1
|
Goolab S, Terburgh K, du Plessis C, Scholefield J, Louw R. CRISPR-Cas9 mediated knockout of NDUFS4 in human iPSCs: A model for mitochondrial complex I deficiency. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167569. [PMID: 39547516 DOI: 10.1016/j.bbadis.2024.167569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024]
Abstract
Mitochondrial diseases, often caused by defects in complex I (CI) of the oxidative phosphorylation system, currently lack curative treatments. Human-relevant, high-throughput drug screening platforms are crucial for the discovery of effective therapeutics, with induced pluripotent stem cells (iPSCs) emerging as a valuable technology for this purpose. Here, we present a novel iPSC model of NDUFS4-related CI deficiency that displays a strong metabolic phenotype in the pluripotent state. Human iPSCs were edited using CRISPR-Cas9 to target the NDUFS4 gene, generating isogenic NDUFS4 knockout (KO) cell lines. Sanger sequencing detected heterozygous biallelic deletions, whereas no indel mutations were found in isogenic control cells. Western blotting confirmed the absence of NDUFS4 protein in KO iPSCs and CI enzyme kinetics showed a ~56 % reduction in activity compared to isogenic controls. Comprehensive metabolomic profiling revealed a distinct metabolic phenotype in NDUFS4 KO iPSCs, predominantly associated with an elevated NADH/NAD+ ratio, consistent with alterations observed in other models of mitochondrial dysfunction. Additionally, β-lapachone, a recognized NAD+ modulator, alleviated reductive stress in KO iPSCs by modifying the redox state in both the cytosol and mitochondria. Although undifferentiated iPSCs cannot fully replicate the complex cellular dynamics of the disease seen in vivo, these findings highlight the utility of iPSCs in providing a relevant metabolic milieu that can facilitate early-stage, high-throughput exploration of therapeutic strategies for mitochondrial dysfunction.
Collapse
Affiliation(s)
- Shivani Goolab
- Bioengineering and Integrated Genomics Group, Future Productions: Chemicals Cluster, Council for Scientific and Industrial Research, Pretoria, South Africa
| | - Karin Terburgh
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa
| | - Charl du Plessis
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa
| | - Janine Scholefield
- Bioengineering and Integrated Genomics Group, Future Productions: Chemicals Cluster, Council for Scientific and Industrial Research, Pretoria, South Africa; Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa; Division of Human Genetics, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Roan Louw
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa.
| |
Collapse
|
2
|
Fernández AC, Estrella J, Oglesbee D, Larson AA, Van Hove JLK. The clinical utility in hospital-wide use of growth differentiation factor 15 as a biomarker for mitochondrial DNA-related disorders. J Inherit Metab Dis 2025; 48:e12821. [PMID: 39582258 DOI: 10.1002/jimd.12821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/14/2024] [Accepted: 11/12/2024] [Indexed: 11/26/2024]
Abstract
Clinical recognition of primary mitochondrial disorders (PMD) is difficult due to the clinical and genetic heterogeneity. Whereas lactate has low sensitivity and specificity, in structured clinical studies growth differentiation factor 15 (GDF15) has shown promise with elevations in mitochondrial DNA (mtDNA)-related PMD, but its specificity has been questioned. In a tertiary care hospital-wide study, medical records were retrospectively reviewed from 418 cases where GDF15 levels were obtained by clinicians. Patients were classified into patients with PMD due to mtDNA-related defects (mtDNA maintenance, mtDNA deletions, and mtDNA-encoded tRNA variants), PMD due to structural defects or other nuclear causes, and in non-mitochondrial disease. Patients with liver disease or systemic critical illness were excluded. GDF15 was assayed in a clinical laboratory with a cutoff of 750 ng/L. There were 38 mtDNA-related PMD (GDF15 >750 pg/mL in 76%), 35 other nuclear DNA-encoded PMD or structural subunits (31% elevated GDF15), 309 non-mitochondrial disorders (13% elevated GDF15). Based on the highest Youden J-index, the optimal cut-off value to identify these target mtDNA-related disorders was 815 pg/mL, with sensitivity 76%, specificity 88%, positive predictive value of 41% and negative predictive value of 97%. At this optimized cutoff level, mtDNA-encoded PMD patients had elevated GDF15 in 76%, nuclear DNA-encoded PMD in 26%, and non-mitochondrial disorders in 11% of patients. Thus, in a real-life clinical setting, after excluding abnormal liver function and critical illness, GDF15 had good clinical utility increasing the odds at predicting mtDNA-related primary mitochondrial disorders 14-fold, but not for structural or other nuclear-encoded primary mitochondrial disorders.
Collapse
Affiliation(s)
- Andrea Cortés Fernández
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado, Aurora, Colorado, USA
| | - Jane Estrella
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado, Aurora, Colorado, USA
- Department of Diagnostic Genomics, PathWest Laboratory Medicine WA, Nedlands, Western Australia, Australia
| | - Devin Oglesbee
- Department of Laboratory Medicine and Pathology, Mayo Clinic School of Medicine, Rochester, Minnesota, USA
| | - Austin A Larson
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado, Aurora, Colorado, USA
| | - Johan L K Van Hove
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado, Aurora, Colorado, USA
| |
Collapse
|
3
|
Wang X, Zhang G. The mitochondrial integrated stress response: A novel approach to anti-aging and pro-longevity. Ageing Res Rev 2025; 103:102603. [PMID: 39608727 DOI: 10.1016/j.arr.2024.102603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/25/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024]
Abstract
The ISR is a cellular signaling pathway that responds to various physiological changes and types of stimulation. The mitochondrial integrated stress response (ISRmt) is a stress response specific to mitochondria which is initiated by eIF2α phosphorylation and is responsive to mitochondrial stressors. The ISRmt triggers diverse metabolic responses reliant on activating transcription factor 4 (ATF4). The preliminary phases of ISRmt can provoke an adaptive stress response that antagonizes age-related diseases and promotes longevity. In this review, we provide an overview of the molecular mechanisms of the ISRmt, with a particular focus on its potential as a therapeutic target for age-related disease and the promotion of longevity.
Collapse
Affiliation(s)
- Xiaoding Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, China.
| | - Guangyu Zhang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, China.
| |
Collapse
|
4
|
Santos Gonzalez F, Hock DH, Thorburn DR, Mordaunt D, Williamson NA, Ang CS, Stroud DA, Christodoulou J, Goranitis I. A micro-costing study of mass-spectrometry based quantitative proteomics testing applied to the diagnostic pipeline of mitochondrial and other rare disorders. Orphanet J Rare Dis 2024; 19:443. [PMID: 39609890 PMCID: PMC11605922 DOI: 10.1186/s13023-024-03462-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 11/14/2024] [Indexed: 11/30/2024] Open
Abstract
BACKGROUND Mass spectrometry-based quantitative proteomics has a demonstrated utility in increasing the diagnostic yield of mitochondrial disorders (MDs) and other rare diseases. However, for this technology to be widely adopted in routine clinical practice, it is crucial to accurately estimate delivery costs. Resource use and unit costs required to undertake a proteomics test were measured and categorized into consumables, equipment, and labor. Unit costs were aggregated to obtain a total cost per patient, reported in 2023 Australian dollars (AUD). Probabilistic and deterministic sensitivity analysis were conducted to evaluate parameter uncertainty and identify key cost drivers. RESULTS The mean cost of a proteomics test was $897 (US$ 607) per patient (95% CI: $734-$1,111). Labor comprised 53% of the total costs. At $342 (US$ 228) per patient, liquid chromatography coupled tandem mass spectrometry (LC-MS/MS) was the most expensive non-salary component. An integrated analysis pipeline where all the standard analysis are performed automatically, as well as discounts or subsidized LC-MS/MS equipment or consumables can lower the cost per test. CONCLUSIONS Proteomics testing provide a lower-cost option and wider application compared to respiratory chain enzymology for mitochondrial disorders and potentially other functional assays in Australia. Our analysis suggests that streamlining and automating workflows can reduce labor costs. Using PBMC samples may be a cheaper and more efficient alternative to generating fibroblasts, although their use has not been extensively tested yet. Use of fibroblasts could potentially lower costs when fibroblasts are already available by avoiding the expense of isolating PBMCs. A joint evaluation of the health and economic implications of proteomics is now needed to support its introduction to routine clinical care.
Collapse
Affiliation(s)
- Francisco Santos Gonzalez
- Economics of Genomics and Precision Medicine Unit, Centre for Health Policy, Melbourne School of Population and Global Health, University of Melbourne, 207-221 Bouverie St., Parkville, Melbourne, VIC, 3010, Australia
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, 3052, Australia
| | - Daniella H Hock
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3010, Australia
| | - David R Thorburn
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, 3052, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, VIC, 3052, Australia
| | - Dylan Mordaunt
- Economics of Genomics and Precision Medicine Unit, Centre for Health Policy, Melbourne School of Population and Global Health, University of Melbourne, 207-221 Bouverie St., Parkville, Melbourne, VIC, 3010, Australia
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, 3052, Australia
| | - Nicholas A Williamson
- Melbourne Mass Spectrometry and Proteomics Facility, Bio21 Molecular Science & Biotechnology Institute, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Ching-Seng Ang
- Melbourne Mass Spectrometry and Proteomics Facility, Bio21 Molecular Science & Biotechnology Institute, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - David A Stroud
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, 3052, Australia.
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3010, Australia.
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, VIC, 3052, Australia.
| | - John Christodoulou
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, 3052, Australia.
- Australian Genomics Health Alliance, Melbourne, VIC, 3052, Australia.
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia.
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, VIC, 3052, Australia.
| | - Ilias Goranitis
- Economics of Genomics and Precision Medicine Unit, Centre for Health Policy, Melbourne School of Population and Global Health, University of Melbourne, 207-221 Bouverie St., Parkville, Melbourne, VIC, 3010, Australia.
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, 3052, Australia.
- Australian Genomics Health Alliance, Melbourne, VIC, 3052, Australia.
| |
Collapse
|
5
|
Starosta RT, Larson AA, Meeks NJL, Gracie S, Friederich MW, Gaughan SM, Baker PR, Knupp KG, Michel CR, Reisdorph R, Hock DH, Stroud DA, Wood T, Van Hove JLK. An integrated multi-omics approach allowed ultra-rapid diagnosis of a deep intronic pathogenic variant in PDHX and precision treatment in a neonate critically ill with lactic acidosis. Mitochondrion 2024; 79:101973. [PMID: 39413893 PMCID: PMC11578067 DOI: 10.1016/j.mito.2024.101973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/07/2024] [Accepted: 10/12/2024] [Indexed: 10/18/2024]
Abstract
The diagnosis of mitochondrial disorders is complex. Rapid whole genome sequencing is a first line test for critically ill neonates and infants allowing rapid diagnosis and treatment. Standard genomic technology and bioinformatic pipelines still have an incomplete diagnostic yield requiring complementary approaches. There are currently limited options for rapid additional tests to continue a diagnostic work-up after a negative rapid whole-genome sequencing result, reflecting a gap in clinical practice. Multi-modal integrative diagnostic approaches derived from systems biology including proteomics and transcriptomics show promise in suspected mitochondrial disorders. In this article, we report the case of a neonate who presented with severe lactic acidosis on the second day of life, for whom an initial report of ultra-rapid genome sequencing was negative. The patient was started on dichloroacetate as an emergency investigational new drug (eIND), with a sharp decline in lactic acid levels and clinical stabilization. A proteomics-based approach identified a complete absence of PDHX protein, leading to a re-review of the genome data for the PDHX gene in which a homozygous deep intronic pathogenic variant was identified. Subsequent testing in the following months confirmed the diagnosis with deficient pyruvate dehydrogenase enzyme activity, reduced protein levels of E3-binding protein, and confirmed by mRNA sequencing to lead to the inclusion of a cryptic exon and a premature stop codon. This case highlights the power of rapid proteomics in guiding genomic analysis. It also shows a promising role for dichloroacetate treatment in controlling lactic acidosis related to PDHX-related pyruvate dehydrogenase complex deficiency.
Collapse
Affiliation(s)
- Rodrigo T Starosta
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado, Aurora, CO, USA
| | - Austin A Larson
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado, Aurora, CO, USA
| | - Naomi J L Meeks
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado, Aurora, CO, USA; Department of Pathology and Laboratory Medicine, Children's Hospital Colorado, Aurora, CO 80045, USA
| | - Sara Gracie
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado, Aurora, CO, USA
| | - Marisa W Friederich
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado, Aurora, CO, USA; Department of Pathology and Laboratory Medicine, Children's Hospital Colorado, Aurora, CO 80045, USA
| | - Sommer M Gaughan
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado, Aurora, CO, USA
| | - Peter R Baker
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado, Aurora, CO, USA
| | - Kelly G Knupp
- Department of Pediatrics, Section of Pediatric Neurology, University of Colorado, Aurora, CO, USA
| | - Cole R Michel
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Richard Reisdorph
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Daniella H Hock
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3052, Australia; Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia; Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia
| | - David A Stroud
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3052, Australia; Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia; Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia
| | - Tim Wood
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado, Aurora, CO, USA; Department of Pathology and Laboratory Medicine, Children's Hospital Colorado, Aurora, CO 80045, USA
| | - Johan L K Van Hove
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado, Aurora, CO, USA; Department of Pathology and Laboratory Medicine, Children's Hospital Colorado, Aurora, CO 80045, USA.
| |
Collapse
|
6
|
Cicchinelli M, Primiano G, Servidei S, Ardito M, Percio A, Urbani A, Iavarone F. Resolving Phenotypic Variability in Mitochondrial Diseases: Preliminary Findings of a Proteomic Approach. Int J Mol Sci 2024; 25:10731. [PMID: 39409059 PMCID: PMC11477128 DOI: 10.3390/ijms251910731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/20/2024] [Accepted: 10/03/2024] [Indexed: 10/20/2024] Open
Abstract
The introduction of new sequencing approaches into clinical practice has radically changed the diagnostic approach to mitochondrial diseases, significantly improving the molecular definition rate in this group of neurogenetic disorders. At the same time, there have been no equal successes in the area of in-depth understanding of disease mechanisms and few innovative therapeutic approaches have been proposed recently. In this regard, the identification of the molecular basis of phenotypic variability in primary mitochondrial disorders represents a key aspect for deciphering disease mechanisms with important therapeutic implications. In this study, we present data from proteomic investigations in two subjects affected by mitochondrial disease characterized by a different clinical severity and associated with the same variant in the TWNK gene, encoding the mitochondrial DNA and RNA helicase with a specific role in the mtDNA replisome. Heterozygous pathogenic variants in this gene are associated with progressive external ophthalmoplegia and ptosis, usually with adult onset. The overall results suggest an imbalance in glucose metabolism and ROS production/regulation, with possible consequences on the phenotypic manifestations of the enrolled subjects. Although the data will need to be validated in a large cohort, proteomic investigations have proven to be a valid approach for a deep understanding of these neurometabolic disorders.
Collapse
Affiliation(s)
- Michela Cicchinelli
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (M.C.); (A.P.); (A.U.); (F.I.)
| | - Guido Primiano
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (S.S.); (M.A.)
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy
| | - Serenella Servidei
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (S.S.); (M.A.)
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy
| | - Michelangelo Ardito
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (S.S.); (M.A.)
| | - Anna Percio
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (M.C.); (A.P.); (A.U.); (F.I.)
| | - Andrea Urbani
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (M.C.); (A.P.); (A.U.); (F.I.)
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy
| | - Federica Iavarone
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (M.C.); (A.P.); (A.U.); (F.I.)
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy
| |
Collapse
|
7
|
Cwerman-Thibault H, Malko-Baverel V, Le Guilloux G, Torres-Cuevas I, Ratcliffe E, Mouri D, Mignon V, Saubaméa B, Boespflug-Tanguy O, Gressens P, Corral-Debrinski M. Harlequin mice exhibit cognitive impairment, severe loss of Purkinje cells and a compromised bioenergetic status due to the absence of Apoptosis Inducing Factor. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167272. [PMID: 38897257 DOI: 10.1016/j.bbadis.2024.167272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 05/15/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024]
Abstract
The functional integrity of the central nervous system relies on complex mechanisms in which the mitochondria are crucial actors because of their involvement in a multitude of bioenergetics and biosynthetic pathways. Mitochondrial diseases are among the most prevalent groups of inherited neurological disorders, affecting up to 1 in 5000 adults and despite considerable efforts around the world there is still limited curative treatments. Harlequin mice correspond to a relevant model of recessive X-linked mitochondrial disease due to a proviral insertion in the first intron of the Apoptosis-inducing factor gene, resulting in an almost complete depletion of the corresponding protein. These mice exhibit progressive degeneration of the retina, optic nerve, cerebellum, and cortical regions leading to irremediable blindness and ataxia, reminiscent of what is observed in patients suffering from mitochondrial diseases. We evaluated the progression of cerebellar degeneration in Harlequin mice, especially for Purkinje cells and its relationship with bioenergetics failure and behavioral damage. For the first time to our knowledge, we demonstrated that Harlequin mice display cognitive and emotional impairments at early stage of the disease with further deteriorations as ataxia aggravates. These functions, corresponding to higher-order cognitive processing, have been assigned to a complex network of reciprocal connections between the cerebellum and many cortical areas which could be dysfunctional in these mice. Consequently, Harlequin mice become a suitable experimental model to test innovative therapeutics, via the targeting of mitochondria which can become available to a large spectrum of neurological diseases.
Collapse
Affiliation(s)
| | | | | | - Isabel Torres-Cuevas
- Université Paris Cité, NeuroDiderot, Inserm, F-75019 Paris, France; Department of Physiology, University of Valencia, Vicent Andrés Estellés s/n, 46100 12 Burjassot, Spain
| | - Edward Ratcliffe
- Université Paris Cité, NeuroDiderot, Inserm, F-75019 Paris, France
| | - Djmila Mouri
- Université Paris Cité, NeuroDiderot, Inserm, F-75019 Paris, France
| | - Virginie Mignon
- Université de Paris, UMR-S 1144 Inserm, 75006 Paris, France; Université Paris Cité, Platform of Cellular and Molecular Imaging, US25 Inserm, UAR3612 CNRS, 75006 Paris, France
| | - Bruno Saubaméa
- Université de Paris, UMR-S 1144 Inserm, 75006 Paris, France
| | - Odile Boespflug-Tanguy
- Université Paris Cité, NeuroDiderot, Inserm, F-75019 Paris, France; Service de Neurologie et Maladies métaboliques, CHU Paris - Hôpital Robert Debré, F-75019 Paris, France
| | - Pierre Gressens
- Université Paris Cité, NeuroDiderot, Inserm, F-75019 Paris, France
| | | |
Collapse
|
8
|
Li T, Aziz T, Li G, Zhang L, Yao J, Jia S. A zebrafish tufm mutant model for the COXPD4 syndrome of aberrant mitochondrial function. J Genet Genomics 2024; 51:922-933. [PMID: 38825039 DOI: 10.1016/j.jgg.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/23/2024] [Accepted: 05/25/2024] [Indexed: 06/04/2024]
Abstract
Mitochondrial dysfunction is a critical factor leading to a wide range of clinically heterogeneous and often severe disorders due to its central role in generating cellular energy. Mutations in the TUFM gene are known to cause combined oxidative phosphorylation deficiency 4 (COXPD4), a rare mitochondrial disorder characterized by a comprehensive quantitative deficiency in mitochondrial respiratory chain (MRC) complexes. The development of a reliable animal model for COXPD4 is crucial for elucidating the roles and mechanisms of TUFM in disease pathogenesis and benefiting its medical management. In this study, we construct a zebrafish tufm-/- mutant that closely resembles the COXPD4 syndrome, exhibiting compromised mitochondrial protein translation, dysfunctional mitochondria with oxidative phosphorylation defects, and significant metabolic suppression of the tricarboxylic acid cycle. Leveraging this COXPD4 zebrafish model, we comprehensively validate the clinical relevance of TUFM mutations and identify probucol as a promising therapeutic approach for managing COXPD4. Our data offer valuable insights for understanding mitochondrial diseases and developing effective treatments.
Collapse
Affiliation(s)
- Ting Li
- School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Tursunjan Aziz
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Guangyuan Li
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Lin Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jihua Yao
- School of Life Sciences, Fudan University, Shanghai 200438, China.
| | - Shunji Jia
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
9
|
Tauchmannová K, Pecinová A, Houštěk J, Mráček T. Variability of Clinical Phenotypes Caused by Isolated Defects of Mitochondrial ATP Synthase. Physiol Res 2024; 73:S243-S278. [PMID: 39016153 PMCID: PMC11412354 DOI: 10.33549/physiolres.935407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 06/28/2024] [Indexed: 08/09/2024] Open
Abstract
Disorders of ATP synthase, the key enzyme in mitochondrial energy supply, belong to the most severe metabolic diseases, manifesting as early-onset mitochondrial encephalo-cardiomyopathies. Since ATP synthase subunits are encoded by both mitochondrial and nuclear DNA, pathogenic variants can be found in either genome. In addition, the biogenesis of ATP synthase requires several assembly factors, some of which are also hotspots for pathogenic variants. While variants of MT-ATP6 and TMEM70 represent the most common cases of mitochondrial and nuclear DNA mutations respectively, the advent of next-generation sequencing has revealed new pathogenic variants in a number of structural genes and TMEM70, sometimes with truly peculiar genetics. Here we present a systematic review of the reported cases and discuss biochemical mechanisms, through which they are affecting ATP synthase. We explore how the knowledge of pathophysiology can improve our understanding of enzyme biogenesis and function. Keywords: Mitochondrial diseases o ATP synthase o Nuclear DNA o Mitochondrial DNA o TMEM70.
Collapse
Affiliation(s)
- K Tauchmannová
- Laboratory of Bioenergetics, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
| | | | | | | |
Collapse
|
10
|
Semcesen LN, Robinson DRL, Stroud DA. Generating mammalian knock-out cell lines to investigate mitochondrial protein complex assembly. Methods Enzymol 2024; 707:441-473. [PMID: 39488386 DOI: 10.1016/bs.mie.2024.07.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2024]
Abstract
The development of easy-to-use gene-editing approaches has revolutionized the study of mitochondrial protein complex assembly in mammalian cells. Once the domain of classical cell biology models such Saccharomyces cerevisiae, human knockout cell lines lacking expression of a specific protein can be made at low cost and in as little as two to three weeks. In this chapter we outline our approach to generation of knockouts in commonly used transformed laboratory cell lines, with a view toward their use in the study of mitochondrial respiratory chain complex assembly and mitochondrial biology. Common pitfalls and caveats are discussed along with recommendations on how to validate a knockout cell line through sequencing of genomic edits and stable complementation to exclude the influence of off-target effects and enable further studies of protein function.
Collapse
Affiliation(s)
- Liana N Semcesen
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, Australia
| | - David R L Robinson
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, Australia
| | - David A Stroud
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, Australia; Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC Australia; Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, VIC Australia.
| |
Collapse
|
11
|
Cwerman-Thibault H, Malko-Baverel V, Le Guilloux G, Ratcliffe E, Mouri D, Torres-Cuevas I, Millán I, Saubaméa B, Mignon V, Boespflug-Tanguy O, Gressens P, Corral-Debrinski M. Neuroglobin overexpression in cerebellar neurons of Harlequin mice improves mitochondrial homeostasis and reduces ataxic behavior. Mol Ther 2024; 32:2150-2175. [PMID: 38796706 PMCID: PMC11286817 DOI: 10.1016/j.ymthe.2024.05.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/22/2024] [Accepted: 05/23/2024] [Indexed: 05/28/2024] Open
Abstract
Neuroglobin, a member of the globin superfamily, is abundant in the brain, retina, and cerebellum of mammals and localizes to mitochondria. The protein exhibits neuroprotective capacities by participating in electron transfer, oxygen supply, and protecting against oxidative stress. Our objective was to determine whether neuroglobin overexpression can be used to treat neurological disorders. We chose Harlequin mice, which harbor a retroviral insertion in the first intron of the apoptosis-inducing factor gene resulting in the depletion of the corresponding protein essential for mitochondrial biogenesis. Consequently, Harlequin mice display degeneration of the cerebellum and suffer from progressive blindness and ataxia. Cerebellar ataxia begins in Harlequin mice at the age of 4 months and is characterized by neuronal cell disappearance, bioenergetics failure, and motor and cognitive impairments, which aggravated with aging. Mice aged 2 months received adeno-associated viral vectors harboring the coding sequence of neuroglobin or apoptosis-inducing factor in both cerebellar hemispheres. Six months later, Harlequin mice exhibited substantial improvements in motor and cognitive skills; probably linked to the preservation of respiratory chain function, Purkinje cell numbers and connectivity. Thus, without sharing functional properties with apoptosis-inducing factor, neuroglobin was efficient in reducing ataxia in Harlequin mice.
Collapse
Affiliation(s)
- Hélène Cwerman-Thibault
- Université Paris Cité, Inserm, Maladies neurodéveloppementales et neurovasculaires, F-75019 Paris, France
| | - Vassilissa Malko-Baverel
- Université Paris Cité, Inserm, Maladies neurodéveloppementales et neurovasculaires, F-75019 Paris, France
| | - Gwendoline Le Guilloux
- Université Paris Cité, Inserm, Maladies neurodéveloppementales et neurovasculaires, F-75019 Paris, France
| | - Edward Ratcliffe
- Université Paris Cité, Inserm, Maladies neurodéveloppementales et neurovasculaires, F-75019 Paris, France
| | - Djmila Mouri
- Université Paris Cité, Inserm, Maladies neurodéveloppementales et neurovasculaires, F-75019 Paris, France
| | - Isabel Torres-Cuevas
- Université Paris Cité, Inserm, Maladies neurodéveloppementales et neurovasculaires, F-75019 Paris, France; Neonatal Research Group, Health Research Institute La Fe, 46026 Valencia, Spain
| | - Ivan Millán
- Université Paris Cité, Inserm, Maladies neurodéveloppementales et neurovasculaires, F-75019 Paris, France; Neonatal Research Group, Health Research Institute La Fe, 46026 Valencia, Spain; Laboratory of Comparative Neurobiology, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Valencia, Spain
| | - Bruno Saubaméa
- Université Paris Cité, Platform of Cellular and Molecular Imaging (PICMO), US25 Inserm, UAR3612 CNRS, 75006 Paris, France; Université Paris Cité, Optimisation Thérapeutique en Neuropsychopharmacologie, UMR-S 1144 Inserm, 75006 Paris, France
| | - Virginie Mignon
- Université Paris Cité, Platform of Cellular and Molecular Imaging (PICMO), US25 Inserm, UAR3612 CNRS, 75006 Paris, France
| | - Odile Boespflug-Tanguy
- Université Paris Cité, Inserm, Maladies neurodéveloppementales et neurovasculaires, F-75019 Paris, France; Service de Neurologie et Maladies métaboliques, CHU Paris - Hôpital Robert Debré, F-75019 Paris, France
| | - Pierre Gressens
- Université Paris Cité, Inserm, Maladies neurodéveloppementales et neurovasculaires, F-75019 Paris, France
| | - Marisol Corral-Debrinski
- Université Paris Cité, Inserm, Maladies neurodéveloppementales et neurovasculaires, F-75019 Paris, France.
| |
Collapse
|
12
|
Qi X, Liu C, Si J, Yin B, Huang J, Wang X, Huang J, Sun H, Zhu C, Zhang W. A bioenergetically-active ploy (glycerol sebacate)-based multiblock hydrogel improved diabetic wound healing through revitalizing mitochondrial metabolism. Cell Prolif 2024; 57:e13613. [PMID: 38351579 PMCID: PMC11216945 DOI: 10.1111/cpr.13613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/16/2024] [Accepted: 01/30/2024] [Indexed: 07/03/2024] Open
Abstract
Diabetic wounds impose significant burdens on patients' quality of life and healthcare resources due to impaired healing potential. Factors like hyperglycemia, oxidative stress, impaired angiogenesis and excessive inflammation contribute to the delayed healing trajectory. Mounting evidence indicates a close association between impaired mitochondrial function and diabetic complications, including chronic wounds. Mitochondria are critical for providing energy essential to wound healing processes. However, mitochondrial dysfunction exacerbates other pathological factors, creating detrimental cycles that hinder healing. This study conducted correlation analysis using clinical specimens, revealing a positive correlation between mitochondrial dysfunction and oxidative stress, inflammatory response and impaired angiogenesis in diabetic wounds. Restoring mitochondrial function becomes imperative for developing targeted therapies. Herein, we synthesized a biodegradable poly (glycerol sebacate)-based multiblock hydrogel, named poly (glycerol sebacate)-co-poly (ethylene glycol)-co-poly (propylene glycol) (PEPGS), which can be degraded in vivo to release glycerol, a crucial component in cellular metabolism, including mitochondrial respiration. We demonstrate the potential of PEPGS-based hydrogels to improve outcomes in diabetic wound healing by revitalizing mitochondrial metabolism. Furthermore, we investigate the underlying mechanism through proteomics analysis, unravelling the regulation of ATP and nicotinamide adenine dinucleotide metabolic processes, biosynthetic process and generation during mitochondrial metabolism. These findings highlight the therapeutic potential of PEPGS-based hydrogels as advanced wound dressings for diabetic wound healing.
Collapse
Affiliation(s)
- Xin Qi
- Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- Department of Orthopedic Surgery, Shanghai Institute of Microsurgery on ExtremitiesShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Chenjun Liu
- Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jingyi Si
- Department of Gastroenterology and Hepatology, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Bohao Yin
- Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jingjing Huang
- Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xin Wang
- Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jinghuan Huang
- Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Hui Sun
- Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Changfeng Zhu
- Department of Gastroenterology and Hepatology, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Wei Zhang
- Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
13
|
Liufu T, Zhao X, Yu M, Xie Z, Meng L, Lv H, Zhang W, Yuan Y, Xing G, Deng J, Wang Z. Multiomics analysis reveals serine catabolism as a potential therapeutic target for MELAS. FASEB J 2024; 38:e23742. [PMID: 38865203 DOI: 10.1096/fj.202302286rrr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 05/19/2024] [Accepted: 05/31/2024] [Indexed: 06/14/2024]
Abstract
Mitochondrial disease is a devastating genetic disorder, with mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) and m.3243A>G being the most common phenotype and genotype, respectively. The treatment for MELAS patients is still less effective. Here, we performed transcriptomic and proteomic analysis in muscle tissue of MELAS patients, and discovered that the expression of molecules involved in serine catabolism were significantly upregulated, and serine hydroxymethyltransferase 2 (SHMT2) increased significantly in both the mRNA and protein levels. The SHMT2 protein level was also increased in myoblasts with m.3243A>G mutation, which was transdifferentiated from patients derived fibroblasts, accompanying with the decreased nicotinamide adenine dinucleotide (NAD+)/reduced NAD+ (NADH) ratio and cell viability. After treating with SHMT2 inhibitor (SHIN1), the NAD+/NADH ratio and cell viability in MELAS myoblasts increased significantly. Taken together, our study indicates that enhanced serine catabolism plays an important role in the pathogenesis of MELAS and that SHIN1 can be a potential small molecule for the treatment of this disease.
Collapse
Affiliation(s)
- Tongling Liufu
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Xutong Zhao
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Meng Yu
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Zhiying Xie
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Lingchao Meng
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - He Lv
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Wei Zhang
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Yun Yuan
- Department of Neurology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China
| | - Guogang Xing
- Neuroscience Research Institute, Peking University, Beijing, China
| | - Jianwen Deng
- Department of Neurology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, China
| | - Zhaoxia Wang
- Department of Neurology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China
| |
Collapse
|
14
|
Khaghani F, Hemmati M, Ebrahimi M, Salmaninejad A. Emerging Multi-omic Approaches to the Molecular Diagnosis of Mitochondrial Disease and Available Strategies for Treatment and Prevention. Curr Genomics 2024; 25:358-379. [PMID: 39323625 PMCID: PMC11420563 DOI: 10.2174/0113892029308327240612110334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/03/2024] [Accepted: 05/21/2024] [Indexed: 09/27/2024] Open
Abstract
Mitochondria are semi-autonomous organelles present in several copies within most cells in the human body that are controlled by the precise collaboration of mitochondrial DNA (mtDNA) and nuclear DNA (nDNA) encoding mitochondrial proteins. They play important roles in numerous metabolic pathways, such as the synthesis of adenosine triphosphate (ATP), the predominant energy substrate of the cell generated through oxidative phosphorylation (OXPHOS), intracellular calcium homeostasis, metabolite biosynthesis, aging, cell cycles, and so forth. Previous studies revealed that dysfunction of these multi-functional organelles, which may arise due to mutations in either the nuclear or mitochondrial genome, leads to a diverse group of clinically and genetically heterogeneous disorders. These diseases include neurodegenerative and metabolic disorders as well as cardiac and skeletal myopathies in both adults and newborns. The plethora of phenotypes and defects displayed leads to challenges in the diagnosis and treatment of mitochondrial diseases. In this regard, the related literature proposed several diagnostic options, such as high throughput mitochondrial genomics and omics technologies, as well as numerous therapeutic options, such as pharmacological approaches, manipulating the mitochondrial genome, increasing the mitochondria content of the affected cells, and recently mitochondrial diseases transmission prevention. Therefore, the present article attempted to review the latest advances and challenges in diagnostic and therapeutic options for mitochondrial diseases.
Collapse
Affiliation(s)
- Faeze Khaghani
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
- Medical Genetic Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahboobeh Hemmati
- Medical Genetic Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Masoumeh Ebrahimi
- Department of Animal Biology, School of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Arash Salmaninejad
- Medical Genetic Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Regenerative Medicine, Organ Procurement and Transplantation Multi-Disciplinary Center, Razi Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
15
|
Cannon SJ, Hall T, Hawkes G, Colclough K, Boggan RM, Wright CF, Pickett SJ, Hattersley AT, Weedon MN, Patel KA. Penetrance and expressivity of mitochondrial variants in a large clinically unselected population. Hum Mol Genet 2024; 33:465-474. [PMID: 37988592 PMCID: PMC10877468 DOI: 10.1093/hmg/ddad194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/30/2023] [Accepted: 11/10/2023] [Indexed: 11/23/2023] Open
Abstract
Whole genome sequencing (WGS) from large clinically unselected cohorts provides a unique opportunity to assess the penetrance and expressivity of rare and/or known pathogenic mitochondrial variants in population. Using WGS from 179 862 clinically unselected individuals from the UK Biobank, we performed extensive single and rare variant aggregation association analyses of 15 881 mtDNA variants and 73 known pathogenic variants with 15 mitochondrial disease-relevant phenotypes. We identified 12 homoplasmic and one heteroplasmic variant (m.3243A>G) with genome-wide significant associations in our clinically unselected cohort. Heteroplasmic m.3243A>G (MAF = 0.0002, a known pathogenic variant) was associated with diabetes, deafness and heart failure and 12 homoplasmic variants increased aspartate aminotransferase levels including three low-frequency variants (MAF ~0.002 and beta~0.3 SD). Most pathogenic mitochondrial disease variants (n = 66/74) were rare in the population (<1:9000). Aggregated or single variant analysis of pathogenic variants showed low penetrance in unselected settings for the relevant phenotypes, except m.3243A>G. Multi-system disease risk and penetrance of diabetes, deafness and heart failure greatly increased with m.3243A>G level ≥ 10%. The odds ratio of these traits increased from 5.61, 12.3 and 10.1 to 25.1, 55.0 and 39.5, respectively. Diabetes risk with m.3243A>G was further influenced by type 2 diabetes genetic risk. Our study of mitochondrial variation in a large-unselected population identified novel associations and demonstrated that pathogenic mitochondrial variants have lower penetrance in clinically unselected settings. m.3243A>G was an exception at higher heteroplasmy showing a significant impact on health making it a good candidate for incidental reporting.
Collapse
Affiliation(s)
- Stuart J Cannon
- Department of Clinical and Biomedical Sciences, University of Exeter, 79 Heavitree Road, Exeter, EX2 4TH, United Kingdom
| | - Timothy Hall
- Department of Clinical and Biomedical Sciences, University of Exeter, 79 Heavitree Road, Exeter, EX2 4TH, United Kingdom
| | - Gareth Hawkes
- Department of Clinical and Biomedical Sciences, University of Exeter, 79 Heavitree Road, Exeter, EX2 4TH, United Kingdom
| | - Kevin Colclough
- Exeter Genomics Laboratory, RILD Building, Royal Devon University Healthcare NHS Foundation Trust, Barrack Road, Exeter, EX2 5DW, United Kingdom
| | - Roisin M Boggan
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | - Caroline F Wright
- Department of Clinical and Biomedical Sciences, University of Exeter, 79 Heavitree Road, Exeter, EX2 4TH, United Kingdom
| | - Sarah J Pickett
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | - Andrew T Hattersley
- Department of Clinical and Biomedical Sciences, University of Exeter, 79 Heavitree Road, Exeter, EX2 4TH, United Kingdom
| | - Michael N Weedon
- Department of Clinical and Biomedical Sciences, University of Exeter, 79 Heavitree Road, Exeter, EX2 4TH, United Kingdom
| | - Kashyap A Patel
- Department of Clinical and Biomedical Sciences, University of Exeter, 79 Heavitree Road, Exeter, EX2 4TH, United Kingdom
| |
Collapse
|
16
|
Citrigno L, Qualtieri A, Cerantonio A, De Benedittis S, Gallo O, Di Palma G, Spadafora P, Cavalcanti F. Genomics landscape of mitochondrial DNA variations in patients from South Italy affected by mitochondriopathies. J Neurol Sci 2024; 457:122869. [PMID: 38215527 DOI: 10.1016/j.jns.2024.122869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/20/2023] [Accepted: 01/04/2024] [Indexed: 01/14/2024]
Abstract
Mitochondrial DNA (mtDNA) is a 16,569 base pairs, double-stranded, circular molecule that contains 37 genes coding for 13 subunits of the respiratory chain plus 2 rRNAs and 22 tRNAs. Mutations in these genes have been identified in patients with a variety of disorders affecting every system in the body. The advent of next generation sequencing technologies has provided the possibility to perform the whole mitochondrial DNA sequencing, allowing the identification of disease-causing pathogenic variants in a single platform. In this study, the whole mtDNA of 100 patients from South Italy affected by mitochondrial diseases was analyzed by using an amplicon-based approach and then the enriched libraries were deeply sequenced on the ION Torrent platform (Thermofisher Scientific Waltham, MA, USA). After bioinformatics analysis and filtering, we were able to find 26 nonsynonymous variants with a MAF <1% that were associated with different pathological phenotypes, expanding the mutational spectrum of these diseases. Moreover, among the new mutations found, we have also analyzed the 3D structure of the MT-ATP6 A200T gene variation in order to confirm suspected functional alterations. This work brings light on new variants possibly associated with several mitochondriopathies in patients from South Italy and confirms that deep sequencing approach, compared to the standard methods, is a reliable and time-cost reducing strategy to detect all the variants present in the mitogenome, making the possibility to create a genomics landscape of mitochondrial DNA variations in human diseases.
Collapse
Affiliation(s)
- Luigi Citrigno
- Institute for Biomedical Research and Innovation (IRIB), Department of Biomedical Sciences, National Research Council (CNR), Mangone (CS), Italy.
| | - Antonio Qualtieri
- Institute for Biomedical Research and Innovation (IRIB), Department of Biomedical Sciences, National Research Council (CNR), Mangone (CS), Italy
| | - Annamaria Cerantonio
- Institute for Biomedical Research and Innovation (IRIB), Department of Biomedical Sciences, National Research Council (CNR), Mangone (CS), Italy
| | - Selene De Benedittis
- Institute for Biomedical Research and Innovation (IRIB), Department of Biomedical Sciences, National Research Council (CNR), Mangone (CS), Italy
| | - Olivier Gallo
- Institute for Biomedical Research and Innovation (IRIB), Department of Biomedical Sciences, National Research Council (CNR), Mangone (CS), Italy
| | - Gemma Di Palma
- Institute for Biomedical Research and Innovation (IRIB), Department of Biomedical Sciences, National Research Council (CNR), Mangone (CS), Italy
| | - Patrizia Spadafora
- Institute for Biomedical Research and Innovation (IRIB), Department of Biomedical Sciences, National Research Council (CNR), Mangone (CS), Italy
| | - Francesca Cavalcanti
- Institute for Biomedical Research and Innovation (IRIB), Department of Biomedical Sciences, National Research Council (CNR), Mangone (CS), Italy
| |
Collapse
|
17
|
Shi L, Xue Z, Mao H, Jiang H, Zhang L. Proteomic analysis of gene expression in the prefrontal cortex in infant rhesus macaques after multiple sevoflurane exposures. J Anesth 2023; 37:853-860. [PMID: 37608132 DOI: 10.1007/s00540-023-03244-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 07/28/2023] [Indexed: 08/24/2023]
Abstract
PURPOSE Repeated exposure of infant rhesus macaques to sevoflurane induces neurotoxicity and is associated with neurocognitive impairment in later life. We aimed to investigate the effect of repeated sevoflurane exposure on the expression of proteins in the prefrontal cortex of infant rhesus macaques by proteomics. METHODS Rhesus macaques were exposed to sevoflurane three times, on postnatal days 7, 21 and 35. Quantitative proteomics employing LC-MS with isobaric labeling (TMT10plex), western blotting, and transmission electron microscopy (TEM) were utilized in the studies. RESULTS The results of a proteomics investigation of the brain revealed that the proteins that were differentially expressed in rhesus macaques after sevoflurane exposures were associated mainly with mitochondrial respiration. Following multiple sevoflurane exposures, the prefrontal cortices of rhesus macaques exhibited increases in NDUFA8 and COX IV protein levels, while no alterations in mitochondrial morphology were observed through TEM. CONCLUSION Multiple exposures to sevoflurane increased the mitochondrial protein levels in rhesus macaques.
Collapse
Affiliation(s)
- Lingling Shi
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China
| | - Zhenyu Xue
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China
| | - Haoli Mao
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China
| | - Hong Jiang
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China.
| | - Lei Zhang
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China.
| |
Collapse
|
18
|
Chen X, Chen M, Zhu Y, Sun H, Wang Y, Xie Y, Ji L, Wang C, Hu Z, Guo X, Xu Z, Zhang J, Yang S, Liang D, Shen B. Correction of a homoplasmic mitochondrial tRNA mutation in patient-derived iPSCs via a mitochondrial base editor. Commun Biol 2023; 6:1116. [PMID: 37923818 PMCID: PMC10624837 DOI: 10.1038/s42003-023-05500-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 10/24/2023] [Indexed: 11/06/2023] Open
Abstract
Pathogenic mutations in mitochondrial DNA cause severe and often lethal multi-system symptoms in primary mitochondrial defects. However, effective therapies for these defects are still lacking. Strategies such as employing mitochondrially targeted restriction enzymes or programmable nucleases to shift the ratio of heteroplasmic mutations and allotopic expression of mitochondrial protein-coding genes have limitations in treating mitochondrial homoplasmic mutations, especially in non-coding genes. Here, we conduct a proof of concept study applying a screened DdCBE pair to correct the homoplasmic m.A4300G mutation in induced pluripotent stem cells derived from a patient with hypertrophic cardiomyopathy. We achieve efficient G4300A correction with limited off-target editing, and successfully restore mitochondrial function in corrected induced pluripotent stem cell clones. Our study demonstrates the feasibility of using DdCBE to treat primary mitochondrial defects caused by homoplasmic pathogenic mitochondrial DNA mutations.
Collapse
Affiliation(s)
- Xiaoxu Chen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Gusu School, Nanjing Medical University, Nanjing, 211166, China
| | - Mingyue Chen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Gusu School, Nanjing Medical University, Nanjing, 211166, China
| | - Yuqing Zhu
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, China
| | - Haifeng Sun
- State Key Laboratory of Reproductive Medicine and Offspring Health, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Gusu School, Nanjing Medical University, Nanjing, 211166, China
| | - Yue Wang
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, 211166, China
| | - Yuan Xie
- Department of Bioinformatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, 211166, China
| | - Lianfu Ji
- Department of Cardiology, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
| | - Cheng Wang
- Department of Bioinformatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, 211166, China
| | - Zhibin Hu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, 211166, China
| | - Zhengfeng Xu
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, China.
| | - Jun Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Gusu School, Nanjing Medical University, Nanjing, 211166, China.
| | - Shiwei Yang
- Department of Cardiology, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China.
| | - Dong Liang
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, China.
| | - Bin Shen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Gusu School, Nanjing Medical University, Nanjing, 211166, China.
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
19
|
Elvidge KL, Christodoulou J, Farrar MA, Tilden D, Maack M, Valeri M, Ellis M, Smith NJC. The collective burden of childhood dementia: a scoping review. Brain 2023; 146:4446-4455. [PMID: 37471493 PMCID: PMC10629766 DOI: 10.1093/brain/awad242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/16/2023] [Accepted: 06/25/2023] [Indexed: 07/22/2023] Open
Abstract
Childhood dementia is a devastating and under-recognized group of disorders with a high level of unmet need. Typically monogenic in origin, this collective of individual neurodegenerative conditions are defined by a progressive impairment of neurocognitive function, presenting in childhood and adolescence. This scoping review aims to clarify definitions and conceptual boundaries of childhood dementia and quantify the collective disease burden. A literature review identified conditions that met the case definition. An expert clinical working group reviewed and ratified inclusion. Epidemiological data were extracted from published literature and collective burden modelled. One hundred and seventy genetic childhood dementia disorders were identified. Of these, 25 were analysed separately as treatable conditions. Collectively, currently untreatable childhood dementia was estimated to have an incidence of 34.5 per 100 000 (1 in 2900 births), median life expectancy of 9 years and prevalence of 5.3 per 100 000 persons. The estimated number of premature deaths per year is similar to childhood cancer (0-14 years) and approximately 70% of those deaths will be prior to adulthood. An additional 49.8 per 100 000 births are attributable to treatable conditions that would cause childhood dementia if not diagnosed early and stringently treated. A relational database of the childhood dementia disorders has been created and will be continually updated as new disorders are identified (https://knowledgebase.childhooddementia.org/). We present the first comprehensive overview of monogenic childhood dementia conditions and their collective epidemiology. Unifying these conditions, with consistent language and definitions, reinforces motivation to advance therapeutic development and health service supports for this significantly disadvantaged group of children and their families.
Collapse
Affiliation(s)
| | - John Christodoulou
- Brain and Mitochondrial Research Group, Murdoch Children’s Research Institute, Royal Children's Hospital, Parkville, Victoria 3052, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Michelle A Farrar
- Department of Neurology, Sydney Children's Hospital Network, Randwick, NSW 2031, Australia
- Discipline of Paediatrics, School of Clinical Medicine, UNSW Medicine and Health, Sydney, NSW 2052, Australia
| | | | - Megan Maack
- Childhood Dementia Initiative, Brookvale, NSW 2100, Australia
| | | | - Magda Ellis
- THEMA Consulting Pty Ltd, Pyrmont, NSW 2009, Australia
| | - Nicholas J C Smith
- Discipline of Paediatrics, University of Adelaide, Women's and Children's Hospital, North Adelaide, South Australia 5006, Australia
- Department of Neurology and Clinical Neurophysiology, Women’s and Children’s Health Network, North Adelaide, South Australia 5006, Australia
| |
Collapse
|
20
|
Chen W, Rehsi P, Thompson K, Yeo M, Stals K, He L, Schimmel P, Chrzanowska-Lightowlers ZMA, Wakeling E, Taylor RW, Kuhle B. Clinical and molecular characterization of novel FARS2 variants causing neonatal mitochondrial disease. Mol Genet Metab 2023; 140:107657. [PMID: 37523899 DOI: 10.1016/j.ymgme.2023.107657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/22/2023] [Accepted: 07/22/2023] [Indexed: 08/02/2023]
Abstract
FARS2 encodes the mitochondrial phenylalanyl-tRNA synthetase (mtPheRS), which is essential for charging mitochondrial (mt-) tRNAPhe with phenylalanine for use in intramitochondrial translation. Many biallelic, pathogenic FARS2 variants have been described previously, which are mostly associated with two distinct clinical phenotypes; an early onset epileptic mitochondrial encephalomyopathy or a later onset spastic paraplegia. In this study, we report on a patient who presented at 3 weeks of age with tachypnoea and poor feeding, which progressed to severe metabolic decompensation with lactic acidosis and seizure activity followed by death at 9 weeks of age. Rapid trio whole exome sequencing identified compound heterozygous FARS2 variants including a pathogenic exon 2 deletion on one allele and a rare missense variant (c.593G > T, p.(Arg198Leu)) on the other allele, necessitating further work to aid variant classification. Assessment of patient fibroblasts demonstrated severely decreased steady-state levels of mtPheRS, but no obvious defect in any components of the oxidative phosphorylation system. To investigate the potential pathogenicity of the missense variant, we determined its high-resolution crystal structure, demonstrating a local structural destabilization in the catalytic domain. Moreover, the R198L mutation reduced the thermal stability and impaired the enzymatic activity of mtPheRS due to a lower binding affinity for tRNAPhe and a slower turnover rate. Together these data confirm the pathogenicity of this FARS2 variant in causing early-onset mitochondrial epilepsy.
Collapse
Affiliation(s)
- Wenqian Chen
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Preeya Rehsi
- Metabolic Unit, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Kyle Thompson
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, UK
| | - Mildrid Yeo
- Metabolic Unit, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Karen Stals
- Exeter Genomics Laboratory, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - Langping He
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, UK; NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne NE1 4LP, UK
| | - Paul Schimmel
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA; The Scripps Florida Research Institute at the University of Florida, Jupiter, FL 33458, USA
| | - Zofia M A Chrzanowska-Lightowlers
- Wellcome Centre for Mitochondrial Research, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, UK
| | - Emma Wakeling
- North East Thames Regional Genetic Service, Great Ormond Street Hospital NHS Foundation Trust, London, UK
| | - Robert W Taylor
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, UK; NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne NE1 4LP, UK.
| | - Bernhard Kuhle
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen 37073, Germany.
| |
Collapse
|
21
|
Liufu T, Yu H, Yu J, Yu M, Tian Y, Ou Y, Deng J, Xing G, Wang Z. Complex I deficiency in m.3243A>G fibroblasts is alleviated by reducing NADH accumulation. Front Physiol 2023; 14:1164287. [PMID: 37650111 PMCID: PMC10464909 DOI: 10.3389/fphys.2023.1164287] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 08/03/2023] [Indexed: 09/01/2023] Open
Abstract
Introduction: Mitochondrial disease is a spectrum of debilitating disorders caused by mutations in the mitochondrial DNA (mtDNA) or nuclear DNA that compromises the respiratory chain. Mitochondrial 3243A>G (m.3243 A>G) is the most common mutation showing great heterogeneity in phenotype. Previous studies have indicated that NADH: ubiquinone oxidoreductase (complex I) deficiency accompanied by a decreased nicotinamide adenine dinucleotide (NAD+)/reduced NAD+ (NADH) ratio may play a pivotal role in the pathogenesis of m.3243A>G mutation. Methods: To evaluate the potential effects of strategies targeting the imbalanced NAD+/NADH ratio in m.3243A>G mutation, we treated fibroblasts derived from patients with the m.3243 A>G mutation using nicotinamide riboside (NR) or mitochondria-targeted H2O-forming NADH oxidase (mitoLbNOX). Results: M.3243 A>G fibroblasts showed a significant reduction in complex I core subunit 6, complex I enzymatic activity, complex I-dependent oxygen consumption rate (OCR), and adenosine triphosphate (ATP) production compared to the controls. The NAD+/NADH ratio was also significantly reduced in m.3243 A>G fibroblasts, and, using fluorescence lifetime imaging microscopy, we also found that the NADH level was elevated in m.3243 A>G fibroblasts. After NR treatment, the NAD+/NADH ratio, complex I-dependent OCR, and ATP levels increased, whereas NADH levels remained unchanged. More excitingly, after treatment with mitoLbNOX, the NAD+/NADH ratio, complex I-independent OCR, and ATP levels increased more pronouncedly compared with the NR treatment group, accompanied by significantly reduced NADH levels. Discussion: The present study suggests that compared with repletion of NAD+ alone, the combination of this therapeutic modality with alleviation of NADH overload may amplify the treatment effect of restoring NAD+/NADH balance in m.3243A>G fibroblasts.
Collapse
Affiliation(s)
- Tongling Liufu
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Haiyan Yu
- Department of Clinical Laboratory, Peking University First Hospital, Beijing, China
| | - Jiaxi Yu
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Meng Yu
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Yue Tian
- Neuroscience Research Institute, Peking University, Beijing, China
| | - Yichun Ou
- Neuroscience Research Institute, Peking University, Beijing, China
| | - Jianwen Deng
- Department of Neurology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China
| | - Guogang Xing
- Neuroscience Research Institute, Peking University, Beijing, China
| | - Zhaoxia Wang
- Department of Neurology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China
| |
Collapse
|
22
|
Magistrati M, Gilea AI, Gerra MC, Baruffini E, Dallabona C. Drug Drop Test: How to Quickly Identify Potential Therapeutic Compounds for Mitochondrial Diseases Using Yeast Saccharomyces cerevisiae. Int J Mol Sci 2023; 24:10696. [PMID: 37445873 DOI: 10.3390/ijms241310696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/22/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023] Open
Abstract
Mitochondrial diseases (MDs) refer to a group of clinically and genetically heterogeneous pathologies characterized by defective mitochondrial function and energy production. Unfortunately, there is no effective treatment for most MDs, and current therapeutic management is limited to relieving symptoms. The yeast Saccharomyces cerevisiae has been efficiently used as a model organism to study mitochondria-related disorders thanks to its easy manipulation and well-known mitochondrial biogenesis and metabolism. It has been successfully exploited both to validate alleged pathogenic variants identified in patients and to discover potential beneficial molecules for their treatment. The so-called "drug drop test", a phenotype-based high-throughput screening, especially if coupled with a drug repurposing approach, allows the identification of molecules with high translational potential in a cost-effective and time-saving manner. In addition to drug identification, S. cerevisiae can be used to point out the drug's target or pathway. To date, drug drop tests have been successfully carried out for a variety of disease models, leading to very promising results. The most relevant aspect is that studies on more complex model organisms confirmed the effectiveness of the drugs, strengthening the results obtained in yeast and demonstrating the usefulness of this screening as a novel approach to revealing new therapeutic molecules for MDs.
Collapse
Affiliation(s)
- Martina Magistrati
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Alexandru Ionut Gilea
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Maria Carla Gerra
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Enrico Baruffini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Cristina Dallabona
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| |
Collapse
|
23
|
Dong T, Wang M, Liu J, Ma P, Pang S, Liu W, Liu A. Diagnostics and analysis of SARS-CoV-2: current status, recent advances, challenges and perspectives. Chem Sci 2023; 14:6149-6206. [PMID: 37325147 PMCID: PMC10266450 DOI: 10.1039/d2sc06665c] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 05/03/2023] [Indexed: 06/17/2023] Open
Abstract
The disastrous spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has induced severe public healthcare issues and weakened the global economy significantly. Although SARS-CoV-2 infection is not as fatal as the initial outbreak, many infected victims suffer from long COVID. Therefore, rapid and large-scale testing is critical in managing patients and alleviating its transmission. Herein, we review the recent advances in techniques to detect SARS-CoV-2. The sensing principles are detailed together with their application domains and analytical performances. In addition, the advantages and limits of each method are discussed and analyzed. Besides molecular diagnostics and antigen and antibody tests, we also review neutralizing antibodies and emerging SARS-CoV-2 variants. Further, the characteristics of the mutational locations in the different variants with epidemiological features are summarized. Finally, the challenges and possible strategies are prospected to develop new assays to meet different diagnostic needs. Thus, this comprehensive and systematic review of SARS-CoV-2 detection technologies may provide insightful guidance and direction for developing tools for the diagnosis and analysis of SARS-CoV-2 to support public healthcare and effective long-term pandemic management and control.
Collapse
Affiliation(s)
- Tao Dong
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University 308 Ningxia Road Qingdao 266071 China
- School of Pharmacy, Medical College, Qingdao University 308 Ningxia Road Qingdao 266071 China
| | - Mingyang Wang
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University 308 Ningxia Road Qingdao 266071 China
| | - Junchong Liu
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University 308 Ningxia Road Qingdao 266071 China
| | - Pengxin Ma
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University 308 Ningxia Road Qingdao 266071 China
| | - Shuang Pang
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University 308 Ningxia Road Qingdao 266071 China
| | - Wanjian Liu
- Qingdao Hightop Biotech Co., Ltd 369 Hedong Road, Hi-tech Industrial Development Zone Qingdao 266112 China
| | - Aihua Liu
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University 308 Ningxia Road Qingdao 266071 China
| |
Collapse
|
24
|
Olkhova EA, Smith LA, Bradshaw C, Gorman GS, Erskine D, Ng YS. Neurological Phenotypes in Mouse Models of Mitochondrial Disease and Relevance to Human Neuropathology. Int J Mol Sci 2023; 24:ijms24119698. [PMID: 37298649 DOI: 10.3390/ijms24119698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 05/24/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Mitochondrial diseases represent the most common inherited neurometabolic disorders, for which no effective therapy currently exists for most patients. The unmet clinical need requires a more comprehensive understanding of the disease mechanisms and the development of reliable and robust in vivo models that accurately recapitulate human disease. This review aims to summarise and discuss various mouse models harbouring transgenic impairments in genes that regulate mitochondrial function, specifically their neurological phenotype and neuropathological features. Ataxia secondary to cerebellar impairment is one of the most prevalent neurological features of mouse models of mitochondrial dysfunction, consistent with the observation that progressive cerebellar ataxia is a common neurological manifestation in patients with mitochondrial disease. The loss of Purkinje neurons is a shared neuropathological finding in human post-mortem tissues and numerous mouse models. However, none of the existing mouse models recapitulate other devastating neurological phenotypes, such as refractory focal seizures and stroke-like episodes seen in patients. Additionally, we discuss the roles of reactive astrogliosis and microglial reactivity, which may be driving the neuropathology in some of the mouse models of mitochondrial dysfunction, as well as mechanisms through which cellular death may occur, beyond apoptosis, in neurons undergoing mitochondrial bioenergy crisis.
Collapse
Affiliation(s)
- Elizaveta A Olkhova
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Laura A Smith
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Carla Bradshaw
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Gráinne S Gorman
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE2 4HH, UK
- NIHR Newcastle Biomedical Research Centre, Biomedical Research Building, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, UK
| | - Daniel Erskine
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- NIHR Newcastle Biomedical Research Centre, Biomedical Research Building, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, UK
| | - Yi Shiau Ng
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE2 4HH, UK
- NIHR Newcastle Biomedical Research Centre, Biomedical Research Building, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, UK
| |
Collapse
|
25
|
Barretta F, Uomo F, Caldora F, Mocerino R, Adamo D, Testa F, Simonelli F, Scudiero O, Tinto N, Frisso G, Mazzaccara C. Combined MITOchondrial-NUCLEAR (MITO-NUCLEAR) Analysis for Mitochondrial Diseases Diagnosis: Validation and Implementation of a One-Step NGS Method. Genes (Basel) 2023; 14:genes14051087. [PMID: 37239447 DOI: 10.3390/genes14051087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND Next-generation sequencing (NGS) technology is revolutionizing diagnostic screening for mitochondrial diseases (MDs). Moreover, an investigation by NGS still requires analyzing the mitochondrial genome and nuclear genes separately, with limitations in terms of time and costs. We describe the validation and implementation of a custom blended MITOchondrial-NUCLEAR (MITO-NUCLEAR) assay for the simultaneous identification of genetic variants both in whole mtDNA and in nuclear genes included in a clinic exome panel. Furthermore, the MITO-NUCLEAR assay, implemented in our diagnostic process, has allowed us to arrive at a molecular diagnosis in a young patient. METHODS Massive sequencing strategy was applied for the validation experiments, performed using multiple tissues (blood, buccal swab, fresh tissue, tissue from slide, and formalin-fixed paraffin-embedded tissue section) and two different blend-in ratios of the mitochondrial probes: nuclear probes; 1:900 and 1:300. RESULTS Data suggested that 1:300 was the optimal probe dilution, where 100% of the mtDNA was covered at least 3000×, the median coverage was >5000×, and 93.84% of nuclear regions were covered at least 100×. CONCLUSIONS Our custom Agilent SureSelect MITO-NUCLEAR panel provides a potential "one-step" investigation that may be applied to both research and genetic diagnosis of MDs, allowing the simultaneous discovery of nuclear and mitochondrial mutations.
Collapse
Affiliation(s)
- Ferdinando Barretta
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
- CEINGE Advanced Biotechnologies Franco Salvatore, 80131 Naples, Italy
| | - Fabiana Uomo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| | - Filomena Caldora
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| | - Rossella Mocerino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| | - Daniela Adamo
- Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, 80131 Naples, Italy
| | - Francesco Testa
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Francesca Simonelli
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Olga Scudiero
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
- CEINGE Advanced Biotechnologies Franco Salvatore, 80131 Naples, Italy
| | - Nadia Tinto
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
- CEINGE Advanced Biotechnologies Franco Salvatore, 80131 Naples, Italy
| | - Giulia Frisso
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
- CEINGE Advanced Biotechnologies Franco Salvatore, 80131 Naples, Italy
| | - Cristina Mazzaccara
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
- CEINGE Advanced Biotechnologies Franco Salvatore, 80131 Naples, Italy
| |
Collapse
|
26
|
Wu TH, Peng J, Yang L, Chen YH, Lu XL, Huang JT, You JY, Ou-Yang WX, Sun YY, Xue YN, Mao X, Yan HM, Ren RN, Xie J, Chen ZH, Zhang VW, Lyu GZ, He F. Use of dual genomic sequencing to screen mitochondrial diseases in pediatrics: a retrospective analysis. Sci Rep 2023; 13:4193. [PMID: 36918699 PMCID: PMC10015028 DOI: 10.1038/s41598-023-31134-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/07/2023] [Indexed: 03/16/2023] Open
Abstract
Mitochondrial diseases (MDs) were a large group multisystem disorders, attributable in part to the dual genomic control. The advent of massively sequencing has improved diagnostic rates and speed, and was increasingly being used as a first-line diagnostic test. Paediatric patients (aged < 18 years) who underwent dual genomic sequencing were enrolled in this retrospective multicentre study. We evaluated the mitochondrial disease criteria (MDC) and molecular diagnostic yield of dual genomic sequencing. Causative variants were identified in 177 out of 503 (35.2%) patients using dual genomic sequencing. Forty-six patients (9.1%) had mitochondria-related variants, including 25 patients with nuclear DNA (nDNA) variants, 15 with mitochondrial DNA (mtDNA) variants, and six with dual genomic variants (MT-ND6 and POLG; MT-ND5 and RARS2; MT-TL1 and NARS2; MT-CO2 and NDUFS1; MT-CYB and SMARCA2; and CHRNA4 and MT-CO3). Based on the MDC, 15.2% of the patients with mitochondria-related variants were classified as "unlikely to have mitochondrial disorder". Moreover, 4.5% of the patients with non-mitochondria-related variants and 1.43% with negative genetic tests, were classified as "probably having mitochondrial disorder". Dual genomic sequencing in suspected MDs provided a more comprehensive and accurate diagnosis for pediatric patients, especially for patients with dual genomic variants.
Collapse
Affiliation(s)
- Teng-Hui Wu
- Department of Pediatrics, Xiangya Hospital Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Jing Peng
- Department of Pediatrics, Xiangya Hospital Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Li Yang
- Department of Pediatrics, Xiangya Hospital Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Yan-Hui Chen
- Department of Pediatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, Fujian, China
| | - Xiu-Lan Lu
- Department of Pediatric Intensive Care Unit, Hunan Children's Hospital, 86 Ziyuan Road, Changsha, Hunan, China
| | - Jiao-Tian Huang
- Department of Pediatric Intensive Care Unit, Hunan Children's Hospital, 86 Ziyuan Road, Changsha, Hunan, China
| | - Jie-Yu You
- Department of Gastroenterology and Nutrition, Hunan Children's Hospital, 86 Ziyuan Road, Changsha, Hunan, China
| | - Wen-Xian Ou-Yang
- Department of Hepatopathy, Hunan Children's Hospital, 86 Ziyuan Road, Changsha, Hunan, China
| | - Yue-Yu Sun
- Department of Pediatric Intensive Care Unit, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences (GAMS), 106 Zhongshan 2nd Road, Guangzhou, Guangdong, China
| | - Yi-Nan Xue
- Department of Pediatrics, Brain Hospital of Hunan Province, 427 Furong Road, Changsha, Hunan, China
| | - Xiao Mao
- Department of Medical Genetics, Maternal,, Child Health Hospital of Hunan Province, 53 Xiangchun Road, Changsha, Hunan, China
| | - Hui-Ming Yan
- Department of Medical Genetics, Maternal,, Child Health Hospital of Hunan Province, 53 Xiangchun Road, Changsha, Hunan, China
| | - Rong-Na Ren
- Department of Pediatrics, The 900Th Hospital of Joint Logistic Support Force, PLA, Fuzhou, Fujian, China
| | - Jing Xie
- Department of Pediatrics, The First Hospital of Hunan University of Chinese Medicine, 95 Shaoshan Road, Changsha, Hunan, China
| | - Zhi-Heng Chen
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, Hunan, China
| | - Victor-Wei Zhang
- Amcare Genomics Laboratory, Guangzhou, Guangdong, China.,Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Gui-Zhen Lyu
- Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Fang He
- Department of Pediatrics, Xiangya Hospital Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China.
| |
Collapse
|
27
|
Dar GM, Ahmad E, Ali A, Mahajan B, Ashraf GM, Saluja SS. Genetic aberration analysis of mitochondrial respiratory complex I implications in the development of neurological disorders and their clinical significance. Ageing Res Rev 2023; 87:101906. [PMID: 36905963 DOI: 10.1016/j.arr.2023.101906] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 03/02/2023] [Accepted: 03/05/2023] [Indexed: 03/11/2023]
Abstract
Growing neurological diseases pose difficult challenges for modern medicine to diagnose and manage them effectively. Many neurological disorders mainly occur due to genetic alteration in genes encoding mitochondrial proteins. Moreover, mitochondrial genes exhibit a higher rate of mutation due to the generation of Reactive oxygen species (ROS) during oxidative phosphorylation operating in their vicinity. Among the different complexes of Electron transport chain (ETC), NADH: Ubiquinone oxidoreductase (Mitochondrial complex I) is the most important. This multimeric enzyme, composed of 44 subunits, is encoded by both nuclear and mitochondrial genes. It often exhibits mutations resulting in development of various neurological diseases. The most prominent diseases include leigh syndrome (LS), leber hereditary optic neuropathy (LHON), mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes (MELAS), myoclonic epilepsy associated with ragged-red fibers (MERRF), idiopathic Parkinson's disease (PD) and, Alzheimer's disease (AD). Preliminary data suggest that mitochondrial complex I subunit genes mutated are frequently of nuclear origin; however, most of the mtDNA gene encoding subunits are also primarily involved. In this review, we have discussed the genetic origins of neurological disorders involving mitochondrial complex I and signified recent approaches to unravel the diagnostic and therapeutic potentials and their management.
Collapse
Affiliation(s)
- Ghulam Mehdi Dar
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi 110002, India
| | - Ejaj Ahmad
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi 110002, India
| | - Asgar Ali
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi 110002, India
| | - Bhawna Mahajan
- Department of Biochemistry, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi 110002, India
| | - Ghulam Md Ashraf
- Department of Medical Laboratory Sciences, College of Health Sciences, and Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates.
| | - Sundeep Singh Saluja
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi 110002, India; Department of GI Surgery, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi 110002, India.
| |
Collapse
|
28
|
Wong TS, Belaramani KM, Chan CK, Chan WK, Chan WLL, Chang SK, Cheung SN, Cheung KY, Cheung YF, Chong SCJ, Chow CKJ, Chung HYB, Fan SYF, Fok WMJ, Fong KW, Fung THS, Hui KF, Hui TH, Hui J, Ko CH, Kwan MC, Kwok MKA, Kwok SSJ, Lai MS, Lam YO, Lam CW, Lau MC, Law CYE, Lee WC, Lee HCH, Lee CN, Leung KH, Leung KY, Li SH, Ling TKJ, Liu KTT, Lo FM, Lui HT, Luk CO, Luk HM, Ma CK, Ma K, Ma KH, Mew YN, Mo A, Ng SF, Poon WKG, Rodenburg R, Sheng B, Smeitink J, Szeto CLC, Tai SM, Tse CTA, Tsung LYL, Wong HMJ, Wong WYW, Wong KK, Wong SNS, Wong CNV, Wong WSS, Wong CKF, Wu SP, Wu HFJ, Yau MM, Yau KCE, Yeung WL, Yeung HMJ, Yip KKE, Young PHT, Yuan G, Yuen YPL, Yuen CL, Fung CW. Mitochondrial diseases in Hong Kong: prevalence, clinical characteristics and genetic landscape. Orphanet J Rare Dis 2023; 18:43. [PMID: 36859275 PMCID: PMC9979401 DOI: 10.1186/s13023-023-02632-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 02/06/2023] [Indexed: 03/03/2023] Open
Abstract
OBJECTIVE To determine the prevalence of mitochondrial diseases (MD) in Hong Kong (HK) and to evaluate the clinical characteristics and genetic landscape of MD patients in the region. METHODS This study retrospectively reviewed the phenotypic and molecular characteristics of MD patients from participating public hospitals in HK between January 1985 to October 2020. Molecularly and/or enzymatically confirmed MD cases of any age were recruited via the Clinical Analysis and Reporting System (CDARS) using relevant keywords and/or International Classification of Disease (ICD) codes under the HK Hospital Authority or through the personal recollection of treating clinicians among the investigators. RESULTS A total of 119 MD patients were recruited and analyzed in the study. The point prevalence of MD in HK was 1.02 in 100,000 people (95% confidence interval 0.81-1.28 in 100,000). 110 patients had molecularly proven MD and the other nine were diagnosed by OXPHOS enzymology analysis or mitochondrial DNA depletion analysis with unknown molecular basis. Pathogenic variants in the mitochondrial genome (72 patients) were more prevalent than those in the nuclear genome (38 patients) in our cohort. The most commonly involved organ system at disease onset was the neurological system, in which developmental delay, seizures or epilepsy, and stroke-like episodes were the most frequently reported presentations. The mortality rate in our cohort was 37%. CONCLUSION This study is a territory-wide overview of the clinical and genetic characteristics of MD patients in a Chinese population, providing the first available prevalence rate of MD in Hong Kong. The findings of this study aim to facilitate future in-depth evaluation of MD and lay the foundation to establish a local MD registry.
Collapse
Affiliation(s)
- Tsz-Sum Wong
- Department of Paediatrics and Adolescent Medicine, Princess Margaret Hospital, Hong Kong, SAR, People's Republic of China
| | - Kiran M Belaramani
- Department of Paediatrics and Adolescent Medicine, Hong Kong Children's Hospital, Hong Kong, SAR, People's Republic of China
| | - Chun-Kong Chan
- Department of Medicine and Geriatrics, United Christian Hospital, Hong Kong, SAR, People's Republic of China
| | - Wing-Ki Chan
- Department of Paediatrics and Adolescent Medicine, Princess Margaret Hospital, Hong Kong, SAR, People's Republic of China
| | - Wai-Lun Larry Chan
- Department of Medicine, Alice Ho Miu Ling Nethersole Hospital, Hong Kong, SAR, People's Republic of China
| | - Shek-Kwan Chang
- Department of Medicine, Queen Mary Hospital, Hong Kong, SAR, People's Republic of China
| | - Sing-Ngai Cheung
- Department of Medicine and Geriatrics, Kwong Wah Hospital, Hong Kong, SAR, People's Republic of China
| | - Ka-Yin Cheung
- Department of Medicine and Geriatrics, United Christian Hospital, Hong Kong, SAR, People's Republic of China
| | - Yuk-Fai Cheung
- Department of Medicine, Queen Elizabeth Hospital, Hong Kong, SAR, People's Republic of China
| | - Shuk-Ching Josephine Chong
- Department of Paediatrics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China
| | - Chi-Kwan Jasmine Chow
- Department of Paediatrics and Adolescent Medicine, Queen Elizabeth Hospital, Hong Kong, SAR, People's Republic of China
| | - Hon-Yin Brian Chung
- Department of Paediatrics & Adolescent Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, People's Republic of China
- Hong Kong Genome Institute, Hong Kong, SAR, People's Republic of China
| | - Sin-Ying Florence Fan
- Department of Medicine and Therapeutics, Prince of Wales Hospital, Hong Kong, SAR, People's Republic of China
| | - Wai-Ming Joshua Fok
- Department of Medicine, Yan Chai Hospital, Hong Kong, SAR, People's Republic of China
| | - Ka-Wing Fong
- Department of Medicine, Queen Elizabeth Hospital, Hong Kong, SAR, People's Republic of China
| | - Tsui-Hang Sharon Fung
- Department of Paediatrics and Adolescent Medicine, Kwong Wah Hospital, Hong Kong, SAR, People's Republic of China
| | - Kwok-Fai Hui
- Department of Medicine and Geriatrics, United Christian Hospital, Hong Kong, SAR, People's Republic of China
| | - Ting-Hin Hui
- Department of Medicine and Geriatrics, United Christian Hospital, Hong Kong, SAR, People's Republic of China
| | - Joannie Hui
- Department of Paediatrics and Adolescent Medicine, Hong Kong Children's Hospital, Hong Kong, SAR, People's Republic of China
| | - Chun-Hung Ko
- Department of Paediatrics and Adolescent Medicine, Caritas Medical Centre, Hong Kong, SAR, People's Republic of China
| | - Min-Chung Kwan
- Department of Medicine and Geriatrics, Kwong Wah Hospital, Hong Kong, SAR, People's Republic of China
| | - Mei-Kwan Anne Kwok
- Department of Paediatrics and Adolescent Medicine, Hong Kong Children's Hospital, Hong Kong, SAR, People's Republic of China
| | - Sung-Shing Jeffrey Kwok
- Department of Chemical Pathology, Prince of Wales Hospital, Hong Kong, SAR, People's Republic of China
| | - Moon-Sing Lai
- Department of Medicine, North District Hospital, Hong Kong, SAR, People's Republic of China
| | - Yau-On Lam
- Department of Medicine and Geriatrics, United Christian Hospital, Hong Kong, SAR, People's Republic of China
| | - Ching-Wan Lam
- Department of Pathology, The University of Hong Kong, Hong Kong, SAR, People's Republic of China
| | - Ming-Chung Lau
- Department of Paediatrics and Adolescent Medicine, United Christian Hospital, Hong Kong, SAR, People's Republic of China
| | - Chun-Yiu Eric Law
- Department of Chemical Pathology, Queen Mary Hospital, Hong Kong, SAR, People's Republic of China
| | - Wing-Cheong Lee
- Department of Paediatrics and Adolescent Medicine, Pamela Youde Nethersole Eastern Hospital, Hong Kong, SAR, People's Republic of China
| | - Han-Chih Hencher Lee
- Department of Chemical Pathology, Princess Margaret Hospital, Hong Kong, SAR, People's Republic of China
| | - Chin-Nam Lee
- Department of Medicine, Pamela Youde Nethersole Eastern Hospital, Hong Kong, SAR, People's Republic of China
| | - Kin-Hang Leung
- Department of Medicine, Queen Elizabeth Hospital, Hong Kong, SAR, People's Republic of China
| | - Kit-Yan Leung
- Department of Paediatrics and Adolescent Medicine, Princess Margaret Hospital, Hong Kong, SAR, People's Republic of China
| | - Siu-Hung Li
- Department of Medicine, North District Hospital, Hong Kong, SAR, People's Republic of China
| | - Tsz-Ki Jacky Ling
- Department of Chemical Pathology, Queen Mary Hospital, Hong Kong, SAR, People's Republic of China
| | - Kam-Tim Timothy Liu
- Department of Paediatrics and Adolescent Medicine, Pamela Youde Nethersole Eastern Hospital, Hong Kong, SAR, People's Republic of China
| | - Fai-Man Lo
- Department of Health, Clinical Genetic Service, Hong Kong, SAR, People's Republic of China
| | - Hiu-Tung Lui
- Department of Medicine, Tseung Kwan O Hospital, Hong Kong, SAR, People's Republic of China
| | - Ching-On Luk
- Department of Medicine, Queen Elizabeth Hospital, Hong Kong, SAR, People's Republic of China
| | - Ho-Ming Luk
- Clinical Genetics Service Unit, Hong Kong Children's Hospital, Hong Kong, SAR, People's Republic of China
| | - Che-Kwan Ma
- Department of Paediatrics and Adolescent Medicine, United Christian Hospital, Hong Kong, SAR, People's Republic of China
| | - Karen Ma
- Department of Medicine and Therapeutics, Prince of Wales Hospital, Hong Kong, SAR, People's Republic of China
| | - Kam-Hung Ma
- Department of Paediatrics and Adolescent Medicine, Alice Ho Miu Ling Nethersole hospital, Hong Kong, SAR, People's Republic of China
| | - Yuen-Ni Mew
- Department of Medicine and Geriatrics, United Christian Hospital, Hong Kong, SAR, People's Republic of China
| | - Alex Mo
- Department of Paediatrics and Adolescent Medicine, Kwong Wah Hospital, Hong Kong, SAR, People's Republic of China
| | - Sui-Fun Ng
- Department of Paediatrics and Adolescent Medicine, Princess Margaret Hospital, Hong Kong, SAR, People's Republic of China
| | - Wing-Kit Grace Poon
- Department of Paediatrics and Adolescent Medicine, Queen Mary Hospital, Hong Kong, SAR, People's Republic of China
| | - Richard Rodenburg
- Department of Paediatrics, Radboud Centre for Mitochondrial Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen Medicine Centre, Nijmegen, The Netherlands
| | - Bun Sheng
- Department of Medicine and Geriatrics, Princess Margaret Hospital, Hong Kong, SAR, People's Republic of China
| | - Jan Smeitink
- Department of Paediatrics, Radboud Centre for Mitochondrial Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen Medicine Centre, Nijmegen, The Netherlands
| | - Cheuk-Ling Charing Szeto
- Department of Medicine and Geriatrics, United Christian Hospital, Hong Kong, SAR, People's Republic of China
| | - Shuk-Mui Tai
- Department of Paediatrics and Adolescent Medicine, Pamela Youde Nethersole Eastern Hospital, Hong Kong, SAR, People's Republic of China
| | - Choi-Ting Alan Tse
- Department of Medicine, Yan Chai Hospital, Hong Kong, SAR, People's Republic of China
| | - Li-Yan Lilian Tsung
- Department of Paediatrics and Adolescent Medicine, Pamela Youde Nethersole Eastern Hospital, Hong Kong, SAR, People's Republic of China
| | - Ho-Ming June Wong
- Department of Medicine and Geriatrics, Caritas Medical Centre, Hong Kong, SAR, People's Republic of China
| | - Wing-Yin Winnie Wong
- Department of Medicine and Geriatrics, Caritas Medical Centre, Hong Kong, SAR, People's Republic of China
| | - Kwok-Kui Wong
- Department of Medicine, Yan Chai Hospital, Hong Kong, SAR, People's Republic of China
| | - Suet-Na Sheila Wong
- Department of Paediatrics and Adolescent Medicine, Hong Kong Children's Hospital, Hong Kong, SAR, People's Republic of China
| | - Chun-Nei Virginia Wong
- Department of Paediatrics & Adolescent Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, People's Republic of China
| | - Wai-Shan Sammy Wong
- Department of Pathology, Queen Elizabeth Hospital, Hong Kong, SAR, People's Republic of China
| | - Chi-Kin Felix Wong
- Department of Chemical Pathology, Queen Mary Hospital, Hong Kong, SAR, People's Republic of China
| | - Shun-Ping Wu
- Department of Paediatrics and Adolescent Medicine, Queen Elizabeth Hospital, Hong Kong, SAR, People's Republic of China
| | - Hiu-Fung Jerome Wu
- Department of Medicine and Geriatrics, Princess Margaret Hospital, Hong Kong, SAR, People's Republic of China
| | - Man-Mut Yau
- Department of Paediatrics and Adolescent Medicine, Tseung Kwan O Hospital, Hong Kong, SAR, People's Republic of China
| | - Kin-Cheong Eric Yau
- Department of Paediatrics and Adolescent Medicine, Princess Margaret Hospital, Hong Kong, SAR, People's Republic of China
| | - Wai-Lan Yeung
- Department of Paediatrics and Adolescent Medicine, Hong Kong Children's Hospital, Hong Kong, SAR, People's Republic of China
| | - Hon-Ming Jonas Yeung
- Department of Medicine, Alice Ho Miu Ling Nethersole Hospital, Hong Kong, SAR, People's Republic of China
| | - Kin-Keung Edwin Yip
- Department of Medicine and Geriatrics, Ruttonjee and Tang Shiu Kin Hospitals, Hong Kong, SAR, People's Republic of China
| | - Pui-Hong Terence Young
- Department of Medicine and Geriatrics, Ruttonjee and Tang Shiu Kin Hospitals, Hong Kong, SAR, People's Republic of China
| | - Gao Yuan
- Department of Medicine, Queen Mary Hospital, Hong Kong, SAR, People's Republic of China
| | - Yuet-Ping Liz Yuen
- Department of Chemical Pathology, Hong Kong Children's Hospital, Hong Kong, SAR, People's Republic of China
| | - Chi-Lap Yuen
- Department of Medicine and Geriatrics, Tuen Mun Hospital, Hong Kong, SAR, People's Republic of China
| | - Cheuk-Wing Fung
- Department of Paediatrics and Adolescent Medicine, Hong Kong Children's Hospital, Hong Kong, SAR, People's Republic of China.
| |
Collapse
|
29
|
Deen D, Alston CL, Hudson G, Taylor RW, Pyle A. Genomic Strategies in Mitochondrial Diagnostics. Methods Mol Biol 2023; 2615:397-425. [PMID: 36807806 DOI: 10.1007/978-1-0716-2922-2_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Pathogenic variants in both mitochondrial and nuclear genes contribute to the clinical and genetic heterogeneity of mitochondrial diseases. There are now pathogenic variants in over 300 nuclear genes linked to human mitochondrial diseases. Nonetheless, diagnosing mitochondrial disease with a genetic outcome remains challenging. However, there are now many strategies that help us to pinpoint causative variants in patients with mitochondrial disease. This chapter describes some of the approaches and recent advancements in gene/variant prioritization using whole-exome sequencing (WES).
Collapse
Affiliation(s)
- Dasha Deen
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Charlotte L Alston
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.,NHS Highly Specialised Services for Rare Mitochondrial Disorders, Royal Victoria Infirmary, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Gavin Hudson
- Wellcome Centre for Mitochondrial Research, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Robert W Taylor
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.,NHS Highly Specialised Services for Rare Mitochondrial Disorders, Royal Victoria Infirmary, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Angela Pyle
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
30
|
Blood biomarkers of mitochondrial disease-One for all or all for one? HANDBOOK OF CLINICAL NEUROLOGY 2023; 194:251-257. [PMID: 36813317 DOI: 10.1016/b978-0-12-821751-1.00006-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
The mitochondrial disease group consists of different disorders with unprecedented variability of clinical manifestations and tissue-specific symptoms. Their tissue-specific stress responses vary depending on the patients' age and type of dysfunction. These responses include secretion of metabolically active signal molecules to systemic circulation. Such signals-metabolites or metabokines-can be also utilized as biomarkers. During the past 10 years, metabolite and metabokine biomarkers have been described for mitochondrial disease diagnosis and follow-up, to complement the conventional blood biomarkers lactate, pyruvate and alanine. These new tools include metabokines FGF21 and GDF15; cofactors (NAD-forms); sets of metabolites (multibiomarkers) and the full metabolome. FGF21 and GDF15 are messengers of mitochondrial integrated stress response that together outperform the conventional biomarkers in specificity and sensitivity for muscle-manifesting mitochondrial diseases. Metabolite or metabolomic imbalance (e.g., NAD+ deficiency) is a secondary consequence to the primary cause in some diseases, but relevant as a biomarker and a potential indicator of therapy targets. For therapy trials, the optimal biomarker set needs to be tailored to match the disease of interest. The new biomarkers have increased the value of blood samples in mitochondrial disease diagnosis and follow-up, enabling prioritization of patients to different diagnostic paths and having crucial roles in follow-up of therapy effect.
Collapse
|
31
|
Thompson K, Stroud DA, Thorburn DR, Taylor RW. Investigation of oxidative phosphorylation activity and complex composition in mitochondrial disease. HANDBOOK OF CLINICAL NEUROLOGY 2023; 194:127-139. [PMID: 36813309 DOI: 10.1016/b978-0-12-821751-1.00008-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
A multidisciplinary approach to the laboratory diagnosis of mitochondrial disease has long been applied, with crucial information provided by deep clinical phenotyping, blood investigations, and biomarker screening as well as histopathological and biochemical testing of biopsy material to support molecular genetic screening. In an era of second and third generation sequencing technologies, traditional diagnostic algorithms for mitochondrial disease have been replaced by gene agnostic, genomic strategies including whole-exome sequencing (WES) and whole-genome sequencing (WGS), increasingly supported by other 'omics technologies (Alston et al., 2021). Whether a primary testing strategy, or one used to validate and interpret candidate genetic variants, the availability of a range of tests aimed at determining mitochondrial function (i.e., the assessment of individual respiratory chain enzyme activities in a tissue biopsy or cellular respiration in a patient cell line) remains an important part of the diagnostic armory. In this chapter, we summarize several disciplines used in the laboratory investigation of suspected mitochondrial disease, including the histopathological and biochemical assessment of mitochondrial function, as well as protein-based techniques to assess the steady-state levels of oxidative phosphorylation (OXPHOS) subunits and assembly of OXPHOS complexes via traditional (immunoblotting) and cutting-edge (quantitative proteomic) approaches.
Collapse
Affiliation(s)
- Kyle Thompson
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - David A Stroud
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, VIC, Australia; Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - David R Thorburn
- Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Melbourne, VIC, Australia; Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia; Mitochondrial Laboratory, Victorian Clinical Genetic Services, Melbourne, VIC, Australia
| | - Robert W Taylor
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom; NHS Highly Specialised Services for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom.
| |
Collapse
|
32
|
Mavraki E, Labrum R, Sergeant K, Alston CL, Woodward C, Smith C, Knowles CVY, Patel Y, Hodsdon P, Baines JP, Blakely EL, Polke J, Taylor RW, Fratter C. Genetic testing for mitochondrial disease: the United Kingdom best practice guidelines. Eur J Hum Genet 2023; 31:148-163. [PMID: 36513735 PMCID: PMC9905091 DOI: 10.1038/s41431-022-01249-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 11/12/2022] [Accepted: 11/16/2022] [Indexed: 12/15/2022] Open
Abstract
Primary mitochondrial disease describes a diverse group of neuro-metabolic disorders characterised by impaired oxidative phosphorylation. Diagnosis is challenging; >350 genes, both nuclear and mitochondrial DNA (mtDNA) encoded, are known to cause mitochondrial disease, leading to all possible inheritance patterns and further complicated by heteroplasmy of the multicopy mitochondrial genome. Technological advances, particularly next-generation sequencing, have driven a shift in diagnostic practice from 'biopsy first' to genome-wide analyses of blood and/or urine DNA. This has led to the need for a reference framework for laboratories involved in mitochondrial genetic testing to facilitate a consistent high-quality service. In the United Kingdom, consensus guidelines have been prepared by a working group of Clinical Scientists from the NHS Highly Specialised Service followed by national laboratory consultation. These guidelines summarise current recommended technologies and methodologies for the analysis of mtDNA and nuclear-encoded genes in patients with suspected mitochondrial disease. Genetic testing strategies for diagnosis, family testing and reproductive options including prenatal diagnosis are outlined. Importantly, recommendations for the minimum levels of mtDNA testing for the most common referral reasons are included, as well as guidance on appropriate referrals and information on the minimal appropriate gene content of panels when analysing nuclear mitochondrial genes. Finally, variant interpretation and recommendations for reporting of results are discussed, focussing particularly on the challenges of interpreting and reporting mtDNA variants.
Collapse
Affiliation(s)
- Eleni Mavraki
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Robyn Labrum
- Neurogenetics Unit, National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
| | - Kate Sergeant
- Oxford Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Charlotte L Alston
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Cathy Woodward
- Neurogenetics Unit, National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
| | - Conrad Smith
- Oxford Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Charlotte V Y Knowles
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Yogen Patel
- Neurogenetics Unit, National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
| | - Philip Hodsdon
- Oxford Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Jack P Baines
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Emma L Blakely
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - James Polke
- Neurogenetics Unit, National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
| | - Robert W Taylor
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Carl Fratter
- Oxford Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Oxford, UK.
| |
Collapse
|
33
|
Mann JP, Duan X, Patel S, Tábara LC, Scurria F, Alvarez-Guaita A, Haider A, Luijten I, Page M, Protasoni M, Lim K, Virtue S, O'Rahilly S, Armstrong M, Prudent J, Semple RK, Savage DB. A mouse model of human mitofusin-2-related lipodystrophy exhibits adipose-specific mitochondrial stress and reduced leptin secretion. eLife 2023; 12:e82283. [PMID: 36722855 PMCID: PMC9937658 DOI: 10.7554/elife.82283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 01/30/2023] [Indexed: 02/02/2023] Open
Abstract
Mitochondrial dysfunction has been reported in obesity and insulin resistance, but primary genetic mitochondrial dysfunction is generally not associated with these, arguing against a straightforward causal relationship. A rare exception, recently identified in humans, is a syndrome of lower body adipose loss, leptin-deficient severe upper body adipose overgrowth, and insulin resistance caused by the p.Arg707Trp mutation in MFN2, encoding mitofusin 2. How the resulting selective form of mitochondrial dysfunction leads to tissue- and adipose depot-specific growth abnormalities and systemic biochemical perturbation is unknown. To address this, Mfn2R707W/R707W knock-in mice were generated and phenotyped on chow and high fat diets. Electron microscopy revealed adipose-specific mitochondrial morphological abnormalities. Oxidative phosphorylation measured in isolated mitochondria was unperturbed, but the cellular integrated stress response was activated in adipose tissue. Fat mass and distribution, body weight, and systemic glucose and lipid metabolism were unchanged, however serum leptin and adiponectin concentrations, and their secretion from adipose explants were reduced. Pharmacological induction of the integrated stress response in wild-type adipocytes also reduced secretion of leptin and adiponectin, suggesting an explanation for the in vivo findings. These data suggest that the p.Arg707Trp MFN2 mutation selectively perturbs mitochondrial morphology and activates the integrated stress response in adipose tissue. In mice, this does not disrupt most adipocyte functions or systemic metabolism, whereas in humans it is associated with pathological adipose remodelling and metabolic disease. In both species, disproportionate effects on leptin secretion may relate to cell autonomous induction of the integrated stress response.
Collapse
Affiliation(s)
- Jake P Mann
- Wellcome Trust-MRC Institute of Metabolic Science, University of CambridgeCambridgeUnited Kingdom
| | - Xiaowen Duan
- Wellcome Trust-MRC Institute of Metabolic Science, University of CambridgeCambridgeUnited Kingdom
| | - Satish Patel
- Wellcome Trust-MRC Institute of Metabolic Science, University of CambridgeCambridgeUnited Kingdom
| | - Luis Carlos Tábara
- Medical Research Council Mitochondrial Biology Unit, University of CambridgeCambridgeUnited Kingdom
| | - Fabio Scurria
- Wellcome Trust-MRC Institute of Metabolic Science, University of CambridgeCambridgeUnited Kingdom
| | - Anna Alvarez-Guaita
- Wellcome Trust-MRC Institute of Metabolic Science, University of CambridgeCambridgeUnited Kingdom
| | - Afreen Haider
- Wellcome Trust-MRC Institute of Metabolic Science, University of CambridgeCambridgeUnited Kingdom
| | - Ineke Luijten
- Centre for Cardiovascular Science, University of EdinburghEdinburghUnited Kingdom
| | | | - Margherita Protasoni
- Medical Research Council Mitochondrial Biology Unit, University of CambridgeCambridgeUnited Kingdom
| | - Koini Lim
- Wellcome Trust-MRC Institute of Metabolic Science, University of CambridgeCambridgeUnited Kingdom
| | - Sam Virtue
- Wellcome Trust-MRC Institute of Metabolic Science, University of CambridgeCambridgeUnited Kingdom
| | - Stephen O'Rahilly
- Wellcome Trust-MRC Institute of Metabolic Science, University of CambridgeCambridgeUnited Kingdom
| | | | - Julien Prudent
- Medical Research Council Mitochondrial Biology Unit, University of CambridgeCambridgeUnited Kingdom
| | - Robert K Semple
- Centre for Cardiovascular Science, University of EdinburghEdinburghUnited Kingdom
- MRC Human Genetics Unit, University of EdinburghEdinburghUnited Kingdom
| | - David B Savage
- Wellcome Trust-MRC Institute of Metabolic Science, University of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
34
|
Collier JJ, Oláhová M, McWilliams TG, Taylor RW. Mitochondrial signalling and homeostasis: from cell biology to neurological disease. Trends Neurosci 2023; 46:137-152. [PMID: 36635110 DOI: 10.1016/j.tins.2022.12.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/18/2022] [Accepted: 12/05/2022] [Indexed: 01/11/2023]
Abstract
Efforts to understand how mitochondrial dysfunction contributes to neurodegeneration have primarily focussed on the role of mitochondria in neuronal energy metabolism. However, progress in understanding the etiological nature of emerging mitochondrial functions has yielded new ideas about the mitochondrial basis of neurological disease. Studies aimed at deciphering how mitochondria signal through interorganellar contacts, vesicular trafficking, and metabolic transmission have revealed that mitochondrial regulation of immunometabolism, cell death, organelle dynamics, and neuroimmune interplay are critical determinants of neural health. Moreover, the homeostatic mechanisms that exist to protect mitochondrial health through turnover via nanoscale proteostasis and lysosomal degradation have become integrated within mitochondrial signalling pathways to support metabolic plasticity and stress responses in the nervous system. This review highlights how these distinct mitochondrial pathways converge to influence neurological health and contribute to disease pathology.
Collapse
Affiliation(s)
- Jack J Collier
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada.
| | - Monika Oláhová
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Thomas G McWilliams
- Translational Stem Cell Biology & Metabolism Program, Research Programs Unit, University of Helsinki, Helsinki, Finland; Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Robert W Taylor
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK; NHS Highly Specialised Service for Rare Mitochondrial Disorders of Adults and Children, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
35
|
Modopathies Caused by Mutations in Genes Encoding for Mitochondrial RNA Modifying Enzymes: Molecular Mechanisms and Yeast Disease Models. Int J Mol Sci 2023; 24:ijms24032178. [PMID: 36768505 PMCID: PMC9917222 DOI: 10.3390/ijms24032178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 01/25/2023] Open
Abstract
In eukaryotes, mitochondrial RNAs (mt-tRNAs and mt-rRNAs) are subject to specific nucleotide modifications, which are critical for distinct functions linked to the synthesis of mitochondrial proteins encoded by mitochondrial genes, and thus for oxidative phosphorylation. In recent years, mutations in genes encoding for mt-RNAs modifying enzymes have been identified as being causative of primary mitochondrial diseases, which have been called modopathies. These latter pathologies can be caused by mutations in genes involved in the modification either of tRNAs or of rRNAs, resulting in the absence of/decrease in a specific nucleotide modification and thus on the impairment of the efficiency or the accuracy of the mitochondrial protein synthesis. Most of these mutations are sporadic or private, thus it is fundamental that their pathogenicity is confirmed through the use of a model system. This review will focus on the activity of genes that, when mutated, are associated with modopathies, on the molecular mechanisms through which the enzymes introduce the nucleotide modifications, on the pathological phenotypes associated with mutations in these genes and on the contribution of the yeast Saccharomyces cerevisiae to confirming the pathogenicity of novel mutations and, in some cases, for defining the molecular defects.
Collapse
|
36
|
Rahman MM, Tumpa MAA, Rahaman MS, Islam F, Sutradhar PR, Ahmed M, Alghamdi BS, Hafeez A, Alexiou A, Perveen A, Ashraf GM. Emerging Promise of Therapeutic Approaches Targeting Mitochondria in Neurodegenerative Disorders. Curr Neuropharmacol 2023; 21:1081-1099. [PMID: 36927428 PMCID: PMC10286587 DOI: 10.2174/1570159x21666230316150559] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 03/18/2023] Open
Abstract
Mitochondria are critical for homeostasis and metabolism in all cellular eukaryotes. Brain mitochondria are the primary source of fuel that supports many brain functions, including intracellular energy supply, cellular calcium regulation, regulation of limited cellular oxidative capacity, and control of cell death. Much evidence suggests that mitochondria play a central role in neurodegenerative disorders (NDDs) such as Parkinson's disease, Alzheimer's disease, Huntington's disease, and amyotrophic lateral sclerosis. Ongoing studies of NDDs have revealed that mitochondrial pathology is mainly found in inherited or irregular NDDs and is thought to be associated with the pathophysiological cycle of these disorders. Typical mitochondrial disturbances in NDDs include increased free radical production, decreased ATP synthesis, alterations in mitochondrial permeability, and mitochondrial DNA damage. The main objective of this review is to highlight the basic mitochondrial problems that occur in NDDs and discuss the use mitochondrial drugs, especially mitochondrial antioxidants, mitochondrial permeability transition blockade, and mitochondrial gene therapy, for the treatment and control of NDDs.
Collapse
Affiliation(s)
- Md. Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Mst. Afroza Alam Tumpa
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Md. Saidur Rahaman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Popy Rani Sutradhar
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Muniruddin Ahmed
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Badrah S. Alghamdi
- Department of Physiology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- The Neuroscience Research Unit, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdul Hafeez
- Glocal School of Pharmacy, Glocal University, Mirzapur Pole, Saharanpur, Uttar Pradesh, India
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, Australia
- AFNP Med Austria, Wien, Austria
| | - Asma Perveen
- Glocal School of Life Sciences, Glocal University, Mirzapur Pole, Saharanpur, Uttar Pradesh, India
| | - Ghulam Md. Ashraf
- Department of Medical Laboratory Sciences, College of Health Sciences, and Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, United Arab Emirates
| |
Collapse
|
37
|
Abstract
Mitochondrial dysfunction, especially perturbation of oxidative phosphorylation and adenosine triphosphate (ATP) generation, disrupts cellular homeostasis and is a surprisingly frequent cause of central and peripheral nervous system pathology. Mitochondrial disease is an umbrella term that encompasses a host of clinical syndromes and features caused by in excess of 300 different genetic defects affecting the mitochondrial and nuclear genomes. Patients with mitochondrial disease can present at any age, ranging from neonatal onset to late adult life, with variable organ involvement and neurological manifestations including neurodevelopmental delay, seizures, stroke-like episodes, movement disorders, optic neuropathy, myopathy, and neuropathy. Until relatively recently, analysis of skeletal muscle biopsy was the focus of diagnostic algorithms, but step-changes in the scope and availability of next-generation sequencing technology and multiomics analysis have revolutionized mitochondrial disease diagnosis. Currently, there is no specific therapy for most types of mitochondrial disease, although clinical trials research in the field is gathering momentum. In that context, active management of epilepsy, stroke-like episodes, dystonia, brainstem dysfunction, and Parkinsonism are all the more important in improving patient quality of life and reducing mortality.
Collapse
Affiliation(s)
- Yi Shiau Ng
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom.
| | - Robert McFarland
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
38
|
Mitochondrial Unfolded Protein Response and Integrated Stress Response as Promising Therapeutic Targets for Mitochondrial Diseases. Cells 2022; 12:cells12010020. [PMID: 36611815 PMCID: PMC9818186 DOI: 10.3390/cells12010020] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/10/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
The development and application of high-throughput omics technologies have enabled a more in-depth understanding of mitochondrial biosynthesis metabolism and the pathogenesis of mitochondrial diseases. In accordance with this, a host of new treatments for mitochondrial disease are emerging. As an essential pathway in maintaining mitochondrial proteostasis, the mitochondrial unfolded protein response (UPRmt) is not only of considerable significance for mitochondrial substance metabolism but also plays a fundamental role in the development of mitochondrial diseases. Furthermore, in mammals, the integrated stress response (ISR) and UPRmt are strongly coupled, functioning together to maintain mitochondrial function. Therefore, ISR and UPRmt show great application prospects in the treatment of mitochondrial diseases. In this review, we provide an overview of the molecular mechanisms of ISR and UPRmt and focus on them as potential targets for mitochondrial disease therapy.
Collapse
|
39
|
Baker MJ, Crameri JJ, Thorburn DR, Frazier AE, Stojanovski D. Mitochondrial biology and dysfunction in secondary mitochondrial disease. Open Biol 2022; 12:220274. [PMID: 36475414 PMCID: PMC9727669 DOI: 10.1098/rsob.220274] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial diseases are a broad, genetically heterogeneous class of metabolic disorders characterized by deficits in oxidative phosphorylation (OXPHOS). Primary mitochondrial disease (PMD) defines pathologies resulting from mutation of mitochondrial DNA (mtDNA) or nuclear genes affecting either mtDNA expression or the biogenesis and function of the respiratory chain. Secondary mitochondrial disease (SMD) arises due to mutation of nuclear-encoded genes independent of, or indirectly influencing OXPHOS assembly and operation. Despite instances of novel SMD increasing year-on-year, PMD is much more widely discussed in the literature. Indeed, since the implementation of next generation sequencing (NGS) techniques in 2010, many novel mitochondrial disease genes have been identified, approximately half of which are linked to SMD. This review will consolidate existing knowledge of SMDs and outline discrete categories within which to better understand the diversity of SMD phenotypes. By providing context to the biochemical and molecular pathways perturbed in SMD, we hope to further demonstrate the intricacies of SMD pathologies outside of their indirect contribution to mitochondrial energy generation.
Collapse
Affiliation(s)
- Megan J. Baker
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Jordan J. Crameri
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3052, Australia
| | - David R. Thorburn
- Murdoch Children's Research Institute, Royal Children's Hospital and Department of Paediatrics, University of Melbourne, Parkville, Victoria 3052, Australia,Victorian Clinical Genetics Services, Royal Children's Hospital, Parkville, Victoria 3052, Australia
| | - Ann E. Frazier
- Murdoch Children's Research Institute, Royal Children's Hospital and Department of Paediatrics, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Diana Stojanovski
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3052, Australia
| |
Collapse
|
40
|
Postel MD, Culver JO, Ricker C, Craig DW. Transcriptome analysis provides critical answers to the "variants of uncertain significance" conundrum. Hum Mutat 2022; 43:1590-1608. [PMID: 35510381 PMCID: PMC9560997 DOI: 10.1002/humu.24394] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/16/2022] [Accepted: 04/26/2022] [Indexed: 12/30/2022]
Abstract
While whole-genome and exome sequencing have transformed our collective understanding of genetics' role in disease pathogenesis, there are certain conditions and populations for whom DNA-level data fails to identify the underlying genetic etiology. Specifically, patients of non-White race and non-European ancestry are disproportionately affected by "variants of unknown/uncertain significance" (VUS), limiting the scope of precision medicine for minority patients and perpetuating health disparities. VUS often include deep intronic and splicing variants which are difficult to interpret from DNA data alone. RNA analysis can illuminate the consequences of VUS, thereby allowing for their reclassification as pathogenic versus benign. Here we review the critical role transcriptome analysis plays in clarifying VUS in both neoplastic and non-neoplastic diseases.
Collapse
Affiliation(s)
- Mackenzie D. Postel
- Department of Translational GenomicsUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Keck School of Medicine of USCUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Julie O. Culver
- Keck School of Medicine of USCUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Charité Ricker
- Keck School of Medicine of USCUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - David W. Craig
- Department of Translational GenomicsUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Keck School of Medicine of USCUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
41
|
Liu S, Liu S, Jiang H. Multifaceted roles of mitochondrial stress responses under ETC dysfunction - repair, destruction and pathogenesis. FEBS J 2022; 289:6994-7013. [PMID: 34918460 DOI: 10.1111/febs.16323] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/08/2021] [Accepted: 12/15/2021] [Indexed: 01/13/2023]
Abstract
Electron transport chain (ETC) dysfunction is a common feature of mitochondrial diseases and induces severe cellular stresses, including mitochondrial membrane potential (Δψm ) reduction, mitochondrial matrix acidification, metabolic derangements and proteostatic stresses. Extensive studies of ETC dysfunction in yeast, Caenorhabditis elegans, cultured cells and mouse models have revealed multiple mitochondrial stress response pathways. Here, we summarise the current understanding of the triggers, sensors, signalling mechanisms and the functional outcomes of mitochondrial stress responses in different species. We highlight Δψm reduction as a major trigger of stress responses in different species, but the responses are species-specific and the outcomes are context-dependent. ETC dysfunction elicits a mitochondrial unfolded protein response (UPRmt ) to repair damaged mitochondria in C. elegans, and activates a global adaptive programme to maintain Δψm in yeast. Yeast and C. elegans responses are remarkably similar at the downstream responses, although they are activated by different signalling mechanisms. UPRmt generally protects ETC-defective worms, but its constitutive activation is toxic for wildtype worms and worms carrying mutant mtDNA. In contrast to lower organisms, ETC dysfunction in mammals mainly activates a mitochondrial integrated stress response (ISRmt ) to reprogramme metabolism and a PINK1-Parkin mitophagy pathway to degrade damaged mitochondria. Accumulating in vivo results suggest that the ATF4 branch of ISRmt exacerbates metabolic derangements to accelerate mitochondrial disease progression. The in vivo roles of mitophagy in mitochondrial diseases are also context-dependent. These results thus reveal the common and unique aspects of mitochondrial stress responses in different species and highlight their multifaceted roles in mitochondrial diseases.
Collapse
Affiliation(s)
- Shanshan Liu
- National Institute of Biological Sciences, Beijing, China.,Beijing Key Laboratory of Cell Biology for Animal Aging, China.,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Siqi Liu
- National Institute of Biological Sciences, Beijing, China.,Beijing Key Laboratory of Cell Biology for Animal Aging, China.,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Hui Jiang
- National Institute of Biological Sciences, Beijing, China.,Beijing Key Laboratory of Cell Biology for Animal Aging, China.,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| |
Collapse
|
42
|
Pei J, Zhang J, Cong Q. Human mitochondrial protein complexes revealed by large-scale coevolution analysis and deep learning-based structure modeling. Bioinformatics 2022; 38:4301-4311. [PMID: 35881696 DOI: 10.1093/bioinformatics/btac527] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 05/27/2022] [Accepted: 07/22/2022] [Indexed: 12/24/2022] Open
Abstract
MOTIVATION Recent development of deep-learning methods has led to a breakthrough in the prediction accuracy of 3D protein structures. Extending these methods to protein pairs is expected to allow large-scale detection of protein-protein interactions (PPIs) and modeling protein complexes at the proteome level. RESULTS We applied RoseTTAFold and AlphaFold, two of the latest deep-learning methods for structure predictions, to analyze coevolution of human proteins residing in mitochondria, an organelle of vital importance in many cellular processes including energy production, metabolism, cell death and antiviral response. Variations in mitochondrial proteins have been linked to a plethora of human diseases and genetic conditions. RoseTTAFold, with high computational speed, was used to predict the coevolution of about 95% of mitochondrial protein pairs. Top-ranked pairs were further subject to modeling of the complex structures by AlphaFold, which also produced contact probability with high precision and in many cases consistent with RoseTTAFold. Most top-ranked pairs with high contact probability were supported by known PPIs and/or similarities to experimental structural complexes. For high-scoring pairs without experimental complex structures, our coevolution analyses and structural models shed light on the details of their interfaces, including CHCHD4-AIFM1, MTERF3-TRUB2, FMC1-ATPAF2 and ECSIT-NDUFAF1. We also identified novel PPIs (PYURF-NDUFAF5, LYRM1-MTRF1L and COA8-COX10) for several proteins without experimentally characterized interaction partners, leading to predictions of their molecular functions and the biological processes they are involved in. AVAILABILITY AND IMPLEMENTATION Data of mitochondrial proteins and their interactions are available at: http://conglab.swmed.edu/mitochondria. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Jimin Pei
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jing Zhang
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Qian Cong
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
43
|
Primiano G, Torraco A, Verrigni D, Sabino A, Bertini E, Carrozzo R, Silvestri G, Servidei S. Novel TOP3A Variant Associated With Mitochondrial Disease. Neurol Genet 2022; 8:e200007. [PMID: 35812164 PMCID: PMC9258978 DOI: 10.1212/nxg.0000000000200007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 05/06/2022] [Indexed: 11/15/2022]
Abstract
Objectives Topoisomerase III alpha plays a key role in the dissolution of double Holliday junctions and is required for mitochondrial DNA (mtDNA) replication and maintenance. Sequence variants in the TOP3A gene have been associated with the Bloom syndrome–like disorder and described in an adult patient with progressive external ophthalmoplegia. The purpose of this report is to expand the clinical phenotype of the TOP3A-related diseases and clarify the role of this gene in primary mitochondrial disorders. Methods A 44-year-old woman was referred to our hospital because of exercise intolerance and creatine kinase increase. Muscle biopsy and a targeted next-generation sequencing (NGS) analysis were performed. Results A histopathologic assessment documented a mitochondrial myopathy, and a molecular analysis revealed a novel homozygous variant in the TOP3A gene associated with multiple mtDNA deletions. Discussion This case suggests that TOP3A is one of the several nuclear genes associated with mtDNA maintenance disorder and expands the spectrum of its associated phenotypes, ranging from a clinical condition defined Bloom syndrome–like disorder to canonical mitochondrial syndromes.
Collapse
|
44
|
Burns W, Chaudhari BP, Haffner DN. Neurogenetic and Metabolic Mimics of Common Neonatal Neurological Disorders. Semin Pediatr Neurol 2022; 42:100972. [PMID: 35868729 DOI: 10.1016/j.spen.2022.100972] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/05/2022] [Accepted: 04/05/2022] [Indexed: 10/18/2022]
Abstract
Neurogenetic and metabolic diseases often present in the neonatal period, masquerading as other disorders, most commonly as neonatal encephalopathy and seizures. Advancements in our understanding of inborn errors of metabolism are leading to an increasing number of therapeutic options. Many of these treatments can improve long-term neurodevelopment and seizure control. However, the treatments are frequently condition-specific. A high index of suspicion is required for prompt identification and treatment. When suspected, simultaneous metabolic and molecular testing are recommended along with concurrent treatment.
Collapse
Affiliation(s)
- William Burns
- Division of Genetics and Genomic Medicine, Nationwide Children's Hospital, Columbus, OH; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH.
| | - Bimal P Chaudhari
- Division of Genetics and Genomic Medicine, Nationwide Children's Hospital, Columbus, OH; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH; Division of Neonatology, Nationwide Children's Hospital, Columbus, OH; Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH
| | - Darrah N Haffner
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH; Division of Neurology, Nationwide Children's Hospital, Columbus, OH
| |
Collapse
|
45
|
Hanaford AR, Cho YJ, Nakai H. AAV-vector based gene therapy for mitochondrial disease: progress and future perspectives. Orphanet J Rare Dis 2022; 17:217. [PMID: 35668433 PMCID: PMC9169410 DOI: 10.1186/s13023-022-02324-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/09/2022] [Indexed: 12/11/2022] Open
Abstract
Mitochondrial diseases are a group of rare, heterogeneous diseases caused by gene mutations in both nuclear and mitochondrial genomes that result in defects in mitochondrial function. They are responsible for significant morbidity and mortality as they affect multiple organ systems and particularly those with high energy-utilizing tissues, such as the nervous system, skeletal muscle, and cardiac muscle. Virtually no effective treatments exist for these patients, despite the urgent need. As the majority of these conditions are monogenic and caused by mutations in nuclear genes, gene replacement is a highly attractive therapeutic strategy. Adeno-associated virus (AAV) is a well-characterized gene replacement vector, and its safety profile and ability to transduce quiescent cells nominates it as a potential gene therapy vehicle for several mitochondrial diseases. Indeed, AAV vector-based gene replacement is currently being explored in clinical trials for one mitochondrial disease (Leber hereditary optic neuropathy) and preclinical studies have been published investigating this strategy in other mitochondrial diseases. This review summarizes the preclinical findings of AAV vector-based gene replacement therapy for mitochondrial diseases including Leigh syndrome, Barth syndrome, ethylmalonic encephalopathy, and others.
Collapse
Affiliation(s)
- Allison R Hanaford
- Center for Integrative Brain Research, Seattle Children's Reserach Institute, Seattle, WA, 98101, USA.
- Papé Family Pediatric Research Institute, Oregon Health and Science University, Portland, OR, 97239, USA.
| | - Yoon-Jae Cho
- Papé Family Pediatric Research Institute, Oregon Health and Science University, Portland, OR, 97239, USA
- Division of Pediatric Neurology, Doernbecher Children's Hospital, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Hiroyuki Nakai
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, 97239, USA
- Department of Molecular Immunology and Microbiology, Oregon Health and Science University, Portland, OR, 97239, USA
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, 97006, USA
| |
Collapse
|
46
|
Rensvold JW, Shishkova E, Sverchkov Y, Miller IJ, Cetinkaya A, Pyle A, Manicki M, Brademan DR, Alanay Y, Raiman J, Jochem A, Hutchins PD, Peters SR, Linke V, Overmyer KA, Salome AZ, Hebert AS, Vincent CE, Kwiecien NW, Rush MJP, Westphall MS, Craven M, Akarsu NA, Taylor RW, Coon JJ, Pagliarini DJ. Defining mitochondrial protein functions through deep multiomic profiling. Nature 2022; 606:382-388. [PMID: 35614220 PMCID: PMC9310563 DOI: 10.1038/s41586-022-04765-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/14/2022] [Indexed: 11/08/2022]
Abstract
Mitochondria are epicentres of eukaryotic metabolism and bioenergetics. Pioneering efforts in recent decades have established the core protein componentry of these organelles1 and have linked their dysfunction to more than 150 distinct disorders2,3. Still, hundreds of mitochondrial proteins lack clear functions4, and the underlying genetic basis for approximately 40% of mitochondrial disorders remains unresolved5. Here, to establish a more complete functional compendium of human mitochondrial proteins, we profiled more than 200 CRISPR-mediated HAP1 cell knockout lines using mass spectrometry-based multiomics analyses. This effort generated approximately 8.3 million distinct biomolecule measurements, providing a deep survey of the cellular responses to mitochondrial perturbations and laying a foundation for mechanistic investigations into protein function. Guided by these data, we discovered that PIGY upstream open reading frame (PYURF) is an S-adenosylmethionine-dependent methyltransferase chaperone that supports both complex I assembly and coenzyme Q biosynthesis and is disrupted in a previously unresolved multisystemic mitochondrial disorder. We further linked the putative zinc transporter SLC30A9 to mitochondrial ribosomes and OxPhos integrity and established RAB5IF as the second gene harbouring pathogenic variants that cause cerebrofaciothoracic dysplasia. Our data, which can be explored through the interactive online MITOMICS.app resource, suggest biological roles for many other orphan mitochondrial proteins that still lack robust functional characterization and define a rich cell signature of mitochondrial dysfunction that can support the genetic diagnosis of mitochondrial diseases.
Collapse
Affiliation(s)
- Jarred W Rensvold
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
- Morgridge Institute for Research, Madison, WI, USA
| | - Evgenia Shishkova
- National Center for Quantitative Biology of Complex Systems, Madison, WI, USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Yuriy Sverchkov
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, USA
| | - Ian J Miller
- National Center for Quantitative Biology of Complex Systems, Madison, WI, USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Arda Cetinkaya
- Department of Medical Genetics, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Angela Pyle
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, UK
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Mateusz Manicki
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
- Morgridge Institute for Research, Madison, WI, USA
| | - Dain R Brademan
- Morgridge Institute for Research, Madison, WI, USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Yasemin Alanay
- Department of Pediatrics, Pediatric Genetics Unit, Faculty of Medicine, Hacettepe University, Ankara, Turkey
- Department of Pediatrics, Pediatric Genetics Unit, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Julian Raiman
- Department of Clinical Inherited Metabolic Disorders, Birmingham Women's and Children's Hospital NHS Trust, Birmingham, UK
| | - Adam Jochem
- Morgridge Institute for Research, Madison, WI, USA
| | - Paul D Hutchins
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Sean R Peters
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Vanessa Linke
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Katherine A Overmyer
- Morgridge Institute for Research, Madison, WI, USA
- National Center for Quantitative Biology of Complex Systems, Madison, WI, USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Austin Z Salome
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Alexander S Hebert
- National Center for Quantitative Biology of Complex Systems, Madison, WI, USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Catherine E Vincent
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Nicholas W Kwiecien
- National Center for Quantitative Biology of Complex Systems, Madison, WI, USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Matthew J P Rush
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Michael S Westphall
- National Center for Quantitative Biology of Complex Systems, Madison, WI, USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Mark Craven
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, USA
| | - Nurten A Akarsu
- Department of Medical Genetics, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Robert W Taylor
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, UK
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- NHS Highly Specialised Services for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Joshua J Coon
- Morgridge Institute for Research, Madison, WI, USA.
- National Center for Quantitative Biology of Complex Systems, Madison, WI, USA.
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA.
| | - David J Pagliarini
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA.
- Morgridge Institute for Research, Madison, WI, USA.
- National Center for Quantitative Biology of Complex Systems, Madison, WI, USA.
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
47
|
Ng YS, Lim AZ, Panagiotou G, Turnbull DM, Walker M. Endocrine Manifestations and New Developments in Mitochondrial Disease. Endocr Rev 2022; 43:583-609. [PMID: 35552684 PMCID: PMC9113134 DOI: 10.1210/endrev/bnab036] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Indexed: 11/19/2022]
Abstract
Mitochondrial diseases are a group of common inherited diseases causing disruption of oxidative phosphorylation. Some patients with mitochondrial disease have endocrine manifestations, with diabetes mellitus being predominant but also include hypogonadism, hypoadrenalism, and hypoparathyroidism. There have been major developments in mitochondrial disease over the past decade that have major implications for all patients. The collection of large cohorts of patients has better defined the phenotype of mitochondrial diseases and the majority of patients with endocrine abnormalities have involvement of several other systems. This means that patients with mitochondrial disease and endocrine manifestations need specialist follow-up because some of the other manifestations, such as stroke-like episodes and cardiomyopathy, are potentially life threatening. Also, the development and follow-up of large cohorts of patients means that there are clinical guidelines for the management of patients with mitochondrial disease. There is also considerable research activity to identify novel therapies for the treatment of mitochondrial disease. The revolution in genetics, with the introduction of next-generation sequencing, has made genetic testing more available and establishing a precise genetic diagnosis is important because it will affect the risk for involvement for different organ systems. Establishing a genetic diagnosis is also crucial because important reproductive options have been developed that will prevent the transmission of mitochondrial disease because of mitochondrial DNA variants to the next generation.
Collapse
Affiliation(s)
- Yi Shiau Ng
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Albert Zishen Lim
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Grigorios Panagiotou
- Department of Diabetes and Endocrinology, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Doug M Turnbull
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Mark Walker
- Department of Diabetes and Endocrinology, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
48
|
Prescription Drugs and Mitochondrial Metabolism. Biosci Rep 2022; 42:231068. [PMID: 35315490 PMCID: PMC9016406 DOI: 10.1042/bsr20211813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 11/17/2022] Open
Abstract
Mitochondria are central to the physiology and survival of nearly all eukaryotic cells and house diverse metabolic processes including oxidative phosphorylation, reactive oxygen species buffering, metabolite synthesis/exchange, and Ca2+ sequestration. Mitochondria are phenotypically heterogeneous and this variation is essential to the complexity of physiological function among cells, tissues, and organ systems. As a consequence of mitochondrial integration with so many physiological processes, small molecules that modulate mitochondrial metabolism induce complex systemic effects. In the case of many common prescribed drugs, these interactions may contribute to drug therapeutic mechanisms, induce adverse drug reactions, or both. The purpose of this article is to review historical and recent advances in the understanding of the effects of prescription drugs on mitochondrial metabolism. Specific 'modes' of xenobiotic-mitochondria interactions are discussed to provide a set of qualitative models that aid in conceptualizing how the mitochondrial energy transduction system may be affected. Findings of recent in vitro high-throughput screening studies are reviewed, and a few candidate drug classes are chosen for additional brief discussion (i.e. antihyperglycemics, antidepressants, antibiotics, and antihyperlipidemics). Finally, recent improvements in pharmacokinetic models that aid in quantifying systemic effects of drug-mitochondria interactions are briefly considered.
Collapse
|
49
|
Mahmud S, Biswas S, Afrose S, Mita MA, Hasan MR, Shimu MSS, Paul GK, Chung S, Saleh MA, Alshehri S, Ghoneim MM, Alruwaily M, Kim B. Use of Next-Generation Sequencing for Identifying Mitochondrial Disorders. Curr Issues Mol Biol 2022; 44:1127-1148. [PMID: 35723297 PMCID: PMC8947152 DOI: 10.3390/cimb44030074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/18/2022] [Accepted: 02/24/2022] [Indexed: 12/06/2022] Open
Abstract
Mitochondria are major contributors to ATP synthesis, generating more than 90% of the total cellular energy production through oxidative phosphorylation (OXPHOS): metabolite oxidation, such as the β-oxidation of fatty acids, and the Krebs's cycle. OXPHOS inadequacy due to large genetic lesions in mitochondrial as well as nuclear genes and homo- or heteroplasmic point mutations in mitochondrially encoded genes is a characteristic of heterogeneous, maternally inherited genetic disorders known as mitochondrial disorders that affect multisystemic tissues and organs with high energy requirements, resulting in various signs and symptoms. Several traditional diagnostic approaches, including magnetic resonance imaging of the brain, cardiac testing, biochemical screening, variable heteroplasmy genetic testing, identifying clinical features, and skeletal muscle biopsies, are associated with increased risks, high costs, a high degree of false-positive or false-negative results, or a lack of precision, which limits their diagnostic abilities for mitochondrial disorders. Variable heteroplasmy levels, mtDNA depletion, and the identification of pathogenic variants can be detected through genetic sequencing, including the gold standard Sanger sequencing. However, sequencing can be time consuming, and Sanger sequencing can result in the missed recognition of larger structural variations such as CNVs or copy-number variations. Although each sequencing method has its own limitations, genetic sequencing can be an alternative to traditional diagnostic methods. The ever-growing roster of possible mutations has led to the development of next-generation sequencing (NGS). The enhancement of NGS methods can offer a precise diagnosis of the mitochondrial disorder within a short period at a reasonable expense for both research and clinical applications.
Collapse
Affiliation(s)
- Shafi Mahmud
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh; (S.B.); (S.A.); (M.A.M.); (M.R.H.); (M.S.S.S.); (G.K.P.); (M.A.S.)
| | - Suvro Biswas
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh; (S.B.); (S.A.); (M.A.M.); (M.R.H.); (M.S.S.S.); (G.K.P.); (M.A.S.)
| | - Shamima Afrose
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh; (S.B.); (S.A.); (M.A.M.); (M.R.H.); (M.S.S.S.); (G.K.P.); (M.A.S.)
| | - Mohasana Akter Mita
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh; (S.B.); (S.A.); (M.A.M.); (M.R.H.); (M.S.S.S.); (G.K.P.); (M.A.S.)
| | - Md. Robiul Hasan
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh; (S.B.); (S.A.); (M.A.M.); (M.R.H.); (M.S.S.S.); (G.K.P.); (M.A.S.)
| | - Mst. Sharmin Sultana Shimu
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh; (S.B.); (S.A.); (M.A.M.); (M.R.H.); (M.S.S.S.); (G.K.P.); (M.A.S.)
| | - Gobindo Kumar Paul
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh; (S.B.); (S.A.); (M.A.M.); (M.R.H.); (M.S.S.S.); (G.K.P.); (M.A.S.)
| | - Sanghyun Chung
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea;
| | - Md. Abu Saleh
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh; (S.B.); (S.A.); (M.A.M.); (M.R.H.); (M.S.S.S.); (G.K.P.); (M.A.S.)
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Momammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia; (M.M.G.); (M.A.)
| | - Maha Alruwaily
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia; (M.M.G.); (M.A.)
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea;
| |
Collapse
|
50
|
Wang Y, Zhao G, Fang Z, Pan H, Zhao Y, Wang Y, Zhou X, Wang X, Luo T, Zhang Y, Wang Z, Chen Q, Dong L, Huang Y, Zhou Q, Xia L, Li B, Guo J, Xia K, Tang B, Li J. Genetic landscape of human mitochondrial genome using whole genome sequencing. Hum Mol Genet 2021; 31:1747-1761. [PMID: 34897451 DOI: 10.1093/hmg/ddab358] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/26/2021] [Accepted: 12/07/2021] [Indexed: 11/12/2022] Open
Abstract
Increasing evidences suggest that mitochondrial dysfunction is implicated in diseases and aging, and whole-genome sequencing (WGS) is the most unbiased method in analyzing the mitochondrial genome (mtDNA). However, the genetic landscape of mtDNA in the Chinese population has not been fully examined. Here, we described the genetic landscape of mtDNA using WGS data from Chinese individuals (n = 3241). We identified 3892 mtDNA variants, of which 3349 (86%) were rare variants. Interestingly, we observed a trend toward extreme heterogeneity of mtDNA variants. Our study observed a distinct purifying selection on mtDNA, which inhibits the accumulation of harmful heteroplasmies at the individual level: (1) mitochondrial dN/dS ratios were much less than 1; (2) the dN/dS ratio of heteroplasmies was higher than homoplasmies; (3) heteroplasmies had more indels and predicted deleterious variants than homoplasmies. Furthermore, we found that haplogroup M (20.27%) and D (20.15%) had the highest frequencies in the Chinese population, followed by B (18.51%) and F (16.45%). The number of variants per individual differed across haplogroup groups, with a higher number of homoplasmies for the M lineage. Meanwhile, mtDNA copy number was negatively correlated with age but positively correlated with the female sex. Finally, we developed an mtDNA variation database of Chinese populations called MTCards (http://genemed.tech/mtcards/) to facilitate the query of mtDNA variants in this study. In summary, these findings contribute to different aspects of understanding mtDNA, providing a better understanding of the genetic basis of mitochondrial-related diseases.
Collapse
Affiliation(s)
- Yijing Wang
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China.,Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410008, China
| | - Guihu Zhao
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China.,Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Zhenghuan Fang
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China.,Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410008, China
| | - Hongxu Pan
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China.,Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yuwen Zhao
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China.,Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yige Wang
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China.,Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xun Zhou
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China.,Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xiaomeng Wang
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China.,Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410008, China
| | - Tengfei Luo
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China.,Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410008, China
| | - Yi Zhang
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China.,Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Zheng Wang
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China.,Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Qian Chen
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China.,Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Lijie Dong
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China.,Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410008, China
| | - Yuanfeng Huang
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China.,Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Qiao Zhou
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China.,Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Lu Xia
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410008, China
| | - Bin Li
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China.,Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jifeng Guo
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China.,Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Kun Xia
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410008, China
| | - Beisha Tang
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China.,Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jinchen Li
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China.,Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410008, China.,Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|