37894911 PMCID: PMC10607345 DOI: 10.3390/ijms242015230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/09/2023] [Accepted: 10/15/2023] [Indexed: 10/29/2023] Open
Abstract
RNA-based therapy has been an expanding area of clinical research since the COVID-19 outbreak. Often, its comparison has been made to DNA-based gene therapy, such as adeno-associated virus- and lentivirus-mediated therapy. These DNA-based therapies show persistent expression, with maximized therapeutic efficacy. However, accumulating data indicate that proper control of gene expression is occasionally required. For example, in cancer immunotherapy, cytokine response syndrome is detrimental for host animals, while excess activation of the immune system induces supraphysiological cytokines. RNA-based therapy seems to be a rather mild therapy, and it has room to fit unmet medical needs, whereas current DNA-based therapy has unclear issues. This review focused on RNA-based therapy for cancer immunotherapy, hematopoietic disorders, and inherited disorders, which have received attention for possible clinical applications.
Collapse
Affiliation(s)
- Ryuichi Mashima
- Department of Clinical Laboratory Medicine, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
| | - Shuji Takada
- Department of Systems BioMedicine, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
| | - Yoshitaka Miyamoto
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
| |
Collapse
|
10
|
Sparber P, Bychkov I, Pyankov D, Skoblov M. Functional investigation of SCN1A deep-intronic variants activating poison exons inclusion. Hum Genet 2023; 142:1043-1053. [PMID: 37186029 DOI: 10.1007/s00439-023-02564-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/19/2023] [Indexed: 05/17/2023]
Abstract
Dravet syndrome is a devastating epileptic syndrome characterized by intractable epilepsy with an early age of onset, regression of developmental milestones, ataxia, and motor deficits. Loss-of-function pathogenic variants in the SCN1A gene are found in the majority of patients with Dravet syndrome; however, a significant number of patients remain undiagnosed even after comprehensive genetic testing. Previously, it was shown that intronic elements in the SCN1A gene called poison exons can incorporate into SCN1A mRNA, leading to haploinsufficiency and potentially causing Dravet syndrome. Here, we developed a splicing reporter assay for all described poison exons of the SCN1A gene and validated it using previously reported and artificially introduced variants. Overall, we tested 18 deep-intronic single nucleotide variants and one complex allele in the SCN1A gene. Our approach is capable of evaluating the effect of both variants affecting cis-regulatory sequences and splice-site variants, with the potential to functionally annotate every possible variant within these elements. Moreover, using antisense-modified uridine-rich U7 small nuclear RNAs, we were able to block poison exon incorporation in mutant constructs, an approach that could be used as a promising therapeutic intervention in Dravet syndrome patients with deep-intronic variants.
Collapse
Affiliation(s)
- Peter Sparber
- Laboratory of Functional Genomics, Research Centre for Medical Genetics, Moskvorechie Street 1, Moscow, Russia, 115478.
| | - Igor Bychkov
- Laboratory of Hereditary Metabolic Diseases, Research Centre for Medical Genetics, Moscow, Russia
| | | | - Mikhail Skoblov
- Laboratory of Functional Genomics, Research Centre for Medical Genetics, Moskvorechie Street 1, Moscow, Russia, 115478
| |
Collapse
|
11
|
Good DJ. Non-Coding RNAs in Human Health and Diseases. Genes (Basel) 2023; 14:1429. [PMID: 37510332 PMCID: PMC10380012 DOI: 10.3390/genes14071429] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
Non-coding RNAs (ncRNAs) are, arguably, the enigma of the RNA transcriptome. Even though there are more annotated ncRNAs (25,967) compared to mRNAs (19,827), we know far less about each of the genes that produce ncRNA, especially in terms of their regulation, molecular functions, and interactions. Further, we are only beginning to understand the role of differential regulation or function of ncRNAs caused by genetic and epigenetic perturbations, such as single nucleotide variants (SNV), deletions, insertions, and histone/DNA modifications. The 22 papers in this Special Issue describe the emerging roles of ncRNAs in neurological, cardiovascular, immune, and hepatic systems, to name a few, as well as in diseases such as cancer, Prader-Willi Syndrome, cardiac arrhythmias, and diabetes. As we begin to understand the function and regulation of this class of RNAs, strategies targeting ncRNAs could lead to improved therapeutic interventions for some conditions.
Collapse
Affiliation(s)
- Deborah J Good
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA 24060, USA
| |
Collapse
|
12
|
Bez Batti Angulski A, Hosny N, Cohen H, Martin AA, Hahn D, Bauer J, Metzger JM. Duchenne muscular dystrophy: disease mechanism and therapeutic strategies. Front Physiol 2023; 14:1183101. [PMID: 37435300 PMCID: PMC10330733 DOI: 10.3389/fphys.2023.1183101] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/24/2023] [Indexed: 07/13/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a severe, progressive, and ultimately fatal disease of skeletal muscle wasting, respiratory insufficiency, and cardiomyopathy. The identification of the dystrophin gene as central to DMD pathogenesis has led to the understanding of the muscle membrane and the proteins involved in membrane stability as the focal point of the disease. The lessons learned from decades of research in human genetics, biochemistry, and physiology have culminated in establishing the myriad functionalities of dystrophin in striated muscle biology. Here, we review the pathophysiological basis of DMD and discuss recent progress toward the development of therapeutic strategies for DMD that are currently close to or are in human clinical trials. The first section of the review focuses on DMD and the mechanisms contributing to membrane instability, inflammation, and fibrosis. The second section discusses therapeutic strategies currently used to treat DMD. This includes a focus on outlining the strengths and limitations of approaches directed at correcting the genetic defect through dystrophin gene replacement, modification, repair, and/or a range of dystrophin-independent approaches. The final section highlights the different therapeutic strategies for DMD currently in clinical trials.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Joseph M. Metzger
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN, United States
| |
Collapse
|
13
|
Ding S, Dong X, Song X. Tumor educated platelet: the novel BioSource for cancer detection. Cancer Cell Int 2023; 23:91. [PMID: 37170255 PMCID: PMC10176761 DOI: 10.1186/s12935-023-02927-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/15/2023] [Indexed: 05/13/2023] Open
Abstract
Platelets, involved in the whole process of tumorigenesis and development, constantly absorb and enrich tumor-specific substances in the circulation during their life span, thus called "Tumor Educated Platelets" (TEPs). The alterations of platelet mRNA profiles have been identified as tumor markers due to the regulatory mechanism of post-transcriptional splicing. Small nuclear RNAs (SnRNAs), the important spliceosome components in platelets, dominate platelet RNA splicing and regulate the splicing intensity of pre-mRNA. Endogenous variation at the snRNA levels leads to widespread differences in alternative splicing, thereby driving the development and progression of neoplastic diseases. This review systematically expounds the bidirectional tumor-platelets interactions, especially the tumor induced alternative splicing in TEP, and further explores whether molecules related to alternative splicing such as snRNAs can serve as novel biomarkers for cancer diagnostics.
Collapse
Affiliation(s)
- Shanshan Ding
- Department of Clinical Laboratory, Shandong Cancer Hospital & Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, PR China
| | - Xiaohan Dong
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Xingguo Song
- Department of Clinical Laboratory, Shandong Cancer Hospital & Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, PR China.
| |
Collapse
|
14
|
Morelli KH, Smargon AA, Yeo GW. Programmable macromolecule-based RNA-targeting therapies to treat human neurological disorders. RNA (NEW YORK, N.Y.) 2023; 29:489-497. [PMID: 36693761 PMCID: PMC10019361 DOI: 10.1261/rna.079519.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Disruptions in RNA processing play critical roles in the pathogenesis of neurological diseases. In this Perspective, we discuss recent progress in the development of RNA-targeting therapeutic modalities. We focus on progress, limitations, and opportunities in a new generation of therapies engineered from RNA binding proteins and other endogenous RNA regulatory macromolecules to treat human neurological disorders.
Collapse
Affiliation(s)
- Kathryn H Morelli
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California 92093, USA
- Stem Cell Program, University of California San Diego, La Jolla, California 92093, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, California 92039, USA
| | - Aaron A Smargon
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California 92093, USA
- Stem Cell Program, University of California San Diego, La Jolla, California 92093, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, California 92039, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California 92093, USA
- Stem Cell Program, University of California San Diego, La Jolla, California 92093, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, California 92039, USA
| |
Collapse
|
15
|
Mehta PR, Brown AL, Ward ME, Fratta P. The era of cryptic exons: implications for ALS-FTD. Mol Neurodegener 2023; 18:16. [PMID: 36922834 PMCID: PMC10018954 DOI: 10.1186/s13024-023-00608-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/17/2023] [Indexed: 03/18/2023] Open
Abstract
TDP-43 is an RNA-binding protein with a crucial nuclear role in splicing, and mislocalises from the nucleus to the cytoplasm in a range of neurodegenerative disorders. TDP-43 proteinopathy spans a spectrum of incurable, heterogeneous, and increasingly prevalent neurodegenerative diseases, including the amyotrophic lateral sclerosis and frontotemporal dementia disease spectrum and a significant fraction of Alzheimer's disease. There are currently no directed disease-modifying therapies for TDP-43 proteinopathies, and no way to distinguish who is affected before death. It is now clear that TDP-43 proteinopathy leads to a number of molecular changes, including the de-repression and inclusion of cryptic exons. Importantly, some of these cryptic exons lead to the loss of crucial neuronal proteins and have been shown to be key pathogenic players in disease pathogenesis (e.g., STMN2), as well as being able to modify disease progression (e.g., UNC13A). Thus, these aberrant splicing events make promising novel therapeutic targets to restore functional gene expression. Moreover, presence of these cryptic exons is highly specific to patients and areas of the brain affected by TDP-43 proteinopathy, offering the potential to develop biomarkers for early detection and stratification of patients. In summary, the discovery of cryptic exons gives hope for novel diagnostics and therapeutics on the horizon for TDP-43 proteinopathies.
Collapse
Affiliation(s)
- Puja R Mehta
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL Queen Square Motor Neuron Disease Centre, London, WC1N 3BG, UK
| | - Anna-Leigh Brown
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL Queen Square Motor Neuron Disease Centre, London, WC1N 3BG, UK
| | - Michael E Ward
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - Pietro Fratta
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL Queen Square Motor Neuron Disease Centre, London, WC1N 3BG, UK.
| |
Collapse
|
16
|
Abstract
Dysregulated RNA splicing is a molecular feature that characterizes almost all tumour types. Cancer-associated splicing alterations arise from both recurrent mutations and altered expression of trans-acting factors governing splicing catalysis and regulation. Cancer-associated splicing dysregulation can promote tumorigenesis via diverse mechanisms, contributing to increased cell proliferation, decreased apoptosis, enhanced migration and metastatic potential, resistance to chemotherapy and evasion of immune surveillance. Recent studies have identified specific cancer-associated isoforms that play critical roles in cancer cell transformation and growth and demonstrated the therapeutic benefits of correcting or otherwise antagonizing such cancer-associated mRNA isoforms. Clinical-grade small molecules that modulate or inhibit RNA splicing have similarly been developed as promising anticancer therapeutics. Here, we review splicing alterations characteristic of cancer cell transcriptomes, dysregulated splicing's contributions to tumour initiation and progression, and existing and emerging approaches for targeting splicing for cancer therapy. Finally, we discuss the outstanding questions and challenges that must be addressed to translate these findings into the clinic.
Collapse
Affiliation(s)
- Robert K Bradley
- Computational Biology Program, Public Health Sciences Division and Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
| | - Olga Anczuków
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA.
- Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, USA.
| |
Collapse
|
17
|
Abstract
Muscular dystrophies are a group of genetic disorders characterized by varying degrees of progressive muscle weakness and degeneration. They are clinically and genetically heterogeneous but share the common histological features of dystrophic muscle. There is currently no cure for muscular dystrophies, which is of particular concern for the more disabling and/or lethal forms of the disease. Through the years, several therapies have encouragingly been developed for muscular dystrophies and include genetic, cellular, and pharmacological approaches. In this chapter, we undertake a comprehensive exploration of muscular dystrophy therapeutics under current development. Our review includes antisense therapy, CRISPR, gene replacement, cell therapy, nonsense suppression, and disease-modifying small molecule compounds.
Collapse
|
18
|
De Serres-Bérard T, Ait Benichou S, Jauvin D, Boutjdir M, Puymirat J, Chahine M. Recent Progress and Challenges in the Development of Antisense Therapies for Myotonic Dystrophy Type 1. Int J Mol Sci 2022; 23:13359. [PMID: 36362145 PMCID: PMC9657934 DOI: 10.3390/ijms232113359] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/20/2022] [Accepted: 10/25/2022] [Indexed: 08/01/2023] Open
Abstract
Myotonic dystrophy type 1 (DM1) is a dominant genetic disease in which the expansion of long CTG trinucleotides in the 3' UTR of the myotonic dystrophy protein kinase (DMPK) gene results in toxic RNA gain-of-function and gene mis-splicing affecting mainly the muscles, the heart, and the brain. The CUG-expanded transcripts are a suitable target for the development of antisense oligonucleotide (ASO) therapies. Various chemical modifications of the sugar-phosphate backbone have been reported to significantly enhance the affinity of ASOs for RNA and their resistance to nucleases, making it possible to reverse DM1-like symptoms following systemic administration in different transgenic mouse models. However, specific tissue delivery remains to be improved to achieve significant clinical outcomes in humans. Several strategies, including ASO conjugation to cell-penetrating peptides, fatty acids, or monoclonal antibodies, have recently been shown to improve potency in muscle and cardiac tissues in mice. Moreover, intrathecal administration of ASOs may be an advantageous complementary administration route to bypass the blood-brain barrier and correct defects of the central nervous system in DM1. This review describes the evolution of the chemical design of antisense oligonucleotides targeting CUG-expanded mRNAs and how recent advances in the field may be game-changing by forwarding laboratory findings into clinical research and treatments for DM1 and other microsatellite diseases.
Collapse
Affiliation(s)
- Thiéry De Serres-Bérard
- CERVO Research Center, Institut Universitaire en Santé Mentale de Québec, Quebec City, QC G1J 2G3, Canada
| | - Siham Ait Benichou
- LOEX, CHU de Québec-Université Laval Research Center, Quebec City, QC G1J 1Z4, Canada
| | - Dominic Jauvin
- CERVO Research Center, Institut Universitaire en Santé Mentale de Québec, Quebec City, QC G1J 2G3, Canada
| | - Mohamed Boutjdir
- Cardiovascular Research Program, VA New York Harbor Healthcare System, New York, NY 11209, USA
- Department of Medicine, Cell Biology and Pharmacology, State University of New York Downstate Health Science University, New York, NY 11203, USA
- Department of Medicine, NYU School of Medicine, New York, NY 10016, USA
| | - Jack Puymirat
- LOEX, CHU de Québec-Université Laval Research Center, Quebec City, QC G1J 1Z4, Canada
- Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Mohamed Chahine
- CERVO Research Center, Institut Universitaire en Santé Mentale de Québec, Quebec City, QC G1J 2G3, Canada
- Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada
| |
Collapse
|
19
|
Hatch ST, Smargon AA, Yeo GW. Engineered U1 snRNAs to modulate alternatively spliced exons. Methods 2022; 205:140-148. [PMID: 35764245 PMCID: PMC11185844 DOI: 10.1016/j.ymeth.2022.06.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 05/30/2022] [Accepted: 06/23/2022] [Indexed: 10/17/2022] Open
Abstract
Alternative splicing accounts for a considerable portion of transcriptomic diversity, as most protein-coding genes are spliced into multiple mRNA isoforms. However, errors in splicing patterns can give rise to mis-splicing with pathological consequences, such as the congenital diseases familial dysautonomia, Duchenne muscular dystrophy, and spinal muscular atrophy. Small nuclear RNA (snRNA) components of the U snRNP family have been proposed as a therapeutic modality for the treatment of mis-splicing. U1 snRNAs offer great promise, with prior studies demonstrating in vivo efficacy, suggesting additional preclinical development is merited. Improvements in enabling technologies, including screening methodologies, gene delivery vectors, and relevant considerations from gene editing approaches justify further advancement of U1 snRNA as a therapeutic and research tool. With the goal of providing a user-friendly protocol, we compile and demonstrate a methodological toolkit for sequence-specific targeted perturbation of alternatively spliced pre-mRNA with engineered U1 snRNAs. We observe robust modulation of endogenous pre-mRNA transcripts targeted in two contrasting splicing contexts, SMN2 exon 7 and FAS exon 6, exhibiting the utility and applicability of engineered U1 snRNA to both inclusion and exclusion of targeted exons. We anticipate that these demonstrations will contribute to the usability of U1 snRNA in investigating splicing modulation in eukaryotic cells, increasing accessibility to the broader research community.
Collapse
Affiliation(s)
- Samuel T Hatch
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA; Stem Cell Program, University of California San Diego, Sanford Consortium for Regenerative Medicine, La Jolla, USA; Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA; Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, CA, USA
| | - Aaron A Smargon
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA; Stem Cell Program, University of California San Diego, Sanford Consortium for Regenerative Medicine, La Jolla, USA; Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA; Stem Cell Program, University of California San Diego, Sanford Consortium for Regenerative Medicine, La Jolla, USA; Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA; Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
20
|
Advanced Gene-Targeting Therapies for Motor Neuron Diseases and Muscular Dystrophies. Int J Mol Sci 2022; 23:ijms23094824. [PMID: 35563214 PMCID: PMC9101723 DOI: 10.3390/ijms23094824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 12/19/2022] Open
Abstract
Gene therapy is a revolutionary, cutting-edge approach to permanently ameliorate or amend many neuromuscular diseases by targeting their genetic origins. Motor neuron diseases and muscular dystrophies, whose genetic causes are well known, are the frontiers of this research revolution. Several genetic treatments, with diverse mechanisms of action and delivery methods, have been approved during the past decade and have demonstrated remarkable results. However, despite the high number of genetic treatments studied preclinically, those that have been advanced to clinical trials are significantly fewer. The most clinically advanced treatments include adeno-associated virus gene replacement therapy, antisense oligonucleotides, and RNA interference. This review provides a comprehensive overview of the advanced gene therapies for motor neuron diseases (i.e., amyotrophic lateral sclerosis and spinal muscular atrophy) and muscular dystrophies (i.e., Duchenne muscular dystrophy, limb-girdle muscular dystrophy, and myotonic dystrophy) tested in clinical trials. Emphasis has been placed on those methods that are a few steps away from their authoritative approval.
Collapse
|
21
|
Abstract
RNA-based therapeutics have entered the mainstream with seemingly limitless possibilities to treat all categories of neurological disease. Here, common RNA-based drug modalities such as antisense oligonucleotides, small interfering RNAs, RNA aptamers, RNA-based vaccines and mRNA drugs are reviewed highlighting their current and potential applications. Rapid progress has been made across rare genetic diseases and neurodegenerative disorders, but safe and effective delivery to the brain remains a significant challenge for many applications. The advent of individualized RNA-based therapies for ultra-rare diseases is discussed against the backdrop of the emergence of this field into more common conditions such as Alzheimer's disease and ischaemic stroke. There remains significant untapped potential in the use of RNA-based therapeutics for behavioural disorders and tumours of the central nervous system; coupled with the accelerated development expected over the next decade, the true potential of RNA-based therapeutics to transform the therapeutic landscape in neurology remains to be uncovered.
Collapse
Affiliation(s)
- Karen Anthony
- Centre for Physical Activity and Life Sciences, University of Northampton, Northampton, UK
| |
Collapse
|
22
|
Zakaria NA, Bahar R, Abdullah WZ, Mohamed Yusoff AA, Shamsuddin S, Abdul Wahab R, Johan MF. Genetic Manipulation Strategies for β-Thalassemia: A Review. Front Pediatr 2022; 10:901605. [PMID: 35783328 PMCID: PMC9240386 DOI: 10.3389/fped.2022.901605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/19/2022] [Indexed: 11/30/2022] Open
Abstract
Thalassemias are monogenic hematologic diseases that are classified as α- or β-thalassemia according to its quantitative abnormalities of adult α- or β-globin chains. β-thalassemia has widely spread throughout the world especially in Mediterranean countries, the Middle East, Central Asia, India, Southern China, and the Far East as well as countries along the north coast of Africa and in South America. The one and the only cure for β-thalassemia is allogenic hematopoietic stem cell transplantations (HSCT). Nevertheless, the difficulty to find matched donors has hindered the availability of this therapeutic option. Therefore, this present review explored the alternatives for β-thalassemia treatment such as RNA manipulation therapy, splice-switching, genome editing and generation of corrected induced pluripotent stem cells (iPSCs). Manipulation of β-globin RNA is mediated by antisense oligonucleotides (ASOs) or splice-switching oligonucleotides (SSOs), which redirect pre-mRNA splicing to significantly restore correct β-globin pre-mRNA splicing and gene product in cultured erythropoietic cells. Zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9) are designer proteins that can alter the genome precisely by creating specific DNA double-strand breaks. The treatment of β-thalassemia patient-derived iPSCs with TALENs have been found to correct the β-globin gene mutations, implying that TALENs could be used as a therapy option for β-thalassemia. Additionally, CRISPR technologies using Cas9 have been used to fix mutations in the β-globin gene in cultured cells as well as induction of hereditary persistence of fetal hemoglobin (HPFH), and α-globin gene deletions have proposed a possible therapeutic option for β-thalassemia. Overall, the accumulated research evidence demonstrated the potential of ASOs-mediated aberrant splicing correction of β-thalassemia mutations and the advancements of genome therapy approaches using ZFNs, TALENs, and CRISPR/Cas9 that provided insights in finding the permanent cure of β-thalassemia.
Collapse
Affiliation(s)
- Nur Atikah Zakaria
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Rosnah Bahar
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Wan Zaidah Abdullah
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Abdul Aziz Mohamed Yusoff
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Shaharum Shamsuddin
- School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia.,Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Kubang Kerian, Malaysia.,Universiti Sains Malaysia (USM)-RIKEN Interdisciplinary Collaboration for Advanced Sciences (URICAS), Penang, Malaysia
| | - Ridhwan Abdul Wahab
- International Medical School, Management and Science University, Shah Alam, Malaysia
| | - Muhammad Farid Johan
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| |
Collapse
|
23
|
Liu J, Guo ZN, Yan XL, Yang Y, Huang S. Brain Pathogenesis and Potential Therapeutic Strategies in Myotonic Dystrophy Type 1. Front Aging Neurosci 2021; 13:755392. [PMID: 34867280 PMCID: PMC8634727 DOI: 10.3389/fnagi.2021.755392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 10/20/2021] [Indexed: 12/17/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is the most common muscular dystrophy that affects multiple systems including the muscle and heart. The mutant CTG expansion at the 3'-UTR of the DMPK gene causes the expression of toxic RNA that aggregate as nuclear foci. The foci then interfere with RNA-binding proteins, affecting hundreds of mis-spliced effector genes, leading to aberrant alternative splicing and loss of effector gene product functions, ultimately resulting in systemic disorders. In recent years, increasing clinical, imaging, and pathological evidence have indicated that DM1, though to a lesser extent, could also be recognized as true brain diseases, with more and more researchers dedicating to develop novel therapeutic tools dealing with it. In this review, we summarize the current advances in the pathogenesis and pathology of central nervous system (CNS) deficits in DM1, intervention measures currently being investigated are also highlighted, aiming to promote novel and cutting-edge therapeutic investigations.
Collapse
Affiliation(s)
- Jie Liu
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China
- China National Comprehensive Stroke Center, Changchun, China
- Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| | - Zhen-Ni Guo
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China
- China National Comprehensive Stroke Center, Changchun, China
- Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| | - Xiu-Li Yan
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China
| | - Yi Yang
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China
- China National Comprehensive Stroke Center, Changchun, China
- Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| | - Shuo Huang
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China
- China National Comprehensive Stroke Center, Changchun, China
- Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| |
Collapse
|
24
|
From Antisense RNA to RNA Modification: Therapeutic Potential of RNA-Based Technologies. Biomedicines 2021; 9:biomedicines9050550. [PMID: 34068948 PMCID: PMC8156014 DOI: 10.3390/biomedicines9050550] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 02/07/2023] Open
Abstract
Therapeutic oligonucleotides interact with a target RNA via Watson-Crick complementarity, affecting RNA-processing reactions such as mRNA degradation, pre-mRNA splicing, or mRNA translation. Since they were proposed decades ago, several have been approved for clinical use to correct genetic mutations. Three types of mechanisms of action (MoA) have emerged: RNase H-dependent degradation of mRNA directed by short chimeric antisense oligonucleotides (gapmers), correction of splicing defects via splice-modulation oligonucleotides, and interference of gene expression via short interfering RNAs (siRNAs). These antisense-based mechanisms can tackle several genetic disorders in a gene-specific manner, primarily by gene downregulation (gapmers and siRNAs) or splicing defects correction (exon-skipping oligos). Still, the challenge remains for the repair at the single-nucleotide level. The emerging field of epitranscriptomics and RNA modifications shows the enormous possibilities for recoding the transcriptome and repairing genetic mutations with high specificity while harnessing endogenously expressed RNA processing machinery. Some of these techniques have been proposed as alternatives to CRISPR-based technologies, where the exogenous gene-editing machinery needs to be delivered and expressed in the human cells to generate permanent (DNA) changes with unknown consequences. Here, we review the current FDA-approved antisense MoA (emphasizing some enabling technologies that contributed to their success) and three novel modalities based on post-transcriptional RNA modifications with therapeutic potential, including ADAR (Adenosine deaminases acting on RNA)-mediated RNA editing, targeted pseudouridylation, and 2′-O-methylation.
Collapse
|
25
|
Gadgil A, Raczyńska KD. U7 snRNA: A tool for gene therapy. J Gene Med 2021; 23:e3321. [PMID: 33590603 PMCID: PMC8243935 DOI: 10.1002/jgm.3321] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 01/22/2021] [Accepted: 02/09/2021] [Indexed: 12/25/2022] Open
Abstract
Most U-rich small nuclear ribonucleoproteins (snRNPs) are complexes that mediate the splicing of pre-mRNAs. U7 snRNP is an exception in that it is not involved in splicing but is a key factor in the unique 3' end processing of replication-dependent histone mRNAs. However, by introducing controlled changes in the U7 snRNA histone binding sequence and in the Sm motif, it can be used as an effective tool for gene therapy. The modified U7 snRNP (U7 Sm OPT) is thus not involved in the processing of replication-dependent histone pre-mRNA but targets splicing by inducing efficient skipping or inclusion of selected exons. U7 Sm OPT is of therapeutic importance in diseases that are an outcome of splicing defects, such as myotonic dystrophy, Duchenne muscular dystrophy, amyotrophic lateral sclerosis, β-thalassemia, HIV-1 infection and spinal muscular atrophy. The benefits of using U7 Sm OPT for gene therapy are its compact size, ability to accumulate in the nucleus without causing any toxic effects in the cells, and no immunoreactivity. The risk of transgene misregulation by using U7 Sm OPT is also low because it is involved in correcting the expression of an endogenous gene controlled by its own regulatory elements. Altogether, using U7 Sm OPT as a tool in gene therapy can ensure lifelong treatment, whereas an oligonucleotide or other drug/compound would require repeated administration. It would thus be strategic to harness these unique properties of U7 snRNP and deploy it as a tool in gene therapy.
Collapse
Affiliation(s)
- Ankur Gadgil
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of BiologyAdam Mickiewicz UniversityPoznanPoland
- Center for Advanced TechnologyAdam Mickiewicz UniversityPoznanPoland
| | - Katarzyna Dorota Raczyńska
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of BiologyAdam Mickiewicz UniversityPoznanPoland
- Center for Advanced TechnologyAdam Mickiewicz UniversityPoznanPoland
| |
Collapse
|