1
|
Ferhat M, Mayer J, Costa LH, Prendecki M, Tarazona AAP, Schinagl A, Kerschbaumer RJ, Tam FWK, Landlinger C, Thiele M. Targeting of oxidized Macrophage Migration Inhibitory Factor (oxMIF) with antibody ON104 attenuates the severity of glomerulonephritis. PLoS One 2024; 19:e0311837. [PMID: 39374239 PMCID: PMC11458038 DOI: 10.1371/journal.pone.0311837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/20/2024] [Indexed: 10/09/2024] Open
Abstract
The oxidized form of Macrophage Migration Inhibitory Factor (oxMIF) has been identified as the disease-related isoform of MIF, exerting pathological functions in inflamed tissue. In this study, we aimed to explore the in vivo effects of the neutralizing anti-oxMIF antibody ON104 in a rat model of crescentic glomerulonephritis (CGN), to better understand its disease modifying activities. WKY rats received a single intravenous injection of a rabbit nephrotoxic serum (NTS), targeting rat glomerular basement membrane to induce CGN. On day 4 and day 6, ON104 was given intraperitoneally (i.p.) and on day 8 urine, blood and kidney tissue were collected. ON104 substantially attenuated the severity of CGN demonstrated by reduced proteinuria, hematuria, as well as lower levels of kidney injury molecule (KIM)-1. ON104 treatment preserved the glomerular morphology and suppressed crescent formation, a hallmark of the disease. On the cellular level, oxMIF neutralization by ON104 strongly reduced the number of macrophages and neutrophils within the inflamed kidneys. In vitro, we identified human neutrophils, but not monocytes, as main producers of oxMIF among total peripheral cells. The present study demonstrates that oxMIF is a pertinent therapeutic target in a model of CGN which mechanistically resembles human immune mediated CGN. In this model, neutralization of oxMIF by ON104 leads to an improvement in both urinary abnormalities and histological pathological characteristics of the disease. ON104, thus has the potential to become a novel disease-modifying drug for the treatment of glomerulonephritis and other inflammatory kidney diseases.
Collapse
Affiliation(s)
- Maroua Ferhat
- OncoOne Research & Development GmbH, Vienna, Austria
| | - Julia Mayer
- OncoOne Research & Development GmbH, Vienna, Austria
| | - Lyndon H. Costa
- Department of Immunology and Inflammation, Centre for Inflammatory Disease, Hammersmith Hospital, Imperial College London (ICL), London, United Kingdom
| | - Maria Prendecki
- Department of Immunology and Inflammation, Centre for Inflammatory Disease, Hammersmith Hospital, Imperial College London (ICL), London, United Kingdom
| | | | | | | | - Frederick W. K. Tam
- Department of Immunology and Inflammation, Centre for Inflammatory Disease, Hammersmith Hospital, Imperial College London (ICL), London, United Kingdom
| | | | | |
Collapse
|
2
|
Wang H, Rouhi N, Slotabec LA, Seale BC, Wen C, Filho F, Adenawoola MI, Li J. Myeloid Cells in Myocardial Ischemic Injury: The Role of the Macrophage Migration Inhibitory Factor. Life (Basel) 2024; 14:981. [PMID: 39202723 PMCID: PMC11355293 DOI: 10.3390/life14080981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/23/2024] [Accepted: 07/26/2024] [Indexed: 09/03/2024] Open
Abstract
Ischemic heart disease, manifesting as myocardial infarction (MI), remains the leading cause of death in the western world. Both ischemia and reperfusion (I/R) cause myocardial injury and result in cardiac inflammatory responses. This sterile inflammation in the myocardium consists of multiple phases, involving cell death, tissue remodeling, healing, and scar formation, modulated by various cytokines, including the macrophage migration inhibitory factor (MIF). Meanwhile, different immune cells participate in these phases, with myeloid cells acting as first responders. They migrate to the injured myocardium and regulate the initial phase of inflammation. The MIF modulates the acute inflammatory response by affecting the metabolic profile and activity of myeloid cells. This review summarizes the role of the MIF in regulating myeloid cell subsets in MI and I/R injury and discusses emerging evidence of metabolism-directed cellular inflammatory responses. Based on the multifaceted role of the MIF affecting myeloid cells in MI or I/R, the MIF can be a therapeutic target to achieve metabolic balance under pathology and alleviate inflammation in the heart.
Collapse
Affiliation(s)
- Hao Wang
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, MS 39216, USA; (H.W.); (N.R.); (L.A.S.); (B.C.S.); (C.W.); (F.F.); (M.I.A.)
| | - Nadiyeh Rouhi
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, MS 39216, USA; (H.W.); (N.R.); (L.A.S.); (B.C.S.); (C.W.); (F.F.); (M.I.A.)
| | - Lily A. Slotabec
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, MS 39216, USA; (H.W.); (N.R.); (L.A.S.); (B.C.S.); (C.W.); (F.F.); (M.I.A.)
- G.V. (Sonny) Montgomery VA Medical Center, Jackson, MS 39216, USA
| | - Blaise C. Seale
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, MS 39216, USA; (H.W.); (N.R.); (L.A.S.); (B.C.S.); (C.W.); (F.F.); (M.I.A.)
| | - Changhong Wen
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, MS 39216, USA; (H.W.); (N.R.); (L.A.S.); (B.C.S.); (C.W.); (F.F.); (M.I.A.)
| | - Fernanda Filho
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, MS 39216, USA; (H.W.); (N.R.); (L.A.S.); (B.C.S.); (C.W.); (F.F.); (M.I.A.)
| | - Michael I. Adenawoola
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, MS 39216, USA; (H.W.); (N.R.); (L.A.S.); (B.C.S.); (C.W.); (F.F.); (M.I.A.)
| | - Ji Li
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, MS 39216, USA; (H.W.); (N.R.); (L.A.S.); (B.C.S.); (C.W.); (F.F.); (M.I.A.)
- G.V. (Sonny) Montgomery VA Medical Center, Jackson, MS 39216, USA
| |
Collapse
|
3
|
Chien Y, Huang XY, Yarmishyn AA, Chien CS, Liu YH, Hsiao YJ, Lin YY, Lai WY, Huang SC, Lee MS, Chiou SH, Yang YP, Chiou GY. Paracrinal regulation of neutrophil functions by coronaviral infection in iPSC-derived alveolar type II epithelial cells. Virus Res 2024; 345:199391. [PMID: 38754785 PMCID: PMC11127603 DOI: 10.1016/j.virusres.2024.199391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 04/09/2024] [Accepted: 05/05/2024] [Indexed: 05/18/2024]
Abstract
Coronaviruses (CoVs) are enveloped single-stranded RNA viruses that predominantly attack the human respiratory system. In recent decades, several deadly human CoVs, including SARS-CoV, SARS-CoV-2, and MERS-CoV, have brought great impact on public health and economics. However, their high infectivity and the demand for high biosafety level facilities restrict the pathogenesis research of CoV infection. Exacerbated inflammatory cell infiltration is associated with poor prognosis in CoV-associated diseases. In this study, we used human CoV 229E (HCoV-229E), a CoV associated with relatively fewer biohazards, to investigate the pathogenesis of CoV infection and the regulation of neutrophil functions by CoV-infected lung cells. Induced pluripotent stem cell (iPSC)-derived alveolar epithelial type II cells (iAECIIs) exhibiting specific biomarkers and phenotypes were employed as an experimental model for CoV infection. After infection, the detection of dsRNA, S, and N proteins validated the infection of iAECIIs with HCoV-229E. The culture medium conditioned by the infected iAECIIs promoted the migration of neutrophils as well as their adhesion to the infected iAECIIs. Cytokine array revealed the elevated secretion of cytokines associated with chemotaxis and adhesion into the conditioned media from the infected iAECIIs. The importance of IL-8 secretion and ICAM-1 expression for neutrophil migration and adhesion, respectively, was demonstrated by using neutralizing antibodies. Moreover, next-generation sequencing analysis of the transcriptome revealed the upregulation of genes associated with cytokine signaling. To summarize, we established an in vitro model of CoV infection that can be applied for the study of the immune system perturbations during severe coronaviral disease.
Collapse
Affiliation(s)
- Yueh Chien
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Physiology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Xuan-Yang Huang
- Institute of Anatomy, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | | | - Chian-Shiu Chien
- Institute of Physiology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yu-Hao Liu
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yu-Jer Hsiao
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Ying Lin
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Wei-Yi Lai
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ssu-Cheng Huang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Meng-Shiue Lee
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan; Center for Intelligent Drug Systems and Smart Bio-devices (IDS(2)B), National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Shih-Hwa Chiou
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 11217, Taiwan; Center for Intelligent Drug Systems and Smart Bio-devices (IDS(2)B), National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Yi-Ping Yang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; School of Pharmaceutical Sciences, Institute of Food Safety and Health Risk Assessment, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Guang-Yuh Chiou
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan; Center for Intelligent Drug Systems and Smart Bio-devices (IDS(2)B), National Yang Ming Chiao Tung University, Hsinchu, Taiwan.
| |
Collapse
|
4
|
Elkhamary A, Gerner I, Bileck A, Oreff GL, Gerner C, Jenner F. Comparative proteomic profiling of the ovine and human PBMC inflammatory response. Sci Rep 2024; 14:14939. [PMID: 38942936 PMCID: PMC11213919 DOI: 10.1038/s41598-024-66059-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 06/26/2024] [Indexed: 06/30/2024] Open
Abstract
Understanding the cellular and molecular mechanisms of inflammation requires robust animal models. Sheep are commonly used in immune-related studies, yet the validity of sheep as animal models for immune and inflammatory diseases remains to be established. This cross-species comparative study analyzed the in vitro inflammatory response of ovine (oPBMCs) and human PBMCs (hPBMCs) using mass spectrometry, profiling the proteome of the secretome and whole cell lysate. Of the entire cell lysate proteome (oPBMCs: 4217, hPBMCs: 4574 proteins) 47.8% and in the secretome proteome (oPBMCs: 1913, hPBMCs: 1375 proteins) 32.8% were orthologous between species, among them 32 orthologous CD antigens, indicating the presence of six immune cell subsets. Following inflammatory stimulation, 71 proteins in oPBMCs and 176 in hPBMCs showed differential abundance, with only 7 overlapping. Network and Gene Ontology analyses identified 16 shared inflammatory-related terms and 17 canonical pathways with similar activation/inhibition patterns in both species, demonstrating significant conservation in specific immune and inflammatory responses. However, ovine PMBCs also contained a unique WC1+γδ T-cell subset, not detected in hPBMCs. Furthermore, differences in the activation/inhibition trends of seven canonical pathways and the sets of DAPs between sheep and humans, emphasize the need to consider interspecies differences in translational studies and inflammation research.
Collapse
Affiliation(s)
- A Elkhamary
- Department for Companion Animals and Horses, Veterm, University Equine Hospital, Vetmeduni Vienna, Vienna, Austria
- Department for Surgery, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - I Gerner
- Department for Companion Animals and Horses, Veterm, University Equine Hospital, Vetmeduni Vienna, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - A Bileck
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - G L Oreff
- Department for Companion Animals and Horses, Veterm, University Equine Hospital, Vetmeduni Vienna, Vienna, Austria
| | - C Gerner
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - F Jenner
- Department for Companion Animals and Horses, Veterm, University Equine Hospital, Vetmeduni Vienna, Vienna, Austria.
- Austrian Cluster for Tissue Regeneration, Vienna, Austria.
| |
Collapse
|
5
|
Fey RM, Nichols RA, Tran TT, Vandenbark AA, Kulkarni RP. MIF and CD74 as Emerging Biomarkers for Immune Checkpoint Blockade Therapy. Cancers (Basel) 2024; 16:1773. [PMID: 38730725 PMCID: PMC11082995 DOI: 10.3390/cancers16091773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/18/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Immune checkpoint blockade (ICB) therapy is used to treat a wide range of cancers; however, some patients are at risk of developing treatment resistance and/or immune-related adverse events (irAEs). Thus, there is a great need for the identification of reliable predictive biomarkers for response and toxicity. The cytokine MIF (macrophage migration inhibitory factor) and its cognate receptor CD74 are intimately connected with cancer progression and have previously been proposed as prognostic biomarkers for patient outcome in various cancers, including solid tumors such as malignant melanoma. Here, we assess their potential as predictive biomarkers for response to ICB therapy and irAE development. We provide a brief overview of their function and roles in the context of cancer and autoimmune disease. We also review the evidence showing that MIF and CD74 may be of use as predictive biomarkers of patient response to ICB therapy and irAE development. We also highlight that careful consideration is required when assessing the potential of serum MIF levels as a biomarker due to its reported circadian expression in human plasma. Finally, we suggest future directions for the establishment of MIF and CD74 as predictive biomarkers for ICB therapy and irAE development to guide further research in this field.
Collapse
Affiliation(s)
- Rosalyn M. Fey
- Department of Dermatology, Oregon Health & Science University, Portland, OR 97239, USA (R.A.N.)
| | - Rebecca A. Nichols
- Department of Dermatology, Oregon Health & Science University, Portland, OR 97239, USA (R.A.N.)
| | - Thuy T. Tran
- Yale Cancer Center, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Arthur A. Vandenbark
- Neuroimmunology Research, R&D-31, VA Portland Health Care System, Portland, OR 97239, USA
- Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Rajan P. Kulkarni
- Department of Dermatology, Oregon Health & Science University, Portland, OR 97239, USA (R.A.N.)
- Cancer Early Detection Advanced Research Center (CEDAR), Portland, OR 97239, USA
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97239, USA
- Operative Care Division, U.S. Department of Veterans Affairs Portland Health Care System, Portland, OR 97239, USA
| |
Collapse
|
6
|
Chang CC, Chang CB, Chen CJ, Tung CL, Hung CF, Lai WH, Shen CH, Tsai CY, Lai YY, Lee MY, Wu SF, Chen PC. Increased Apolipoprotein A1 Expression Correlates with Tumor-Associated Neutrophils and T Lymphocytes in Upper Tract Urothelial Carcinoma. Curr Issues Mol Biol 2024; 46:2155-2165. [PMID: 38534755 DOI: 10.3390/cimb46030139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/01/2024] [Accepted: 03/05/2024] [Indexed: 03/28/2024] Open
Abstract
An increased neutrophil-to-lymphocyte ratio (NLR) is a poor prognostic biomarker in various types of cancer, because it reflects the inhibition of lymphocytes in the circulation and tumors. In urologic cancers, upper tract urothelial carcinoma (UTUC) is known for its aggressive features and lack of T cell infiltration; however, the association between neutrophils and suppressed T lymphocytes in UTUC is largely unknown. In this study, we examined the relationship between UTUC-derived factors and tumor-associated neutrophils or T lymphocytes. The culture supernatant from UTUC tumor tissue modulated neutrophils to inhibit T cell proliferation. Among the dominant factors secreted by UTUC tumor tissue, apolipoprotein A1 (Apo-A1) exhibited a positive correlation with NLR. Moreover, tumor-infiltrating neutrophils were inversely correlated with tumor-infiltrating T cells. Elevated Apo-A1 levels in UTUC were also inversely associated with the population of tumor-infiltrating T cells. Our findings indicate that elevated Apo-A1 expression in UTUC correlates with tumor-associated neutrophils and T cells. This suggests a potential immunomodulatory effect on neutrophils and T cells within the tumor microenvironment, which may represent therapeutic targets for UTUC treatment.
Collapse
Affiliation(s)
- Chih-Chia Chang
- Department of Radiation Therapy and Oncology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 600566, Taiwan
| | - Chia-Bin Chang
- Department of Urology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 600566, Taiwan
| | - Chiung-Ju Chen
- Department of Laboratory Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 600566, Taiwan
- Department of Human Biobank, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 600566, Taiwan
| | - Chun-Liang Tung
- Department of Pathology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 600566, Taiwan
| | - Chi-Feng Hung
- Department of Urology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 600566, Taiwan
| | - Wei-Hong Lai
- Department of Urology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 600566, Taiwan
| | - Cheng-Huang Shen
- Department of Urology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 600566, Taiwan
- Department of Biomedical Sciences, Institute of Molecular Biology, National Chung Cheng University, Chiayi 621301, Taiwan
| | - Chang-Yu Tsai
- Department of Urology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 600566, Taiwan
| | - Ya-Yan Lai
- Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 600566, Taiwan
| | - Ming-Yang Lee
- Department of Hematology and Oncology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 600566, Taiwan
| | - Shu-Fen Wu
- Department of Biomedical Sciences, Epigenomics and Human Disease Research Center, National Chung Cheng University, Minhsiung, Chiayi 621301, Taiwan
| | - Pi-Che Chen
- Department of Urology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 600566, Taiwan
| |
Collapse
|
7
|
Spiller L, Manjula R, Leissing F, Basquin J, Bourilhon P, Sinitski D, Brandhofer M, Levecque S, Gerra S, Sabelleck B, Zhang L, Feederle R, Flatley A, Hoffmann A, Panstruga R, Bernhagen J, Lolis E. Plant MDL proteins synergize with the cytokine MIF at CXCR2 and CXCR4 receptors in human cells. Sci Signal 2023; 16:eadg2621. [PMID: 37988455 DOI: 10.1126/scisignal.adg2621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 10/27/2023] [Indexed: 11/23/2023]
Abstract
Mammalian macrophage migration inhibitory factor (MIF) and its paralog, D-dopachrome tautomerase, are multifunctional inflammatory cytokines. Plants have orthologous MIF and D-dopachrome tautomerase-like (MDL) proteins that mimic some of the effects of MIF on immune cells in vitro. We explored the structural and functional similarities between the three Arabidopsis thaliana MDLs and MIF. X-ray crystallography of the MDLs revealed high structural similarity between MDL and MIF homotrimers and suggested a potential explanation for the lack of tautomerase activity in the MDLs. MDL1 and MDL2 interacted with each other and with MIF in vitro, in yeast, and in plant leaves and formed hetero-oligomeric complexes with MIF in vitro. The MDLs stimulated signaling through the MIF receptors CXCR2 or CXCR4 and enhanced the responses to MIF in a yeast reporter system, in human neutrophils, and in human lung epithelial cells. Pharmacological inhibitors that disrupted MIF activity or prevented the formation of MIF-MDL hetero-oligomers blocked the observed synergism. These findings demonstrate that MDLs can enhance cellular responses to MIF, which may have functional implications in tissues exposed to MDLs from the diet or environment.
Collapse
Affiliation(s)
- Lukas Spiller
- Department of Pharmacology, School of Medicine, Yale University, New Haven, CT 06510, USA
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), Ludwig-Maximilians-Universität (LMU) München, LMU University Hospital, 81377 Munich, Germany
| | - Ramu Manjula
- Department of Pharmacology, School of Medicine, Yale University, New Haven, CT 06510, USA
| | - Franz Leissing
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, 52056 Aachen, Germany
| | - Jerome Basquin
- Department of Structural Cell Biology and Crystallization Facility, Max-Planck-Institute for Biochemistry, 82152 Martinsried, Germany
| | - Priscila Bourilhon
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), Ludwig-Maximilians-Universität (LMU) München, LMU University Hospital, 81377 Munich, Germany
| | - Dzmitry Sinitski
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), Ludwig-Maximilians-Universität (LMU) München, LMU University Hospital, 81377 Munich, Germany
| | - Markus Brandhofer
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), Ludwig-Maximilians-Universität (LMU) München, LMU University Hospital, 81377 Munich, Germany
| | - Sophie Levecque
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, 52056 Aachen, Germany
| | - Simona Gerra
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), Ludwig-Maximilians-Universität (LMU) München, LMU University Hospital, 81377 Munich, Germany
| | - Björn Sabelleck
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, 52056 Aachen, Germany
| | - Lin Zhang
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), Ludwig-Maximilians-Universität (LMU) München, LMU University Hospital, 81377 Munich, Germany
- Department of Anesthesiology, LMU University Hospital, 81377 Munich, Germany
| | - Regina Feederle
- Monoclonal Antibody Core Facility, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
| | - Andrew Flatley
- Monoclonal Antibody Core Facility, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany
| | - Adrian Hoffmann
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), Ludwig-Maximilians-Universität (LMU) München, LMU University Hospital, 81377 Munich, Germany
- Department of Anesthesiology, LMU University Hospital, 81377 Munich, Germany
| | - Ralph Panstruga
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, 52056 Aachen, Germany
| | - Jürgen Bernhagen
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), Ludwig-Maximilians-Universität (LMU) München, LMU University Hospital, 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
| | - Elias Lolis
- Department of Pharmacology, School of Medicine, Yale University, New Haven, CT 06510, USA
| |
Collapse
|
8
|
Zhang Z, Jin L, Liu L, Zhou M, Zhang X, Zhang L. The intricate relationship between autoimmunity disease and neutrophils death patterns: a love-hate story. Apoptosis 2023; 28:1259-1284. [PMID: 37486407 DOI: 10.1007/s10495-023-01874-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2023] [Indexed: 07/25/2023]
Abstract
Autoimmune diseases are pathological conditions that result from the misidentification of self-antigens in immune system, leading to host tissue damage and destruction. These diseases can affect different organs and systems, including the blood, joints, skin, and muscles. Despite the significant progress made in comprehending the underlying pathogenesis, the complete mechanism of autoimmune disease is still not entirely understood. In autoimmune diseases, the innate immunocytes are not functioning properly: they are either abnormally activated or physically disabled. As a vital member of innate immunocyte, neutrophils and their modes of death are influenced by the microenvironment of different autoimmune diseases due to their short lifespan and diverse death modes. Related to neutrophil death pathways, apoptosis is the most frequent cell death form of neutrophil non-lytic morphology, delayed or aberrant apoptosis may contribute to the development anti-neutrophil cytoplasmic antibodies (ANCA)-associated vasculitis (AAV). In addition, NETosis, necroptosis and pyroptosis which are parts of lytic morphology exacerbate disease progression through various mechanisms in autoimmune diseases. This review aims to summarize recent advancements in understanding neutrophil death modes in various autoimmune diseases and provide insights into the development of novel therapeutic approaches for autoimmune diseases.
Collapse
Affiliation(s)
- Ziwei Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230032, China
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China
- Anti-Inflammatory Immune Drugs Collaborative Innovation Center, Hefei, Anhui Province, China
| | - Lin Jin
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230032, China
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China
- Anti-Inflammatory Immune Drugs Collaborative Innovation Center, Hefei, Anhui Province, China
| | - Lianghu Liu
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230032, China
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China
- Anti-Inflammatory Immune Drugs Collaborative Innovation Center, Hefei, Anhui Province, China
| | - Mengqi Zhou
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230032, China
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China
- Anti-Inflammatory Immune Drugs Collaborative Innovation Center, Hefei, Anhui Province, China
| | - Xianzheng Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230032, China.
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China.
- Anti-Inflammatory Immune Drugs Collaborative Innovation Center, Hefei, Anhui Province, China.
| | - Lingling Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230032, China.
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China.
- Anti-Inflammatory Immune Drugs Collaborative Innovation Center, Hefei, Anhui Province, China.
| |
Collapse
|
9
|
Ramon-Gil E, Geh D, Leslie J. Harnessing neutrophil plasticity for HCC immunotherapy. Essays Biochem 2023; 67:941-955. [PMID: 37534829 PMCID: PMC10539947 DOI: 10.1042/ebc20220245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 08/04/2023]
Abstract
Neutrophils, until recently, have typically been considered a homogeneous population of terminally differentiated cells with highly conserved functions in homeostasis and disease. In hepatocellular carcinoma (HCC), tumour-associated neutrophils (TANs) are predominantly thought to play a pro-tumour role, promoting all aspects of HCC development and progression. Recent developments in single-cell technologies are now providing a greater insight and appreciation for the level of cellular heterogeneity displayed by TANs in the HCC tumour microenvironment, which we have been able to correlate with other TAN signatures in datasets for gastric cancer, pancreatic ductal adenocarcinoma (PDAC) and non-small cell lung cancer (NSCLC). TANs with classical pro-tumour signatures have been identified as well as neutrophils primed for anti-tumour functions that, if activated and expanded, could become a potential therapeutic approach. In recent years, therapeutic targeting of neutrophils in HCC has been typically focused on impairing the recruitment of pro-tumour neutrophils. This has now been coupled with immune checkpoint blockade with the aim to stimulate lymphocyte-mediated anti-tumour immunity whilst impairing neutrophil-mediated immunosuppression. As a result, neutrophil-directed therapies are now entering clinical trials for HCC. Pharmacological targeting along with ex vivo reprogramming of neutrophils in HCC patients is, however, in its infancy and a greater understanding of neutrophil heterogeneity, with a view to exploit it, may pave the way for improved immunotherapy outcomes. This review will cover the recent developments in our understanding of neutrophil heterogeneity in HCC and how neutrophils can be harnessed to improve HCC immunotherapy.
Collapse
Affiliation(s)
- Erik Ramon-Gil
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, U.K
- The Newcastle University Centre for Cancer, Newcastle University, Newcastle Upon Tyne, U.K
| | - Daniel Geh
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, U.K
- The Newcastle University Centre for Cancer, Newcastle University, Newcastle Upon Tyne, U.K
| | - Jack Leslie
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, U.K
- The Newcastle University Centre for Cancer, Newcastle University, Newcastle Upon Tyne, U.K
| |
Collapse
|
10
|
Vámos E, Kálmán N, Sturm EM, Nayak BB, Teppan J, Vántus VB, Kovács D, Makszin L, Loránd T, Gallyas F, Radnai B. Highly Selective MIF Ketonase Inhibitor KRP-6 Diminishes M1 Macrophage Polarization and Metabolic Reprogramming. Antioxidants (Basel) 2023; 12:1790. [PMID: 37891870 PMCID: PMC10604361 DOI: 10.3390/antiox12101790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/14/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
Macrophage polarization is highly involved in autoimmunity. M1 polarized macrophages drive inflammation and undergo metabolic reprogramming, involving downregulation of mitochondrial energy production and acceleration of glycolysis. Macrophage migration inhibitory factor (MIF), an enigmatic tautomerase (ketonase and enolase), was discovered to regulate M1 polarization. Here, we reveal that KRP-6, a potent and highly selective MIF ketonase inhibitor, reduces MIF-induced human blood eosinophil and neutrophil migration similarly to ISO-1, the most investigated tautomerase inhibitor. We equally discovered that KRP-6 prevents M1 macrophage polarization and reduces ROS production in IFN-γ-treated cells. During metabolic reprogramming, KRP-6 improved mitochondrial bioenergetics by ameliorating basal respiration, ATP production, coupling efficiency and maximal respiration in LPS+IFN-γ-treated cells. KRP-6 also reduced glycolytic flux in M1 macrophages. Moreover, the selective MIF ketonase inhibitor attenuated LPS+IFN-γ-induced downregulation of PARP-1 and PARP-2 mRNA expression. We conclude that KRP-6 represents a promising novel therapeutic compound for autoimmune diseases, which strongly involves M1 macrophage polarization.
Collapse
Affiliation(s)
- Eszter Vámos
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 12 Szigeti Str., 7624 Pécs, Hungary; (E.V.); (N.K.); (V.B.V.); (D.K.); (T.L.)
| | - Nikoletta Kálmán
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 12 Szigeti Str., 7624 Pécs, Hungary; (E.V.); (N.K.); (V.B.V.); (D.K.); (T.L.)
| | - Eva Maria Sturm
- Otto-Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria; (E.M.S.); (B.B.N.); (J.T.)
| | - Barsha Baisakhi Nayak
- Otto-Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria; (E.M.S.); (B.B.N.); (J.T.)
| | - Julia Teppan
- Otto-Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria; (E.M.S.); (B.B.N.); (J.T.)
| | - Viola Bagóné Vántus
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 12 Szigeti Str., 7624 Pécs, Hungary; (E.V.); (N.K.); (V.B.V.); (D.K.); (T.L.)
| | - Dominika Kovács
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 12 Szigeti Str., 7624 Pécs, Hungary; (E.V.); (N.K.); (V.B.V.); (D.K.); (T.L.)
| | - Lilla Makszin
- Institute of Bioanalysis, Medical School, Szentágothai Research Center, University of Pécs, 7622 Pécs, Hungary;
| | - Tamás Loránd
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 12 Szigeti Str., 7624 Pécs, Hungary; (E.V.); (N.K.); (V.B.V.); (D.K.); (T.L.)
| | - Ferenc Gallyas
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 12 Szigeti Str., 7624 Pécs, Hungary; (E.V.); (N.K.); (V.B.V.); (D.K.); (T.L.)
| | - Balázs Radnai
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 12 Szigeti Str., 7624 Pécs, Hungary; (E.V.); (N.K.); (V.B.V.); (D.K.); (T.L.)
| |
Collapse
|
11
|
Li W, Xie J, Yang L, Yang Y, Yang L, Li L. 15-deoxy-Δ 12,14-prostaglandin J 2 relieved acute liver injury by inhibiting macrophage migration inhibitory factor expression via PPARγ in hepatocyte. Int Immunopharmacol 2023; 121:110491. [PMID: 37329807 DOI: 10.1016/j.intimp.2023.110491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/31/2023] [Accepted: 06/09/2023] [Indexed: 06/19/2023]
Abstract
15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) exhibited potential to alleviate liver inflammation in chronic injury but was less studied in acute injury. Acute liver injury was associated with elevated macrophage migration inhibitory factor (MIF) levels in damaged hepatocytes. This study aimed to investigate the regulatory mechanism of hepatocyte-derived MIF by 15d-PGJ2 and its subsequent impact on acute liver injury. In vivo, mouse models were established by carbon tetrachloride (CCl4) intraperitoneal injection, with or without 15d-PGJ2 administration. 15d-PGJ2 treatment reduced the necrotic areas induced by CCl4. In the same mouse model constructed using enhanced green fluorescent protein (EGFP)-labeled bone marrow (BM) chimeric mice, 15d-PGJ2 reduced CCl4 induced BM-derived macrophage (BMM, EGFP+F4/80+) infiltration and inflammatory cytokine expression. Additionally, 15d-PGJ2 down-regulated liver and serum MIF levels; liver MIF expression was positively correlated with BMM percentage and inflammatory cytokine expression. In vitro, 15d-PGJ2 inhibited Mif expression in hepatocytes. In primary hepatocytes, reactive oxygen species inhibitor (NAC) showed no effect on MIF inhibition by 15d-PGJ2; PPARγ inhibitor (GW9662) abolished 15d-PGJ2 suppressed MIF expression and antagonists (troglitazone, ciglitazone) mimicked its function. In Pparg silenced AML12 cells, the suppression of MIF by 15d-PGJ2 was weakened; 15d-PGJ2 promoted PPARγ activation in AML 12 cells and primary hepatocytes. Furthermore, the conditioned medium of recombinant MIF- and lipopolysaccharide-treated AML12 respectively promoted BMM migration and inflammatory cytokine expression. Conditioned medium of 15d-PGJ2- or siMif-treated injured AML12 suppressed these effects. Collectively, 15d-PGJ2 activated PPARγ to suppress MIF expression in injured hepatocytes, reducing BMM infiltration and pro-inflammatory activation, ultimately alleviating acute liver injury.
Collapse
Affiliation(s)
- Weiyang Li
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing 100069, China
| | - Jieshi Xie
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing 100069, China
| | - Le Yang
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing 100069, China
| | - Yuanru Yang
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing 100069, China
| | - Lin Yang
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing 100069, China
| | - Liying Li
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
12
|
Huth S, Huth L, Heise R, Marquardt Y, Lopopolo L, Piecychna M, Boor P, Fingerle-Rowson G, Kapurniotu A, Yazdi AS, Bucala R, Bernhagen J, Baron JM. Macrophage migration inhibitory factor (MIF) and its homolog D-dopachrome tautomerase (D-DT) are significant promotors of UVB- but not chemically induced non-melanoma skin cancer. Sci Rep 2023; 13:11611. [PMID: 37464010 PMCID: PMC10354066 DOI: 10.1038/s41598-023-38748-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/13/2023] [Indexed: 07/20/2023] Open
Abstract
Non-melanoma skin cancer (NMSC) is the most common cancer in Caucasians worldwide. We investigated the pathophysiological role of MIF and its homolog D-DT in UVB- and chemically induced NMSC using Mif-/-, D-dt-/- and Mif-/-/D-dt-/- mice on a hairless SKH1 background. Knockout of both cytokines showed similar attenuating effects on inflammation after acute UVB irradiation and tumor formation during chronic UVB irradiation, without additive protective effects noted in double knockout mice, indicating that both cytokines activate a similar signaling threshold. In contrast, genetic deletion of Mif and D-dt had no major effects on chemically induced skin tumors. To get insight into the contributing mechanisms, we used an in vitro 3D skin model with incorporated macrophages. Application of recombinant MIF and D-DT led to an accumulation of macrophages within the epidermal part that could be reversed by selective inhibitors of MIF and D-DT pathways. In summary, our data indicate that MIF and D-DT contribute to the development and progression of UVB- but not chemically induced NMSC, a role at least partially accounted by effects of both cytokines on epidermal macrophage accumulation. These data highlight that MIF and D-DT are both potential therapeutic targets for the prevention of photocarcinogenesis but not chemical carcinogenesis.
Collapse
Affiliation(s)
- Sebastian Huth
- Department of Dermatology and Allergology, Medical Faculty, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany.
| | - Laura Huth
- Department of Dermatology and Allergology, Medical Faculty, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Ruth Heise
- Department of Dermatology and Allergology, Medical Faculty, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Yvonne Marquardt
- Department of Dermatology and Allergology, Medical Faculty, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Linda Lopopolo
- Department of Dermatology and Allergology, Medical Faculty, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Marta Piecychna
- Department of Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Peter Boor
- Institute of Pathology and Department of Nephrology and Immunology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Günter Fingerle-Rowson
- Department I of Internal Medicine, Center of Integrated Oncology Köln Bonn, University Hospital of Cologne, Cologne, Germany
| | - Aphrodite Kapurniotu
- Division of Peptide Biochemistry, School of Life Sciences, Technical University of Munich (TUM), Freising, Germany
| | - Amir S Yazdi
- Department of Dermatology and Allergology, Medical Faculty, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Richard Bucala
- Department of Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Jürgen Bernhagen
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Jens Malte Baron
- Department of Dermatology and Allergology, Medical Faculty, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
| |
Collapse
|
13
|
Hallmarks of Cancer Affected by the MIF Cytokine Family. Cancers (Basel) 2023; 15:cancers15020395. [PMID: 36672343 PMCID: PMC9856758 DOI: 10.3390/cancers15020395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
New diagnostic methods and treatments have significantly decreased the mortality rates of cancer patients, but further improvements are warranted based on the identification of novel tumor-promoting molecules that can serve as therapeutic targets. The macrophage migration inhibitory factor (MIF) family of cytokines, comprising MIF and DDT (also known as MIF2), are overexpressed in almost all cancer types, and their high expressions are related to a worse prognosis for the patients. MIF is involved in 9 of the 10 hallmarks of cancer, and its inhibition by antibodies, nanobodies, or small synthetic molecules has shown promising results. Even though DDT is also proposed to be involved in several of the hallmarks of cancer, the available information about its pro-tumoral role and mechanism of action is more limited. Here, we provide an overview of the involvement of both MIF and DDT in cancer, and we propose that blocking both cytokines is needed to obtain the maximum anti-tumor response.
Collapse
|
14
|
Zan C, Yang B, Brandhofer M, El Bounkari O, Bernhagen J. D-dopachrome tautomerase in cardiovascular and inflammatory diseases-A new kid on the block or just another MIF? FASEB J 2022; 36:e22601. [PMID: 36269019 DOI: 10.1096/fj.202201213r] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/22/2022] [Accepted: 09/27/2022] [Indexed: 11/11/2022]
Abstract
Macrophage migration inhibitory factor (MIF) as well as its more recently described structural homolog D-dopachrome tautomerase (D-DT), now also termed MIF-2, are atypical cytokines and chemokines with key roles in host immunity. They also have an important pathogenic role in acute and chronic inflammatory conditions, cardiovascular diseases, lung diseases, adipose tissue inflammation, and cancer. Although our mechanistic understanding of MIF-2 is relatively limited compared to the extensive body of evidence available for MIF, emerging data suggests that MIF-2 is not only a functional phenocopy of MIF, but may have differential or even oppositional activities, depending on the disease and context. In this review, we summarize and discuss the similarities and differences between MIF and MIF-2, with a focus on their structures, receptors, signaling pathways, and their roles in diseases. While mainly covering the roles of the MIF homologs in cardiovascular, inflammatory, autoimmune, and metabolic diseases, we also discuss their involvement in cancer, sepsis, and chronic obstructive lung disease (COPD). A particular emphasis is laid upon potential mechanistic explanations for synergistic or cooperative activities of the MIF homologs in cancer, myocardial diseases, and COPD as opposed to emerging disparate or antagonistic activities in adipose tissue inflammation, metabolic diseases, and atherosclerosis. Lastly, we discuss potential future opportunities of jointly targeting MIF and MIF-2 in certain diseases, whereas precision targeting of only one homolog might be preferable in other conditions. Together, this article provides an update of the mechanisms and future therapeutic avenues of human MIF proteins with a focus on their emerging, surprisingly disparate activities, suggesting that MIF-2 displays a variety of activities that are distinct from those of MIF.
Collapse
Affiliation(s)
- Chunfang Zan
- Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU Klinikum, Ludwig-Maximilian-University (LMU), Munich, Germany
| | - Bishan Yang
- Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU Klinikum, Ludwig-Maximilian-University (LMU), Munich, Germany
| | - Markus Brandhofer
- Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU Klinikum, Ludwig-Maximilian-University (LMU), Munich, Germany
| | - Omar El Bounkari
- Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU Klinikum, Ludwig-Maximilian-University (LMU), Munich, Germany
| | - Jürgen Bernhagen
- Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU Klinikum, Ludwig-Maximilian-University (LMU), Munich, Germany.,Deutsches Zentrum für Herz-Kreislauferkrankungen (DZHK), Munich Heart Alliance, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
15
|
Thiele M, Donnelly SC, Mitchell RA. OxMIF: a druggable isoform of macrophage migration inhibitory factor in cancer and inflammatory diseases. J Immunother Cancer 2022; 10:e005475. [PMID: 36180072 PMCID: PMC9528626 DOI: 10.1136/jitc-2022-005475] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2022] [Indexed: 11/04/2022] Open
Abstract
Macrophage migration inhibitory factor (MIF) is a proinflammatory cytokine with a pleiotropic spectrum of biological functions implicated in the pathogenesis of cancer and inflammatory diseases. MIF is constitutively present in several cell types and non-lymphoid tissues and is secreted after acute stress or inflammation. MIF triggers the release of proinflammatory cytokines, overrides the anti-inflammatory effects of glucocorticoids, and exerts chemokine function, resulting in increased migration and recruitment of leukocytes into inflamed tissue. Despite this, MIF is a challenging target for therapeutic intervention because of its ubiquitous nature and presence in the circulation and tissue of healthy individuals. Oxidized MIF (oxMIF) is an immunologically distinct disease-related structural isoform found in the plasma and tissues of patients with inflammatory diseases and in solid tumor tissues. MIF converts to oxMIF in an oxidizing, inflammatory environment. This review discusses the biology and activity of MIF and the potential for autoimmune disease and cancer modification by targeting oxMIF. Anti-oxMIF antibodies reduce cancer cell invasion/migration, angiogenesis, proinflammatory cytokine production, and ERK and AKT activation. Anti-oxMIF antibodies also elicit apoptosis and alter immune cell function and/or migration. When co-administered with a glucocorticoid, anti-oxMIF antibodies produced a synergistic response in inflammatory models. Anti-oxMIF antibodies therefore counterregulate biological activities attributed to MIF. oxMIF expression has been observed in inflammatory diseases (eg, sepsis, psoriasis, asthma, inflammatory bowel disease, and systemic lupus erythematosus) and oxMIF has been detected in ovarian, colorectal, lung, and pancreatic cancers. In contrast to MIF, oxMIF is specifically detected in plasma and/or tissues of diseased patients, but not in healthy individuals. Therefore, as a druggable isoform of MIF, oxMIF represents a potential new therapeutic target in inflammatory diseases and cancer. Fully human, monoclonal anti-oxMIF antibodies have been shown to selectively bind oxMIF in preclinical and phase I studies; however, additional clinical assessments are necessary to validate their use as either a monotherapy or in combination with standard-of-care regimens (ie, immunomodulatory agents/checkpoint inhibitors, anti-angiogenic drugs, chemotherapeutics, and glucocorticoids).
Collapse
Affiliation(s)
- Michael Thiele
- Biology Research, OncoOne Research & Development GmbH, Vienna, Austria
| | - Seamas C Donnelly
- Department of Medicine, Tallaght University Hospital & Trinity College Dublin, Dublin, Ireland
| | - Robert A Mitchell
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, Kentucky, USA
- Department of Surgery, J.G. Brown Cancer Center, University of Louisville, Louisville, Kentucky, USA
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, USA
- Division of Immunotherapy, Department of Surgery, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
16
|
Zhang Z, Zhou X, Guo J, Zhang F, Qian Y, Wang G, Duan M, Wang Y, Zhao H, Yang Z, Liu Z, Jiang X. TA-MSCs, TA-MSCs-EVs, MIF: their crosstalk in immunosuppressive tumor microenvironment. J Transl Med 2022; 20:320. [PMID: 35842634 PMCID: PMC9287873 DOI: 10.1186/s12967-022-03528-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/08/2022] [Indexed: 11/24/2022] Open
Abstract
As an important component of the immunosuppressive tumor microenvironment (TME), it has been established that mesenchymal stem cells (MSCs) promote the progression of tumor cells. MSCs can directly promote the proliferation, migration, and invasion of tumor cells via cytokines and chemokines, as well as promote tumor progression by regulating the functions of anti-tumor immune and immunosuppressive cells. MSCs-derived extracellular vesicles (MSCs-EVs) contain part of the plasma membrane and signaling factors from MSCs; therefore, they display similar effects on tumors in the immunosuppressive TME. The tumor-promoting role of macrophage migration inhibitory factor (MIF) in the immunosuppressive TME has also been revealed. Interestingly, MIF exerts similar effects to those of MSCs in the immunosuppressive TME. In this review, we summarized the main effects and related mechanisms of tumor-associated MSCs (TA-MSCs), TA-MSCs-EVs, and MIF on tumors, and described their relationships. On this basis, we hypothesized that TA-MSCs-EVs, the MIF axis, and TA-MSCs form a positive feedback loop with tumor cells, influencing the occurrence and development of tumors. The functions of these three factors in the TME may undergo dynamic changes with tumor growth and continuously affect tumor development. This provides a new idea for the targeted treatment of tumors with EVs carrying MIF inhibitors.
Collapse
Affiliation(s)
- Zhenghou Zhang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xiangyu Zhou
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jinshuai Guo
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Fusheng Zhang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yiping Qian
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Guang Wang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Meiqi Duan
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yutian Wang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Haiying Zhao
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Zhi Yang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Zunpeng Liu
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, Shenyang, China.
| | - Xiaofeng Jiang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
17
|
Kumar V, Kiran S, Kumar S, Singh UP. Extracellular vesicles in obesity and its associated inflammation. Int Rev Immunol 2022; 41:30-44. [PMID: 34423733 PMCID: PMC8770589 DOI: 10.1080/08830185.2021.1964497] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Obesity is characterized by low-grade, chronic inflammation, which promotes insulin resistance and diabetes. Obesity can lead to the development and progression of many autoimmune diseases, including inflammatory bowel disease, psoriasis, psoriatic arthritis, rheumatoid arthritis, thyroid autoimmunity, and type 1 diabetes mellitus (T1DM). These diseases result from an alteration of self-tolerance by promoting pro-inflammatory immune response by lowering numbers of regulatory T cells (Tregs), increasing Th1 and Th17 immune responses, and inflammatory cytokine production. Therefore, understanding the immunological changes that lead to this low-grade inflammatory milieu becomes crucial for the development of therapies that suppress the risk of autoimmune diseases and other immunological conditions. Cells generate extracellular vesicles (EVs) to eliminate cellular waste as well as communicating the adjacent and distant cells through exchanging the components (genetic material [DNA or RNA], lipids, and proteins) between them. Immune cells and adipocytes from individuals with obesity and a high basal metabolic index (BMI) produce also release exosomes (EXOs) and microvesicles (MVs), which are collectively called EVs. These EVs play a crucial role in the development of autoimmune diseases. The current review discusses the immunological dysregulation that leads to inflammation, inflammatory diseases associated with obesity, and the role played by EXOs and MVs in the induction and progression of this devastating conditi8on.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, Tennessee, 38103 USA
| | - Sonia Kiran
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, Tennessee, 38103 USA
| | - Santosh Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, Tennessee, 38103 USA
| | - Udai P. Singh
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, Tennessee, 38103 USA,Correspondence: Udai P Singh, Ph.D., Associate Professor, Department of Pharmaceutical Sciences, College of Pharmacy, 881 Madison Avenue, The University of Tennessee Health Science Center Memphis, TN, 38163 USA,
| |
Collapse
|
18
|
Harjacek M. Immunopathophysiology of Juvenile Spondyloarthritis (jSpA): The "Out of the Box" View on Epigenetics, Neuroendocrine Pathways and Role of the Macrophage Migration Inhibitory Factor (MIF). Front Med (Lausanne) 2021; 8:700982. [PMID: 34692718 PMCID: PMC8526544 DOI: 10.3389/fmed.2021.700982] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 09/06/2021] [Indexed: 12/11/2022] Open
Abstract
Juvenile spondyloarthritis (jSpA) is a an umbrella term for heterogeneous group of related seronegative inflammatory disorders sharing common symptoms. Although it mainly affects children and adolescents, it often remains active during adulthood. Genetic and environmental factors are involved in its occurrence, although the exact underlying immunopathophysiology remains incompletely elucidated. Accumulated evidence suggests that, in affected patients, subclinical gut inflammation caused by intestinal dysbiosis, is pivotal to the future development of synovial-entheseal complex inflammation. While the predominant role of IL17/23 axis, TNF-α, and IL-7 in the pathophysiology of SpA, including jSpA, is firmly established, the role of the cytokine macrophage migration inhibitory factor (MIF) is generally overlooked. The purpose of this review is to discuss and emphasize the role of epigenetics, neuroendocrine pathways and the hypothalamic-pituitary (HPA) axis, and to propose a novel hypothesis of the role of decreased NLRP3 gene expression and possibly MIF in the early phases of jSpA development. The decreased NLRP3 gene expression in the latter, due to hypomethylation of promotor site, is (one of) the cause for inflammasome malfunction leading to gut dysbiosis observed in patients with early jSpA. In addition, we highlight the role of MIF in the complex innate, adaptive cellular and main effector cytokine network, Finally, since treatment of advanced bone pathology in SpA remains an unmet clinical need, I suggest possible new drug targets with the aim to ultimately improve treatment efficacy and long-term outcome of jSpA patients.
Collapse
Affiliation(s)
- Miroslav Harjacek
- Department of Pediatrics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
19
|
Macrophage migration inhibitory factor (MIF) enhances hypochlorous acid production in phagocytic neutrophils. Redox Biol 2021; 41:101946. [PMID: 33823474 PMCID: PMC8047225 DOI: 10.1016/j.redox.2021.101946] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Macrophage migration inhibitory factor (MIF) is an important immuno-regulatory cytokine and is elevated in inflammatory conditions. Neutrophils are the first immune cells to migrate to sites of infection and inflammation, where they generate, among other mediators, the potent oxidant hypochlorous acid (HOCl). Here, we investigated the impact of MIF on HOCl production in neutrophils in response to phagocytic stimuli. METHODS Production of HOCl during phagocytosis of zymosan was determined using the specific fluorescent probe R19-S in combination with flow cytometry and live cell microscopy. The rate of phagocytosis was monitored using fluorescently-labeled zymosan. Alternatively, HOCl production was assessed during phagocytosis of Pseudomonas aeruginosa by measuring the oxidation of bacterial glutathione to the HOCl-specific product glutathione sulfonamide. Formation of neutrophil extracellular traps (NETs), an oxidant-dependent process, was quantified using a SYTOX Green plate assay. RESULTS Exposure of human neutrophils to MIF doubled the proportion of neutrophils producing HOCl during early stages of zymosan phagocytosis, and the concentration of HOCl produced was greater. During phagocytosis of P. aeruginosa, a greater fraction of bacterial glutathione was oxidized to glutathione sulfonamide in MIF-treated compared to control neutrophils. The ability of MIF to increase neutrophil HOCl production was independent of the rate of phagocytosis and could be blocked by the MIF inhibitor 4-IPP. Neutrophils pre-treated with MIF produced more NETs than control cells in response to PMA. CONCLUSION Our results suggest a role for MIF in potentiating HOCl production in neutrophils in response to phagocytic stimuli. We propose that this newly discovered activity of MIF contributes to its role in mediating the inflammatory response and enhances host defence.
Collapse
|