1
|
Moreno Ravelo RC, Gastl M, Becker T. Relationship Between Physical Characteristics of Cereal Polysaccharides and Soft Tribology-The Importance of Grain Source and Malting Modification. Food Sci Nutr 2025; 13:e4699. [PMID: 39803232 PMCID: PMC11717023 DOI: 10.1002/fsn3.4699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/20/2024] [Accepted: 12/03/2024] [Indexed: 01/16/2025] Open
Abstract
Starch and non-starch polysaccharides ((N)SPs) are relevant in cereal-based beverages. Although their molar mass and conformation are important to the sensory characteristics of beer and non-alcoholic beer, their triggering mechanism in the mouth is not fully understood. Soft tribology has emerged as a tool to mimic oral processing (drinking). The contribution of each (N)SPs to the friction coefficient can be determined when they are enzymatically isolated and characterized by chromatography techniques. Thus, this work aimed to study the relationship between the physical characteristics of isolated (N)SPs and their possible contribution to oral processing through soft tribology (friction). To accomplish this, this research analyzes the effect of grain source (barley, wheat, and oats) and its modification (by steeping degree at two levels) to the (N)SPs´ physical characteristics in wort produced on a laboratory scale. Different characteristics were present in the (N)SPs due to the grain source and the degree of modification. When comparing the impact of the grain source, the malted oats showed the highest molar masses. A higher modification degree produced smaller and more compact structures except for wheat's arabinoxylans and dextrins. The conformation ratio (r rms / r hyd ) values indicate the existence of sphere and micro-gel structures within each (N)SPs, with branches in arabinoxylans and dextrins. Subsequently, soft tribology was measured on all the worts and their correlation to the (N)SPs' data was performed by multivariate analysis. The wort produced with high modification grains generated higher friction responses. However, this was only statistically significant in barley samples. The multivariate analysis showed that within the mouth (tongue) velocity, the apparent density of the (N)SPs, and the molar mass of arabinoxylans and β-glucans may influence the friction response and, hence, the oral processing in the mouth during oral processing (drinking).
Collapse
Affiliation(s)
- Rolando Cesar Moreno Ravelo
- Technical University of Munich, TUM School of Life Sciences, Chair of Brewing and Beverage Technology, Group Raw Material Based Brewing and Beverage TechnologyFreisingGermany
| | - Martina Gastl
- Research Center Weihenstephan for Brewing and Food QualityTechnical University MunichFreisingGermany
| | - Thomas Becker
- Technical University of Munich, TUM School of Life Sciences, Chair of Brewing and Beverage Technology, Group Raw Material Based Brewing and Beverage TechnologyFreisingGermany
| |
Collapse
|
2
|
Mudau M, Chinma CE, Ledbetter M, Wilkin J, Adebo OA. Gas chromatography-mass spectrometry analysis of metabolites in finger millet and Bambara groundnut as affected by traditional and novel food processing. J Food Sci 2024; 89:6394-6412. [PMID: 39219001 DOI: 10.1111/1750-3841.17337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/01/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024]
Abstract
Metabolite profiling is an analytical technique used to assess metabolites in complex biological samples. This technique allows for the identification of both targeted and untargeted metabolites. In this study, the effect of traditional (fermentation and malting) and novel processing (ultrasonication) on the metabolites of finger millet (FM) and Bambara groundnut (BGN) flour was investigated using gas chromatography-mass spectrometry. Various metabolite classes, including amino acids, alcohol, aldehyde, organic acid, ester, fatty acids, glycoside, and sugar, were identified in FM and BGN flours. The adopted processing techniques impacted metabolite composition, as evidenced by substantial variations in volatile compound levels and metabolite composition among the FM and BGN samples before and after traditional and novel processing. Important health-promoting compounds, such as oleic acid, linoelaidic acid, and linoleic acid, were identified at their highest levels in fermented FM and BGN flours. The results obtained from this study offer an important context for monitoring and regulating the metabolite composition of FM and BGN flours under traditional and novel processing. PRACTICAL APPLICATION: Fermentation, malting, and ultrasonication induced desirable changes in some health-promoting compounds of finger millet and Bambara groundnut flours. The food and pharmaceutical industries could benefit from these traditional- and novel-modified flours as they could be used as improved food sources with health benefits.
Collapse
Affiliation(s)
- Masala Mudau
- Centre for Innovative Food Research (CIFR), Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein, Johannesburg, Gauteng, South Africa
| | - Chiemela Enyinnaya Chinma
- Centre for Innovative Food Research (CIFR), Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein, Johannesburg, Gauteng, South Africa
- Department of Food Science and Technology, Federal University of Technology, Minna, Nigeria
- Africa Centre of Excellence for Mycotoxin and Food Safety, Federal University of Technology Minna, Minna, Nigeria
| | - Moira Ledbetter
- Division of Engineering and Food Science, School of Applied Sciences, Abertay University, Dundee, UK
| | - Jon Wilkin
- Division of Engineering and Food Science, School of Applied Sciences, Abertay University, Dundee, UK
| | - Oluwafemi Ayodeji Adebo
- Centre for Innovative Food Research (CIFR), Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein, Johannesburg, Gauteng, South Africa
| |
Collapse
|
3
|
Michiels P, Debyser W, Langenaeken NA, Courtin CM. Impact of barley selection and mashing profile on the arabinoxylan content and structure in beer. Int J Biol Macromol 2024; 280:136031. [PMID: 39332554 DOI: 10.1016/j.ijbiomac.2024.136031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 08/30/2024] [Accepted: 09/24/2024] [Indexed: 09/29/2024]
Abstract
Non-alcoholic and low-alcoholic beers often suffer from inferior foaming quality and lack palate fullness, both of which are positively influenced by arabinoxylan. This study aimed to identify factors during brewing that most affect arabinoxylan content and structure. Analysis showed that malting and mashing had the most significant impact on arabinoxylan, increasing its extractability and reducing its molecular weight. Given that arabinoxylan was most affected at the initial stages of brewing, barley malt selection and mashing profile adjustments were further investigated. Barleys (n = 21) were micro-malted, exhibiting a wide range of endoxylanase activity (6-63 U/kg dm malt) and water-extractable arabinoxylan content (0.54 %-1.04 % dm malt). Malts with extreme values for these parameters were subjected to two mashing profiles, with only one allowing endoxylanase activity, to evaluate the impact of both barley selection and endoxylanase activity on the arabinoxylan profile in beer. The resulting beers had total arabinoxylan content ranging from 1.0 to 2.0 g/L and high-molecular-weight arabinoxylan from 0.4 to 1.2 g/L, levels that significantly contribute to palate fullness and foam stability. The negligible impact of endoxylanase activity highlighted the importance of barley selection. Therefore, brewers should make informed barley (malt) choices to optimize arabinoxylan content and structure in beer.
Collapse
Affiliation(s)
- P Michiels
- KU Leuven, Dept. Microbial and Molecular Systems, Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), Kasteelpark Arenberg 20 box 2463, B-3000 Leuven, Belgium.
| | - W Debyser
- Anheuser-Busch InBev, Brouwerijplein 1, B-3000 Leuven, Belgium.
| | - N A Langenaeken
- KU Leuven, Dept. Microbial and Molecular Systems, Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), Kasteelpark Arenberg 20 box 2463, B-3000 Leuven, Belgium.
| | - C M Courtin
- KU Leuven, Dept. Microbial and Molecular Systems, Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), Kasteelpark Arenberg 20 box 2463, B-3000 Leuven, Belgium.
| |
Collapse
|
4
|
Palatzidi A, Nikoloudaki O, Torreiro MG, Matteucci C, Ferrentino G, Scampicchio MM, Di Cagno R, Gobbetti M. Novel formulations for developing fresh hybrid cheese analogues utilizing fungal-fermented brewery side-stream flours. Curr Res Food Sci 2024; 9:100829. [PMID: 39286429 PMCID: PMC11404057 DOI: 10.1016/j.crfs.2024.100829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/06/2024] [Accepted: 08/23/2024] [Indexed: 09/19/2024] Open
Abstract
This study investigated the development of hybrid cheese analogues (HCA) made with fermented brewery side-stream ingredients (spent yeast and malt rootlets) and dairy milk. Different percentages of side-stream flours (3.5%, 5%, and 7.5%) were mixed with pasteurized milk, and the developed HCA were evaluated for their biochemical and textural properties. The addition of a fermentation step improved nutrient availability and led to pH (range 4.79-5.60) and moisture content (range 45.86%-61.29%) similar to traditional animal-based fresh cheeses (control). The inclusion of side-stream flours led to coagulation, even without rennet addition. The higher the concentration of the flour used, the faster the coagulation time, suggesting synergistic effect between the enzymes of the rennet and the enzymes present in the fermented side-stream flours. Nevertheless, textural properties were inferior compared to the control. Selected HCA formulations with added 3.5% flour exhibited increased counts of enterococci and enterobacteria cell densities, ranging from 7.28 ± 0.03 to 7.72 ± 0.09 log CFU/g and 4.90 ± 0.16 to 5.41 ± 0.01 log CFU/g, respectively. Compared to the control sample, HCA formulations exhibited higher concentrations of organic acids, peptides, and free amino acids (FAAs). Lactic acid reached up to 23.78 ± 0.94 g/kg of dry matter (DM), while the peptide area reached up to 22918.50 ± 2370.93 mL⋅AU. Additionally, the total concentration of individual FAAs reached up to 2809.74 ± 104.85 mg/kg of DM, contrasted with the control, which resulted in lower concentrations (847.65 ± 0.02 mg/kg of DM). The overall findings suggested that despite challenges in microbiological quality and textural properties, HCA produced with the inclusion of up to 3.5% brewery side-stream flours could be a sustainable solution to produce nutritious dairy alternatives.
Collapse
Affiliation(s)
- Anastasia Palatzidi
- Free University of Bozen-Bolzano, Faculty of Agricultural, Environmental and Food Sciences, Piazza Universit'a 1, 39100, Bolzano, BZ, Italy
| | - Olga Nikoloudaki
- Free University of Bozen-Bolzano, Faculty of Agricultural, Environmental and Food Sciences, Piazza Universit'a 1, 39100, Bolzano, BZ, Italy
- International Competence Centre for Food Fermentations-ICOFF, Noitech Park, Via Ipazia 2, 39100, Bolzano, BZ, Italy
| | | | | | - Giovanna Ferrentino
- Free University of Bozen-Bolzano, Faculty of Agricultural, Environmental and Food Sciences, Piazza Universit'a 1, 39100, Bolzano, BZ, Italy
| | - Matteo Mario Scampicchio
- Free University of Bozen-Bolzano, Faculty of Agricultural, Environmental and Food Sciences, Piazza Universit'a 1, 39100, Bolzano, BZ, Italy
| | - Raffaella Di Cagno
- Free University of Bozen-Bolzano, Faculty of Agricultural, Environmental and Food Sciences, Piazza Universit'a 1, 39100, Bolzano, BZ, Italy
- International Competence Centre for Food Fermentations-ICOFF, Noitech Park, Via Ipazia 2, 39100, Bolzano, BZ, Italy
| | - Marco Gobbetti
- Free University of Bozen-Bolzano, Faculty of Agricultural, Environmental and Food Sciences, Piazza Universit'a 1, 39100, Bolzano, BZ, Italy
- International Competence Centre for Food Fermentations-ICOFF, Noitech Park, Via Ipazia 2, 39100, Bolzano, BZ, Italy
| |
Collapse
|
5
|
Moreno Ravelo RC, Gastl M, Becker T. Characterization of molar mass and conformation of relevant (non-)starch polysaccharides in cereal-based beverages. Int J Biol Macromol 2024; 261:129942. [PMID: 38311131 DOI: 10.1016/j.ijbiomac.2024.129942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/25/2024] [Accepted: 02/01/2024] [Indexed: 02/06/2024]
Abstract
Arabinoxylans, β-glucans, and dextrins influence the brewing industry's filtration process and product quality. Despite their relevance, only a maximum concentration of β-glucans is recommended. Nevertheless, filtration problems are still present, indicating that although the chemical concentration is essential, other parameters should be investigated. Molar mass and conformation are important polymer physical characteristics often neglected in this industry. Therefore, this research proposes an approach to physically characterize enzymatically isolated beer polysaccharides by asymmetrical flow field-flow fractionation coupled to multi-angle light scattering and differential refractive index detector. Based on the obtained molar masses, root-mean-square radius (rrms from MALS), and hydrodynamic radius (rhyd), conformational properties such as apparent density (ρapp) and rrms/rhyd can be calculated based on their molar mass and size. Consequently, the ρapp and rrms/rhyd behavior hints at the different structures within each polysaccharide. The rrms/rhyd 1.2 and high ρapp values on low molar mass dextrins (1-2·105 g/mol) indicate branches, while aggregated structures at high molar masses on arabinoxylans and β-glucans (2·105 -6·106 g/mol) are due to an increase of ρapp and a rrms/rhyd (0.6-1). This methodology provides a new perspective to analyze starch and non-starch polysaccharides in cereal-based beverages since different physical characteristics could influence beer's filtration and sensory characteristics.
Collapse
Affiliation(s)
- Rolando César Moreno Ravelo
- Technical University of Munich, TUM School of Life Sciences, Chair of Brewing and Beverage Technology, Group Raw Material Based Brewing and Beverage Technology, Weihenstephaner Steig 20, 85354 Freising, Germany.
| | - Martina Gastl
- Technical University of Munich, TUM School of Life Sciences, Chair of Brewing and Beverage Technology, Group Raw Material Based Brewing and Beverage Technology, Weihenstephaner Steig 20, 85354 Freising, Germany.
| | - Thomas Becker
- Technical University of Munich, TUM School of Life Sciences, Chair of Brewing and Beverage Technology, Group Raw Material Based Brewing and Beverage Technology, Weihenstephaner Steig 20, 85354 Freising, Germany.
| |
Collapse
|
6
|
Xu Q, Wu S, Fu T, Xu Y, Yang S, Li M, Yi Z, Xue S. Unlocking the potential of Dongting Lake-grown Miscanthus lutarioriparius biomass: A comprehensive quality analysis and bioproduct application study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:165276. [PMID: 37406706 DOI: 10.1016/j.scitotenv.2023.165276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/09/2023] [Accepted: 07/01/2023] [Indexed: 07/07/2023]
Abstract
Miscanthus lutarioriparius grown in Dongting Lake has an annual biomass yield potential of 1 million tons. However, with the shutdown of its previous utilization for paper-making, abandoning this huge amount of biomass has caused serious economic, ecological, and social problems. Constructing an industrial cluster to continuously convert biomass into various bioproducts is a win-win measure to address this dilemma. With the increasing confirmation of the importance of biomass quality affecting the conservation process, fully understanding the biomass characteristics of Dongting Lake-grown M. lutarioriparius is crucial for building a scientific industrial cluster. The present work is designed to explore the variation in biomass quality across the entire Dongting Lake area. Results show that the biomass contented with Cd, Mn, Zn, and Cr has significant geographical differences, with a general trend of Southern Dongting Lake-grown biomass having a higher concentration than that from Eastern and Western Dongting Lake areas. Moreover, significant differences are found in terms of biomass ash content, lignin content, and the degree of polymerization of cellulose (DP). The biomass with low ash content is generally from the entire Eastern Dongting Lake area and the northern part of the Western Dongting Lake area. Virtually all Western Dongting Lake-grown biomass has a low lignin content (approximately 18 %). Regarding the spatial variation of DP, Eastern Dongting Lake-grown biomass has a higher DP (average at 585.33) than that in Southern (575.15) and then Western Dongting Lake (529.16). Based on these quality indicators, the biomass production potentials for bioethanol, biochar, and xylo-oligosaccharide were calculated and visualized. Results show that biomass from almost the entire Western and Eastern Dongting Lake area is suitable for bioethanol and xylo-oligosaccharide production, while biomass from the Southern Dongting Lake area for biochar production. These results provide scientific guidance for the future utilization of Dongting Lake-grown M. lutarioriparius biomass.
Collapse
Affiliation(s)
- Qiang Xu
- College of Bioscience & Biotechnology, Hunan Agricultural University, Changsha 410128, PR China
| | - Shenglan Wu
- Orient Science & Technology College of Hunan Agricultural University, Changsha 410128, PR China
| | - Tongcheng Fu
- College of Bioscience & Biotechnology, Hunan Agricultural University, Changsha 410128, PR China; Hunan Engineering Laboratory of Miscanthus Ecological Applications, Hunan Agricultural University, Changsha 410128, PR China; Hunan Branch, National Energy R & D Center for Non-food Biomass, Hunan Agricultural University, Changsha 410128, PR China
| | - Yi Xu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, PR China
| | - Sai Yang
- Orient Science & Technology College of Hunan Agricultural University, Changsha 410128, PR China; Hunan Engineering Laboratory of Miscanthus Ecological Applications, Hunan Agricultural University, Changsha 410128, PR China; Hunan Branch, National Energy R & D Center for Non-food Biomass, Hunan Agricultural University, Changsha 410128, PR China
| | - Meng Li
- College of Bioscience & Biotechnology, Hunan Agricultural University, Changsha 410128, PR China; Hunan Engineering Laboratory of Miscanthus Ecological Applications, Hunan Agricultural University, Changsha 410128, PR China; Hunan Branch, National Energy R & D Center for Non-food Biomass, Hunan Agricultural University, Changsha 410128, PR China
| | - Zili Yi
- College of Bioscience & Biotechnology, Hunan Agricultural University, Changsha 410128, PR China; Hunan Engineering Laboratory of Miscanthus Ecological Applications, Hunan Agricultural University, Changsha 410128, PR China; Hunan Branch, National Energy R & D Center for Non-food Biomass, Hunan Agricultural University, Changsha 410128, PR China
| | - Shuai Xue
- College of Bioscience & Biotechnology, Hunan Agricultural University, Changsha 410128, PR China; Hunan Engineering Laboratory of Miscanthus Ecological Applications, Hunan Agricultural University, Changsha 410128, PR China; Hunan Branch, National Energy R & D Center for Non-food Biomass, Hunan Agricultural University, Changsha 410128, PR China.
| |
Collapse
|
7
|
Li M, Cai K, Zheng N, Zhang G, Ye L. Identification of the Key Transcription Factors Regulating the Expression of the Genes Associated with Barley Malt Quality during Malting. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:8241-8251. [PMID: 37192323 DOI: 10.1021/acs.jafc.3c00988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Barley malt is produced through a malting process; it begins with steeping followed by germination and kilning, in which dramatic changes happen for a large number of physiological and biochemical traits in barley seeds. The objectives of this study were to comprehensively investigate the phenotypic changes during malting, and identify the key regulators that modulate the expression of genes associated with malt quality traits. The results showed that there was a significant positive correlation between gibberellic acid (GA) content and the activities of some hydrolytic enzymes, including α-amylases, β-amylases, and limit dextrinase (LD), and a significant negative correlation between GA and β-glucan content. Starch content had little change, but starch granules were pitted severely during malting. Weighted gene coexpression analysis (WGCNA) identified the genes associated with the greatest changes of the examined malt traits during malting. The correlation analysis and protein-protein interaction (PPI) analysis detected several key transcriptional factor (TF) regulating genes associated with malt quality. These genes and TFs regulating malting traits are potentially useful in barley breeding for malt quality improvement.
Collapse
Affiliation(s)
- Mengdi Li
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, PR China
| | - Kangfeng Cai
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310058, PR China
| | - Nannan Zheng
- Zhongyuan Institute, Zhejiang University, Zhengzhou 450000, PR China
| | - Guoping Zhang
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, PR China
- Zhongyuan Institute, Zhejiang University, Zhengzhou 450000, PR China
| | - Lingzhen Ye
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, PR China
- Zhongyuan Institute, Zhejiang University, Zhengzhou 450000, PR China
| |
Collapse
|
8
|
The occurrence and structural heterogeneity of arabinoxylan in commercial pilsner beers and their non-alcoholic counterparts. Carbohydr Polym 2023; 306:120597. [PMID: 36746587 DOI: 10.1016/j.carbpol.2023.120597] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/09/2023] [Accepted: 01/15/2023] [Indexed: 01/21/2023]
Abstract
The impact of arabinoxylan (AX) on the brewing process and beer characteristics depends on its content and structure and is often overlooked in research and industry. This paper reports on the occurrence and structural heterogeneity of AX in a set of commercial pilsner beers and their non-alcoholic counterparts. Fractionation by graded ethanol precipitation allowed us to isolate AX-rich fractions from beer with a number-average degree of polymerisation of 4 to 308 and an average degree of substitution in the range of 0.43 to 0.88. Pilsner beers had a higher content of high-molecular-weight AX than their non-alcoholic counterparts. The structural heterogeneity among the various commercial beers differed. By comparing the chemical composition of the beers, differences in beer production methods and ingredient selection were deduced and used to tentatively explain the differences in AX content and structural heterogeneity.
Collapse
|
9
|
Aredes RS, Peixoto FC, Sphaier LA, Silva VNH, Duarte LM, de Carvalho Marques FF. Determination of carbohydrates in brewer's wort by capillary electrophoresis with indirect UV detection. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2023.105321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
10
|
Intrinsic and extrinsic factors drive differences in the gelatinisation behaviour of barley and malt starch. Food Res Int 2023; 167:112653. [PMID: 37087242 DOI: 10.1016/j.foodres.2023.112653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 02/20/2023] [Accepted: 02/25/2023] [Indexed: 03/16/2023]
Abstract
We studied the impact of malting on barley starch gelatinisation properties and whether observed differences are due to changes in extrinsic or intrinsic factors. We isolated the total starch and large and small starch granules fractions from barley and malt samples and subjected them to DSC. The peak gelatinisation temperature for malt starch was, on average, 1.2 °C higher than for barley starch. The malting process and endosperm breakdown products were each responsible for half of this difference. The presence of water-extractable, non-starch components (sugars, minerals, protein and starch hydrolysis products,…) increased the intrinsic starch gelatinisation temperatures by 2.2-4.7 °C for barley and 3.6-5.3 °C for malt. The small starch granule fractions from barley had a 3.1 °C higher peak gelatinisation temperature than large granule fractions. No effect of malting was observed here. These findings indicate that matrix effects and starch granule size must be considered when addressing starch conversion during brewing.
Collapse
|
11
|
Held S, Fox G. Simultaneous Evaluation of β-Glucan and β-Glucanase Relationship during Different Mash Temperature Profiles. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2023. [DOI: 10.1080/03610470.2022.2145841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Sophie Held
- Food Science and Technology, University of California, Davis, Davis, California, U.S.A
| | - Glen Fox
- Food Science and Technology, University of California, Davis, Davis, California, U.S.A
| |
Collapse
|
12
|
Reid JESJ, Yakubov GE, Lawrence SJ. Non-starch polysaccharides in beer and brewing: A review of their occurrence and significance. Crit Rev Food Sci Nutr 2022; 64:837-851. [PMID: 36004513 DOI: 10.1080/10408398.2022.2109585] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
It has become apparent that beer (both alcoholic and nonalcoholic) contains appreciable amounts of non-starch polysaccharides, a broad subgroup of dietary fiber. It is worth noting that the occurrence of non-starch polysaccharides in alcoholic beer does not imply this should be consumed as a source of nutrition. But the popularity of nonalcoholic beer is growing, and the lessons learnt from non-starch polysaccharides in brewing can be largely translated to nonalcoholic beer. For context, we briefly review the origins of dietary fiber, its importance within the human diet and the significance of water-soluble dietary fiber in beverages. We review the relationship between non-starch polysaccharides and brewing, giving focus to the techniques used to quantify non-starch polysaccharides in beer, how they affect the physicochemical properties of beer and their influence on the brewing process. The content of non-starch polysaccharides in both regular and low/nonalcoholic beer ranges between 0.5 - 4.0 g/L and are predominantly composed of arabinoxylans and β-glucans. The process of malting, wort production and filtration significantly affect the soluble non-starch polysaccharide content in the final beer. Beer viscosity and turbidity are strongly associated with the content of non-starch polysaccharides.
Collapse
Affiliation(s)
- Joshua E S J Reid
- International Centre for Brewing Science, School of Biosciences, University of Nottingham, Loughborough, United Kingdom
- Division of Food, Nutrition and Dietetics, School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| | - Gleb E Yakubov
- Division of Food, Nutrition and Dietetics, School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| | - Stephen J Lawrence
- International Centre for Brewing Science, School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| |
Collapse
|
13
|
Zhu T, Mu Y. Effects of the mashing process and macromolecule contents on the filterability of barley malt. J Food Sci 2022; 87:3048-3056. [PMID: 35638348 DOI: 10.1111/1750-3841.16201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/12/2022] [Accepted: 04/29/2022] [Indexed: 11/27/2022]
Abstract
The filterability of barley malt is a critical quality parameter in beer brewing. The effects of two mashing processes (processes A and B) on the filterability of the three barley malts and their macromolecule contents were investigated. Filtration volume increased by 4%, 9%, and 13% for the Baudin, Ganpi, and Gangpi malts, respectively, and the final filtration volume of Gangpi was still poorer than that of Baudin. A downward mashing process (process C) was applied to measure the β-glucan, arabinoxylans (AX), the polymeric arabinoxylan (PAX), and high molecular weight nitrogen (HMWN) content. The β-glucan degradation rate of well-modified malt during malting was higher than that of poorly modified malt, whereas the PAX and HMWN solubilization rates during malting were lower in well-modified malt than in poorly modified malt. The filterability of poorly modified malt did not effectively improve with an initial mashing phase at 37℃. β-Glucan degradation and PAX and HMWN solubilization during malting were critical for ensuring malt quality. Thus, the goal of predicting the filterability of malt was achieved by applying a downward mashing process. PRACTICAL APPLICATION: Quality of wort and beer as well as production efficiency is affected by the malt quality. The filterability of barley malt can affect the production efficiency and quality of wort. The change in the macromolecule contents during malting is important to ensure the production of high-quality malt. The results of this study can provide a good method for the detection of malt filtration performance, and it also may contribute to the purpose of prediction the changes in barley malt and the resulting barley malt filterability.
Collapse
Affiliation(s)
- Tiandi Zhu
- Biotechnology Institute, Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Yuwen Mu
- Agricultural Product Storage and Processing Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
14
|
The Optimisation of Cooking Parameters for Spirt Whiskey Production from Native Irish Wheat: A Response Surface Method Approach. Foods 2022; 11:foods11091199. [PMID: 35563922 PMCID: PMC9105317 DOI: 10.3390/foods11091199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/11/2022] [Accepted: 04/18/2022] [Indexed: 02/04/2023] Open
Abstract
Barley and maize have dominated the Irish whiskey sector, but in recent years, alternative grains have started to gain traction. Ireland has a high average wheat yield, producing grain that is high in starch but low in protein, offering the potential for use in distillation. To successfully utilise Irish-grown wheat in distillation, cultivars that are suitable to the Irish climate and give high yields of alcohol need to be identified. This necessitates the development of a rapid screening test for grain alcohol yield. This study examined the optimal temperature, time period, α-amylase dose rate, and calcium concentration to be used in the cooking of wheat grain to maximise alcohol yields. It was determined that lower cooking temperatures are more successful in achieving higher alcohol yields, and it was confirmed that temperature is a key variable in the cooking process. By optimising all parameters, alcohol yields of 458 LA/tonne were obtained, demonstrating that the optimum parameters can be successfully used for both hard and soft endoderm wheat produced in Ireland as well as for different varieties. This indicates potential for producing higher alcohol yields using Irish-grown wheat in Irish distilleries.
Collapse
|
15
|
De Schepper C, Courtin C. High mashing thickness negatively influences gelatinisation of small and large starch granules and starch conversion efficiency during barley malt brewing. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
16
|
The Influence of Biomolecule Composition on Colloidal Beer Structure. Biomolecules 2021; 12:biom12010024. [PMID: 35053172 PMCID: PMC8774254 DOI: 10.3390/biom12010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/22/2021] [Accepted: 12/22/2021] [Indexed: 11/16/2022] Open
Abstract
Recent studies have revealed an interest in the composition of beer biomolecules as a colloidal system and their influence on the formation of beer taste. The purpose of this research was to establish biochemical interactions between the biomolecules of plant-based raw materials of beer in order to understand the overall structure of beer as a complex system of bound biomolecules. Generally accepted methods of analytical research in the field of brewing, biochemistry and proteomics were used to solve the research objectives. The studies allowed us to establish the relationship between the grain and plant-based raw materials used, as well as the processing technologies and biomolecular profiles of beer. The qualitative profile of the distribution of protein compounds as a framework for the formation of a colloidal system and the role of carbohydrate dextrins and phenol compounds are given. This article provides information about the presence of biogenic compounds in the structure of beer that positively affect the functioning of the body. A critical assessment of the influence of some parameters on the completeness of beer taste by biomolecules is given. Conclusion: the conducted analytical studies allowed us to confirm the hypothesis about the nitrogen structure of beer and the relationship of other biomolecules with protein substances, and to identify the main factors affecting the distribution of biomolecules by fractions.
Collapse
|
17
|
Hu S, Deng H, Liu R, Yu W. Molecular brewing: The molecular structural effects of starch adjuncts on barley malt brewing performances. Int J Biol Macromol 2021; 193:661-671. [PMID: 34717974 DOI: 10.1016/j.ijbiomac.2021.10.097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 09/18/2021] [Accepted: 10/13/2021] [Indexed: 10/20/2022]
Abstract
In this study, the effects of starch adjuncts with different fine molecular structures obtained by size-exclusion chromatography on the mashing and fermentation efficiencies of barley malts were investigated. Following fermentation, violate compounds of freshly-fermented beer samples were determined by headspace-solid-phase microextraction coupled with gas chromatography-mass spectrometry analysis (HS-SMPE-GC-MS). High performance liquid chromatography results showed that depending on their molecular structures, starch adjuncts addition significantly increased wort maltose and maltotriose content, whereas reducing the glucose content and thus both the ratios of glucose and maltotriose to that of the maltose. The whole fermentation by dry beer yeast was finished within the first 48 h and reached to equilibrium for the rest 72 h, represented by the stable soluble protein content. Results also showed that the addition of starch adjuncts resulted into increased alcohol content, which was mainly attributed to the altered glucose/maltose ratio. The HS-SPME-GC-MS results showed that whether or not with starch adjuncts addition, the composition of violate compounds were not significantly influenced, their content, on the contrary, were altered, represented by different peak heights. This study provides important information concerning the molecular effects of starch adjuncts on brewing performances of barley malts, and also provides a new pathway for choosing suitable types of adjuncts for making beer with better quality.
Collapse
Affiliation(s)
- Shumin Hu
- State Key Laboratory of Biological Fermentation Engineering of Beer, Tsingtao Brewery Co. Ltd., Qingdao, China
| | - Hutai Deng
- Department of Food Science & Engineering, Jinan University, Huangpu West Avenue 601, Guangzhou City 510632, Guangdong, China
| | - Renhan Liu
- Department of Food Science & Engineering, Jinan University, Huangpu West Avenue 601, Guangzhou City 510632, Guangdong, China
| | - Wenwen Yu
- Department of Food Science & Engineering, Jinan University, Huangpu West Avenue 601, Guangzhou City 510632, Guangdong, China.
| |
Collapse
|
18
|
Evans DE, Stewart S, Stewart D, Han Z, Han Y, Able JA. Profiling Malt Enzymes Related to Impact on Malt Fermentability, Lautering and Beer Filtration Performance of 94 Commercially Produced Malt Batches. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2021. [DOI: 10.1080/03610470.2021.1979891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- David Evan Evans
- School of Agriculture, Food & Wine, Waite Research Institute, The University of Adelaide, Glen Osmond, South Australia, Australia
- The Tassie Beer Dr, Lindisfarne, Tasmania, Australia
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | - Susan Stewart
- School of Agriculture, Food & Wine, Waite Research Institute, The University of Adelaide, Glen Osmond, South Australia, Australia
| | - Doug Stewart
- Coopers Brewery Ltd, Regency Park, South Australia, Australia
| | - Zhongping Han
- Guangzhou Economic and Technical Development Zone, GDH Supertime Malting Company Limited, Guangzhou, China
| | - Yonghong Han
- Guangzhou Economic and Technical Development Zone, GDH Supertime Malting Company Limited, Guangzhou, China
| | - Jason A. Able
- School of Agriculture, Food & Wine, Waite Research Institute, The University of Adelaide, Glen Osmond, South Australia, Australia
| |
Collapse
|
19
|
Optimization of Beer Brewing by Monitoring α-Amylase and β-Amylase Activities during Mashing. BEVERAGES 2021. [DOI: 10.3390/beverages7010013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
(1) Background: In the current highly competitive brewing industry, most breweries may benefit from a reduction in mashing time. In this study, a novel enzymatic assay format was used to investigate the activities of α-amylase and β-amylase during different mashing profiles, with the aim to use it as a tool for optimizing the production time of an existing industrial mashing process; (2) Methods: Lab-scale mashings with eight different time-temperature programs and two different pilot brews were analyzed in terms of enzymatic activity, sugar composition, alcohol by volume in the final beer, FAN and others; (3) Results: A 20-min reduction (out of an original 73-min mashing program) was achieved by selecting a temperature profile which maintained a higher enzymatic activity than the original, without affecting the wort sugar composition and fermentability, or the ethanol concentration and foam stability of the final beer. (4) Conclusions: A method is presented which can be used by breweries to optimize their mashing profiles based on monitoring α-amylase and β-amylase activities.
Collapse
|
20
|
Brewing By-Product Upcycling Potential: Nutritionally Valuable Compounds and Antioxidant Activity Evaluation. Antioxidants (Basel) 2021; 10:antiox10020165. [PMID: 33499399 PMCID: PMC7911235 DOI: 10.3390/antiox10020165] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 11/16/2022] Open
Abstract
The brewing industry produces high quantities of solid and liquid waste, causing disposal issues. Brewing spent grains (BSGs) and brewing spent hop (BSH) are important by-products of the brewing industry and possess a high-value chemical composition. In this study, BSG and BSH, obtained from the production process of two different types of ale beer (Imperial red and Belgian strong beer) were characterized in terms of valuable components, including proteins, carbohydrates, fat, dietary fiber, β-glucans, arabinoxylans, polyphenols, and phenolic acids, and antioxidant activity (Ferric Reducing Antioxidant Power Assay (FRAP), 2,2-Diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-Azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS)). Significant concentrations of total polyphenols were observed in both BSH and BSG samples (average of about 10 mg GAE/g of dry mass); however, about 1.5-fold higher levels were detected in by-products of Belgian strong ale beer compared with Imperial red. Free and bound phenolic acids were quantified using a validated chromatographic method. A much higher level of total phenolic acids (TPA) (about 16-fold higher) was found in BSG samples compared with BSHs. Finally, their antioxidant potential was verified. By-products of Belgian strong ale beer, both BSG and BSH, showed significantly higher antioxidative capacity (about 1.5-fold lower inhibitory concentration (IC50) values) compared with spent grains and hop from the brewing of Imperial red ale. In summary, BSG and BSH may be considered rich sources of protein, carbohydrates, fiber, and antioxidant compounds (polyphenols), and have the potential to be upcycled by transformation into value-added products.
Collapse
|