1
|
Abu-Hashem AA, Abdelgawad AA, Gouda MA. Chemistry and Biological Activity of Thieno[3,4- b]quinoline, Thieno[3,4- c]
quinolone, Thieno[3,2- g]quinoline and Thieno[2,3- g]quinoline Derivatives:
A Review (Part IX). MINI-REV ORG CHEM 2024; 21:764-778. [DOI: 10.2174/1570193x20666230601151439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/27/2023] [Accepted: 05/04/2023] [Indexed: 07/10/2024]
Abstract
Abstract:
Over the previous decades, thieno-quinoline derivatives have acquired great interest due to
their synthetic and biological applications. These reports have been disclosed on Thienoquinoline
synthesis such as thieno[3,4-b]quinoline; thieno[3,4-c]quinolone; thieno [3,2-g]quinoline; thieno[2,3-
g] quinoline; spiro-thieno[2,3-g]quinoline; benzo[b]thiophen-iso- quinoline derivatives, and therefore
in the existent review, we provided an inclusive update on the synthesis of thienoquinolines. Characterization
of the preparation methods and reactivity is categorized based on their types of reactions as
addition, alkylation, chlorination, acylation, oxidation, reduction, cyclization and cyclo-condensation.
Hence, this study will help the researchers to obtain knowledge from the last literature research to
conquer their resolve problems in designing new compounds and processes.
Collapse
Affiliation(s)
- Ameen A. Abu-Hashem
- Chemistry Department, Faculty of Science, Jazan University, Jazan, 45142, Saudi Arabia
| | - Ahmed A.M. Abdelgawad
- Chemistry Department, Faculty of Science, Jazan University, Jazan, 45142, Saudi Arabia
| | - Moustafa A. Gouda
- Department of Chemistry,
Faculty of Science and Arts, Taibah University, Ulla, Medina, Saudi Arabia
- Department of Chemistry, Faculty of Science,
Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
2
|
Abu-Hashem AA, Hakami O, El-Shazly M, El-Nashar HAS, Yousif MNM. Caffeine and Purine Derivatives: A Comprehensive Review on the Chemistry, Biosynthetic Pathways, Synthesis-Related Reactions, Biomedical Prospectives and Clinical Applications. Chem Biodivers 2024; 21:e202400050. [PMID: 38719741 DOI: 10.1002/cbdv.202400050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/06/2024] [Indexed: 06/13/2024]
Abstract
Caffeine and purine derivatives represent interesting chemical moieties, which show various biological activities. Caffeine is an alkaloid that belongs to the family of methylxanthine alkaloids and it is present in food, beverages, and drugs. Coffee, tea, and some other beverages are a major source of caffeine in the human diet. Caffeine can be extracted from tea or coffee using hot water with dichloromethane or chloroform and the leftover is known as decaffeinated coffee or tea. Caffeine and its derivatives were synthesized via different procedures on small and large scales. It competitively antagonizes the adenosine receptors (ARs), which are G protein-coupled receptors largely distributed in the human body, including the heart, vessels, brain, and kidneys. Recently, many reports showed the effect of caffeine derivatives in the treatment of many diseases such as Alzheimer's, asthma, parkinsonism, and cancer. Also, it is used as an antioxidant, anti-inflammatory, analgesic, and hypocholesterolemic agent. The present review article discusses the synthesis, reactivity, and biological and pharmacological properties of caffeine and its derivatives. The biosynthesis and biotransformation of caffeine in coffee and tea leaves and the human body were summarized in the review.
Collapse
Affiliation(s)
- Ameen A Abu-Hashem
- Photochemistry Department, National Research Centre, 12622, Dokki, Giza, Egypt
- Chemistry Department, Faculty of Science, Jazan University, 45142 and 2097, Jazan, KSA, Saudi Arabia
| | - Othman Hakami
- Chemistry Department, Faculty of Science, Jazan University, 45142 and 2097, Jazan, KSA, Saudi Arabia
| | - Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Heba A S El-Nashar
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Mahmoud N M Yousif
- Photochemistry Department, National Research Centre, 12622, Dokki, Giza, Egypt
| |
Collapse
|
3
|
Rapetti F, Spallarossa A, Russo E, Caviglia D, Villa C, Tasso B, Signorello MG, Rosano C, Iervasi E, Ponassi M, Brullo C. Investigations of Antioxidant and Anti-Cancer Activities of 5-Aminopyrazole Derivatives. Molecules 2024; 29:2298. [PMID: 38792163 PMCID: PMC11124527 DOI: 10.3390/molecules29102298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/09/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024] Open
Abstract
To further extend the structure-activity relationships (SARs) of 5-aminopyrazoles (5APs) and identify novel compounds able to interfere with inflammation, oxidative stress, and tumorigenesis, 5APs 1-4 have been designed and prepared. Some chemical modifications have been inserted on cathecol function or in aminopyrazole central core; in detail: (i) smaller, bigger, and more lipophilic substituents were introduced in meta and para positions of catechol portion (5APs 1); (ii) a methyl group was inserted on C3 of the pyrazole scaffold (5APs 2); (iii) a more flexible alkyl chain was inserted on N1 position (5APs 3); (iv) the acylhydrazonic linker was moved from position 4 to position 3 of the pyrazole scaffold (5APs 4). All new derivatives 1-4 have been tested for radical scavenging (DPPH assay), anti-aggregating/antioxidant (in human platelets) and cell growth inhibitory activity (MTT assay) properties. In addition, in silico pharmacokinetics, drug-likeness properties, and toxicity have been calculated. 5APs 1 emerged to be promising anti-proliferative agents, able to suppress the growth of specific cancer cell lines. Furthermore, derivatives 3 remarkably inhibited ROS production in platelets and 5APs 4 showed interesting in vitro radical scavenging properties. Overall, the collected results further confirm the pharmaceutical potentials of this class of compounds and support future studies for the development of novel anti-proliferative and antioxidant agents.
Collapse
Affiliation(s)
- Federica Rapetti
- Department of Pharmacy (DIFAR), University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy; (F.R.); (A.S.); (E.R.); (D.C.); (C.V.); (B.T.)
| | - Andrea Spallarossa
- Department of Pharmacy (DIFAR), University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy; (F.R.); (A.S.); (E.R.); (D.C.); (C.V.); (B.T.)
| | - Eleonora Russo
- Department of Pharmacy (DIFAR), University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy; (F.R.); (A.S.); (E.R.); (D.C.); (C.V.); (B.T.)
| | - Debora Caviglia
- Department of Pharmacy (DIFAR), University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy; (F.R.); (A.S.); (E.R.); (D.C.); (C.V.); (B.T.)
| | - Carla Villa
- Department of Pharmacy (DIFAR), University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy; (F.R.); (A.S.); (E.R.); (D.C.); (C.V.); (B.T.)
| | - Bruno Tasso
- Department of Pharmacy (DIFAR), University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy; (F.R.); (A.S.); (E.R.); (D.C.); (C.V.); (B.T.)
| | - Maria Grazia Signorello
- Department of Pharmacy (DIFAR), Biochemistry Lab., University of Genoa, Viale Benedetto XV, 3, 16132 Genova, Italy;
| | - Camillo Rosano
- IRCCS Ospedale Policlinico San Martino, Proteomics and Mass Spectrometry Unit, L.go. R. Benzi, 10, 16132 Genova, Italy; (C.R.); (E.I.); (M.P.)
| | - Erika Iervasi
- IRCCS Ospedale Policlinico San Martino, Proteomics and Mass Spectrometry Unit, L.go. R. Benzi, 10, 16132 Genova, Italy; (C.R.); (E.I.); (M.P.)
| | - Marco Ponassi
- IRCCS Ospedale Policlinico San Martino, Proteomics and Mass Spectrometry Unit, L.go. R. Benzi, 10, 16132 Genova, Italy; (C.R.); (E.I.); (M.P.)
| | - Chiara Brullo
- Department of Pharmacy (DIFAR), University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy; (F.R.); (A.S.); (E.R.); (D.C.); (C.V.); (B.T.)
| |
Collapse
|
4
|
Abu-Hashem AA, Hakami O, Amri N, Mukhrish YE, Abdelgawad AAM. Synthesis of 1,3,5-Triazepines and Benzo[ f][1,3,5]triazepines and Their Biological Activity: Recent Advances and New Approaches. Molecules 2024; 29:632. [PMID: 38338376 PMCID: PMC10856803 DOI: 10.3390/molecules29030632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/20/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
This review article discusses the recent progress in synthesizing seven-membered ring 1,3,5-triazepine and benzo[f][1,3,5]triazepine derivatives. These derivatives can be either unsaturated, saturated, fused, or separated. This review covers strategies and procedures developed over the past two decades, including cyclo-condensation, cyclization, methylation, chlorination, alkylation, addition, cross-coupling, ring expansions, and ring-closing metathesis. This review discusses the synthesis of 1,3,5-triazepine derivatives using nucleophilic or electrophilic substitution reactions with various reagents such as o-phenylenediamine, 2-aminobenzamide, isothiocyanates, pyrazoles, thiazoles, oxadiazoles, oxadiazepines, and hydrazonoyl chloride. This article systematically presents new approaches and techniques for preparing these compounds. It also highlights the biological importance of benzo[f][1,3,5]triazepine derivatives, which have been used as drugs for treating nervous system diseases. This review aims to provide researchers with the necessary information to create and develop new derivatives of these compounds as quickly as possible.
Collapse
Affiliation(s)
- Ameen Ali Abu-Hashem
- Department of Physical Sciences, Chemistry Division, College of Science, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia; (O.H.); (Y.E.M.); (A.A.M.A.)
| | | | - Nasser Amri
- Department of Physical Sciences, Chemistry Division, College of Science, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia; (O.H.); (Y.E.M.); (A.A.M.A.)
| | | | | |
Collapse
|
5
|
Gujja V, Sadineni K, Epuru MR, Rao Allaka T, Banothu V, Gunda SK, Koppula SK. Synthesis and in Silico Studies of Some New 1,2,3-Triazolyltetrazole Bearing Indazole Derivatives as Potent Antimicrobial Agents. Chem Biodivers 2023; 20:e202301232. [PMID: 37988365 DOI: 10.1002/cbdv.202301232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/21/2023] [Accepted: 11/21/2023] [Indexed: 11/23/2023]
Abstract
1,2,3-Triazole and tetrazole derivatives bearing pyrrolidines are found to exhibit notable biological activity and have become useful scaffolds in medicinal chemistry for application in lead discovery and optimization. Novel indazole bearing 1,2,3-triazolyltetrazoles were designed as potential antimicrobial candidates. The structure of duel heterocyclics was validated by a spectroscopic technique of infrared (IR), nuclear magnetic resonance (1 H and 13 C NMR), and mass spectral data. Compounds 4b, 4c, 4d, and 4h were found to have a stronger antibacterial effect against Gram-positive (S. aureus, B. subtilis, M. Luteus) and Gram-negative (E. coli, P. aeruginosa) microorganisms with MICs ranging from 5±0.03-18±0.02 μM, respectively. Moreover, scaffolds 4a, 4h showed potent antifungal activity against A. flavus, M. gypsuem strains with MIC values of 10±0.02, 11±0.01 μM, which are similar activity that of the standard Itraconazole (MIC=8±0.02, 10±0.01 μM). The binding mode for compound 4 inside the catalytic pocket of S. aureus complexed with nicotinamide adenine dinucleotide phosphate and trimethoprim and produced a network of hydrophobic and hydrophilic interactions (3FRE). From in silico results, 4b demonstrated highly stable hydrogen binding amino acids Leu62(X) [N18…O, 2.47 Å], Arg44(X) [N17…N, 3.11 Å], Thr96(X) [N10…OG1, 3.05 Å], Gly94(X) [F7…N, 2.82 Å], and Gly43(X) [F7…N, 2.90 Å], which are plays a crucial role in ensuring efficient binding of the ligand in a crystal structure of antibacterial receptor. Furthermore, the physicochemical and ADME filtration molecular properties, estimation of toxicity, and bioactivity scores of these novel scaffolds were evaluated by using SwissADME and ADMETlab2.0 online protocols. Thus, the significant antimicrobial activity of indazole linked to duel heterocyclic compounds can be used for development of new antimicrobial agents with further modifications.
Collapse
Affiliation(s)
- Venkanna Gujja
- Department of chemistry, Gitam deemed to be University, Hyderabad campus, Rudraram, Sangareddy, Hyderabad, 502329, Telangana, India
| | - Kumaraswamy Sadineni
- Department of chemistry, Gitam deemed to be University, Hyderabad campus, Rudraram, Sangareddy, Hyderabad, 502329, Telangana, India
| | - Manohar Reddy Epuru
- Department of Chemistry, School of Applied Sciences and humanities, VFSTR, Vadlamudi, Guntur, Andhra Pradesh, 522213, India
- Analytical Research and Development, I, nnovare Labs Private Limited, Hyderabad, Telangana, 500090, India
| | - Tejeswara Rao Allaka
- Centre for Chemical Sciences and Technology, Department of Chemistry, Institute of Science & Technology, Jawaharlal Nehru Technological University Hyderabad, Kukatpally, Hyderabad, 500085, Telangana, India
| | - Venkanna Banothu
- Centre for Biotechnology, Institute of Science and Technology, Jawaharlal Nehru Technological University Hyderabad, Kukatpally, Hyderabad, 500085, Telangana, India
| | - Shravan Kumar Gunda
- Bioinformatics Division, PGRRCDE, Osmania University, Tarnaka, Hyderabad, 500007, Telangana, India
| | - Shiva Kumar Koppula
- Department of chemistry, Gitam deemed to be University, Hyderabad campus, Rudraram, Sangareddy, Hyderabad, 502329, Telangana, India
| |
Collapse
|
6
|
Abu‐Hashem AA, Yousif MNM, El‐Gazzar ABA, Hafez HN. Synthesis, design, and antimicrobial activity of pyrido[2,3‐ d][1,2,4]triazolo[4,3‐a]pyrimidinones based on quinoline derivatives. J CHIN CHEM SOC-TAIP 2023; 70:2187-2205. [DOI: 10.1002/jccs.202300212] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 08/07/2023] [Indexed: 07/10/2024]
Abstract
AbstractThe pyrido[2,3‐d]pyrimidine moieties are one of the most biologically widespread heterocyclic compounds as antimicrobial, antioxidant, antitubercular, antiviral and anti‐inflammatory. Hence, we synthesized an efficient new series of 2‐thioxo‐pyrido[2,3‐d]pyrimidinone, 2‐hydrazinyl‐(quinolin‐2‐yl)pyrido[2,3‐d]pyrimidinone,N′‐(quinolin‐2‐yl)‐pyrido[2,3‐d]pyrimidine‐(formo/aceto)‐hydrazide and substituted‐(quinolin‐2‐yl)pyrido[2,3‐d][1,2,4]triazolo[4,3‐a]pyrimidinone derivatives. The characterization of new compounds was corresponded by using spectroscopic techniques, IR, NMR and Mass spectra. In vitro, all compounds were evaluated as antimicrobial activity compared with cefotaxime sodium and nystatin as the standard drug. This work deals with the exploration of the new heterocyclic compounds and medicinal diversity of quinoline‐pyrido[2,3‐d][1,2,4]triazolo[4,3‐a]pyrimidine derivatives that might pave the way for long in the discovery of therapeutic medicine for future drug design.
Collapse
Affiliation(s)
- Ameen A. Abu‐Hashem
- Photochemistry Department (Heterocyclic Unit) National Research Centre Giza Egypt
| | - Mahmoud N. M. Yousif
- Photochemistry Department (Heterocyclic Unit) National Research Centre Giza Egypt
| | | | - Hend N. Hafez
- Photochemistry Department (Heterocyclic Unit) National Research Centre Giza Egypt
| |
Collapse
|
7
|
Spallarossa A, Rapetti F, Signorello MG, Rosano C, Iervasi E, Ponassi M, Brullo C. Insights into the Pharmacological Activity of the Imidazo-Pyrazole Scaffold. ChemMedChem 2023; 18:e202300252. [PMID: 37366115 DOI: 10.1002/cmdc.202300252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 06/28/2023]
Abstract
In previous studies, we synthesized different imidazo-pyrazoles 1 and 2 with interesting anticancer, anti-angiogenic and anti-inflammatory activities. To further extend the structure-activity relationships of imidazo-pyrazole scaffold and to identify novel antiproliferative/anti-inflammatory agents potentially active with multi-target mechanisms, a library of compounds 3-5 has been designed and synthesized. The chemical modifications characterizing the novel derivatives include: i) decoration of the catechol ring with groups with different electronic, steric and lipophilic properties (compounds 3); ii) insertion of a methyl group on C-6 of imidazo-pyrazole scaffold (compounds 4); iii) shift of the acylhydrazonic substituent from position 7 to 6 of the imidazo-pyrazole substructure (compounds 5). All synthesized compounds were tested against a panel of cancer and normal cell lines. Derivatives 3 a, 3 e, 4 c, 5 g and 5 h showed IC50 values in the low micromolar range against selected tumor cell lines and proved to have antioxidant properties, being able to inhibit ROS production in human platelet. In silico calculation predicted favourable drug-like and pharmacokinetic properties for the most promising compounds. Furthermore, molecular docking and molecular dynamic simulations suggested the ability of most active derivative 3 e to interact with colchicine binding site in the polymeric tubulin α/tubulin β/stathmin4 complex.
Collapse
Affiliation(s)
- Andrea Spallarossa
- Department of Pharmacy, University of Genoa, Viale Benedetto XV 3, 16132, Genova, Italy
| | - Federica Rapetti
- Department of Pharmacy, University of Genoa, Viale Benedetto XV 3, 16132, Genova, Italy
| | | | - Camillo Rosano
- IRCCS Ospedale Policlinico San Martino Unit Proteomics and Mass Spectrometry, L.go. R. Benzi, 10, 16132, Genova, Italy
| | - Erika Iervasi
- IRCCS Ospedale Policlinico San Martino Unit Proteomics and Mass Spectrometry, L.go. R. Benzi, 10, 16132, Genova, Italy
| | - Marco Ponassi
- IRCCS Ospedale Policlinico San Martino Unit Proteomics and Mass Spectrometry, L.go. R. Benzi, 10, 16132, Genova, Italy
| | - Chiara Brullo
- Department of Pharmacy, University of Genoa, Viale Benedetto XV 3, 16132, Genova, Italy
| |
Collapse
|
8
|
Soni S, Sahiba N, Teli S, Teli P, Agarwal LK, Agarwal S. Advances in the synthetic strategies of benzoxazoles using 2-aminophenol as a precursor: an up-to-date review. RSC Adv 2023; 13:24093-24111. [PMID: 37577091 PMCID: PMC10416314 DOI: 10.1039/d3ra03871h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/02/2023] [Indexed: 08/15/2023] Open
Abstract
Benzoxazole is a resourceful and important member of the heteroarenes that connects synthetic organic chemistry to medicinal, pharmaceutical, and industrial areas. It is a bicyclic planar molecule and is the most favorable moiety for researchers because it has been extensively used as a starting material for different mechanistic approaches in drug discovery. The motif exhibits a high possibility of broad substrate scope and functionalization to offer several biological activities like anti-microbial, anti-fungal, anti-cancer, anti-oxidant, anti-inflammatory effects, and so on. There has been a large upsurge in the synthesis of benzoxazole via different pathways. The present article presents recent advances in synthetic strategies for benzoxazole derivatives since 2018. A variety of well-organized synthetic methodologies for benzoxazole using 2-aminophenol with aldehydes, ketones, acids, alcohols, isothiocyanates, ortho-esters, and alkynones under different reaction conditions and catalysts, viz. nanocatalysts, metal catalysts, and ionic liquid catalysts, with other miscellaneous techniques has been summarized.
Collapse
Affiliation(s)
- Shivani Soni
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, MLSU Udaipur-313001 Rajasthan India
| | - Nusrat Sahiba
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, MLSU Udaipur-313001 Rajasthan India
| | - Sunita Teli
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, MLSU Udaipur-313001 Rajasthan India
| | - Pankaj Teli
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, MLSU Udaipur-313001 Rajasthan India
| | - Lokesh Kumar Agarwal
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, MLSU Udaipur-313001 Rajasthan India
| | - Shikha Agarwal
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, MLSU Udaipur-313001 Rajasthan India
| |
Collapse
|
9
|
Biliz Y, Hasdemir B, Başpınar Küçük H, Zaim M, Şentürk AM, Müdüroğlu Kırmızıbekmez A, Kara İ. Novel N-Acyl Hydrazone Compounds as Promising Anticancer Agents: Synthesis and Molecular Docking Studies. ACS OMEGA 2023; 8:20073-20084. [PMID: 37305237 PMCID: PMC10249086 DOI: 10.1021/acsomega.3c02361] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 05/10/2023] [Indexed: 06/13/2023]
Abstract
In this study, a new series of N-acyl hydrazones 7a-e, 8a-e, and 9a-e, starting from methyl δ-oxo pentanoate with different substituted groups 1a-e, were synthesized as anticancer agents. The structures of obtained target molecules were identified by spectrometric analysis methods (FT-IR, 11H NMR, 13C NMR, and LC-MS). The antiproliferative activity of the novel N-acyl hydrazones was evaluated on the breast (MCF-7) and prostate (PC-3) cancer cell lines by an MTT assay. Additionally, breast epithelial cells (ME-16C) were used as reference normal cells. All newly synthesized compounds 7a-e, 8a-e, and 9a-e exhibited selective antiproliferative activity with high toxicity to both cancer cells simultaneously without any toxicity to normal cells. Among these novel N-acyl hydrazones, 7a-e showed the most potent anticancer activities with IC50 values at 7.52 ± 0.32-25.41 ± 0.82 and 10.19 ± 0.52-57.33 ± 0.92 μM against MCF-7 and PC-3 cells, respectively. Also, molecular docking studies were applied to comprehend potential molecular interactions between compounds and target proteins. It was seen that the docking calculations and the experimental data are in good agreement.
Collapse
Affiliation(s)
- Yağmur Biliz
- Institute
of Graduate Studies, Istanbul University-Cerrahpaşa, Istanbul 34320, Turkey
| | - Belma Hasdemir
- Department
of Chemistry, Organic Chemistry Division, Istanbul University-Cerrahpaşa, Avcilar, Istanbul 34320, Turkey
| | - Hatice Başpınar Küçük
- Department
of Chemistry, Organic Chemistry Division, Istanbul University-Cerrahpaşa, Avcilar, Istanbul 34320, Turkey
| | - Merve Zaim
- SANKARA
Brain and Biotechnology Research Center, Entertech Technocity, Avcilar, Istanbul 34320, Turkey
| | - Ahmet Mesut Şentürk
- Department
of Pharmeceutical Chemistry, Faculty of Pharmacy, Istanbul Biruni University, Topkapı, Istanbul 34010, Turkey
| | - Aynur Müdüroğlu Kırmızıbekmez
- Department
of Physical Therapy and Rehabilitation, School of Health Sciences, Nisantasi University, Maslak, Istanbul 34398, Turkey
| | - İhsan Kara
- SANKARA
Brain and Biotechnology Research Center, Entertech Technocity, Avcilar, Istanbul 34320, Turkey
| |
Collapse
|
10
|
Dong G, Jiang Y, Zhang F, Zhu F, Liu J, Xu Z. Recent updates on 1,2,3-, 1,2,4-, and 1,3,5-triazine hybrids (2017-present): The anticancer activity, structure-activity relationships, and mechanisms of action. Arch Pharm (Weinheim) 2023; 356:e2200479. [PMID: 36372519 DOI: 10.1002/ardp.202200479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 11/15/2022]
Abstract
Cancer is one of the leading causes of death across the world, and the prevalence and mortality rates of cancer will continue to grow. Chemotherapeutics play a critical role in cancer therapy, but drug resistance and side effects are major hurdles to effective treatment, evoking an immediate need for the discovery of new anticancer agents. Triazines including 1,2,3-, 1,2,4-, and 1,3,5-triazine have occupied a propitious place in drug design and development due to their excellent pharmacological profiles. Mechanistically, triazine derivatives could interfere with various signaling pathways to induce cancer cell death. Hence, triazine derivatives possess potential in vitro and in vivo efficacy against diverse cancers. In particular, triazine hybrids are able to overcome drug resistance and reduce side effects. Moreover, several triazine hybrids such as brivanib (indole-containing pyrrolo[2,1-f][1,2,4]triazine), gedatolisib (1,3,5-triazine-urea hybrid), and enasidenib (1,3,5-triazine-pyridine hybrid) have already been available in the market. Accordingly, triazine hybrids are useful scaffolds for the discovery of novel anticancer chemotherapeutics. This review focuses on the anticancer activity of 1,2,3-, 1,2,4-, and 1,3,5-triazine hybrids, together with the structure-activity relationships and mechanisms of action developed from 2017 to the present. The enriched structure-activity relationships may be useful for further rational drug development of triazine hybrids as potential clinical candidates.
Collapse
Affiliation(s)
- Gaoli Dong
- School of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian, China
| | - Yingchun Jiang
- College of Medicine, Huanghuai University, Zhumadian, China
| | - Feng Zhang
- School of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian, China
| | - Fengyun Zhu
- College of Biology and Food Engineering, Huanghuai University, Zhumadian, China
| | - Junna Liu
- Industry Innovation & Research and Development Institute of Zhumadian, Huanghuai University, Zhumadian, China
| | - Zhi Xu
- Industry Innovation & Research and Development Institute of Zhumadian, Huanghuai University, Zhumadian, China
| |
Collapse
|
11
|
Hawash M, Qaoud MT, Jaradat N, Abdallah S, Issa S, Adnan N, Hoshya M, Sobuh S, Hawash Z. Anticancer Activity of Thiophene Carboxamide Derivatives as CA-4 Biomimetics: Synthesis, Biological Potency, 3D Spheroid Model, and Molecular Dynamics Simulation. Biomimetics (Basel) 2022; 7:247. [PMID: 36546947 PMCID: PMC9775471 DOI: 10.3390/biomimetics7040247] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/10/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
The present study aimed to synthesize thiophene carboxamide derivatives, which are considered biomimetics of the anticancer medication Combretastatin A-4 (CA-4), and compare the similarity in the polar surface area (PSA) between the novel series and CA-4. Our results showed that the PSA of the most synthesized structures was biomimetic to CA-4, and similar chemical and biological properties were observed against Hep3B cancer cell line. Among the synthesized series 2b and 2e compounds were the most active molecules on Hep3B (IC50 = 5.46 and 12.58 µM, respectively). The 3D results revealed that both 2b and 2e structures confuse the surface of Hep3B cancer cell lines' spheroid formation and force these cells to aggregate into a globular-shaped spheroid. The 2b and 2e showed a comparable interaction pattern to that observed for CA-4 and colchicine within the tubulin-colchicine-binding pocket. The thiophene ring, due to holding a high aromaticity character, participated critically in that observed interaction profile and showed additional advanced interactions over CA-4. The 2b and 2e tubulin complexes showed optimal dynamics trajectories within a time scale of 100 ns at 300 K temperature, which asserts their high stability and compactness. Together, these findings revealed the biomimetic role of 2b and 2e compounds in CA-4 in preventing cancer progression.
Collapse
Affiliation(s)
- Mohammed Hawash
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus 00970, Palestine
| | - Mohammed T. Qaoud
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Etiler, 06330 Ankara, Turkey
| | - Nidal Jaradat
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus 00970, Palestine
| | - Samer Abdallah
- Department of Biology & Biotechnology, Faculty of Science, An-Najah National University, Nablus 00970, Palestine
| | - Shahd Issa
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus 00970, Palestine
| | - Nawal Adnan
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus 00970, Palestine
| | - Marah Hoshya
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus 00970, Palestine
| | - Shorooq Sobuh
- Department of Biomedical Sciences, Physiology, Pharmacology & Toxicology Division, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus 00970, Palestine
| | - Zafer Hawash
- Department of Physics, Faculty of Science, Birzeit University, Birzeit, Ramallah 71939, Palestine
| |
Collapse
|
12
|
Synthesis of S-substituted 5-sulfonylmethyl(ethyl)-1,3,4-thiadiazol-2-amines. Chem Heterocycl Compd (N Y) 2022. [DOI: 10.1007/s10593-022-03121-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
13
|
Abu-Hashem AA, El-Gazzar ABA, Hussein HA, Hafez HN. Synthesis and Antimicrobial Activity of New Triazines, Tetrazines, Thiazinoquinoxalines, Thienotriazepine-imidazo[4, 5-b]quinolines from Isatin Derivatives. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2130368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Ameen A. Abu-Hashem
- Photochemistry Department (Heterocyclic Unit), National Research Centre, Dokki, Egypt
- Chemistry Department, Faculty of Science, Jazan University, Jazan, Saudi Arabia
| | - A. B. A. El-Gazzar
- Photochemistry Department (Heterocyclic Unit), National Research Centre, Dokki, Egypt
| | - Hoda A.R Hussein
- Photochemistry Department (Heterocyclic Unit), National Research Centre, Dokki, Egypt
| | - Hend N. Hafez
- Photochemistry Department (Heterocyclic Unit), National Research Centre, Dokki, Egypt
| |
Collapse
|
14
|
Bandaru CM, Poojith N, Jadav SS, Basaveswara Rao MV, Babu KS, Sreenivasulu R, Alluri R. Design, Synthesis, Anticancer Evaluation, and Molecular Docking Studies of Thiazole–Pyrimidine Linked Amide Derivatives. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2021.1939067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Chandra Mohan Bandaru
- Department of Chemistry, Acharya Nagarjuna University, Guntur, Andhra Pradesh, India
| | - Nuthalapati Poojith
- Department of General Medicine, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamilnadu, India
| | - Surender Singh Jadav
- Centre for Molecular Cancer Research (CMCR), Department of Pharmaceutical Chemistry, Vishnu Institute of Pharmaceutical Education and Research (VIPER), Narsapur, Telangana, India
| | | | - K. Surendra Babu
- Department of Chemistry, Shree Velagapudi Ramakrishna Memorial College, Nagaram, Andhra Pradesh, India
| | - Reddymasu Sreenivasulu
- Department of Chemistry, University College of Engineering (Autonomous), Jawaharlal Nehru Technological University, Kakinada, Andhra Pradesh, India
| | - Ramesh Alluri
- Centre for Molecular Cancer Research (CMCR), Department of Pharmaceutical Chemistry, Vishnu Institute of Pharmaceutical Education and Research (VIPER), Narsapur, Telangana, India
| |
Collapse
|
15
|
Abu-Hashem AA, El-Gazzar ABA, Abdelgawad AAM, Gouda MA. Synthesis and chemical reactions of thieno[3,2- c]quinolines from arylamine derivatives, part (V): a review. PHOSPHORUS SULFUR 2022. [DOI: 10.1080/10426507.2021.2012176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Ameen A. Abu-Hashem
- Photochemistry Department (Heterocyclic Unit), National Research Centre, Dokki, Giza, Egypt
- Chemistry Department, Faculty of Science, Jazan University, Jazan, Saudi Arabia
| | - A. B. A. El-Gazzar
- Photochemistry Department (Heterocyclic Unit), National Research Centre, Dokki, Giza, Egypt
| | - Ahmed A. M. Abdelgawad
- Chemistry Department, Faculty of Science, Jazan University, Jazan, Saudi Arabia
- Medicinal and Aromatic Plants Department, Desert Research Center, Cairo, Egypt
| | - Moustafa A. Gouda
- Department of Chemistry, Faculty of Science and Arts, Taibah University, Ulla, Medina, Saudi Arabia
- Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, Egypt
| |
Collapse
|
16
|
Hawash M, Jaradat N, Eid AM, Abubaker A, Mufleh O, Al-Hroub Q, Sobuh S. Synthesis of novel isoxazole-carboxamide derivatives as promising agents for melanoma and targeted nano-emulgel conjugate for improved cellular permeability. BMC Chem 2022; 16:47. [PMID: 35751124 PMCID: PMC9229817 DOI: 10.1186/s13065-022-00839-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/07/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Cancer is one of the most dangerous and widespread diseases in the world today and it has risen to the position of the leading cause of death around the globe in the last few decades. Due to the inherent resistance of many types of cancer to conventional radiotherapy and chemotherapy, it is vital to develop innovative anticancer medications. Recently, a strategy based on nanotechnology has been used to improve the effectiveness of both old and new cancer drugs. OBJECTIVES The present study aimed to design and synthesize a series of phenyl-isoxazole-Carboxamide derivatives, evaluate their anticancer properties, and improve the permeability of potent compounds into cancer cells by using a nano-emulgel strategy. METHODS The coupling reaction of aniline derivatives and isoxazole-Carboxylic acid was used to synthesize a series of isoxazole-Carboxamide derivatives. IR, HRMS, 1H-NMR, and 13C-NMR spectroscopy techniques, characterized all the synthesized compounds. The in-vitro cytotoxic evaluation was performed by using the MTS assay against seven cancer cell lines, including hepatocellular carcinoma (Hep3B and HepG2), cervical adenocarcinoma (HeLa), breast carcinoma (MCF-7), melanoma (B16F1), colorectal adenocarcinoma (Caco-2), and colon adenocarcinoma (Colo205), as well as human hepatic stellate (LX-2) in addition to the normal cell line (Hek293T). A nano-emulgel was developed for the most potent compound, using a self-emulsifying technique. RESULTS All synthesized compounds were found to have potent to moderate activities against B16F1, Colo205, and HepG2 cancer cell lines. The results revealed that the 2a compound has broad spectrum activity against B16F1, Colo205, HepG2, and HeLa cancer cell lines with an IC50 range of 7.55-40.85 µM. Moreover, compound 2e was the most active compound against B16F1 with an IC50 of 0.079 µM compared with Dox (IC50 = 0.056 µM). Nanoemulgel was used to increase the potency of the 2e molecule against this cancer cell line, and the IC50 was reduced to 0.039 µM. The antifibrotic activities were investigated against the LX-2 cell line, and it was found that our synthesized molecules showed better antifibrotic activities at 1 µM than 5-FU, and the cell viability values were 67 and 95%, respectively. CONCLUSION This study suggests that a 2e nano-formalized compound is a potential and promising anti-melanoma agent.
Collapse
Affiliation(s)
- Mohammed Hawash
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, 00970, Palestine.
| | - Nidal Jaradat
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, 00970, Palestine
| | - Ahmad M Eid
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, 00970, Palestine
| | - Ahmad Abubaker
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, 00970, Palestine
| | - Ola Mufleh
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, 00970, Palestine
| | - Qusay Al-Hroub
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, 00970, Palestine
| | - Shorooq Sobuh
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, 00970, Palestine
| |
Collapse
|
17
|
Abu-Hashem AA, Al-Hussain SA. Design, Synthesis of New 1,2,4-Triazole/1,3,4-Thiadiazole with Spiroindoline, Imidazo[4,5-b]quinoxaline and Thieno[2,3-d]pyrimidine from Isatin Derivatives as Anticancer Agents. Molecules 2022; 27:835. [PMID: 35164098 PMCID: PMC8839254 DOI: 10.3390/molecules27030835] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/12/2022] [Accepted: 01/17/2022] [Indexed: 12/12/2022] Open
Abstract
The current work aims to design and synthesis a new series of isatin derivatives and greatly enhances their cytotoxic activity. The derivatives 3-((bromophenyl) imino)-1-(morpholino (pyridine) methyl) indolin-2-one, 2-((oxoindoline) amino) benzoic acid, 3-(thiazolo-imino) indolinone, ethyl-2-((oxoindolin-3-ylidene)amino)-benzothiophene-3-carboxylate, 1-(oxoindoline)-benzo[4,5] thieno [2,3-d]pyrimidin-4(1H)-one, ethyl-2-(2-oxoindoline) hydrazine-1-carboxylate, N-(mercapto-oxo-pyrimidine)-2-(oxoindoline) hydrazine-1-carboxamide, N-(oxo-thiazolo[3,2-a] pyrimidine)-2-(oxoindolin-ylidene) hydrazine-carboxamide, 3-((amino-phenyl) amino)-3-hydroxy- indolinone, 3-((amino-phenyl) imino)-indolinone, 2-(2-((oxoindoline) amino) phenyl) isoindolinone, 2-(oxoindoline) hydrazine-carbothioamide, 5'-thioxospiro[indoline-3,3'-[1,2,4]triazolidin]-one, 5'-amino-spiro[indoline-3,2'-[1,3,4]thiadiazol]-2-one and 3-((2-thioxo-imidazo[4,5-b]quinoxaline) imino) indolinone were synthesized from the starting material 1-(morpholino (pyridine) methyl) indoline-2,3-dione and evaluated for their in vitro cytotoxic activity against carcinogenic cells. The new chemical structures were evidenced using spectroscopy (IR, NMR and MS) and elemental analysis. The results show that compounds imidazo[4,5-b]quinoxaline-indolinone, thiazolopyrimidine-oxoindoline, pyrimidine-oxoindoline-hydrazine-carboxamide, spiro[indoline-3,2'-[1,3,4] thiadiazol]-one and spiro[indoline-3,3'-[1,2,4]triazolidin]-one have excellent anti-proliferative activities against different human cancer cell lines such as gastric carcinoma cells (MGC-803), breast adenocarcinoma cells (MCF-7), nasopharyngeal carcinoma cells (CNE2) and oral carcinoma cells (KB).
Collapse
Affiliation(s)
- Ameen Ali Abu-Hashem
- Heterocyclic Unit, Photochemistry Department, National Research Centre, Dokki, Giza 12622, Egypt
- Chemistry Department, Faculty of Science, Jazan University, Jazan 45142, Saudi Arabia
| | - Sami A. Al-Hussain
- Department of Chemistry, Faculty of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13318, Saudi Arabia;
| |
Collapse
|
18
|
Lv K, Wu S, Tao Z, Wang A, Xu S, Yang L, Gao Q, Wang A, Qin X, Jiang B, Wu W, Jia X, Li Y, Jiang J, Liu M. Identification of (6S)-cyclopropyl-6,7-dihydropyrazolo[1,5-a]pyrazine-5(4H)-carboxamines as new HBV capsid assembly modulators. Eur J Med Chem 2021; 228:113974. [PMID: 34772528 DOI: 10.1016/j.ejmech.2021.113974] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/25/2021] [Accepted: 11/01/2021] [Indexed: 12/28/2022]
Abstract
GYH2-18 is a type II HBV CAM with 6,7-dihydropyrazolo[1,5-a]pyrazine-5(4H)-carboxamine (DPPC) skeleton discovered by Roche INC. A series of GYH2-18 derivatives were designed, synthesized and evaluated for their anti-HBV activity. Two compounds 2f and 3k exhibited excellent anti-HBV activity, low cytotoxicity and accepted oral PK profiles. Chiral separation of 2f and 3k was conducted successfully, and (6S)-cyclopropyl DPPC isomers 2f-1, 2f-3, 3k-1 and 3k-3 were identified to be much more active than the corresponding (6R)-ones. The preliminary structure-activity relationship, particle gel assay and molecular modeling studies were also discussed, which provide useful indications for guiding the further rational design of new (6S)-cyclopropyl DPPC analogues.
Collapse
Affiliation(s)
- Kai Lv
- CAMS Key Laboratory of Antiviral Drug Research, Beijing Key Laboratory of Antimicrobial Agents, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Shuo Wu
- CAMS Key Laboratory of Antiviral Drug Research, Beijing Key Laboratory of Antimicrobial Agents, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Zeyu Tao
- CAMS Key Laboratory of Antiviral Drug Research, Beijing Key Laboratory of Antimicrobial Agents, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Aoyu Wang
- CAMS Key Laboratory of Antiviral Drug Research, Beijing Key Laboratory of Antimicrobial Agents, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Shijie Xu
- CAMS Key Laboratory of Antiviral Drug Research, Beijing Key Laboratory of Antimicrobial Agents, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Lu Yang
- CAMS Key Laboratory of Antiviral Drug Research, Beijing Key Laboratory of Antimicrobial Agents, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Qiang Gao
- CAMS Key Laboratory of Antiviral Drug Research, Beijing Key Laboratory of Antimicrobial Agents, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Apeng Wang
- CAMS Key Laboratory of Antiviral Drug Research, Beijing Key Laboratory of Antimicrobial Agents, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Xiaoyu Qin
- CAMS Key Laboratory of Antiviral Drug Research, Beijing Key Laboratory of Antimicrobial Agents, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Bin Jiang
- CAMS Key Laboratory of Antiviral Drug Research, Beijing Key Laboratory of Antimicrobial Agents, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China; Department of Pharmaceutical Chemistry, School of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, China
| | - Wenhao Wu
- CAMS Key Laboratory of Antiviral Drug Research, Beijing Key Laboratory of Antimicrobial Agents, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China; Department of Pharmaceutical Chemistry, School of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, China
| | - Xuedong Jia
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yuhuan Li
- CAMS Key Laboratory of Antiviral Drug Research, Beijing Key Laboratory of Antimicrobial Agents, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Jiandong Jiang
- CAMS Key Laboratory of Antiviral Drug Research, Beijing Key Laboratory of Antimicrobial Agents, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Mingliang Liu
- CAMS Key Laboratory of Antiviral Drug Research, Beijing Key Laboratory of Antimicrobial Agents, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
19
|
Design, Synthesis and Anticancer Activity of New Polycyclic: Imidazole, Thiazine, Oxathiine, Pyrrolo-Quinoxaline and Thienotriazolopyrimidine Derivatives. Molecules 2021; 26:molecules26072031. [PMID: 33918322 PMCID: PMC8038178 DOI: 10.3390/molecules26072031] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 03/21/2021] [Accepted: 03/23/2021] [Indexed: 11/17/2022] Open
Abstract
In this article, we showed the synthesis of new polycyclic aromatic compounds, such as thienotriazolopyrimidinones, N-(thienotriazolopyrimidine) acetamide, 2-mercapto-thienotriazolo-pyrimidinones, 2-(((thieno-triazolopyrimidine) methyl) thio) thieno-triazolopyrimidines, thieno-pyrimidotriazolo-thiazines, pyrrolo-triazolo-thienopyrimidines, thienopyrimido-triazolopyrrolo-quinoxalines, thienopyrimido-triazolo-pyrrolo-oxathiino-quinoxalinones, 1,4-oxathiino-pyrrolo- triazolothienopyrimidinones, imidazopyrrolotriazolothienopyrimidines and 1,2,4-triazoloimidazo- pyrrolotriazolothienopyrimidindiones, based on the starting material 2,3-diamino-6-benzoyl-5- methylthieno[2,3-d]pyrimidin-4(3H)-one (3). The chemical structures were confirmed using many spectroscopic ways (IR, 1H, 13C, −NMR and MS) and elemental analyses. A series of thiazine, imidazole, pyrrole, thienotriazolopyrimidine derivatives were synthesized and evaluated for their antiproliferative activity against four human cancer cell lines, i.e., CNE2 (nasopharyngeal), KB (oral), MCF-7 (breast) and MGC-803 (gastric) carcinoma cells. The compounds 20, 19, 17, 16 and 11 showed significant cytotoxicity against types of human cancer cell lines.
Collapse
|