1
|
Noone D, Preston RJS, Rehill AM. The Role of Myeloid Cells in Thromboinflammatory Disease. Semin Thromb Hemost 2024; 50:998-1011. [PMID: 38547918 DOI: 10.1055/s-0044-1782660] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Inflammation contributes to the development of thrombosis, but the mechanistic basis for this association remains poorly understood. Innate immune responses and coagulation pathways are activated in parallel following infection or injury, and represent an important host defense mechanism to limit pathogen spread in the bloodstream. However, dysregulated proinflammatory activity is implicated in the progression of venous thromboembolism and arterial thrombosis. In this review, we focus on the role of myeloid cells in propagating thromboinflammation in acute inflammatory conditions, such as sepsis and coronavirus disease 2019 (COVID-19), and chronic inflammatory conditions, such as obesity, atherosclerosis, and inflammatory bowel disease. Myeloid cells are considered key drivers of thromboinflammation via upregulated tissue factor activity, formation of neutrophil extracellular traps (NETs), contact pathway activation, and aberrant coagulation factor-mediated protease-activated receptor (PAR) signaling. We discuss how strategies to target the intersection between myeloid cell-mediated inflammation and activation of blood coagulation represent an exciting new approach to combat immunothrombosis. Specifically, repurposed anti-inflammatory drugs, immunometabolic regulators, and NETosis inhibitors present opportunities that have the potential to dampen immunothrombotic activity without interfering with hemostasis. Such therapies could have far-reaching benefits for patient care across many thromboinflammatory conditions.
Collapse
Affiliation(s)
- David Noone
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
- National Children's Research Centre, Our Lady's Children's Hospital Crumlin, Dublin, Ireland
| | - Roger J S Preston
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
- National Children's Research Centre, Our Lady's Children's Hospital Crumlin, Dublin, Ireland
| | - Aisling M Rehill
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
- National Children's Research Centre, Our Lady's Children's Hospital Crumlin, Dublin, Ireland
| |
Collapse
|
2
|
Kotrulev M, Gomez-Touriño I, Cordero OJ. Soluble CD26: From Suggested Biomarker for Cancer Diagnosis to Plausible Marker for Dynamic Monitoring of Immunotherapy. Cancers (Basel) 2024; 16:2427. [PMID: 39001488 PMCID: PMC11240764 DOI: 10.3390/cancers16132427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
Soluble CD26 (sCD26), a glycoprotein with dipeptidyl peptidase (DPP4) enzymatic activity, can contribute to early diagnosis of colorectal cancer and advanced adenomas and has been studied, including for prognostic purposes, across various other types of cancer and disease. The latest research in this field has confirmed that most, though not all, serum/plasma sCD26 is related to inflammation. The shedding and/or secretion of sCD26 from different immune cells are being investigated, and blood DPP4 activity levels do not correlate very strongly with protein titers. Some of the main substrates of this enzyme are key chemokines involved in immune cell migration, and both soluble and cell-surface CD26 can bind adenosine deaminase (ADA), an enzyme involved in the metabolism of immunosuppressor extracellular adenosine. Of note, there are T cells enriched in CD26 expression and, in mice tumor models, tumor infiltrating lymphocytes exhibited heightened percentages of CD26+ correlating with tumor regression. We employed sCD26 as a biomarker in the follow-up after curative resection of colorectal cancer for the early detection of tumor recurrence. Changes after treatment with different biological disease-modifying antirheumatic drugs, including Ig-CTLA4, were also observed in rheumatoid arthritis. Serum soluble CD26/DPP4 titer variation has recently been proposed as a potential prognostic biomarker after a phase I trial in cancer immunotherapy with a humanized anti-CD26 antibody. We propose that dynamic monitoring of sCD26/DPP4 changes, in addition to well-known inflammatory biomarkers such as CRP already in use as informative for immune checkpoint immunotherapy, may indicate resistance or response during the successive steps of the treatment. As tumor cells expressing CD26 can also produce sCD26, the possibility of sorting immune- from non-immune-system-originated sCD26 is discussed.
Collapse
Affiliation(s)
- Martin Kotrulev
- Centre for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (M.K.); (I.G.-T.)
- Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Iria Gomez-Touriño
- Centre for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (M.K.); (I.G.-T.)
- Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
- Department of Biochemistry and Molecular Biology, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Oscar J. Cordero
- Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
- Department of Biochemistry and Molecular Biology, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
3
|
Cordero OJ, Kotrulev M, Gomez-Touriño I. Comment on Lai et al. Dipeptidyl Peptidase 4 Stimulation Induces Adipogenesis-Related Gene Expression of Adipose Stromal Cells. Int. J. Mol. Sci. 2023, 24, 16101. Int J Mol Sci 2024; 25:7093. [PMID: 39000199 PMCID: PMC11241282 DOI: 10.3390/ijms25137093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/20/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
Adiponectin is a circulating hormone secreted by adipose tissue that exerts, unlike other adipokines such as leptin, anti-inflammatory, anti-atherosclerotic and other protective effects on health. Adiponectin receptor agonists are being tested in clinical trials and are expected to show benefits in many diseases. In a recent article, LW Chen's group used monocyte chemoattractant protein-1 (MCP-1/CCL2) to improve plasma levels of adiponectin, suggesting the involvement of dipeptidyl peptidase 4 (DPP4/CD26) in the mechanism. Here, we discuss the significance of the role of DPP4, favoring the increase in DPP4-positive interstitial progenitor cells, a finding that fits with the greater stemness and persistence of other DPP4/CD26-positive cells.
Collapse
Affiliation(s)
- Oscar J Cordero
- Department of Biochemistry and Molecular Biology, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (M.K.); (I.G.-T.)
| | - Martin Kotrulev
- Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (M.K.); (I.G.-T.)
- Centre for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Iria Gomez-Touriño
- Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (M.K.); (I.G.-T.)
- Centre for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
4
|
Fender AC. Protease-activated receptor 2 at the intersection of thrombo-inflammation and beyond. IJC HEART & VASCULATURE 2024; 52:101403. [PMID: 38854742 PMCID: PMC11156694 DOI: 10.1016/j.ijcha.2024.101403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Affiliation(s)
- Anke C. Fender
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Germany
| |
Collapse
|
5
|
Pilling D, Consalvo KM, Kirolos SA, Gomer RH. Differences between human male and female neutrophils in mRNA, translation efficiency, protein, and phosphoprotein profiles. RESEARCH SQUARE 2024:rs.3.rs-4284171. [PMID: 38746380 PMCID: PMC11092807 DOI: 10.21203/rs.3.rs-4284171/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Background Human males and females show differences in the incidence of neutrophil-associated diseases such as systemic lupus erythematosus, rheumatoid arthritis, and reactive arthritis, and differences in neutrophil physiological responses such as a faster response to the chemorepellent SLIGKV. Little is known about the basis of sex-based differences in human neutrophils. Methods Starting with human neutrophils from healthy donors, we used RNA-seq to examine total mRNA profiles, mRNAs not associated with ribosomes and thus not being translated, mRNAs in monosomes, and mRNAs in polysomes and thus heavily translated. We used mass spectrometry systems to identify proteins and phosphoproteins. Results There were sex-based differences in the translation of 24 mRNAs. There were 132 proteins with higher levels in male neutrophils; these tended to be associated with RNA regulation, ribosome, and phosphoinositide signaling pathways, whereas 30 proteins with higher levels in female neutrophils were associated with metabolic processes, proteosomes, and phosphatase regulatory proteins. Male neutrophils had increased phosphorylation of 32 proteins. After exposure to SLIGKV, male neutrophils showed a faster response in terms of protein phosphorylation compared to female neutrophils. Conclusions Male neutrophils have higher levels of proteins and higher phosphorylation of proteins associated with RNA processing and signaling pathways, while female neutrophils have higher levels of proteins associated with metabolism and proteolytic pathways. This suggests that male neutrophils might be more ready to adapt to a new environment, and female neutrophils might be more effective at responding to pathogens. This may contribute to the observed sex-based differences in neutrophil behavior and neutrophil-associated disease incidence and severity.
Collapse
Affiliation(s)
- Darrell Pilling
- Department of Biology, Texas A&M University, College Station, TX 77843-3474 USA
| | - Kristen M Consalvo
- Department of Biology, Texas A&M University, College Station, TX 77843-3474 USA
| | - Sara A Kirolos
- Department of Biology, Texas A&M University, College Station, TX 77843-3474 USA
| | - Richard H Gomer
- Department of Biology, Texas A&M University, College Station, TX 77843-3474 USA
| |
Collapse
|
6
|
CD26 and Cancer. Cancers (Basel) 2022; 14:cancers14215194. [PMID: 36358613 PMCID: PMC9655702 DOI: 10.3390/cancers14215194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 10/19/2022] [Indexed: 11/30/2022] Open
|
7
|
Consalvo KM, Kirolos SA, Sestak CE, Gomer RH. Sex-Based Differences in Human Neutrophil Chemorepulsion. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:354-367. [PMID: 35793910 PMCID: PMC9283293 DOI: 10.4049/jimmunol.2101103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 04/02/2022] [Indexed: 05/25/2023]
Abstract
A considerable amount is known about how eukaryotic cells move toward an attractant, and the mechanisms are conserved from Dictyostelium discoideum to human neutrophils. Relatively little is known about chemorepulsion, where cells move away from a repellent signal. We previously identified pathways mediating chemorepulsion in Dictyostelium, and here we show that these pathways, including Ras, Rac, protein kinase C, PTEN, and ERK1 and 2, are required for human neutrophil chemorepulsion, and, as with Dictyostelium chemorepulsion, PI3K and phospholipase C are not necessary, suggesting that eukaryotic chemorepulsion mechanisms are conserved. Surprisingly, there were differences between male and female neutrophils. Inhibition of Rho-associated kinases or Cdc42 caused male neutrophils to be more repelled by a chemorepellent and female neutrophils to be attracted to the chemorepellent. In the presence of a chemorepellent, compared with male neutrophils, female neutrophils showed a reduced percentage of repelled neutrophils, greater persistence of movement, more adhesion, less accumulation of PI(3,4,5)P3, and less polymerization of actin. Five proteins associated with chemorepulsion pathways are differentially abundant, with three of the five showing sex dimorphism in protein localization in unstimulated male and female neutrophils. Together, this indicates a fundamental difference in a motility mechanism in the innate immune system in men and women.
Collapse
Affiliation(s)
| | - Sara A Kirolos
- Department of Biology, Texas A&M University, College Station, TX
| | - Chelsea E Sestak
- Department of Biology, Texas A&M University, College Station, TX
| | - Richard H Gomer
- Department of Biology, Texas A&M University, College Station, TX
| |
Collapse
|
8
|
Cordero OJ, Viéitez I, Altabás I, Nuño-Nuño L, Villalba A, Novella-Navarro M, Peiteado D, Miranda-Carús ME, Balsa A, Varela-Calviño R, Gomez-Tourino I, Pego-Reigosa JM. Study of Plasma Anti-CD26 Autoantibody Levels in a Cohort of Treatment-Naïve Early Arthritis Patients. Arch Immunol Ther Exp (Warsz) 2022; 70:12. [PMID: 35304639 PMCID: PMC8933303 DOI: 10.1007/s00005-022-00649-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/03/2022] [Indexed: 01/23/2023]
Abstract
In rheumatoid arthritis (RA), the identification of biomarkers to adjust treatment intensity and to correctly diagnose the disease in early stages still constitutes a challenge and, as such, novel biomarkers are needed. We proposed that autoantibodies (aAbs) against CD26 (DPP4) might have both etiological importance and clinical value. Here, we perform a prospective study of the potential diagnostic power of Anti-CD26 aAbs through their quantification in plasmas from 106 treatment-naïve early and undifferentiated AR. Clinical antibodies, Anti-CD26 aAbs, and other disease-related biomarkers were measured in plasmas obtained in the first visit from patients, which were later classified as RA and non-RA according to the American College of Rheumatology criteria. Two different isotype signatures were found among ten groups of patients, one for Anti-CD26 IgA and other for Anti-CD26 IgG and IgM isotypes, both converging in patients with arthritis (RA and Unresolved Undifferentiated Arthritis: UUA), who present elevated levels of all three isotypes. The four UUA patients, unresolved after two years, were ACPA and rheumatic factor (RF) negatives. In the whole cohort, 51.3% of ACPA/RF seronegatives were Anti-CD26 positives, and a similar frequency was observed in the seropositive RA patients. Only weak associations of the three isotypes with ESR, CRP and disease activity parameters were observed. Anti-CD26 aAbs are present in treatment-naïve early arthritis patients, including ACPA and RF seronegative individuals, suggestive of a potential pathogenic and/or biomarker role of Anti-CD26 aAbs in the development of rheumatic diseases.
Collapse
Affiliation(s)
- Oscar J Cordero
- Department of Biochemistry and Molecular Biology, Edificio CIBUS, Universidade de Santiago de Compostela, Campus Vida, 15782, Santiago de Compostela, Galicia, Spain. .,Gene Regulatory Control in Disease Group, Centre for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Santiago, Spain. .,Health Research Institute of Santiago de Compostela (IDIS), Santiago, Spain.
| | - Irene Viéitez
- Rare Diseases and Pediatric Medicine Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - Irene Altabás
- Rheumatology and Immune-Mediated Diseases Research Group (IRIDIS), Galicia Sur Health Research Institute (IISGS), SERGAS-UVIGO, Vigo, Spain.,Department of Rheumatology, University Hospital Complex of Vigo-SERGAS, Vigo, Spain
| | - Laura Nuño-Nuño
- Department of Rheumatology, Hospital Universitario La Paz Research Institute (IDIPAZ), Madrid, Spain
| | - Alejandro Villalba
- Department of Rheumatology, Hospital Universitario La Paz Research Institute (IDIPAZ), Madrid, Spain
| | - Marta Novella-Navarro
- Department of Rheumatology, Hospital Universitario La Paz Research Institute (IDIPAZ), Madrid, Spain
| | - Diana Peiteado
- Department of Rheumatology, Hospital Universitario La Paz Research Institute (IDIPAZ), Madrid, Spain
| | | | - Alejandro Balsa
- Department of Rheumatology, Hospital Universitario La Paz Research Institute (IDIPAZ), Madrid, Spain
| | - Rubén Varela-Calviño
- Department of Biochemistry and Molecular Biology, Edificio CIBUS, Universidade de Santiago de Compostela, Campus Vida, 15782, Santiago de Compostela, Galicia, Spain.,Gene Regulatory Control in Disease Group, Centre for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Santiago, Spain.,Health Research Institute of Santiago de Compostela (IDIS), Santiago, Spain
| | - Iria Gomez-Tourino
- Department of Biochemistry and Molecular Biology, Edificio CIBUS, Universidade de Santiago de Compostela, Campus Vida, 15782, Santiago de Compostela, Galicia, Spain.,Centre for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Santiago, Spain.,Health Research Institute of Santiago de Compostela (IDIS), Santiago, Spain
| | - José M Pego-Reigosa
- Rheumatology and Immune-Mediated Diseases Research Group (IRIDIS), Galicia Sur Health Research Institute (IISGS), SERGAS-UVIGO, Vigo, Spain.,Department of Rheumatology, University Hospital Complex of Vigo-SERGAS, Vigo, Spain
| |
Collapse
|
9
|
Kirolos SA, Gomer RH. A chemorepellent inhibits local Ras activation to inhibit pseudopod formation to bias cell movement away from the chemorepellent. Mol Biol Cell 2021; 33:ar9. [PMID: 34788129 PMCID: PMC8886819 DOI: 10.1091/mbc.e20-10-0656] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The ability of cells to sense chemical gradients is essential during development, morphogenesis, and immune responses. Although much is known about chemoattraction, chemorepulsion remains poorly understood. Proliferating Dictyostelium cells secrete a chemorepellent protein called AprA. AprA prevents pseudopod formation at the region of the cell closest to the source of AprA, causing the random movement of cells to be biased away from the AprA. Activation of Ras proteins in a localized sector of a cell cortex helps to induce pseudopod formation, and Ras proteins are needed for AprA chemorepulsion. Here we show that AprA locally inhibits Ras cortical activation through the G protein–coupled receptor GrlH, the G protein subunits Gβ and Gα8, Ras protein RasG, protein kinase B, the p21-activated kinase PakD, and the extracellular signal–regulated kinase Erk1. Diffusion calculations and experiments indicate that in a colony of cells, high extracellular concentrations of AprA in the center can globally inhibit Ras activation, while a gradient of AprA that naturally forms at the edge of the colony allows cells to activate Ras at sectors of the cell other than the sector of the cell closest to the center of the colony, effectively inducing both repulsion from the colony and cell differentiation. Together, these results suggest that a pathway that inhibits local Ras activation can mediate chemorepulsion.
Collapse
Affiliation(s)
- Sara A Kirolos
- Department of Biology, Texas A&M University, 301 Old Main Drive, College Station, Texas, 77843-3474 USA
| | - Richard H Gomer
- Department of Biology, Texas A&M University, 301 Old Main Drive, College Station, Texas, 77843-3474 USA
| |
Collapse
|
10
|
Cordero OJ, Rafael-Vidal C, Varela-Calviño R, Calviño-Sampedro C, Malvar-Fernández B, García S, Viñuela JE, Pego-Reigosa JM. Distinctive CD26 Expression on CD4 T-Cell Subsets. Biomolecules 2021; 11:1446. [PMID: 34680079 PMCID: PMC8533622 DOI: 10.3390/biom11101446] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/20/2021] [Accepted: 09/28/2021] [Indexed: 12/18/2022] Open
Abstract
Immune system CD4 T-cells with high cell-surface CD26 expression show anti-tumoral properties. When engineered with a chimeric antigen receptor (CAR), they incite strong responses against solid cancers. This subset was originally associated to human CD4 T helper cells bearing the CD45R0 effector/memory phenotype and later to Th17 cells. CD26 is also found in soluble form (sCD26) in several biological fluids, and its serum levels correlate with specific T cell subsets. However, the relationship between glycoprotein sCD26 and its dipeptidyl peptidase 4 (DPP4) enzymatic activity, and cell-surface CD26 expression is not well understood. We have studied ex vivo cell-surface CD26 and in vitro surface and intracellular CD26 expression and secretome's sCD26 in cultured CD4 T cells under different polarization conditions. We show that most human CD26negative CD4 T cells in circulating lymphocytes are central memory (TCM) cells while CD26high expression is present in effector Th1, Th2, Th17, and TEM (effector memory) cells. However, there are significant percentages of Th1, Th2, Th17, and Th22 CD26 negative cells. This information may help to refine the research on CAR-Ts. The cell surface CD45R0 and CD26 levels in the different T helper subsets after in vitro polarization resemble those found ex vivo. In the secretomes of these cultures there was a significant amount of sCD26. However, in all polarizations, including Th1, the levels of sCD26 were lower (although not significantly) compared to the Th0 condition (activation without polarization). These differences could have an impact on the various physiological functions proposed for sCD26/DPP4.
Collapse
Affiliation(s)
- Oscar J. Cordero
- Department of Biochemistry and Molecular Biology, Campus Vida, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (R.V.-C.); (C.C.-S.)
| | - Carlos Rafael-Vidal
- Rheumatology & Immune-Mediated Diseases Research Group (IRIDIS), Galicia Sur Health Research Institute (IISGS), SERGAS-UVIGO, 36312 Vigo, Spain; (C.R.-V.); (B.M.-F.); (S.G.); (J.M.P.-R.)
- Rheumatology Department, University Hospital Complex of Vigo-SERGAS, 36312 Vigo, Spain
| | - Rubén Varela-Calviño
- Department of Biochemistry and Molecular Biology, Campus Vida, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (R.V.-C.); (C.C.-S.)
| | - Cristina Calviño-Sampedro
- Department of Biochemistry and Molecular Biology, Campus Vida, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (R.V.-C.); (C.C.-S.)
| | - Beatriz Malvar-Fernández
- Rheumatology & Immune-Mediated Diseases Research Group (IRIDIS), Galicia Sur Health Research Institute (IISGS), SERGAS-UVIGO, 36312 Vigo, Spain; (C.R.-V.); (B.M.-F.); (S.G.); (J.M.P.-R.)
- Rheumatology Department, University Hospital Complex of Vigo-SERGAS, 36312 Vigo, Spain
| | - Samuel García
- Rheumatology & Immune-Mediated Diseases Research Group (IRIDIS), Galicia Sur Health Research Institute (IISGS), SERGAS-UVIGO, 36312 Vigo, Spain; (C.R.-V.); (B.M.-F.); (S.G.); (J.M.P.-R.)
- Rheumatology Department, University Hospital Complex of Vigo-SERGAS, 36312 Vigo, Spain
| | - Juan E. Viñuela
- Service of Immunology, University Hospital Complex of Santiago de Compostela-SERGAS, 15782 Santiago de Compostela, Spain;
| | - José M. Pego-Reigosa
- Rheumatology & Immune-Mediated Diseases Research Group (IRIDIS), Galicia Sur Health Research Institute (IISGS), SERGAS-UVIGO, 36312 Vigo, Spain; (C.R.-V.); (B.M.-F.); (S.G.); (J.M.P.-R.)
- Rheumatology Department, University Hospital Complex of Vigo-SERGAS, 36312 Vigo, Spain
| |
Collapse
|
11
|
Kirolos SA, Rijal R, Consalvo KM, Gomer RH. Using Dictyostelium to Develop Therapeutics for Acute Respiratory Distress Syndrome. Front Cell Dev Biol 2021; 9:710005. [PMID: 34350188 PMCID: PMC8326840 DOI: 10.3389/fcell.2021.710005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 06/22/2021] [Indexed: 12/12/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) involves damage to lungs causing an influx of neutrophils from the blood into the lung airspaces, and the neutrophils causing further damage, which attracts more neutrophils in a vicious cycle. There are ∼190,000 cases of ARDS per year in the US, and because of the lack of therapeutics, the mortality rate is ∼40%. Repelling neutrophils out of the lung airspaces, or simply preventing neutrophil entry, is a potential therapeutic. In this minireview, we discuss how our lab noticed that a protein called AprA secreted by growing Dictyostelium cells functions as a repellent for Dictyostelium cells, causing cells to move away from a source of AprA. We then found that AprA has structural similarity to a human secreted protein called dipeptidyl peptidase IV (DPPIV), and that DPPIV is a repellent for human neutrophils. In animal models of ARDS, inhalation of DPPIV or DPPIV mimetics blocks neutrophil influx into the lungs. To move DPPIV or DPPIV mimetics into the clinic, we need to know how this repulsion works to understand possible drug interactions and side effects. Combining biochemistry and genetics in Dictyostelium to elucidate the AprA signal transduction pathway, followed by drug studies in human neutrophils to determine similarities and differences between neutrophil and Dictyostelium chemorepulsion, will hopefully lead to the safe use of DPPIV or DPPIV mimetics in the clinic.
Collapse
Affiliation(s)
| | | | | | - Richard H. Gomer
- Department of Biology, Texas A&M University, College Station, TX, United States
| |
Collapse
|
12
|
Consalvo KM, Rijal R, Tang Y, Kirolos SA, Smith MR, Gomer RH. Extracellular signaling in Dictyostelium. THE INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY 2020; 63:395-405. [PMID: 31840778 DOI: 10.1387/ijdb.190259rg] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In the last few decades, we have learned a considerable amount about how eukaryotic cells communicate with each other, and what it is the cells are telling each other. The simplicity of Dictyostelium discoideum, and the wide variety of available tools to study this organism, makes it the equivalent of a hydrogen atom for cell and developmental biology. Studies using Dictyostelium have pioneered a good deal of our understanding of eukaryotic cell communication. In this review, we will present a brief overview of how Dictyostelium cells use extracellular signals to attract each other, repel each other, sense their local cell density, sense whether the nearby cells are starving or stressed, count themselves to organize the formation of structures containing a regulated number of cells, sense the volume they are in, and organize their multicellular development. Although we are probably just beginning to learn what the cells are telling each other, the elucidation of Dictyostelium extracellular signals has already led to the development of possible therapeutics for human diseases.
Collapse
Affiliation(s)
- Kristen M Consalvo
- Department of Biology, Texas A∧M University, College Station, Texas, USA
| | | | | | | | | | | |
Collapse
|
13
|
Rayees S, Joshi JC, Tauseef M, Anwar M, Baweja S, Rochford I, Joshi B, Hollenberg MD, Reddy SP, Mehta D. PAR2-Mediated cAMP Generation Suppresses TRPV4-Dependent Ca 2+ Signaling in Alveolar Macrophages to Resolve TLR4-Induced Inflammation. Cell Rep 2020; 27:793-805.e4. [PMID: 30995477 DOI: 10.1016/j.celrep.2019.03.053] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 09/18/2018] [Accepted: 03/13/2019] [Indexed: 12/19/2022] Open
Abstract
Alveolar macrophages (AMs), upon sensing pathogens, trigger host defense by activating toll-like receptor 4 (TLR4), but the counterbalancing mechanisms that deactivate AM inflammatory signaling and prevent lethal edema, the hallmark of acute lung injury (ALI), remain unknown. Here, we demonstrate the essential role of AM protease-activating receptor 2 (PAR2) in rapidly suppressing inflammation to prevent long-lasting injury. We show that thrombin, released during TLR4-induced lung injury, directly activates PAR2 to generate cAMP, which abolishes Ca2+ entry through the TRPV4 channel. Deletion of PAR2 and thus the accompanying cAMP generation augments Ca2+ entry via TRPV4, causing sustained activation of the transcription factor NFAT to produce long-lasting TLR4-mediated inflammatory lung injury. Rescuing thrombin-sensitive PAR2 expression or blocking TRPV4 activity in PAR2-null AMs restores their capacity to resolve inflammation and reverse lung injury. Thus, activation of the thrombin-induced PAR2-cAMP cascade in AMs suppresses TLR4 inflammatory signaling to reinstate tissue integrity.
Collapse
Affiliation(s)
- Sheikh Rayees
- Department of Pharmacology and Centre for Lung and Vascular Biology, University of Illinois, College of Medicine, Chicago, IL, USA
| | - Jagdish Chandra Joshi
- Department of Pharmacology and Centre for Lung and Vascular Biology, University of Illinois, College of Medicine, Chicago, IL, USA
| | - Mohammad Tauseef
- Department of Pharmacology and Centre for Lung and Vascular Biology, University of Illinois, College of Medicine, Chicago, IL, USA; Department of Pharmaceutical Sciences, College of Pharmacy, Chicago State University, Chicago, IL 60628, USA
| | - Mumtaz Anwar
- Department of Pharmacology and Centre for Lung and Vascular Biology, University of Illinois, College of Medicine, Chicago, IL, USA
| | - Sukriti Baweja
- Department of Pharmacology and Centre for Lung and Vascular Biology, University of Illinois, College of Medicine, Chicago, IL, USA
| | - Ian Rochford
- Department of Pharmacology and Centre for Lung and Vascular Biology, University of Illinois, College of Medicine, Chicago, IL, USA
| | - Bhagwati Joshi
- Department of Pharmacology and Centre for Lung and Vascular Biology, University of Illinois, College of Medicine, Chicago, IL, USA
| | - Morley D Hollenberg
- Department of Physiology and Pharmacology and Medicine, University of Calgary Cumming School of Medicine, Calgary, AB, Canada
| | - Sekhar P Reddy
- Department of Pediatrics, University of Illinois, College of Medicine, Chicago, IL, USA
| | - Dolly Mehta
- Department of Pharmacology and Centre for Lung and Vascular Biology, University of Illinois, College of Medicine, Chicago, IL, USA.
| |
Collapse
|
14
|
Suess PM, Chinea LE, Pilling D, Gomer RH. Extracellular Polyphosphate Promotes Macrophage and Fibrocyte Differentiation, Inhibits Leukocyte Proliferation, and Acts as a Chemotactic Agent for Neutrophils. THE JOURNAL OF IMMUNOLOGY 2019; 203:493-499. [PMID: 31160533 DOI: 10.4049/jimmunol.1801559] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 05/08/2019] [Indexed: 12/19/2022]
Abstract
Fibrocytes are monocyte-derived fibroblast like cells that participate in wound healing, but little is known about what initiates fibrocyte differentiation. Blood platelets contain 60-100-mer polymers of phosphate groups called polyphosphate, and when activated, platelets induce blood clotting (the first step in wound healing) in part by the release of polyphosphate. We find that activated platelets release a factor that promotes fibrocyte differentiation. The factor is abolished by treating the crude platelet factor with the polyphosphate-degrading enzyme polyphosphatase, and polyphosphate promotes fibrocyte differentiation. Macrophages and recruited neutrophils also potentiate wound healing, and polyphosphate also promotes macrophage differentiation and induces chemoattraction of neutrophils. In support of the hypothesis that polyphosphate is a signal that affects leukocytes, we observe saturable binding of polyphosphate to these cells. Polyphosphate also inhibits leukocyte proliferation and proteasome activity. These results suggest new roles for extracellular polyphosphate as a mediator of wound healing and inflammation and also provide a potential link between platelet activation and the progression of fibrosing diseases.
Collapse
Affiliation(s)
- Patrick M Suess
- Department of Biology, Texas A&M University, College Station, TX 77843
| | - Luis E Chinea
- Department of Biology, Texas A&M University, College Station, TX 77843
| | - Darrell Pilling
- Department of Biology, Texas A&M University, College Station, TX 77843
| | - Richard H Gomer
- Department of Biology, Texas A&M University, College Station, TX 77843
| |
Collapse
|
15
|
Pilling D, Chinea LE, Consalvo KM, Gomer RH. Different Isoforms of the Neuronal Guidance Molecule Slit2 Directly Cause Chemoattraction or Chemorepulsion of Human Neutrophils. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 202:239-248. [PMID: 30510066 PMCID: PMC6310129 DOI: 10.4049/jimmunol.1800681] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 11/02/2018] [Indexed: 12/11/2022]
Abstract
The movement of neutrophils between blood and tissues appears to be regulated by chemoattractants and chemorepellents. Compared with neutrophil chemoattractants, relatively little is known about neutrophil chemorepellents. Slit proteins are endogenously cleaved into a variety of N- and C-terminal fragments, and these fragments are neuronal chemorepellents and inhibit chemoattraction of many cell types, including neutrophils. In this report, we show that the ∼140-kDa N-terminal Slit2 fragment (Slit2-N) is a chemoattractant and the ∼110-kDa N-terminal Slit2 fragment (Slit2-S) is a chemorepellent for human neutrophils. The effects of both Slit2 fragments were blocked by Abs to the Slit2 receptor Roundabout homolog 1 or the Slit2 coreceptor Syndecan-4. Slit2-N did not appear to activate Ras but increased phosphatidylinositol 3,4,5-triphosphate levels. Slit2-N-induced chemoattraction was unaffected by Ras inhibitors, reversed by PI3K inhibitors, and blocked by Cdc42 and Rac inhibitors. In contrast, Slit2-S activated Ras but did not increase phosphatidylinositol 3,4,5-triphosphate levels. Slit2-S-induced chemorepulsion was blocked by Ras and Rac inhibitors, not affected by PI3K inhibitors, and reversed by Cdc42 inhibitors. Slit2-N, but not Slit2-S, increased neutrophil adhesion, myosin L chain 2 phosphorylation, and polarized actin formation and single pseudopods at the leading edge of cells. Slit2-S induced multiple pseudopods. These data suggest that Slit2 isoforms use similar receptors but different intracellular signaling pathways and have different effects on the cytoskeleton and pseudopods to induce neutrophil chemoattraction or chemorepulsion.
Collapse
Affiliation(s)
- Darrell Pilling
- Department of Biology, Texas A&M University, College Station, TX 77843-3474
| | - Luis E Chinea
- Department of Biology, Texas A&M University, College Station, TX 77843-3474
| | - Kristen M Consalvo
- Department of Biology, Texas A&M University, College Station, TX 77843-3474
| | - Richard H Gomer
- Department of Biology, Texas A&M University, College Station, TX 77843-3474
| |
Collapse
|
16
|
Rijal R, Consalvo KM, Lindsey CK, Gomer RH. An endogenous chemorepellent directs cell movement by inhibiting pseudopods at one side of cells. Mol Biol Cell 2018; 30:242-255. [PMID: 30462573 PMCID: PMC6589559 DOI: 10.1091/mbc.e18-09-0562] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Eukaryotic chemoattraction signal transduction pathways, such as those used by Dictyostelium discoideum to move toward cAMP, use a G protein-coupled receptor to activate multiple conserved pathways such as PI3 kinase/Akt/PKB to induce actin polymerization and pseudopod formation at the front of a cell, and PTEN to localize myosin II to the rear of a cell. Relatively little is known about chemorepulsion. We previously found that AprA is a chemorepellent protein secreted by Dictyostelium cells. Here we used 29 cell lines with disruptions of cAMP and/or AprA signal transduction pathway components, and delineated the AprA chemorepulsion pathway. We find that AprA uses a subset of chemoattraction signal transduction pathways including Ras, protein kinase A, target of rapamycin (TOR), phospholipase A, and ERK1, but does not require the PI3 kinase/Akt/PKB and guanylyl cyclase pathways to induce chemorepulsion. Possibly as a result of not using the PI3 kinase/Akt/PKB pathway and guanylyl cyclases, AprA does not induce actin polymerization or increase the pseudopod formation rate, but rather appears to inhibit pseudopod formation at the side of cells closest to the source of AprA.
Collapse
Affiliation(s)
- Ramesh Rijal
- Department of Biology, Texas A&M University, College Station, TX 77843-3474
| | - Kristen M Consalvo
- Department of Biology, Texas A&M University, College Station, TX 77843-3474
| | | | - Richard H Gomer
- Department of Biology, Texas A&M University, College Station, TX 77843-3474
| |
Collapse
|
17
|
Radermecker C, Louis R, Bureau F, Marichal T. Role of neutrophils in allergic asthma. Curr Opin Immunol 2018; 54:28-34. [PMID: 29883877 DOI: 10.1016/j.coi.2018.05.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 05/09/2018] [Indexed: 12/12/2022]
Abstract
The contribution of neutrophils to asthma pathogenesis has been mainly studied in the context of non-allergic neutrophilic asthma. However, neutrophils can also be rapidly recruited and are largely present in the airways of allergic eosinophilic asthmatic patients. Under these circumstances, they possess specific phenotypic features distinguishing them from resting blood neutrophils and are endowed with particular functions. The exact contribution of neutrophils to allergic asthma pathogenesis is still unclear, but growing experimental evidence supports the ability of neutrophils or neutrophil-derived products to influence the underlying allergic type 2 immune response and cardinal features of allergic asthma, thus shedding new light on neutrophil biology and functions in an allergic context.
Collapse
Affiliation(s)
- Coraline Radermecker
- Laboratory of Cellular and Molecular Immunology, GIGA Institute, Liege University, Avenue de l'Hôpital 11, 4000 Liege, Belgium; Faculty of Veterinary Medicine, Liege University, B42, Avenue de Cureghem 5D, 4000 Liege, Belgium
| | - Renaud Louis
- Department of Pulmonary Medicine, Centre Hospitalier Universitaire (CHU), Liege University, Avenue de l'Hôpital 11, 4000 Liege, Belgium; Laboratory of Pneumology, GIGA Institute, Liege University, Avenue de l'Hôpital 11, 4000 Liege, Belgium
| | - Fabrice Bureau
- Laboratory of Cellular and Molecular Immunology, GIGA Institute, Liege University, Avenue de l'Hôpital 11, 4000 Liege, Belgium; Faculty of Veterinary Medicine, Liege University, B42, Avenue de Cureghem 5D, 4000 Liege, Belgium; WELBIO, Walloon Excellence in Life Sciences and Biotechnology, Wallonia, Belgium.
| | - Thomas Marichal
- Laboratory of Cellular and Molecular Immunology, GIGA Institute, Liege University, Avenue de l'Hôpital 11, 4000 Liege, Belgium; Faculty of Veterinary Medicine, Liege University, B42, Avenue de Cureghem 5D, 4000 Liege, Belgium; WELBIO, Walloon Excellence in Life Sciences and Biotechnology, Wallonia, Belgium.
| |
Collapse
|