1
|
Agnes RS, Traughber BJ, Muzic RF. Development of a selective novel fluorescent substrate for sodium-dependent transporters. Life Sci 2024; 351:122847. [PMID: 38880166 DOI: 10.1016/j.lfs.2024.122847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/07/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
AIM To synthesize, characterize, and validate 6FGA, a fluorescent glucose modified with a Cyanine5.5 at carbon-6 position, for probing the function of sodium-dependent glucose transporters, SGLT1 and SGLT2. MAIN METHODS The synthesis of fluorescent glucose analogue was achieved through "click chemistry" of Cyanine5.5-alkyne and 6-azido-6-deoxy-d-glucose. Cell system studies were conducted to characterize the in vivo transport properties. KEY FINDINGS Optical analyses revealed that 6FGA displayed similar spectral profiles to Cyanine5.5 in DMSO, allowing for concentration determination, thus supporting its utility in quantitative kinetic studies within biological assays. Uptake studies in cell system SGLT models, LLC-PK1 and HEK293 cells, exhibited concentration and time-dependent behavior, indicating saturation at specific concentrations and durations which are hallmarks of transported-mediated uptake. The results of cytotoxicity assays suggested cell viability at micromolar concentrations, enabling usage in assays for at least 1 h without significant toxicity. The dependence of 6FGA uptake on sodium, the co-transported cation, was demonstrated in LLC-PK1 and HEK293 cells. Fluorescence microscopy confirmed intracellular localization of 6FGA, particularly near the nucleus. Competition studies revealed that glucose tends to weakly reduce 6FGA uptake, although the effect did not achieve statistical significance. Assessments using standard SGLT and GLUT inhibitors highlighted 6FGA's sensitivity for probing SGLT-mediated transport. SIGNIFICANCE 6FGA is a new fluorescent glucose analog offering advantages over existing probes due to its improved photophysical properties, greater sensitivity, enabling subcellular resolution and efficient tissue penetration in near-infrared imaging. 6FGA presents practicality and cost-effectiveness, making it a promising tool for nonradioactive, microplate-based assays at investigating SGLT-mediated glucose transport mechanisms.
Collapse
Affiliation(s)
- Richard S Agnes
- Department of Radiology, University Hospitals of Cleveland and Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
| | - Bryan J Traughber
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, USA.
| | - Raymond F Muzic
- Department of Radiology, University Hospitals of Cleveland and Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
| |
Collapse
|
2
|
Campbell E, Jordan C, Gilmour R. Fluorinated carbohydrates for 18F-positron emission tomography (PET). Chem Soc Rev 2023; 52:3599-3626. [PMID: 37171037 PMCID: PMC10243284 DOI: 10.1039/d3cs00037k] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Indexed: 05/13/2023]
Abstract
Carbohydrate diversity is foundational in the molecular literacy that regulates cellular function and communication. Consequently, delineating and leveraging this structure-function interplay continues to be a core research objective in the development of candidates for biomedical diagnostics. A totemic example is the ubiquity of 2-deoxy-2-[18F]-fluoro-D-glucose (2-[18F]-FDG) as a radiotracer for positron emission tomography (PET), in which metabolic trapping is harnessed. Building on this clinical success, more complex sugars with unique selectivities are gaining momentum in molecular recognition and personalised medicine: this reflects the opportunities that carbohydrate-specific targeting affords in a broader sense. In this Tutorial Review, key milestones in the development of 2-[18F]-FDG and related glycan-based radiotracers for PET are described, with their diagnostic functions, to assist in navigating this rapidly expanding field of interdisciplinary research.
Collapse
Affiliation(s)
- Emma Campbell
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster Corrensstraße 36, 48149, Münster, Germany.
- Cells in Motion Interfaculty Centre, Westfälische Wilhelms-Universität Münster, Röntgenstraße 16, 48149, Münster, Germany
| | - Christina Jordan
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster Corrensstraße 36, 48149, Münster, Germany.
- Cells in Motion Interfaculty Centre, Westfälische Wilhelms-Universität Münster, Röntgenstraße 16, 48149, Münster, Germany
| | - Ryan Gilmour
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster Corrensstraße 36, 48149, Münster, Germany.
- Cells in Motion Interfaculty Centre, Westfälische Wilhelms-Universität Münster, Röntgenstraße 16, 48149, Münster, Germany
| |
Collapse
|
3
|
Feng J, Zhang X, Jiang Y, Ruan Q, Wang Q, Zhang J. Preparation and Bioevaluation of a Novel 99mTc-Labeled Glucose Derivative Containing Cyclohexane as a Promising Tumor Imaging Agent. Pharmaceuticals (Basel) 2023; 16:ph16040612. [PMID: 37111368 PMCID: PMC10144323 DOI: 10.3390/ph16040612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/06/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
To develop novel tumor imaging agents with high tumor uptake and excellent tumor/non-target ratios, a glucose derivative containing cyclohexane (CNMCHDG) was synthesized and labeled with Tc-99m. [99mTc]Tc-CNMCHDG was prepared by a kit formulation that was straightforward to operate and fast. Without purification, [99mTc]Tc-CNMCHDG had a high radiochemical purity of over 95% and great in vitro stability and hydrophilicity (log P = -3.65 ± 0.10). In vitro cellular uptake studies showed that the uptake of [99mTc]Tc-CNMCHDG was significantly inhibited by pre-treatment with D-glucose and increased by pre-treatment with insulin. Preliminary cellular studies have demonstrated that the mechanism by which the complex enters into cells may be related to GLUTs. The results of biodistribution and SPECT imaging studies displayed high tumor uptake and good retention of [99mTc]Tc-CNMCHDG in A549 tumor-bearing mice (4.42 ± 0.36%ID/g at 120 min post-injection). Moreover, [99mTc]Tc-CNMCHDG exhibited excellent tumor-to-non-target ratios and a clean imaging background and is a potential candidate for clinical transformation.
Collapse
Affiliation(s)
- Junhong Feng
- Key Laboratory of Radiopharmaceuticals of Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Xuran Zhang
- Key Laboratory of Radiopharmaceuticals of Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Yuhao Jiang
- Key Laboratory of Radiopharmaceuticals of Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Qing Ruan
- Key Laboratory of Radiopharmaceuticals of Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Qianna Wang
- Key Laboratory of Radiopharmaceuticals of Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Junbo Zhang
- Key Laboratory of Radiopharmaceuticals of Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
4
|
Kalera K, Stothard AI, Woodruff PJ, Swarts BM. The role of chemoenzymatic synthesis in advancing trehalose analogues as tools for combatting bacterial pathogens. Chem Commun (Camb) 2020; 56:11528-11547. [PMID: 32914793 PMCID: PMC7919099 DOI: 10.1039/d0cc04955g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Trehalose, a disaccharide of glucose, is increasingly recognized as an important contributor to virulence in major bacterial pathogens, such as Mycobacterium tuberculosis, Clostridioides difficile, and Burkholderia pseudomallei. Accordingly, bacterial trehalose metabolic pathways that are not present in humans have gained traction as targets for antibiotic and diagnostic development. Toward this goal, trehalose can be modified through a combination of rational design and synthesis to produce functionalized trehalose analogues, which can be deployed to probe or inhibit bacterial trehalose metabolism. However, the unique α,α-1,1-glycosidic bond and C2 symmetry of trehalose make analogue synthesis via traditional chemical methods very challenging. We and others have turned to the creation of chemoenzymatic synthesis methods, which in principle allow the use of nature's trehalose-synthesizing enzymes to stereo- and regioselectively couple simple, unprotected substrates to efficiently and conveniently generate trehalose analogues. Here, we provide a contextual account of our team's development of a trehalose analogue synthesis method that employs a highly substrate-tolerant, thermostable trehalose synthase enzyme, TreT from Thermoproteus tenax. Then, in three vignettes, we highlight how chemoenzymatic synthesis has accelerated the development of trehalose-based imaging probes and inhibitors that target trehalose-utilizing bacterial pathogens. We describe the role of TreT catalysis and related methods in the development of (i) tools for in vitro and in vivo imaging of mycobacteria, (ii) anti-biofilm compounds that sensitize drug-tolerant mycobacteria to clinical anti-tubercular compounds, and (iii) degradation-resistant trehalose analogues that block trehalose metabolism in C. difficile and potentially other trehalose-utilizing bacteria. We conclude by recapping progress and discussing priorities for future research in this area, including improving the scope and scale of chemoenzymatic synthesis methods to support translational research and expanding the functionality and applicability of trehalose analogues to study and target diverse bacterial pathogens.
Collapse
Affiliation(s)
- Karishma Kalera
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, USA.
| | - Alicyn I Stothard
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, USA.
| | - Peter J Woodruff
- Department of Chemistry, University of Southern Maine, Portland, ME, USA
| | - Benjamin M Swarts
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, USA.
| |
Collapse
|
5
|
Yamamoto H, Wada K, Toyohara J, Tago T, Ibaraki M, Kinoshita T, Yamamoto Y, Nishiyama Y, Kudomi N. Radiosynthesis of 18F-labeled d-allose. Carbohydr Res 2019; 486:107827. [PMID: 31586720 DOI: 10.1016/j.carres.2019.107827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/25/2019] [Accepted: 09/26/2019] [Indexed: 10/25/2022]
Abstract
Rare sugars are defined as monosaccharides that exist in nature but are only present in limited quantities. d-Allose is a rare sugar that has been reported to have some unique physiological effects. The present study describes suitable synthetic procedures for novel rare sugars of d-allose that are 18F-labeled at the C-3 and C-6 positions and the preparation of the appropriate labeling precursors. The goal is to facilitate in vivo, noninvasive positron emission tomography (PET) investigation of the behavior of rare sugar analogs of d-allose in organs. We found five precursors that were practical for labeling, three for 3-deoxy-3-[18F]fluoro-d-allose ([18F]3FDA) and two for 6-deoxy-6-[18F]fluoro-d-allose ([18F]6FDA). With manual operation synthesis, the highest radiochemical conversion rates were 75% for [18F]3FDA with a precursor of 1,2,4,6-tetra-O-acetyl-3-O-trifluoromethanesulfonyl-β-d-glucopyranose and 69% for [18F]6FDA with a precursor of 1,2,3,4-tetra-O-acetyl-6-O-trifluoromethanesulfonyl-β-d-allopyranose. Furthermore, the practical yields of [18F]3FDA and [18F]6FDA using an automated synthesizer were also investigated. Radiochemical yields of 67% and 49% were obtained for [18F]3FDA and [18F]6FDA, respectively, in an automated synthesizer. As basic assessment of stability for use in PET scanning, high performance liquid chromatography analysis showed no decomposition of [18F]3FDA and [18F]6FDA after up to 6 h in rabbit blood plasma.
Collapse
Affiliation(s)
- Hiroyuki Yamamoto
- Department of Medical Physics, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan; Department of Radiology and Nuclear Medicine, Akita Research Institute of Brain and Blood Vessels, 6-10 Senshukubota-machi, Akita-shi, Akita, 010-0874, Japan.
| | - Kenji Wada
- Department of Chemistry for Medicine, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan
| | - Jun Toyohara
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Tetsuro Tago
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Masanobu Ibaraki
- Department of Radiology and Nuclear Medicine, Akita Research Institute of Brain and Blood Vessels, 6-10 Senshukubota-machi, Akita-shi, Akita, 010-0874, Japan
| | - Toshibumi Kinoshita
- Department of Radiology and Nuclear Medicine, Akita Research Institute of Brain and Blood Vessels, 6-10 Senshukubota-machi, Akita-shi, Akita, 010-0874, Japan
| | - Yuka Yamamoto
- Department of Radiology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan
| | - Yoshihiro Nishiyama
- Department of Radiology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan
| | - Nobuyuki Kudomi
- Department of Medical Physics, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan
| |
Collapse
|
6
|
Toyohara J, Yamamoto H, Tago T. Searching for diagnostic properties of novel fluorine-18-labeled D-allose. Ann Nucl Med 2019; 33:855-865. [PMID: 31471865 DOI: 10.1007/s12149-019-01398-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 08/22/2019] [Indexed: 01/04/2023]
Abstract
OBJECTIVE Two fluorine-18-labeled analogues, 3-deoxy-3-[18F]fluoro-D-allose (3-[18F]FDA) and 6-deoxy-6-[18F]fluoro-D-allose (6-[18F]FDA), were synthesized and their potentials of diagnostic property were characterized. METHODS In vitro rat red blood cell (RBC) transport and phosphorylation by yeast hexokinase were evaluated in comparison with 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG). The rate of protein binding in pooled human serum was measured by an ultrafiltration method. In vivo metabolite analysis in mice was also performed. Biodistribution, urine excretion, and in vivo renal kinetics in mice were compared with 2-deoxy-2-[18F]fluorosorbitol ([18F]FDS). RESULTS Rat RBC uptake of 3- and 6-[18F]FDA (7.8 ± 2.5%ID and 10.2 ± 4.8%ID, respectively) was significantly lower than that of [18F]FDG (44.7 ± 8.7%ID). RBC uptake of 3-[18F]FDA was inhibited by D-glucose (30%) and cytochalasin B (40%), indicating the involvement of GLUT1-dependent transport. In contrast, 6-[18F]FDA transport was not inhibited by D-glucose and cytochalasin B. 3- and 6-[18F]FDA were not phosphorylated by yeast hexokinase under the conditions that result in 60% conversion of [18F]FDG into [18F]FDG-6-phosphate within 30 min. Serum protein binding of 3- and 6-[18F]FDA was negligible. Metabolic transformation of both tracers was not detected in plasma and urine at 30 min after injection. The highest tissue uptake of both tracers was observed in kidneys. Heart and brain uptake of both tracers was below blood levels throughout the biodistribution studies (until 120 min after injection). No significant uptake in the bone was observed, indicating the absence of de-fluorination in mice. In vivo PET imaging visualized rapid excretion of the administered 3- and 6-[18F]FDA from the kidneys, with minimal tracer accumulation in other organs. The urine excretion rate of 3-[18F]FDA was much lower than that of 6-[18F]FDA and [18F]FDS. CONCLUSIONS 3- and 6-[18F]FDA might be unsatisfactory for tumor imaging. In contrast, these tracers demonstrated high levels of kidney uptake and excretion, low serum protein binding, and high metabolic stability as preferable properties for renal imaging. Notably, the urine excretion rate and kidney uptake kinetics of 6-[18F]FDA were comparable with those of the potential renal imaging agent [18F]FDS. Further validation studies in animal models are required to confirm the feasibility of 6-[18F]FDA as a functional renal imaging agent.
Collapse
Affiliation(s)
- Jun Toyohara
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan.
| | - Hiroyuki Yamamoto
- Department of Radiology and Nuclear Medicine, Akita Cerebrospinal and Cardiovascular Center, 6-10 Senshu-Kubota Machi, Akita, 010-0874, Japan
| | - Tetsuro Tago
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan
| |
Collapse
|
7
|
Nuclear Imaging of Glucose Metabolism: Beyond 18F-FDG. CONTRAST MEDIA & MOLECULAR IMAGING 2019; 2019:7954854. [PMID: 31049045 PMCID: PMC6458935 DOI: 10.1155/2019/7954854] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 03/05/2019] [Indexed: 01/25/2023]
Abstract
Glucose homeostasis plays a key role in numerous fundamental aspects of life, and its dysregulation is associated with many important diseases such as cancer. The atypical glucose metabolic phenomenon, known as the Warburg effect, has been recognized as a hallmark of cancer and serves as a promising target for tumor specific imaging. At present, 2-deoxy-2-[18F]fluoro-glucose (18F-FDG)-based positron emission tomography/computed tomography (PET/CT) represented the state-of-the-art radionuclide imaging technique for this purpose. The powerful impact of 18F-FDG has prompted intensive research efforts into other glucose-based radiopharmaceuticals for positron emission tomography (PET) and single-photon emission computed tomography (SPECT) imaging. Currently, glucose and its analogues have been labeled with various radionuclides such as 99mTc, 111In, 18F, 68Ga, and 64Cu and have been successfully investigated for tumor metabolic imaging in many preclinical studies. Moreover, 99mTc-ECDG has advanced into its early clinical trials and brings a new era of tumor imaging beyond 18F-FDG. In this review, preclinical and early clinical development of glucose-based radiopharmaceuticals for tumor metabolic imaging will be summarized.
Collapse
|
8
|
Peña-Zalbidea S, Huang AYT, Kavunja HW, Salinas B, Desco M, Drake C, Woodruff PJ, Vaquero JJ, Swarts BM. Chemoenzymatic radiosynthesis of 2-deoxy-2-[ 18F]fluoro-d-trehalose ([ 18F]-2-FDTre): A PET radioprobe for in vivo tracing of trehalose metabolism. Carbohydr Res 2018; 472:16-22. [PMID: 30428395 DOI: 10.1016/j.carres.2018.11.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 10/24/2018] [Accepted: 11/03/2018] [Indexed: 02/07/2023]
Abstract
Trehalose analogues bearing fluorescent and click chemistry tags have been developed as probes of bacterial trehalose metabolism, but these tools have limitations with respect to in vivo imaging applications. Here, we report the radiosynthesis of the 18F-modified trehalose analogue 2-deoxy-2-[18F]fluoro-d-trehalose ([18F]-2-FDTre), which in principle can be used in conjunction with positron emission tomography (PET) imaging to allow in vivo imaging of trehalose metabolism in various contexts. A chemoenzymatic method employing the thermophilic TreT enzyme from Thermoproteus tenax was used to rapidly (15-20 min), efficiently (70% radiochemical yield; ≥ 95% radiochemical purity), and reproducibly convert the commercially available radiotracer 2-deoxy-2-[18F]fluoro-d-glucose ([18F]-2-FDG) into the target radioprobe [18F]-2-FDTre in a single step; both manual and automated syntheses were performed with similar results. Cellular uptake experiments showed that radiosynthetic [18F]-2-FDTre was metabolized by Mycobacterium smegmatis but not by various mammalian cell lines, pointing to the potential future use of this radioprobe for selective PET imaging of infections caused by trehalose-metabolizing bacterial pathogens such as M. tuberculosis.
Collapse
Affiliation(s)
- Santiago Peña-Zalbidea
- Dept. Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Ashley Y-T Huang
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, United States
| | - Herbert W Kavunja
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, United States
| | - Beatriz Salinas
- Dept. Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Manuel Desco
- Dept. Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
| | | | - Peter J Woodruff
- Department of Chemistry, University of Southern Maine, Portland, ME, United States
| | - Juan J Vaquero
- Dept. Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.
| | - Benjamin M Swarts
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, United States.
| |
Collapse
|
9
|
Wuest M, Hamann I, Bouvet V, Glubrecht D, Marshall A, Trayner B, Soueidan OM, Krys D, Wagner M, Cheeseman C, West F, Wuest F. Molecular Imaging of GLUT1 and GLUT5 in Breast Cancer: A Multitracer Positron Emission Tomography Imaging Study in Mice. Mol Pharmacol 2017; 93:79-89. [DOI: 10.1124/mol.117.110007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 11/13/2017] [Indexed: 01/08/2023] Open
|
10
|
Rundell SR, Wagar ZL, Meints LM, Olson CD, O'Neill MK, Piligian BF, Poston AW, Hood RJ, Woodruff PJ, Swarts BM. Deoxyfluoro-d-trehalose (FDTre) analogues as potential PET probes for imaging mycobacterial infection. Org Biomol Chem 2016; 14:8598-609. [PMID: 27560008 DOI: 10.1039/c6ob01734g] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Mycobacterium tuberculosis, the etiological agent of human tuberculosis, requires the non-mammalian disaccharide trehalose for growth and virulence. Recently, detectable trehalose analogues have gained attention as probes for studying trehalose metabolism and as potential diagnostic imaging agents for mycobacterial infections. Of particular interest are deoxy-[(18)F]fluoro-d-trehalose ((18)F-FDTre) analogues, which have been suggested as possible positron emission tomography (PET) probes for in vivo imaging of M. tuberculosis infection. Here, we report progress toward this objective, including the synthesis and conformational analysis of four non-radioactive deoxy-[(19)F]fluoro-d-trehalose ((19)F-FDTre) analogues, as well as evaluation of their uptake by M. smegmatis. The rapid synthesis and purification of several (19)F-FDTre analogues was accomplished in high yield using a one-step chemoenzymatic method. Conformational analysis of the (19)F-FDTre analogues using NMR and molecular modeling methods showed that fluorine substitution had a negligible effect on the conformation of the native disaccharide, suggesting that fluorinated analogues may be successfully recognized and processed by trehalose metabolic machinery in mycobacteria. To test this hypothesis and to evaluate a possible route for delivery of FDTre probes specifically to mycobacteria, we showed that (19)F-FDTre analogues are actively imported into M. smegmatis via the trehalose-specific transporter SugABC-LpqY. Finally, to demonstrate the applicability of these results to the efficient preparation and use of short-lived (18)F-FDTre PET radiotracers, we carried out (19)F-FDTre synthesis, purification, and administration to M. smegmatis in 1 hour.
Collapse
Affiliation(s)
- Sarah R Rundell
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI 48859, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Santschi N, Aiguabella N, Lewe V, Gilmour R. Delineating the physical organic profile of the 6-fluoro glycosyl donor. J Fluor Chem 2015. [DOI: 10.1016/j.jfluchem.2015.06.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Dexamethasone-induced insulin resistance: kinetic modeling using novel PET radiopharmaceutical 6-deoxy-6-[(18)F]fluoro-D-glucose. Mol Imaging Biol 2015; 16:710-20. [PMID: 24819311 DOI: 10.1007/s11307-014-0737-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
PURPOSE An insulin-resistant rat model, induced by dexamethasone, was used to evaluate a Michaelis-Menten-based kinetic model using 6-deoxy-6-[(18)F]fluoro-D-glucose (6-[(18)F]FDG) to quantify glucose transport with PET. PROCEDURES Seventeen, male, Sprague-Dawley rats were studied in three groups: control (Ctrl), control + insulin (Ctrl + I), and dexamethasone + insulin (Dex + I). PET scans were acquired for 2 h under euglycemic conditions in the Ctrl group and under hyperinsulinemic-euglycemic conditions in the Ctrl + I and Dex + I groups. RESULTS Glucose transport, assessed according to the 6-[(18)F]FDG concentration, was highest in skeletal muscle in the Ctrl + I, intermediate in the Dex + I, and lowest in the Ctrl group, while that in the brain was similar among the groups. Modeling analysis applied to the skeletal muscle uptake curves yielded values of parameters related to glucose transport that were greatest in the Ctrl + I group and increased to a lesser degree in the Dex + I group, compared to the Ctrl group. CONCLUSION 6-[(18)F]FDG and the Michaelis-Menten-based model can be used to measure insulin-stimulated glucose transport under basal and an insulin resistant state in vivo.
Collapse
|
13
|
Muzic RF, Chandramouli V, Huang HM, Wu C, Hatami A, Ismail-Beigi F. Human radiation dosimetry of 6-[18F]FDG predicted from preclinical studies. Med Phys 2014; 41:031910. [PMID: 24593728 DOI: 10.1118/1.4866217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE The authors are developing 6-[(18)F]fluoro-6-deoxy-D-glucose (6-[(18)F]FDG) as an in vivo tracer of glucose transport. While 6-[(18)F]FDG has the same radionuclide half-life as 2-[(18)F]fluoro-2-deoxy-D-glucose (2-[(18)F]FDG) which is ubiquitously used for PET imaging, 6-[(18)F]FDG has special biologic properties and different biodistributions that make it preferable to 2-[(18)F]FDG for assessing glucose transport. In preparation for 6-[(18)F]FDG use in human PET scanning, the authors would like to determine the amount of 6-[(18)F]FDG to inject while maintaining radiation doses in a safe range. METHODS Rats were injected with 6-[(18)F]FDG, euthanized at specified times, and tissues were collected and assayed for activity content. For each tissue sample, the percent of injected dose per gram was calculated and extrapolated to that for humans in order to construct predicted time-courses. Residence times were calculated as areas under the curves and were used as inputs to OLINDA/EXM in order to calculate the radiation doses. RESULTS Unlike with 2-[(18)F]FDG for which the urinary bladder wall receives the highest absorbed dose due to urinary excretion, with 6-[(18)F]FDG there is little urinary excretion and osteogenic cells and the liver are predicted to receive the highest absorbed doses: 0.027 mGy/MBq (0.100 rad/mCi) and 0.018 mGy/MBq (0.066 rad/mCi), respectively. Also, the effective dose from 6-[(18)F]FDG, i.e., 0.013 mSv/MBq (0.046 rem/mCi), is predicted to be approximately 30% lower than that from 2-[(18)F]FDG. CONCLUSIONS 6-[(18)F]FDG will be safe for use in the PET scanning of humans.
Collapse
Affiliation(s)
- Raymond F Muzic
- Department of Radiology, University Hospitals Case Medical Center, Case Western Reserve University, Cleveland, Ohio 44106; Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106; and Case Center for Imaging Research, University Hospitals Case Medical Center, Case Western Reserve University, Cleveland, Ohio 44106
| | - Visvanathan Chandramouli
- Department of Radiology, University Hospitals Case Medical Center, Case Western Reserve University, Cleveland, Ohio 44106
| | - Hsuan-Ming Huang
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106 and Case Center for Imaging Research, University Hospitals Case Medical Center, Case Western Reserve University, Cleveland, Ohio 44106
| | - Chunying Wu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106 and Case Center for Imaging Research, University Hospitals Case Medical Center, Case Western Reserve University, Cleveland, Ohio 44106
| | - Ahmad Hatami
- Department of Radiology, University Hospitals Case Medical Center, Case Western Reserve University, Cleveland, Ohio 44106
| | - Faramarz Ismail-Beigi
- Department of Medicine, University Hospitals Case Medical Center, Case Western Reserve University, Cleveland, Ohio 44106
| |
Collapse
|
14
|
Huang HM, Chandramouli V, Ismail-Beigi F, Muzic RF. Hyperglycemia-induced stimulation of glucose transport in skeletal muscle measured by PET-[18F]6FDG and [18F]2FDG. Physiol Meas 2012; 33:1661-73. [PMID: 22986442 DOI: 10.1088/0967-3334/33/10/1661] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A physiologically based model proposed by our group has been developed to assess glucose transport and phosphorylation in skeletal muscle. In this study, we investigated whether our model has the ability to detect a glucose-induced increase in glucose transport in skeletal muscle. In particular, we used small-animal positron emission tomography (PET) data obtained from [18F]6-fluoro-6-deoxy-D-glucose ([18F]6FDG). A 2 h PET scan was acquired following a bolus injection of [18F]6FDG in rats currently under euglycemic or hyperglycemic conditions, while somatostatin was infused during both conditions in order to prevent a rise in the endogenous plasma insulin concentration. We were thus able to assess the effect of hyperglycemia per se. For a comparison of radiopharmaceuticals, additional rats were studied under the same conditions, using [18F]2-fluoro-2-deoxy-D-glucose ([18F]2FDG). When [18F]6FDG was used, the time-activity curves (TACs) for skeletal muscle had distinctly different shapes during euglycemic and hyperglycemic conditions. This was not the case with [18F]2FDG. For both [18F]6FDG and [18F]2FDG, the model detects increases in both interstitial and intracellular glucose concentrations, increases in the maximal velocity of glucose transport and increases in the rate of glucose transport, all in response to hyperglycemia. In contrast, there was no increase in the maximum velocity of glucose phosphorylation or in the glucose phosphorylation rate. Our model-based analyses of the PET data, obtained with either [18F]6FDG or [18F]2FDG, detect physiological changes consistent with established behavior. Moreover, based on differences in the TAC shapes, [18F]6FDG appears to be superior to [18F]2FDG for evaluating the effect of hyperglycemia on glucose metabolism in skeletal muscle.
Collapse
Affiliation(s)
- Hsuan-Ming Huang
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | | | | | | |
Collapse
|
15
|
Muzic RF, Chandramouli V, Huang HM, Wu C, Wang Y, Ismail-Beigi F. Analysis of metabolism of 6FDG: a PET glucose transport tracer. Nucl Med Biol 2011; 38:667-74. [PMID: 21718942 DOI: 10.1016/j.nucmedbio.2010.12.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Revised: 11/04/2010] [Accepted: 12/08/2010] [Indexed: 11/26/2022]
Abstract
INTRODUCTION We are developing (18)F-labeled 6-fluoro-6-deoxy-D-glucose ([(18)F]6FDG) as a tracer of glucose transport. As part of this process it is important to characterize and quantify putative metabolites. In contrast to the ubiquitous positron emission tomography (PET) tracer (18)F-labeled 2-fluoro-2-deoxy-D-glucose ([(18)F]2FDG) which is phosphorylated and trapped intracellularly, the substitution of fluorine for a hydroxyl group at carbon-6 in [(18)F]6FDG should prevent its phosphorylation. Consequently, [(18)F]6FDG has the potential to trace the transport step of glucose metabolism without the confounding effects of phosphorylation and subsequent steps of metabolism. Herein the focus is to determine whether, and the degree to which, [(18)F]6FDG remains unchanged following intravenous injection. METHODS Biodistribution studies were performed using 6FDG labeled with (18)F or with the longer-lived radionuclides (3)H and (14)C. Tissues were harvested at 1, 6, and 24 h following intravenous administration and radioactivity was extracted from the tissues and analyzed using a combination of ion exchange columns, high-performance liquid chromatography, and chemical reactivity. RESULTS At the 1 h time-point, the vast majority of radioactivity in the liver, brain, heart, skeletal muscle, and blood was identified as 6FDG. At the 6-h and 24-h time points, there was evidence of a minor amount of radioactive material that appeared to be 6-fluoro-6-deoxy-D-sorbitol and possibly 6-fluoro-6-deoxy-D-gluconic acid. CONCLUSION On the time scale typical of PET imaging studies radioactive metabolites of [(18)F]6FDG are negligible.
Collapse
Affiliation(s)
- Raymond F Muzic
- Department of Radiology, Case Western Reserve University, Cleveland, OH 44106, USA.
| | | | | | | | | | | |
Collapse
|
16
|
Qi CM, He Y, Wang X, Feng M, Xu JL, Ding R, Liu H, Chen YR, Li F, Zhu ZH, Dang YH, Zhang ST, Xie Y. Synthesis and evaluation of N-(2-[18F]fluoro-4-nitrobenzoyl)glucosamine: a preliminary report. J Radioanal Nucl Chem 2011. [DOI: 10.1007/s10967-010-0935-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Spring-Robinson C, Chandramouli V, Schumann WC, Faulhaber PF, Wang Y, Wu C, Ismail-Beigi F, Muzic RF. Uptake of 18F-labeled 6-fluoro-6-deoxy-D-glucose by skeletal muscle is responsive to insulin stimulation. J Nucl Med 2009; 50:912-9. [PMID: 19443592 DOI: 10.2967/jnumed.109.062687] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED We are developing a methodology for the noninvasive imaging of glucose transport in vivo with PET and (18)F-labeled 6-fluoro-6-deoxy-d-glucose ((18)F-6FDG), a tracer that is transported but not phosphorylated. To validate the method, we evaluated the biodistribution of (18)F-6FDG to test whether it is consistent with the known properties of glucose transport, particularly with regard to insulin stimulation of glucose transport. METHODS Under glucose clamp conditions, rats were imaged at the baseline and under conditions of hyperinsulinemia. RESULTS The images showed that the radioactivity concentration in skeletal muscle was higher in the presence of insulin than at the baseline. We also found evidence that the metabolism of (18)F-6FDG was negligible in several tissues. CONCLUSION (18)F-6FDG is a valid tracer that can be used in in vivo transport studies. PET studies performed under glucose clamp conditions demonstrated that the uptake of nonphosphorylated glucose transport tracer (18)F-6FDG is sensitive to insulin stimulation.
Collapse
Affiliation(s)
- Chandra Spring-Robinson
- Department of Biomedical Engineering, University Hospitals Case Medical Center, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Landau BR, Spring-Robinson CL, Muzic RF, Rachdaoui N, Rubin D, Berridge MS, Schumann WC, Chandramouli V, Kern TS, Ismail-Beigi F. 6-Fluoro-6-deoxy-D-glucose as a tracer of glucose transport. Am J Physiol Endocrinol Metab 2007; 293:E237-45. [PMID: 17405828 DOI: 10.1152/ajpendo.00022.2007] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Glucose transport rates are estimated noninvasively in physiological and pathological states by kinetic imaging using PET. The glucose analog most often used is (18)F-labeled 2FDG. Compared with glucose, 2FDG is poorly transported by intestine and kidney. We examined the possible use of 6FDG as a tracer of glucose transport. Lacking a hydroxyl at its 6th position, 6FDG cannot be phosphorylated as 2FDG is. Prior studies have shown that 6FDG competes with glucose for transport in yeast and is actively transported by intestine. Its uptake by muscle has been reported to be unresponsive to insulin, but that study is suspect. We found that insulin stimulated 6FDG uptake 1.6-fold in 3T3-L1 adipocytes and azide stimulated the uptake 3.7-fold in Clone 9 cells. Stimulations of the uptake of 3OMG, commonly used in transport assays, were similar, and the uptakes were inhibited by cyclochalasin B. Glucose transport is by GLUT1 and GLUT4 transporters in 3T3-L1 adipocyte and by the GLUT1 transporter in Clone 9 cells. Cytochalasin B inhibits those transporters. Rats were also imaged in vivo by PET using 6(18)FDG. There was no excretion of (18)F into the urinary bladder unless phlorizin, an inhibitor of active renal transport, was also injected. (18)F activity in brain, liver, and heart over the time of scanning reached a constant level, in keeping with the 6FDG being distributed in body water. In contrast, (18)F from 2(18)FDG was excreted in relatively large amounts into the bladder, and (18)F activity rose with time in heart and brain in accord with accumulation of 2(18)FDG-6-P in those organs. We conclude that 6FDG is actively transported by kidney as well as intestine and is insulin responsive. In trace quantity, it appears to be distributed in body water unchanged. These results provide support for its use as a valid tracer of glucose transport.
Collapse
Affiliation(s)
- Bernard R Landau
- Department of Radiology, University Hospitals Case Medical Center, 11100 Euclid Avenue, Cleveland, OH 44106-4951, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|