1
|
Aboul-Ella H, Gohar A, Ali AA, Ismail LM, Mahmoud AEER, Elkhatib WF, Aboul-Ella H. Monoclonal antibodies: From magic bullet to precision weapon. MOLECULAR BIOMEDICINE 2024; 5:47. [PMID: 39390211 PMCID: PMC11467159 DOI: 10.1186/s43556-024-00210-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 09/19/2024] [Indexed: 10/12/2024] Open
Abstract
Monoclonal antibodies (mAbs) are used to prevent, detect, and treat a broad spectrum of non-communicable and communicable diseases. Over the past few years, the market for mAbs has grown exponentially with an expected compound annual growth rate (CAGR) of 11.07% from 2024 (237.64 billion USD estimated at the end of 2023) to 2033 (679.03 billion USD expected by the end of 2033). Ever since the advent of hybridoma technology introduced in 1975, antibody-based therapeutics were realized using murine antibodies which further progressed into humanized and fully human antibodies, reducing the risk of immunogenicity. Some benefits of using mAbs over conventional drugs include a drastic reduction in the chances of adverse reactions, interactions between drugs, and targeting specific proteins. While antibodies are very efficient, their higher production costs impede the process of commercialization. However, their cost factor has been improved by developing biosimilar antibodies as affordable versions of therapeutic antibodies. Along with the recent advancements and innovations in antibody engineering have helped and will furtherly help to design bio-better antibodies with improved efficacy than the conventional ones. These novel mAb-based therapeutics are set to revolutionize existing drug therapies targeting a wide spectrum of diseases, thereby meeting several unmet medical needs. This review provides comprehensive insights into the current fundamental landscape of mAbs development and applications and the key factors influencing the future projections, advancement, and incorporation of such promising immunotherapeutic candidates as a confrontation approach against a wide list of diseases, with a rationalistic mentioning of any limitations facing this field.
Collapse
Affiliation(s)
- Hassan Aboul-Ella
- Department of Microbiology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| | - Asmaa Gohar
- Department of Microbiology and Immunology, Faculty of Pharmacy, Galala University, Suez, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ahram Canadian University (ACU), Giza, Egypt
- Egyptian Drug Authority (EDA), Giza, Egypt
| | - Aya Ahmed Ali
- Department of Microbiology and Immunology, Faculty of Pharmacy, Sinai University, Sinai, Egypt
| | - Lina M Ismail
- Department of Biotechnology and Molecular Chemistry, Faculty of Science, Cairo University, Giza, Egypt
- Creative Egyptian Biotechnologists (CEB), Giza, Egypt
| | | | - Walid F Elkhatib
- Department of Microbiology and Immunology, Faculty of Pharmacy, Galala University, Suez, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Heba Aboul-Ella
- Department of Pharmacognosy, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University (ECU), Cairo, Egypt
- Scientific Research Group in Egypt (SRGE), Cairo, Egypt
| |
Collapse
|
2
|
Cottrell CA, Pratap PP, Cirelli KM, Carnathan DG, Enemuo CA, Antanasijevic A, Ozorowski G, Sewall LM, Gao H, Allen JD, Nogal B, Silva M, Bhiman J, Pauthner M, Irvine DJ, Montefiori D, Crispin M, Burton DR, Silvestri G, Crotty S, Ward AB. Priming antibody responses to the fusion peptide in rhesus macaques. NPJ Vaccines 2024; 9:126. [PMID: 38997302 PMCID: PMC11245479 DOI: 10.1038/s41541-024-00918-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 06/27/2024] [Indexed: 07/14/2024] Open
Abstract
Immunodominance of antibodies targeting non-neutralizing epitopes and the high level of somatic hypermutation within germinal centers (GCs) required for most HIV broadly neutralizing antibodies (bnAbs) are major impediments to the development of an effective HIV vaccine. Rational protein vaccine design and non-conventional immunization strategies are potential avenues to overcome these hurdles. Here, we report using implantable osmotic pumps to continuously deliver a series of epitope-targeted immunogens to rhesus macaques over the course of six months to prime and elicit antibody responses against the conserved fusion peptide (FP). GC responses and antibody specificities were tracked longitudinally using lymph node fine-needle aspirates and electron microscopy polyclonal epitope mapping (EMPEM), respectively, to show antibody responses to the FP/N611 glycan hole region were primed, although exhibited limited neutralization breadth. Application of cryoEMPEM delineated key residues for on-target and off-target responses that can drive the next round of structure-based vaccine design.
Collapse
Affiliation(s)
- Christopher A Cottrell
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Center for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Payal P Pratap
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Center for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Kimberly M Cirelli
- Center for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
- La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Diane G Carnathan
- Center for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
| | - Chiamaka A Enemuo
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
| | - Aleksandar Antanasijevic
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Center for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Gabriel Ozorowski
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Center for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Leigh M Sewall
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Center for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Hongmei Gao
- Duke Human Vaccine Institute and Department of Surgery, Duke University Medical Center Durham, Durham, NC, USA
| | - Joel D Allen
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Bartek Nogal
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Center for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Murillo Silva
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Jinal Bhiman
- Center for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Matthias Pauthner
- Center for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Darrell J Irvine
- Center for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - David Montefiori
- Duke Human Vaccine Institute and Department of Surgery, Duke University Medical Center Durham, Durham, NC, USA
| | - Max Crispin
- Center for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Dennis R Burton
- Center for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Guido Silvestri
- Center for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
| | - Shane Crotty
- Center for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
- La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
- Division of Infectious Disease and Global Public Health, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA.
- Center for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA.
| |
Collapse
|
3
|
Mahomed S. Broadly neutralizing antibodies for HIV prevention: a comprehensive review and future perspectives. Clin Microbiol Rev 2024; 37:e0015222. [PMID: 38687039 PMCID: PMC11324036 DOI: 10.1128/cmr.00152-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024] Open
Abstract
SUMMARYThe human immunodeficiency virus (HIV) epidemic remains a formidable global health concern, with 39 million people living with the virus and 1.3 million new infections reported in 2022. Despite anti-retroviral therapy's effectiveness in pre-exposure prophylaxis, its global adoption is limited. Broadly neutralizing antibodies (bNAbs) offer an alternative strategy for HIV prevention through passive immunization. Historically, passive immunization has been efficacious in the treatment of various diseases ranging from oncology to infectious diseases. Early clinical trials suggest bNAbs are safe, tolerable, and capable of reducing HIV RNA levels. Although challenges such as bNAb resistance have been noted in phase I trials, ongoing research aims to assess the additive or synergistic benefits of combining multiple bNAbs. Researchers are exploring bispecific and trispecific antibodies, and fragment crystallizable region modifications to augment antibody efficacy and half-life. Moreover, the potential of other antibody isotypes like IgG3 and IgA is under investigation. While promising, the application of bNAbs faces economic and logistical barriers. High manufacturing costs, particularly in resource-limited settings, and logistical challenges like cold-chain requirements pose obstacles. Preliminary studies suggest cost-effectiveness, although this is contingent on various factors like efficacy and distribution. Technological advancements and strategic partnerships may mitigate some challenges, but issues like molecular aggregation remain. The World Health Organization has provided preferred product characteristics for bNAbs, focusing on optimizing their efficacy, safety, and accessibility. The integration of bNAbs in HIV prophylaxis necessitates a multi-faceted approach, considering economic, logistical, and scientific variables. This review comprehensively covers the historical context, current advancements, and future avenues of bNAbs in HIV prevention.
Collapse
Affiliation(s)
- Sharana Mahomed
- Centre for the AIDS
Programme of Research in South Africa (CAPRISA), Doris Duke Medical
Research Institute, Nelson R Mandela School of Medicine, University of
KwaZulu-Natal, Durban,
South Africa
| |
Collapse
|
4
|
Burnie J, Fernandes C, Patel A, Persaud AT, Chaphekar D, Wei D, Lee TKH, Tang VA, Cicala C, Arthos J, Guzzo C. Applying Flow Virometry to Study the HIV Envelope Glycoprotein and Differences Across HIV Model Systems. Viruses 2024; 16:935. [PMID: 38932227 PMCID: PMC11209363 DOI: 10.3390/v16060935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
The HIV envelope glycoprotein (Env) is a trimeric protein that facilitates viral binding and fusion with target cells. As the sole viral protein on the HIV surface, Env is important both for immune responses to HIV and in vaccine designs. Targeting Env in clinical applications is challenging due to its heavy glycosylation, high genetic variability, conformational camouflage, and its low abundance on virions. Thus, there is a critical need to better understand this protein. Flow virometry (FV) is a useful methodology for phenotyping the virion surface in a high-throughput, single virion manner. To demonstrate the utility of FV to characterize Env, we stained HIV virions with a panel of 85 monoclonal antibodies targeting different regions of Env. A broad range of antibodies yielded robust staining of Env, with V3 antibodies showing the highest quantitative staining. A subset of antibodies tested in parallel on viruses produced in CD4+ T cell lines, HEK293T cells, and primary cells showed that the cellular model of virus production can impact Env detection. Finally, in addition to being able to highlight Env heterogeneity on virions, we show FV can sensitively detect differences in Env conformation when soluble CD4 is added to virions before staining.
Collapse
Affiliation(s)
- Jonathan Burnie
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada; (J.B.); (C.F.); (A.P.); (A.T.P.); (D.C.); (T.K.H.L.)
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Claire Fernandes
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada; (J.B.); (C.F.); (A.P.); (A.T.P.); (D.C.); (T.K.H.L.)
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Ayushi Patel
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada; (J.B.); (C.F.); (A.P.); (A.T.P.); (D.C.); (T.K.H.L.)
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Arvin Tejnarine Persaud
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada; (J.B.); (C.F.); (A.P.); (A.T.P.); (D.C.); (T.K.H.L.)
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Deepa Chaphekar
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada; (J.B.); (C.F.); (A.P.); (A.T.P.); (D.C.); (T.K.H.L.)
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Danlan Wei
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (D.W.); (C.C.); (J.A.)
| | - Timothy Kit Hin Lee
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada; (J.B.); (C.F.); (A.P.); (A.T.P.); (D.C.); (T.K.H.L.)
| | - Vera A. Tang
- Flow Cytometry and Virometry Core Facility, Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada;
| | - Claudia Cicala
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (D.W.); (C.C.); (J.A.)
| | - James Arthos
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (D.W.); (C.C.); (J.A.)
| | - Christina Guzzo
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada; (J.B.); (C.F.); (A.P.); (A.T.P.); (D.C.); (T.K.H.L.)
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
- Department of Immunology, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
5
|
Thavarajah JJ, Hønge BL, Wejse CM. The Use of Broadly Neutralizing Antibodies (bNAbs) in HIV-1 Treatment and Prevention. Viruses 2024; 16:911. [PMID: 38932203 PMCID: PMC11209272 DOI: 10.3390/v16060911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/24/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Although antiretroviral therapy (ART) effectively halts disease progression in HIV infection, the complete eradication of the virus remains elusive. Additionally, challenges such as long-term ART toxicity, drug resistance, and the demanding regimen of daily and lifelong adherence required by ART highlight the imperative need for alternative therapeutic and preventative approaches. In recent years, broadly neutralizing antibodies (bNAbs) have emerged as promising candidates, offering potential for therapeutic, preventative, and possibly curative interventions against HIV infection. OBJECTIVE This review aims to provide a comprehensive overview of the current state of knowledge regarding the passive immunization of bNAbs in HIV-1-infected individuals. MAIN FINDINGS Recent findings from clinical trials have highlighted the potential of bNAbs in the treatment, prevention, and quest for an HIV-1 cure. While monotherapy with a single bNAb is insufficient in maintaining viral suppression and preventing viral escape, ultimately leading to viral rebound, combination therapy with potent, non-overlapping epitope-targeting bNAbs have demonstrated prolonged viral suppression and delayed time to rebound by effectively restricting the emergence of escape mutations, albeit largely in individuals with bNAb-sensitive strains. Additionally, passive immunization with bNAb has provided a "proof of concept" for antibody-mediated prevention against HIV-1 acquisition, although complete prevention has not been obtained. Therefore, further research on the use of bNAbs in HIV-1 treatment and prevention remains imperative.
Collapse
Affiliation(s)
- Jannifer Jasmin Thavarajah
- Faculty of Health, Aarhus University, 8000 Aarhus C, Denmark
- Clinical Medicine, Department of Infectious Diseases, Aarhus University Hospital, 8200 Aarhus N, Denmark; (B.L.H.); (C.M.W.)
| | - Bo Langhoff Hønge
- Clinical Medicine, Department of Infectious Diseases, Aarhus University Hospital, 8200 Aarhus N, Denmark; (B.L.H.); (C.M.W.)
| | - Christian Morberg Wejse
- Clinical Medicine, Department of Infectious Diseases, Aarhus University Hospital, 8200 Aarhus N, Denmark; (B.L.H.); (C.M.W.)
- GloHAU, Center of Global Health, Department of Public Health, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
6
|
Gelderblom HC, Corey L, Barouch DH. The potential of broadly neutralizing antibodies for HIV prevention. J Int AIDS Soc 2024; 27:e26257. [PMID: 38757844 PMCID: PMC11100278 DOI: 10.1002/jia2.26257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 05/18/2024] Open
Affiliation(s)
- Huub C. Gelderblom
- Vaccine and Infectious Disease DivisionFred Hutchinson Cancer CenterSeattleWashingtonUSA
| | - Lawrence Corey
- Vaccine and Infectious Disease DivisionFred Hutchinson Cancer CenterSeattleWashingtonUSA
- Department of MedicineUniversity of WashingtonSeattleWashingtonUSA
| | - Dan H. Barouch
- Beth Israel Deaconess Medical CenterBostonMassachusettsUSA
| |
Collapse
|
7
|
Dohadwala S, Geib MT, Politch JA, Anderson DJ. Innovations in monoclonal antibody-based multipurpose prevention technology (MPT) for the prevention of sexually transmitted infections and unintended pregnancy. FRONTIERS IN REPRODUCTIVE HEALTH 2024; 5:1337479. [PMID: 38264184 PMCID: PMC10803587 DOI: 10.3389/frph.2023.1337479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 12/14/2023] [Indexed: 01/25/2024] Open
Abstract
Monoclonal antibodies (mAbs) are currently being produced for a number of clinical applications including contraception and the prevention of sexually transmitted infections (STIs). Combinations of contraceptive and anti-STI mAbs, including antibodies against HIV-1 and HSV-2, provide a powerful and flexible approach for highly potent and specific multipurpose prevention technology (MPT) products with desirable efficacy, safety and pharmacokinetic profiles. MAbs can be administered systemically by injection, or mucosally via topical products (e.g., films, gels, rings) which can be tailored for vaginal, penile or rectal administration to address the needs of different populations. The MPT field has faced challenges with safety, efficacy, production and cost. Here, we review the state-of-the-art of mAb MPTs that tackle these challenges with innovative strategies in mAb engineering, manufacturing, and delivery that could usher in a new generation of safe, efficacious, cost-effective, and scalable mAb MPTs.
Collapse
Affiliation(s)
- Sarah Dohadwala
- Department of Virology, Immunology and Microbiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, United States
| | - Matthew T. Geib
- Department of Material Science and Engineering, Boston University, Boston, MA, United States
| | - Joseph A. Politch
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, United States
| | - Deborah J. Anderson
- Department of Virology, Immunology and Microbiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, United States
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, United States
| |
Collapse
|
8
|
Donnell D, Kansiime S, Glidden DV, Luedtke A, Gilbert PB, Gao F, Janes H. Study design approaches for future active-controlled HIV prevention trials. STATISTICAL COMMUNICATIONS IN INFECTIOUS DISEASES 2024; 15:20230002. [PMID: 38250627 PMCID: PMC10798828 DOI: 10.1515/scid-2023-0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 12/30/2023] [Indexed: 01/23/2024]
Abstract
Objectives Vigorous discussions are ongoing about future efficacy trial designs of candidate human immunodeficiency virus (HIV) prevention interventions. The study design challenges of HIV prevention interventions are considerable given rapid evolution of the prevention landscape and evidence of multiple modalities of highly effective products; future trials will likely be 'active-controlled', i.e., not include a placebo arm. Thus, novel design approaches are needed to accurately assess new interventions against these highly effective active controls. Methods To discuss active control design challenges and identify solutions, an initial virtual workshop series was hosted and supported by the International AIDS Enterprise (October 2020-March 2021). Subsequent symposia discussions continue to advance these efforts. As the non-inferiority design is an important conceptual reference design for guiding active control trials, we adopt several of its principles in our proposed design approaches. Results We discuss six potential study design approaches for formally evaluating absolute prevention efficacy given data from an active-controlled HIV prevention trial including using data from: 1) a registrational cohort, 2) recency assays, 3) an external trial placebo arm, 4) a biomarker of HIV incidence/exposure, 5) an anti-retroviral drug concentration as a mediator of prevention efficacy, and 6) immune biomarkers as a mediator of prevention efficacy. Conclusions Our understanding of these proposed novel approaches to future trial designs remains incomplete and there are many future statistical research needs. Yet, each of these approaches, within the context of an active-controlled trial, have the potential to yield reliable evidence of efficacy for future biomedical interventions.
Collapse
Affiliation(s)
- Deborah Donnell
- Fred Hutchinson Cancer Center, Seattle, WA, USA
- University of Washington, Seattle, WA, USA
| | - Sheila Kansiime
- Medical Research Council/Uganda Virus Research Council and London School of Hygiene and Tropical Medicine, Uganda Research Unit, Entebbe, Uganda
- Medical Research Council International Statistics and Epidemiology Group, London School of Hygiene and Tropical Medicine, London, UK
| | | | | | - Peter B. Gilbert
- Fred Hutchinson Cancer Center, Seattle, WA, USA
- University of Washington, Seattle, WA, USA
| | - Fei Gao
- Fred Hutchinson Cancer Center, Seattle, WA, USA
- University of Washington, Seattle, WA, USA
| | - Holly Janes
- Fred Hutchinson Cancer Center, Seattle, WA, USA
- University of Washington, Seattle, WA, USA
| |
Collapse
|
9
|
Huang Y, Zhang L, Karuna S, Andrew P, Juraska M, Weiner JA, Angier H, Morgan E, Azzam Y, Swann E, Edupuganti S, Mgodi NM, Ackerman ME, Donnell D, Gama L, Anderson PL, Koup RA, Hural J, Cohen MS, Corey L, McElrath MJ, Gilbert PB, Lemos MP. Adults on pre-exposure prophylaxis (tenofovir-emtricitabine) have faster clearance of anti-HIV monoclonal antibody VRC01. Nat Commun 2023; 14:7813. [PMID: 38016958 PMCID: PMC10684488 DOI: 10.1038/s41467-023-43399-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 11/08/2023] [Indexed: 11/30/2023] Open
Abstract
Broadly neutralizing monoclonal antibodies (mAbs) are being developed for HIV-1 prevention. Hence, these mAbs and licensed oral pre-exposure prophylaxis (PrEP) (tenofovir-emtricitabine) can be concomitantly administered in clinical trials. In 48 US participants (men and transgender persons who have sex with men) who received the HIV-1 mAb VRC01 and remained HIV-free in an antibody-mediated-prevention trial (ClinicalTrials.gov #NCT02716675), we conduct a post-hoc analysis and find that VRC01 clearance is 0.08 L/day faster (p = 0.005), and dose-normalized area-under-the-curve of VRC01 serum concentration over-time is 0.29 day/mL lower (p < 0.001) in PrEP users (n = 24) vs. non-PrEP users (n = 24). Consequently, PrEP users are predicted to have 14% lower VRC01 neutralization-mediated prevention efficacy against circulating HIV-1 strains. VRC01 clearance is positively associated (r = 0.33, p = 0.03) with levels of serum intestinal Fatty Acid Binding protein (I-FABP), a marker of epithelial intestinal permeability, which is elevated upon starting PrEP (p = 0.04) and after months of self-reported use (p = 0.001). These findings have implications for the evaluation of future HIV-1 mAbs and postulate a potential mechanism for mAb clearance in the context of PrEP.
Collapse
Affiliation(s)
- Yunda Huang
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA.
- Department of Global Health, University of Washington, Seattle, WA, 98196, USA.
| | - Lily Zhang
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Shelly Karuna
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | | | - Michal Juraska
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Joshua A Weiner
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA
| | - Heather Angier
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Evgenii Morgan
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Yasmin Azzam
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Edith Swann
- Vaccine Research Program, Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Rockville, MD, 46340, USA
| | - Srilatha Edupuganti
- Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Nyaradzo M Mgodi
- University of Zimbabwe Clinical Trials Research Centre, Harare, Zimbabwe
| | | | - Deborah Donnell
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Lucio Gama
- Vaccine Research Center (VRC), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Peter L Anderson
- Colorado Antiviral Pharmacology Laboratory and Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado-AMC, Aurora, CO, 80045, USA
| | - Richard A Koup
- Vaccine Research Center (VRC), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - John Hural
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Myron S Cohen
- Institute for Global Health and Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lawrence Corey
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
- Departments of Medicine and Laboratory Medicine, University of Washington, Seattle, WA, 98195, USA
| | - M Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
- Department of Global Health, University of Washington, Seattle, WA, 98196, USA
- Departments of Medicine and Laboratory Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Peter B Gilbert
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
- Department of Biostatistics, University of Washington, Seattle, WA, 98195, USA
| | - Maria P Lemos
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| |
Collapse
|
10
|
Foka FET, Mufhandu HT. Current ARTs, Virologic Failure, and Implications for AIDS Management: A Systematic Review. Viruses 2023; 15:1732. [PMID: 37632074 PMCID: PMC10458198 DOI: 10.3390/v15081732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/02/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Antiretroviral therapies (ARTs) have revolutionized the management of human immunodeficiency virus (HIV) infection, significantly improved patient outcomes, and reduced the mortality rate and incidence of acquired immunodeficiency syndrome (AIDS). However, despite the remarkable efficacy of ART, virologic failure remains a challenge in the long-term management of HIV-infected individuals. Virologic failure refers to the persistent detectable viral load in patients receiving ART, indicating an incomplete suppression of HIV replication. It can occur due to various factors, including poor medication adherence, drug resistance, suboptimal drug concentrations, drug interactions, and viral factors such as the emergence of drug-resistant strains. In recent years, extensive efforts have been made to understand and address virologic failure in order to optimize treatment outcomes. Strategies to prevent and manage virologic failure include improving treatment adherence through patient education, counselling, and supportive interventions. In addition, the regular monitoring of viral load and resistance testing enables the early detection of treatment failure and facilitates timely adjustments in ART regimens. Thus, the development of novel antiretroviral agents with improved potency, tolerability, and resistance profiles offers new options for patients experiencing virologic failure. However, new treatment options would also face virologic failure if not managed appropriately. A solution to virologic failure requires a comprehensive approach that combines individualized patient care, robust monitoring, and access to a range of antiretroviral drugs.
Collapse
Affiliation(s)
- Frank Eric Tatsing Foka
- Department of Microbiology, Virology Laboratory, School of Biological Sciences, Faculty of Natural and Agricultural Sciences, North West University, Mafikeng, Private Bag, Mmabatho X2046, South Africa
| | - Hazel Tumelo Mufhandu
- Department of Microbiology, Virology Laboratory, School of Biological Sciences, Faculty of Natural and Agricultural Sciences, North West University, Mafikeng, Private Bag, Mmabatho X2046, South Africa
| |
Collapse
|
11
|
Cottrell CA, Pratap PP, Cirelli KM, Carnathan DG, Enemuo CA, Antanasijevic A, Ozorowski G, Sewall LM, Gao H, Greene KM, Allen JD, Ngo JT, Choe Y, Nogal B, Silva M, Bhiman J, Pauthner M, Irvine DJ, Montefiori D, Crispin M, Burton DR, Silvestri G, Crotty S, Ward AB. Focusing antibody responses to the fusion peptide in rhesus macaques. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.26.545779. [PMID: 37425865 PMCID: PMC10327030 DOI: 10.1101/2023.06.26.545779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Immunodominance of antibodies targeting non-neutralizing epitopes and the high level of somatic hypermutation within germinal centers (GCs) required for most HIV broadly neutralizing antibodies (bnAbs) are major impediments to the development of an effective HIV vaccine. Rational protein vaccine design and non-conventional immunization strategies are potential avenues to overcome these hurdles. Here, we report using implantable osmotic pumps to continuously deliver a series of epitope-targeted immunogens to rhesus macaques over the course of six months to elicit immune responses against the conserved fusion peptide. Antibody specificities and GC responses were tracked longitudinally using electron microscopy polyclonal epitope mapping (EMPEM) and lymph node fine-needle aspirates, respectively. Application of cryoEMPEM delineated key residues for on-target and off-target responses that can drive the next round of structure-based vaccine design.
Collapse
Affiliation(s)
- Christopher A. Cottrell
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- International AIDS Vaccine Initiative Neutralizing Antibody Center, the Collaboration for AIDS Vaccine Discovery (CAVD) and Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Payal P. Pratap
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- International AIDS Vaccine Initiative Neutralizing Antibody Center, the Collaboration for AIDS Vaccine Discovery (CAVD) and Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Kimberly M. Cirelli
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Diane G. Carnathan
- International AIDS Vaccine Initiative Neutralizing Antibody Center, the Collaboration for AIDS Vaccine Discovery (CAVD) and Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Chiamaka A Enemuo
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Aleksandar Antanasijevic
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- International AIDS Vaccine Initiative Neutralizing Antibody Center, the Collaboration for AIDS Vaccine Discovery (CAVD) and Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Gabriel Ozorowski
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- International AIDS Vaccine Initiative Neutralizing Antibody Center, the Collaboration for AIDS Vaccine Discovery (CAVD) and Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Leigh M. Sewall
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- International AIDS Vaccine Initiative Neutralizing Antibody Center, the Collaboration for AIDS Vaccine Discovery (CAVD) and Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Hongmei Gao
- Duke Human Vaccine Institute and Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Kelli M. Greene
- Duke Human Vaccine Institute and Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Joel D. Allen
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Julia T. Ngo
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Yury Choe
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Bartek Nogal
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- International AIDS Vaccine Initiative Neutralizing Antibody Center, the Collaboration for AIDS Vaccine Discovery (CAVD) and Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Murillo Silva
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jinal Bhiman
- Centre for HIV and STI, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
| | | | - Darrell J. Irvine
- International AIDS Vaccine Initiative Neutralizing Antibody Center, the Collaboration for AIDS Vaccine Discovery (CAVD) and Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - David Montefiori
- Duke Human Vaccine Institute and Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Dennis R. Burton
- International AIDS Vaccine Initiative Neutralizing Antibody Center, the Collaboration for AIDS Vaccine Discovery (CAVD) and Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA02139, USA
| | - Guido Silvestri
- International AIDS Vaccine Initiative Neutralizing Antibody Center, the Collaboration for AIDS Vaccine Discovery (CAVD) and Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Shane Crotty
- International AIDS Vaccine Initiative Neutralizing Antibody Center, the Collaboration for AIDS Vaccine Discovery (CAVD) and Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
- Division of Infectious Disease and Global Public Health, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Andrew B. Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- International AIDS Vaccine Initiative Neutralizing Antibody Center, the Collaboration for AIDS Vaccine Discovery (CAVD) and Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
12
|
Giddings R, Indravudh P, Medley GF, Bozzani F, Gafos M, Malhotra S, Terris-Prestholt F, Torres-Rueda S, Quaife M. Infectious Disease Modelling of HIV Prevention Interventions: A Systematic Review and Narrative Synthesis of Compartmental Models. PHARMACOECONOMICS 2023; 41:693-707. [PMID: 36988896 PMCID: PMC10163138 DOI: 10.1007/s40273-023-01260-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/26/2023] [Indexed: 05/06/2023]
Abstract
BACKGROUND The HIV epidemic remains a major public health problem. Critical to transmission control are HIV prevention strategies with new interventions continuing to be developed. Mathematical models are important for understanding the potential impact of these interventions and supporting policy decisions. This systematic review aims to answer the following question: when a new HIV prevention intervention is being considered or designed, what information regarding it is necessary to include in a compartmental model to provide useful insights to policy makers? The primary objective of this review is therefore to assess suitability of current compartmental HIV prevention models for informing policy development. METHODS Articles published in EMBASE, Medline, Econlit, and Global Health were screened. Included studies were identified using permutations of (i) HIV, (ii) pre-exposure prophylaxis (PrEP), circumcision (both voluntary male circumcision [VMMC] and early-infant male circumcision [EIMC]), and vaccination, and (iii) modelling. Data extraction focused on study design, model structure, and intervention incorporation into models. Article quality was assessed using the TRACE (TRAnsparent and Comprehensive Ecological modelling documentation) criteria for mathematical models. RESULTS Of 837 articles screened, 48 articles were included in the review, with 32 unique mathematical models identified. The substantial majority of studies included PrEP (83%), whilst fewer modelled circumcision (54%), and only a few focussed on vaccination (10%). Data evaluation, implementation verification, and model output corroboration were identified as areas of poorer model quality. Parameters commonly included in the mathematical models were intervention uptake and effectiveness, with additional intervention-specific common parameters identified. We identified key modelling gaps; critically, models insufficiently incorporate multiple interventions acting simultaneously. Additionally, population subgroups were generally poorly represented-with future models requiring improved incorporation of ethnicity and sexual risk group stratification-and many models contained inappropriate data in parameterisation which will affect output accuracy. CONCLUSIONS This review identified gaps in compartmental models to date and suggests areas of improvement for models focusing on new prevention interventions. Resolution of such gaps within future models will ensure greater robustness and transparency, and enable more accurate assessment of the impact that new interventions may have, thereby providing more meaningful guidance to policy makers.
Collapse
Affiliation(s)
| | | | | | | | - Mitzy Gafos
- London School of Hygiene & Tropical Medicine, London, UK
| | | | | | | | - Matthew Quaife
- London School of Hygiene & Tropical Medicine, London, UK
| |
Collapse
|
13
|
Goldberg BS, Spencer DA, Pandey S, Ordonez T, Barnette P, Yu Y, Gao L, Dufloo J, Bruel T, Schwartz O, Ackerman ME, Hessell AJ. Complement contributes to antibody-mediated protection against repeated SHIV challenge. Proc Natl Acad Sci U S A 2023; 120:e2221247120. [PMID: 37155897 PMCID: PMC10193994 DOI: 10.1073/pnas.2221247120] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/10/2023] [Indexed: 05/10/2023] Open
Abstract
The first clinical efficacy trials of a broadly neutralizing antibody (bNAb) resulted in less benefit than expected and suggested that improvements are needed to prevent HIV infection. While considerable effort has focused on optimizing neutralization breadth and potency, it remains unclear whether augmenting the effector functions elicited by broadly neutralizing antibodies (bNAbs) may also improve their clinical potential. Among these effector functions, complement-mediated activities, which can culminate in the lysis of virions or infected cells, have been the least well studied. Here, functionally modified variants of the second-generation bNAb 10-1074 with ablated and enhanced complement activation profiles were used to examine the role of complement-associated effector functions. When administered prophylactically against simian-HIV challenge in rhesus macaques, more bNAb was required to prevent plasma viremia when complement activity was eliminated. Conversely, less bNAb was required to protect animals from plasma viremia when complement activity was enhanced. These results suggest that complement-mediated effector functions contribute to in vivo antiviral activity, and that their engineering may contribute to the further improvements in the efficacy of antibody-mediated prevention strategies.
Collapse
Affiliation(s)
| | - David A. Spencer
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR97006
| | - Shilpi Pandey
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR97006
| | - Tracy Ordonez
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR97006
| | - Philip Barnette
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR97006
| | - Yun Yu
- Biostatistics Shared Resources, Knight Cancer Institute, Oregon Health and Science University, Portland, OR97239
- Biostatistics & Bioinformatics Core, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR97006
| | - Lina Gao
- Biostatistics Shared Resources, Knight Cancer Institute, Oregon Health and Science University, Portland, OR97239
- Biostatistics & Bioinformatics Core, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR97006
| | - Jérémy Dufloo
- Institut Pasteur, Université de Paris, CNRS UMR3569, Virus and Immunity Unit, 75015Paris, France
- Université de Paris, École doctorale BioSPC 562, 75013Paris, France
| | - Timothée Bruel
- Institut Pasteur, Université de Paris, CNRS UMR3569, Virus and Immunity Unit, 75015Paris, France
- Vaccine Research Institute, 94000Créteil, France
| | - Olivier Schwartz
- Institut Pasteur, Université de Paris, CNRS UMR3569, Virus and Immunity Unit, 75015Paris, France
- Vaccine Research Institute, 94000Créteil, France
| | - Margaret E. Ackerman
- Thayer School of Engineering, Dartmouth College, Hanover, NH03755
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Hanover, NH03755
| | - Ann J. Hessell
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR97006
| |
Collapse
|
14
|
Li H, Buck T, Zandonatti M, Yin J, Moon-Walker A, Fang J, Koval A, Heinrich ML, Rowland MM, Avalos RD, Schendel SL, Parekh D, Zyla D, Enriquez A, Harkins S, Sullivan B, Smith V, Chukwudozie O, Watanabe R, Robinson JE, Garry RF, Branco LM, Hastie KM, Saphire EO. A cocktail of protective antibodies subverts the dense glycan shield of Lassa virus. Sci Transl Med 2022; 14:eabq0991. [PMID: 36288283 PMCID: PMC10084740 DOI: 10.1126/scitranslmed.abq0991] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Developing potent therapeutics and effective vaccines are the ultimate goals in controlling infectious diseases. Lassa virus (LASV), the causative pathogen of Lassa fever (LF), infects hundreds of thousands annually, but effective antivirals or vaccines against LASV infection are still lacking. Furthermore, neutralizing antibodies against LASV are rare. Here, we describe biochemical analyses and high-resolution cryo-electron microscopy structures of a therapeutic cocktail of three broadly protective antibodies that target the LASV glycoprotein complex (GPC), previously identified from survivors of multiple LASV infections. Structural and mechanistic analyses reveal compatible neutralizing epitopes and complementary neutralization mechanisms that offer high potency, broad range, and resistance to escape. These antibodies either circumvent or exploit specific glycans comprising the extensive glycan shield of GPC. Further, they require mammalian glycosylation, native GPC cleavage, and proper GPC trimerization. These findings guided engineering of a next-generation GPC antigen suitable for future neutralizing antibody and vaccine discovery. Together, these results explain protective mechanisms of rare, broad, and potent antibodies and identify a strategy for the rational design of therapeutic modalities against LF and related infectious diseases.
Collapse
Affiliation(s)
- Haoyang Li
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, 9420 Athena Circle La Jolla, CA 92037 USA
| | - Tierra Buck
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, 9420 Athena Circle La Jolla, CA 92037 USA
| | - Michelle Zandonatti
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, 9420 Athena Circle La Jolla, CA 92037 USA
| | - Jieyun Yin
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, 9420 Athena Circle La Jolla, CA 92037 USA
| | - Alex Moon-Walker
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, 9420 Athena Circle La Jolla, CA 92037 USA
| | - Jingru Fang
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, 9420 Athena Circle La Jolla, CA 92037 USA
| | - Anatoliy Koval
- Zalgen Labs LLC, 7495 New Horizon Way, Suite 120, Frederick, MD 21703 USA
| | - Megan L. Heinrich
- Zalgen Labs LLC, 7495 New Horizon Way, Suite 120, Frederick, MD 21703 USA
| | - Megan M. Rowland
- Zalgen Labs LLC, 7495 New Horizon Way, Suite 120, Frederick, MD 21703 USA
| | - Ruben Diaz Avalos
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, 9420 Athena Circle La Jolla, CA 92037 USA
| | - Sharon L. Schendel
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, 9420 Athena Circle La Jolla, CA 92037 USA
| | - Diptiben Parekh
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, 9420 Athena Circle La Jolla, CA 92037 USA
| | - Dawid Zyla
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, 9420 Athena Circle La Jolla, CA 92037 USA
| | - Adrian Enriquez
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, 9420 Athena Circle La Jolla, CA 92037 USA
| | - Stephanie Harkins
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, 9420 Athena Circle La Jolla, CA 92037 USA
| | - Brian Sullivan
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, 9420 Athena Circle La Jolla, CA 92037 USA
| | - Victoria Smith
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, 9420 Athena Circle La Jolla, CA 92037 USA
- Department of Medicine, University of California San Diego, La Jolla, CA 92037 USA
| | - Onyeka Chukwudozie
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, 9420 Athena Circle La Jolla, CA 92037 USA
- Department of Medicine, University of California San Diego, La Jolla, CA 92037 USA
| | - Reika Watanabe
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, 9420 Athena Circle La Jolla, CA 92037 USA
| | - James E. Robinson
- Department of Microbiology and Immunology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70118 USA
| | - Robert F. Garry
- Zalgen Labs LLC, 7495 New Horizon Way, Suite 120, Frederick, MD 21703 USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70118 USA
| | - Luis M. Branco
- Zalgen Labs LLC, 7495 New Horizon Way, Suite 120, Frederick, MD 21703 USA
| | - Kathryn M. Hastie
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, 9420 Athena Circle La Jolla, CA 92037 USA
| | - Erica Ollmann Saphire
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, 9420 Athena Circle La Jolla, CA 92037 USA
- Department of Medicine, University of California San Diego, La Jolla, CA 92037 USA
| |
Collapse
|
15
|
Zhang B, Gollapudi D, Gorman J, O’Dell S, Damron LF, McKee K, Asokan M, Yang ES, Pegu A, Lin BC, Chao CW, Chen X, Gama L, Ivleva VB, Law WH, Liu C, Louder MK, Schmidt SD, Shen CH, Shi W, Stein JA, Seaman MS, McDermott AB, Carlton K, Mascola JR, Kwong PD, Lei QP, Doria-Rose NA. Engineering of HIV-1 neutralizing antibody CAP256V2LS for manufacturability and improved half life. Sci Rep 2022; 12:17876. [PMID: 36284200 PMCID: PMC9596707 DOI: 10.1038/s41598-022-22435-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 10/14/2022] [Indexed: 01/20/2023] Open
Abstract
The broadly neutralizing antibody (bNAb) CAP256-VRC26.25 has exceptional potency against HIV-1 and has been considered for clinical use. During the characterization and production of this bNAb, we observed several unusual features. First, the antibody appeared to adhere to pipette tips, requiring tips to be changed during serial dilution to accurately measure potency. Second, during production scale-up, proteolytic cleavage was discovered to target an extended heavy chain loop, which was attributed to a protease in spent medium from 2-week culture. To enable large scale production, we altered the site of cleavage via a single amino acid change, K100mA. The resultant antibody retained potency and breadth while avoiding protease cleavage. We also added the half-life extending mutation LS, which improved the in vivo persistence in animal models, but did not impact neutralization activity; we observed the same preservation of neutralization for bNAbs VRC01, N6, and PGDM1400 with LS on a 208-virus panel. The final engineered antibody, CAP256V2LS, retained the extraordinary neutralization potency of the parental antibody, had a favorable pharmacokinetic profile in animal models, and was negative in in vitro assessment of autoreactivity. CAP256V2LS has the requisite potency, developability and suitability for scale-up, allowing its advancement as a clinical candidate.
Collapse
Affiliation(s)
- Baoshan Zhang
- grid.94365.3d0000 0001 2297 5165Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 40 Convent Drive, Bethesda, MD 20892 USA
| | - Deepika Gollapudi
- grid.94365.3d0000 0001 2297 5165Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 40 Convent Drive, Bethesda, MD 20892 USA
| | - Jason Gorman
- grid.94365.3d0000 0001 2297 5165Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 40 Convent Drive, Bethesda, MD 20892 USA
| | - Sijy O’Dell
- grid.94365.3d0000 0001 2297 5165Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 40 Convent Drive, Bethesda, MD 20892 USA
| | - Leland F. Damron
- grid.94365.3d0000 0001 2297 5165Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 40 Convent Drive, Bethesda, MD 20892 USA
| | - Krisha McKee
- grid.94365.3d0000 0001 2297 5165Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 40 Convent Drive, Bethesda, MD 20892 USA
| | - Mangaiarkarasi Asokan
- grid.94365.3d0000 0001 2297 5165Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 40 Convent Drive, Bethesda, MD 20892 USA
| | - Eun Sung Yang
- grid.94365.3d0000 0001 2297 5165Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 40 Convent Drive, Bethesda, MD 20892 USA
| | - Amarendra Pegu
- grid.94365.3d0000 0001 2297 5165Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 40 Convent Drive, Bethesda, MD 20892 USA
| | - Bob C. Lin
- grid.94365.3d0000 0001 2297 5165Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 40 Convent Drive, Bethesda, MD 20892 USA
| | - Cara W. Chao
- grid.94365.3d0000 0001 2297 5165Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 40 Convent Drive, Bethesda, MD 20892 USA
| | - Xuejun Chen
- grid.94365.3d0000 0001 2297 5165Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 40 Convent Drive, Bethesda, MD 20892 USA
| | - Lucio Gama
- grid.94365.3d0000 0001 2297 5165Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 40 Convent Drive, Bethesda, MD 20892 USA
| | - Vera B. Ivleva
- grid.94365.3d0000 0001 2297 5165Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 40 Convent Drive, Bethesda, MD 20892 USA
| | - William H. Law
- grid.94365.3d0000 0001 2297 5165Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 40 Convent Drive, Bethesda, MD 20892 USA
| | - Cuiping Liu
- grid.94365.3d0000 0001 2297 5165Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 40 Convent Drive, Bethesda, MD 20892 USA
| | - Mark K. Louder
- grid.94365.3d0000 0001 2297 5165Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 40 Convent Drive, Bethesda, MD 20892 USA
| | - Stephen D. Schmidt
- grid.94365.3d0000 0001 2297 5165Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 40 Convent Drive, Bethesda, MD 20892 USA
| | - Chen-Hsiang Shen
- grid.94365.3d0000 0001 2297 5165Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 40 Convent Drive, Bethesda, MD 20892 USA
| | - Wei Shi
- grid.94365.3d0000 0001 2297 5165Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 40 Convent Drive, Bethesda, MD 20892 USA
| | - Judith A. Stein
- grid.94365.3d0000 0001 2297 5165Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 40 Convent Drive, Bethesda, MD 20892 USA
| | - Michael S. Seaman
- grid.239395.70000 0000 9011 8547Beth Israel Deaconess Medical Center, Boston, MA USA ,grid.38142.3c000000041936754XHarvard Medical School, Boston, MA USA
| | - Adrian B. McDermott
- grid.94365.3d0000 0001 2297 5165Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 40 Convent Drive, Bethesda, MD 20892 USA
| | - Kevin Carlton
- grid.94365.3d0000 0001 2297 5165Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 40 Convent Drive, Bethesda, MD 20892 USA
| | - John R. Mascola
- grid.94365.3d0000 0001 2297 5165Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 40 Convent Drive, Bethesda, MD 20892 USA
| | - Peter D. Kwong
- grid.94365.3d0000 0001 2297 5165Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 40 Convent Drive, Bethesda, MD 20892 USA
| | - Q. Paula Lei
- grid.94365.3d0000 0001 2297 5165Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 40 Convent Drive, Bethesda, MD 20892 USA
| | - Nicole A. Doria-Rose
- grid.94365.3d0000 0001 2297 5165Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 40 Convent Drive, Bethesda, MD 20892 USA
| |
Collapse
|
16
|
Dam KMA, Barnes CO, Gristick HB, Schoofs T, Gnanapragasam PNP, Nussenzweig MC, Bjorkman PJ. HIV-1 CD4-binding site germline antibody-Env structures inform vaccine design. Nat Commun 2022; 13:6123. [PMID: 36253376 PMCID: PMC9576718 DOI: 10.1038/s41467-022-33860-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 10/04/2022] [Indexed: 02/08/2023] Open
Abstract
BG24, a VRC01-class broadly neutralizing antibody (bNAb) against HIV-1 Env with relatively few somatic hypermutations (SHMs), represents a promising target for vaccine strategies to elicit CD4-binding site (CD4bs) bNAbs. To understand how SHMs correlate with BG24 neutralization of HIV-1, we report 4.1 Å and 3.4 Å single-particle cryo-EM structures of two inferred germline (iGL) BG24 precursors complexed with engineered Env-based immunogens lacking CD4bs N-glycans. Structures reveal critical Env contacts by BG24iGL and identify antibody light chain structural features that impede Env recognition. In addition, biochemical data and cryo-EM structures of BG24iGL variants bound to Envs with CD4bs glycans present provide insights into N-glycan accommodation, including structural modes of light chain adaptations in the presence of the N276gp120 glycan. Together, these findings reveal Env regions critical for germline antibody recognition and potential sites to alter in immunogen design.
Collapse
Affiliation(s)
- Kim-Marie A Dam
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Christopher O Barnes
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Harry B Gristick
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Till Schoofs
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
- Laboratory of Experimental Immunology, Institute of Virology, University of Cologne, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany
- German Center for Infection Research, Partner Site Bonn-Cologne, Cologne, Germany
- GlaxoSmithKline Vaccines, 1330, Rixensart, Belgium
| | | | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Pamela J Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
17
|
Saag M. Wonder of wonders, miracle of miracles: the unprecedented speed of COVID-19 science. Physiol Rev 2022; 102:1569-1577. [PMID: 35446679 PMCID: PMC9169823 DOI: 10.1152/physrev.00010.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 12/15/2022] Open
Affiliation(s)
- Michael Saag
- University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
18
|
Johnston MI, Scarlatti G, Pitisutthithum P, Bekker L. HIV vaccines: progress and promise. J Int AIDS Soc 2021; 24 Suppl 7:e25828. [PMID: 34806319 PMCID: PMC8606855 DOI: 10.1002/jia2.25828] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 09/14/2021] [Indexed: 11/08/2022] Open
Affiliation(s)
| | - Gabriella Scarlatti
- Division of ImmunologyTransplantation and Infectious DiseasesSan Raffaele Scientific InstituteMilanItaly
| | | | | |
Collapse
|