1
|
Yin R, Huang KX, Huang LA, Ji M, Zhao H, Li K, Gao A, Chen J, Li Z, Liu T, Shively JE, Kandeel F, Li J. Indole-Based and Cyclopentenylindole-Based Analogues Containing Fluorine Group as Potential 18F-Labeled Positron Emission Tomography (PET) G-Protein Coupled Receptor 44 (GPR44) Tracers. Pharmaceuticals (Basel) 2023; 16:1203. [PMID: 37765011 PMCID: PMC10534865 DOI: 10.3390/ph16091203] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/07/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
Recently, growing evidence of the relationship between G-protein coupled receptor 44 (GPR44) and the inflammation-cancer system has garnered tremendous interest, while the exact role of GPR44 has not been fully elucidated. Currently, there is a strong and urgent need for the development of non-invasive in vivo GPR44 positron emission tomography (PET) radiotracers that can be used to aid the exploration of the relationship between inflammation and tumor biologic behavior. Accordingly, the choosing and radiolabeling of existing GPR44 antagonists containing a fluorine group could serve as a viable method to accelerate PET tracers development for in vivo imaging to this purpose. The present study aims to evaluate published (2000-present) indole-based and cyclopentenyl-indole-based analogues of the GPR44 antagonist to guide the development of fluorine-18 labeled PET tracers that can accurately detect inflammatory processes. The selected analogues contained a crucial fluorine nuclide and were characterized for various properties including binding affinity, selectivity, and pharmacokinetic and metabolic profile. Overall, 26 compounds with favorable to strong binding properties were identified. This review highlights the potential of GPR44 analogues for the development of PET tracers to study inflammation and cancer development and ultimately guide the development of targeted clinical therapies.
Collapse
Affiliation(s)
- Runkai Yin
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Kelly X. Huang
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Lina A. Huang
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Melinda Ji
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Hanyi Zhao
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Kathy Li
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Anna Gao
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Jiaqi Chen
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Zhixuan Li
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Tianxiong Liu
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - John E. Shively
- Department of Immunology & Theranostics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Fouad Kandeel
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Junfeng Li
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| |
Collapse
|
2
|
Lee WC, Kang SM, Lee BC, Kim SE, Kim DW. Multifunctional Crown-5-calix[4]arene-based Phase-Transfer Catalysts for Aromatic 18F-Fluorination. Org Lett 2020; 22:9551-9555. [PMID: 33270463 DOI: 10.1021/acs.orglett.0c03604] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Methylated bis-triethylene glycolic crown-5-calix[4]arene (M-BTC5A) as a phase-transfer catalyst showed the best performance among other analogues and even conventional Kryptofix 222 in the nucleophilic aromatic 18F-fluorination of diaryliodonium tosylate precursors owing to (i) the efficient release of reactive "naked" [18F]fluoride, (ii) the high stabilization of the precursor in the reaction, and, presumably, (iii) the ease of access between the precursor and the K18F/M-BTC5A complex facilitated by π-π interactions. [18F]Flumazenil was produced in high radiochemical yield using M-BTC5A.
Collapse
Affiliation(s)
- Won Chang Lee
- Department of Nuclear Medicine, Seoul National University Hospital, Seongnam 13620, Republic of Korea.,Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Seok Min Kang
- Department of Chemistry and Chemical Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Byung Chul Lee
- Department of Nuclear Medicine, Seoul National University Hospital, Seongnam 13620, Republic of Korea.,Center for Nanomolecular Imaging and Innovative Drug Development, Advanced institutes of Convergence Technology, Suwon 16229, Republic of Korea
| | - Sang Eun Kim
- Department of Nuclear Medicine, Seoul National University Hospital, Seongnam 13620, Republic of Korea.,Center for Nanomolecular Imaging and Innovative Drug Development, Advanced institutes of Convergence Technology, Suwon 16229, Republic of Korea.,Department of Molecular and Biophamaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Dong Wook Kim
- Department of Chemistry and Chemical Engineering, Inha University, Incheon 22212, Republic of Korea
| |
Collapse
|
3
|
Jang KS, Lee SS, Oh YH, Lee SH, Kim SE, Kim DW, Lee BC, Lee S, Raffel DM. Control of reactivity and selectivity of guanidinyliodonium salts toward 18F-Labeling by monitoring of protecting groups: Experiment and theory. J Fluor Chem 2019. [DOI: 10.1016/j.jfluchem.2019.109387] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
4
|
Basuli F, Zhang X, Jagoda EM, Choyke PL, Swenson RE. Rapid synthesis of maleimide functionalized fluorine-18 labeled prosthetic group using "radio-fluorination on the Sep-Pak" method. J Labelled Comp Radiopharm 2018; 61:599-605. [PMID: 29575176 PMCID: PMC6295906 DOI: 10.1002/jlcr.3623] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 03/06/2018] [Accepted: 03/09/2018] [Indexed: 01/05/2023]
Abstract
Following our recently published fluorine-18 labeling method, "Radio-fluorination on the Sep-Pak", we have successfully synthesized 6-[18 F]fluoronicotinaldehyde by passing a solution (1:4 acetonitrile: t-butanol) of its quaternary ammonium salt precursor, 6-(N,N,N-trimethylamino)nicotinaldehyde trifluoromethanesulfonate (2), through a fluorine-18 containing anion exchange cartridge (PS-HCO3 ). Over 80% radiochemical conversion was observed using 10 mg of precursor within 1 minute. The [18 F]fluoronicotinaldehyde ([18 F]5) was then conjugated with 1-(6-(aminooxy)hexyl)-1H-pyrrole-2,5-dione to prepare the fluorine-18 labeled maleimide functionalized prosthetic group, 6-[18 F]fluoronicotinaldehyde O-(6-(2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)hexyl) oxime, 6-[18 F]FPyMHO ([18 F]6). The current Sep-Pak method not only improves the overall radiochemical yield (50 ± 9%, decay-corrected, n = 9) but also significantly reduces the synthesis time (from 60-90 minutes to 30 minutes) when compared with literature methods for the synthesis of similar prosthetic groups.
Collapse
Affiliation(s)
- Falguni Basuli
- Imaging Probe Development Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, Maryland, USA
| | - Xiang Zhang
- Imaging Probe Development Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, Maryland, USA
| | - Elaine M. Jagoda
- Molecular Imaging Program, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Peter L. Choyke
- Molecular Imaging Program, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Rolf E. Swenson
- Imaging Probe Development Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, Maryland, USA
| |
Collapse
|
5
|
Pike VW. Hypervalent aryliodine compounds as precursors for radiofluorination. J Labelled Comp Radiopharm 2018; 61:196-227. [PMID: 28981159 PMCID: PMC10081107 DOI: 10.1002/jlcr.3570] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 09/27/2017] [Indexed: 12/12/2022]
Abstract
Over the last 2 decades or so, hypervalent iodine compounds, such as diaryliodonium salts and aryliodonium ylides, have emerged as useful precursors for labeling homoarenes and heteroarenes with no-carrier-added cyclotron-produced [18 F]fluoride ion (t1/2 = 109.8 min). They permit rapid and effective radiofluorination at electron-rich as well as electron-deficient aryl rings, and often with unrestricted choice of ring position. Consequently, hypervalent aryliodine compounds have found special utility as precursors to various small-molecule 18 F-labeling synthons and to many radiotracers for biomedical imaging with positron emission tomography. This review summarizes this advance in radiofluorination chemistry, with emphasis on precursor synthesis, radiofluorination mechanism, method scope, and method application.
Collapse
Affiliation(s)
- Victor W Pike
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
6
|
Kniess T, Laube M, Steinbach J. “Hydrous 18 F-fluoroethylation” – Leaving off the azeotropic drying. Appl Radiat Isot 2017; 127:260-268. [DOI: 10.1016/j.apradiso.2017.06.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 06/07/2017] [Accepted: 06/12/2017] [Indexed: 12/16/2022]
|
7
|
Lee BC, Moon BS, Park HS, Jung JH, Park HS, Park DD, de Candia M, Denora N, Altomare CD, Kim SE. The position of fluorine in CP-118,954 affects AChE inhibition potency and PET imaging quantification for AChE expression in the rat brain. Eur J Pharm Sci 2017; 109:209-216. [PMID: 28818531 DOI: 10.1016/j.ejps.2017.08.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 07/21/2017] [Accepted: 08/14/2017] [Indexed: 10/19/2022]
Abstract
The in vitro inhibition potency against acetylcholinesterase (AChE) of fluorinated derivatives of CP-118,954 (1) has been shown to depend upon the position of aromatic fluorine (F) substitution on the N-benzyl moiety. Indeed, the meta-F-substituted compound 3 (IC50=1.4nM) shows similar potency with the parent compound 1 (IC50=1.2nM), whereas the ortho-F derivative 2 (IC50=3.2nM) and para-F derivative 4 (IC50=10.8nM) were found to be less potent AChE inhibitors. A comparative in vivo microdialysis study in rats showed that 3 has the strongest effect on the neuropharmacological properties as AChE inhibitor. For PET imaging studies, a radiolabeled ligand ([18F]3) was synthesized through nucleophilic aromatic substitution reaction of diaryliodonium salt-based aldehyde precursor followed by reductive alkylation in a two-step radiolabeling procedure with 11.5 ± 1.2% (n=24, non-decay corrected) radiochemical yield and over 99% radiochemical purity. In a comparative PET imaging study of the three 18F-containing derivatives of CP-118,954 ([18F]2-4), [18F]3 showed the highest radioactivity in the AChE-rich region of normal rat brain which visually reflected the in vitro AChE-binding affinity of 3. These findings support [18F]3 as a promising AChE-targeted PET imaging ligand for the assessment of cholinergic activity into the brain, providing also insights into the AChE ligand disposition, which depends upon the position of the aromatic fluorine in the benzyl moiety.
Collapse
Affiliation(s)
- Byung Chul Lee
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Republic of Korea; Center for Nanomolecular Imaging and Innovative Drug Development, Advanced Institutes of Convergence Technology, Suwon 16229, Republic of Korea
| | - Byung Seok Moon
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Republic of Korea
| | - Hyun Soo Park
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Republic of Korea
| | - Jae Ho Jung
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Republic of Korea
| | - Hyun Sik Park
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Republic of Korea
| | - Do Dam Park
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Republic of Korea
| | - Modesto de Candia
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy
| | - Nunzio Denora
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy
| | - Cosimo D Altomare
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy
| | - Sang Eun Kim
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Republic of Korea; Center for Nanomolecular Imaging and Innovative Drug Development, Advanced Institutes of Convergence Technology, Suwon 16229, Republic of Korea; Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
8
|
Lee YS, Chun JH, Hodošček M, Pike VW. Crystal Structures of Diaryliodonium Fluorides and Their Implications for Fluorination Mechanisms. Chemistry 2017; 23:4353-4363. [PMID: 28145069 PMCID: PMC5687088 DOI: 10.1002/chem.201604803] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/22/2016] [Indexed: 12/30/2022]
Abstract
The radiofluorination of diaryliodonium salts is of value for producing radiotracers for positron emission tomography. We report crystal structures for two diaryliodonium fluorides. Whereas diphenyliodonium fluoride (1 a) exists as a tetramer bridged by four fluoride ions, 2-methylphenyl(phenyl)iodonium fluoride (2 a) forms a fluoride-bridged dimer that is further halogen bonded to two other monomers. We discuss the topological relationships between the two and their implications for fluorination in solution. Both radiofluorination and NMR spectroscopy show that thermolysis of 2 a gives 2-fluorotoluene and fluorobenzene in a 2 to 1 ratio that is in good agreement with the ratio observed from the radiofluorination of 2-methylphenyl(phenyl)iodonium chloride (2 b). The constancy of the product ratio affirms that the fluorinations occur via the same two rapidly interconverting transition states whose energy difference dictates chemoselectivity. From quantum chemical studies with density functional theory we attribute the "ortho-effect" to the favorable electrostatic interaction between the incoming fluoride and the o-methyl in the transition state. By utilizing the crystal structures of 1 a and 2 a, the mechanisms of fluoroarene formation from diaryliodonium fluorides in their monomeric, homodimeric, heterodimeric, and tetrameric states were also investigated. We propose that oligomerization energy dictates whether the fluorination occurs through a monomeric or an oligomeric pathway.
Collapse
Affiliation(s)
- Yong-Sok Lee
- Center for Molecular Modeling, Office of Intramural Research, Center for Information Technology, National Institutes of Health, Building 12A, Rm 2049, Bethesda, MD, 20892, USA
| | - Joong-Hyun Chun
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Rm. B3C346A, 10 Center Drive, Bethesda, MD, 20892, USA
- Present address: Department of Nuclear Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, 03722, South Korea
| | - Milan Hodošček
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
- National Institute of Chemistry, Ljubljana, Slovenia
| | - Victor W Pike
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Rm. B3C346A, 10 Center Drive, Bethesda, MD, 20892, USA
| |
Collapse
|
9
|
van der Born D, Pees A, Poot AJ, Orru RVA, Windhorst AD, Vugts DJ. Fluorine-18 labelled building blocks for PET tracer synthesis. Chem Soc Rev 2017; 46:4709-4773. [DOI: 10.1039/c6cs00492j] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review presents a comprehensive overview of the synthesis and application of fluorine-18 labelled building blocks since 2010.
Collapse
Affiliation(s)
- Dion van der Born
- Department of Radiology & Nuclear Medicine
- VU University Medical Center
- 1081 HV Amsterdam
- The Netherlands
| | - Anna Pees
- Department of Radiology & Nuclear Medicine
- VU University Medical Center
- 1081 HV Amsterdam
- The Netherlands
| | - Alex J. Poot
- Department of Radiology & Nuclear Medicine
- VU University Medical Center
- 1081 HV Amsterdam
- The Netherlands
| | - Romano V. A. Orru
- Department of Chemistry and Pharmaceutical Sciences and Amsterdam Institute for Molecules
- Medicines & Systems (AIMMS)
- VU University Amsterdam
- Amsterdam
- The Netherlands
| | - Albert D. Windhorst
- Department of Radiology & Nuclear Medicine
- VU University Medical Center
- 1081 HV Amsterdam
- The Netherlands
| | - Danielle J. Vugts
- Department of Radiology & Nuclear Medicine
- VU University Medical Center
- 1081 HV Amsterdam
- The Netherlands
| |
Collapse
|
10
|
Petersen IN, Villadsen J, Hansen HD, Madsen J, Jensen AA, Gillings N, Lehel S, Herth MM, Knudsen GM, Kristensen JL. 18F-Labelling of electron rich iodonium ylides: application to the radiosynthesis of potential 5-HT2A receptor PET ligands. Org Biomol Chem 2017; 15:4351-4358. [DOI: 10.1039/c7ob00628d] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nucleophilic 18F-labelling of electron aromatic systems.
Collapse
Affiliation(s)
- I. N. Petersen
- Department of Drug Design and Pharmacology
- Faculty of Health and Medical Sciences
- University of Copenhagen
- 2100 Copenhagen
- Denmark
| | - J. Villadsen
- Neurobiology Research Unit and Center for Integrated Molecular Brain Imaging
- Rigshospitalet
- 2100 Copenhagen
- Denmark
| | - H. D. Hansen
- Neurobiology Research Unit and Center for Integrated Molecular Brain Imaging
- Rigshospitalet
- 2100 Copenhagen
- Denmark
| | - J. Madsen
- PET and Cyclotron Unit
- Rigshospitalet
- 2100 Copenhagen
- Denmark
| | - A. A. Jensen
- Department of Drug Design and Pharmacology
- Faculty of Health and Medical Sciences
- University of Copenhagen
- 2100 Copenhagen
- Denmark
| | - N. Gillings
- PET and Cyclotron Unit
- Rigshospitalet
- 2100 Copenhagen
- Denmark
| | - S. Lehel
- PET and Cyclotron Unit
- Rigshospitalet
- 2100 Copenhagen
- Denmark
| | - M. M. Herth
- Department of Drug Design and Pharmacology
- Faculty of Health and Medical Sciences
- University of Copenhagen
- 2100 Copenhagen
- Denmark
| | - G. M. Knudsen
- Neurobiology Research Unit and Center for Integrated Molecular Brain Imaging
- Rigshospitalet
- 2100 Copenhagen
- Denmark
| | - J. L. Kristensen
- Department of Drug Design and Pharmacology
- Faculty of Health and Medical Sciences
- University of Copenhagen
- 2100 Copenhagen
- Denmark
| |
Collapse
|
11
|
Petersen IN, Kristensen JL, Herth MM. Nucleophilic 18
F-Labeling of Spirocyclic Iodonium Ylide or Boronic Pinacol Ester Precursors: Advantages and Disadvantages. European J Org Chem 2016. [DOI: 10.1002/ejoc.201601448] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Ida Nymann Petersen
- University of Copenhagen; Department of Drug Design and Pharmacology; Jagtvej 160 2100 Copenhagen Denmark
| | | | - Matthias Manfred Herth
- University of Copenhagen; Department of Drug Design and Pharmacology; Jagtvej 160 2100 Copenhagen Denmark
- Rigshospitalet; Department of Clinical Physiology, Nuclear Medicine and PET; Blegdamsvej 9 2100 Copenhagen Denmark
| |
Collapse
|
12
|
Preshlock S, Tredwell M, Gouverneur V. (18)F-Labeling of Arenes and Heteroarenes for Applications in Positron Emission Tomography. Chem Rev 2016; 116:719-66. [PMID: 26751274 DOI: 10.1021/acs.chemrev.5b00493] [Citation(s) in RCA: 477] [Impact Index Per Article: 59.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Diverse radiochemistry is an essential component of nuclear medicine; this includes imaging techniques such as positron emission tomography (PET). As such, PET can track diseases at an early stage of development, help patient care planning through personalized medicine and support drug discovery programs. Fluorine-18 is the most frequently used radioisotope in PET radiopharmaceuticals for both clinical and preclinical research. Its physical and nuclear characteristics (97% β(+) decay, 109.8 min half-life, 635 keV positron energy) and high specific activity make it an attractive nuclide for labeling and molecular imaging. Arenes and heteroarenes are privileged candidates for (18)F-incorporation as they are metabolically robust and therefore widely used by medicinal chemists and radiochemists alike. For many years, the range of (hetero)arenes amenable to (18)F-fluorination was limited by the lack of chemically diverse precursors, and of radiochemical methods allowing (18)F-incorporation in high selectivity and efficiency (radiochemical yield and purity, specific activity, and radio-scalability). The appearance of late-stage fluorination reactions catalyzed by transition metal or small organic molecules (organocatalysis) has encouraged much research on the use of these activation manifolds for (18)F-fluorination. In this piece, we review all of the reactions known to date to install the (18)F substituent and other key (18)F-motifs (e.g., CF3, CHF2, OCF3, SCF3, OCHF2) of medicinal relevance onto (hetero)arenes. The field has changed significantly in the past five years, and the current trend suggests that the radiochemical space available for PET applications will expand rapidly in the near future.
Collapse
Affiliation(s)
- Sean Preshlock
- Chemistry Research Laboratory, University of Oxford , Oxford OX1 3TA, United Kingdom
| | - Matthew Tredwell
- Chemistry Research Laboratory, University of Oxford , Oxford OX1 3TA, United Kingdom
| | - Véronique Gouverneur
- Chemistry Research Laboratory, University of Oxford , Oxford OX1 3TA, United Kingdom
| |
Collapse
|
13
|
Hill DE, Holland JP. Computational studies on hypervalent iodonium(III) compounds as activated precursors for 18F radiofluorination of electron-rich arenes. COMPUT THEOR CHEM 2015. [DOI: 10.1016/j.comptc.2015.05.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
14
|
Jacobson O, Kiesewetter DO, Chen X. Fluorine-18 radiochemistry, labeling strategies and synthetic routes. Bioconjug Chem 2014; 26:1-18. [PMID: 25473848 PMCID: PMC4306521 DOI: 10.1021/bc500475e] [Citation(s) in RCA: 330] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Fluorine-18 is the most frequently used radioisotope in positron emission tomography (PET) radiopharmaceuticals in both clinical and preclinical research. Its physical and nuclear characteristics (97% β(+) decay, 109.7 min half-life, 635 keV positron energy), along with high specific activity and ease of large scale production, make it an attractive nuclide for radiochemical labeling and molecular imaging. Versatile chemistry including nucleophilic and electrophilic substitutions allows direct or indirect introduction of (18)F into molecules of interest. The significant increase in (18)F radiotracers for PET imaging accentuates the need for simple and efficient (18)F-labeling procedures. In this review, we will describe the current radiosynthesis routes and strategies for (18)F labeling of small molecules and biomolecules.
Collapse
Affiliation(s)
- Orit Jacobson
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health , Bethesda, Maryland 20892, United States
| | | | | |
Collapse
|
15
|
Way JD, Wuest F. Automated radiosynthesis of no-carrier-added 4-[18F]fluoroiodobenzene: a versatile building block in 18F radiochemistry. J Labelled Comp Radiopharm 2014; 57:104-9. [PMID: 24678531 DOI: 10.1002/jlcr.3137] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
4-[18F]Fluoroiodobenzene ([18F]FIB) is a versatile building block in 18F radiochemistry used in various transition metal-mediated C-C and C-N cross-coupling reactions and [18F]fluoroarylation reactions. Various synthesis routes have been described for the preparation of [18F]FIB. However, to date, no automated synthesis of [18F]FIB has been reported to allow access to larger amounts of [18F]FIB in high radiochemical and chemical purity. Herein, we describe an automated synthesis of no-carrier-added [18F]FIB on a GE TRACERlab™ FX automated synthesis unit starting from commercially available(4-iodophenyl)diphenylsulfonium triflate as the labelling precursor. [18F]FIB was prepared in high radiochemical yields of 89 ± 10% (decay-corrected, n = 7) within 60 min, including HPLC purification. The radiochemical purity exceeded 95%, and specific activity was greater than 40 GBq/μmol. Typically, from an experiment, 6.4 GBq of [18F]FIB could be obtained starting from 10.4 GBq of [18F]fluoride.
Collapse
|
16
|
Ichiishi N, Brooks A, Topczewski JJ, Rodnick ME, Sanford MS, Scott PJH. Copper-catalyzed [18F]fluorination of (mesityl)(aryl)iodonium salts. Org Lett 2014; 16:3224-7. [PMID: 24890658 PMCID: PMC4076000 DOI: 10.1021/ol501243g] [Citation(s) in RCA: 166] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Indexed: 12/12/2022]
Abstract
A practical, rapid, and highly regioselective Cu-catalyzed radiofluorination of (mesityl)(aryl)iodonium salts is described. This protocol utilizes [(18)F]KF to access (18)F-labeled electron-rich, -neutral, and -deficient aryl fluorides under a single set of mild conditions. This methodology is applied to the synthesis of protected versions of two important radiotracers: 4-[(18)F]fluorophenylalanine and 6-[(18)F]fluoroDOPA.
Collapse
Affiliation(s)
- Naoko Ichiishi
- Department
of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Allen
F. Brooks
- Department
of Radiology, University of Michigan Medical
School, 1301 Catherine, Ann Arbor, Michigan 48109, United States
| | - Joseph J. Topczewski
- Department
of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Melissa E. Rodnick
- Department
of Radiology, University of Michigan Medical
School, 1301 Catherine, Ann Arbor, Michigan 48109, United States
| | - Melanie S. Sanford
- Department
of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Peter J. H. Scott
- Department
of Radiology, University of Michigan Medical
School, 1301 Catherine, Ann Arbor, Michigan 48109, United States
- Interdepartmental
Program in Medicinal Chemistry, University
of Michigan, 428 Church
Street, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
17
|
Richarz R, Krapf P, Zarrad F, Urusova EA, Neumaier B, Zlatopolskiy BD. Neither azeotropic drying, nor base nor other additives: a minimalist approach to 18F-labeling. Org Biomol Chem 2014; 12:8094-9. [DOI: 10.1039/c4ob01336k] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel radiofluorination procedure using only precursor and [18F]fluoride without the need for azeotropic drying, base and other ingredients was developed.
Collapse
Affiliation(s)
- R. Richarz
- Institute of Radiochemistry and Experimental Molecular Imaging
- University Clinic Cologne
- 50937 Cologne, Germany
- Max Planck Institute of Metabolic Research
- 50931 Cologne, Germany
| | - P. Krapf
- Institute of Radiochemistry and Experimental Molecular Imaging
- University Clinic Cologne
- 50937 Cologne, Germany
- Max Planck Institute of Metabolic Research
- 50931 Cologne, Germany
| | - F. Zarrad
- Institute of Radiochemistry and Experimental Molecular Imaging
- University Clinic Cologne
- 50937 Cologne, Germany
- Max Planck Institute of Metabolic Research
- 50931 Cologne, Germany
| | - E. A. Urusova
- Max Planck Institute of Metabolic Research
- 50931 Cologne, Germany
- Clinic of Nuclear Medicine
- RWTH Aachen University
- 52074 Aachen, Germany
| | - B. Neumaier
- Institute of Radiochemistry and Experimental Molecular Imaging
- University Clinic Cologne
- 50937 Cologne, Germany
- Max Planck Institute of Metabolic Research
- 50931 Cologne, Germany
| | - B. D. Zlatopolskiy
- Institute of Radiochemistry and Experimental Molecular Imaging
- University Clinic Cologne
- 50937 Cologne, Germany
- Max Planck Institute of Metabolic Research
- 50931 Cologne, Germany
| |
Collapse
|
18
|
Chun JH, Pike VW. Single-step syntheses of no-carrier-added functionalized [18F]fluoroarenes as labeling synthons from diaryliodonium salts. Org Biomol Chem 2013; 11:6300-6. [PMID: 23942997 PMCID: PMC4184149 DOI: 10.1039/c3ob41353e] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Radiotracers labelled with short-lived fluorine-18 (t(1/2) = 109.7 min) are keenly sought for biomedical imaging with positron emission tomography (PET). The radiotracers are mostly required at high specific radioactivities, necessitating their radiosyntheses from cyclotron-produced no-carrier-added [(18)F]fluoride ion. PET radiotracers encompass wide structural diversity and molecular weight. Hence, diverse (18)F-labeling methodology is needed to accomplish the required radiosyntheses in a simple and rapid manner. A useful strategy is to introduce nucleophilic [(18)F]fluoride ion first into a labeling synthon that may then be applied to label the target radiotracer. Here, we show that various functionalized [(18)F]fluoroarenes may be rapidly synthesized as labeling synthons through single-step reactions of appropriate diaryliodonium salts with [(18)F]fluoride ion. Decay-corrected radiochemical yields (RCYs) varied with position of functional group, choice of electron-rich aryl ring in the diaryliodonium salt, and choice of anion. Under best conditions, (18)F-labeled fluorobenzaldehydes, fluorobenzyl halides, fluorobenzoic acid esters and fluorophenyl ketones were obtained selectively in 40-73%, 20-55%, 46-89% and 81-98% RCYs, respectively. This versatile straightforward methodology will enhance the scope for producing structurally complex, yet useful, PET radiotracers.
Collapse
Affiliation(s)
| | - Victor W. Pike
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Building 10, Room B3 C346A, 10 Center Drive, Bethesda, MD 20892-1003, USA., Fax: +1 301 480 5112; Tel: +1 301 594 5986
| |
Collapse
|
19
|
Malmgren J, Santoro S, Jalalian N, Himo* F, Olofsson B. Arylation with unsymmetrical diaryliodonium salts: a chemoselectivity study. Chemistry 2013; 19:10334-42. [PMID: 23788251 PMCID: PMC3884774 DOI: 10.1002/chem.201300860] [Citation(s) in RCA: 190] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Indexed: 11/24/2022]
Abstract
Phenols, anilines, and malonates have been arylated under metal-free conditions with twelve aryl(phenyl)iodonium salts in a systematic chemoselectivity study. A new "anti-ortho effect" has been identified in the arylation of malonates. Several "dummy groups" have been found that give complete chemoselectivity in the transfer of the phenyl moiety, irrespective of the nucleophile. An aryl exchange in the diaryliodonium salts has been observed under certain arylation conditions. DFT calculations have been performed to investigate the reaction mechanism and to elucidate the origins of the observed selectivities. These results are expected to facilitate the design of chiral diaryliodonium salts and the development of catalytic arylation reactions that are based on these sustainable and metal-free reagents.
Collapse
Affiliation(s)
- Joel Malmgren
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University106 91 Stockholm (Sweden) Fax: (+46) 8-154908 E-mail:
| | - Stefano Santoro
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University106 91 Stockholm (Sweden) Fax: (+46) 8-154908 E-mail:
| | - Nazli Jalalian
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University106 91 Stockholm (Sweden) Fax: (+46) 8-154908 E-mail:
| | - Fahmi Himo*
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University106 91 Stockholm (Sweden) Fax: (+46) 8-154908 E-mail:
| | - Berit Olofsson
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University106 91 Stockholm (Sweden) Fax: (+46) 8-154908 E-mail:
| |
Collapse
|
20
|
Evaluation of tetraethylammonium bicarbonate as a phase-transfer agent in the formation of [18F]fluoroarenes. J Fluor Chem 2012. [DOI: 10.1016/j.jfluchem.2012.07.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|