1
|
Watanabe A, Arqam I, Taylor MJ, Molnar JL. Revisiting Old Questions With New Methods: The Effect of Embryonic Motility on Skull Development in the Domestic Chick. J Morphol 2024; 285:e21785. [PMID: 39434454 DOI: 10.1002/jmor.21785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/11/2024] [Accepted: 09/30/2024] [Indexed: 10/23/2024]
Abstract
Muscle loading is known to influence skeletal morphology. Therefore, modification of the biomechanical environment is expected to cause coordinated morphological changes to the bony and cartilaginous tissues. Understanding how this musculoskeletal coordination contributes to morphological variation has relevance to health sciences, developmental biology, and evolutionary biology. To investigate how muscle loading influences skeletal morphology, we replicate a classic in ovo embryology experiment in the domestic chick (Gallus gallus domesticus) while harnessing modern methodologies that allow us to quantify skeletal anatomy more precisely and in situ. We induced rigid muscle paralysis in developing chicks mid-incubation, then compared the morphology of the cranium and mandible between immobilized and untreated embryos using microcomputed tomography and landmark-based geometric morphometric methods. Like earlier studies, we found predictable differences in the size and shape of the cranium and mandible in paralyzed chicks. These differences were concentrated in areas known to experience high strains during feeding, including the jaw joint and jaw muscle attachment sites. These results highlight specific areas of the skull that appear to be mechanosensitive and suggest muscles that could produce the biomechanical stimuli necessary for normal hatchling morphology. Interestingly, these same areas correspond to areas that show the greatest disparity and fastest evolutionary rates across the avian diversity, which suggests that the musculoskeletal integration observed during development extends to macroevolutionary scales. Thus, selection and evolutionary changes to muscle physiology and architecture could generate large and predictable changes to skull morphology. Building upon previous work, the adoption of modern imaging and morphometric techniques allows richer characterization of musculoskeletal integration that empowers researchers to understand how tissue-to-tissue interactions contribute to overall phenotypic variation.
Collapse
Affiliation(s)
- Akinobu Watanabe
- New York Institute of Technology, College of Osteopathic Medicine, Old Westbury, New York, USA
- Division of Paleontology, American Museum of Natural History, New York, New York, USA
- Life Sciences Department, Natural History Museum, London, UK
| | - Izza Arqam
- New York Institute of Technology, College of Osteopathic Medicine, Old Westbury, New York, USA
| | - Meredith J Taylor
- New York Institute of Technology, College of Osteopathic Medicine, Old Westbury, New York, USA
| | - Julia L Molnar
- New York Institute of Technology, College of Osteopathic Medicine, Old Westbury, New York, USA
| |
Collapse
|
2
|
Rowe AJ, Rayfield EJ. Morphological evolution and functional consequences of giantism in tyrannosauroid dinosaurs. iScience 2024; 27:110679. [PMID: 39262785 PMCID: PMC11387897 DOI: 10.1016/j.isci.2024.110679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/20/2024] [Accepted: 08/02/2024] [Indexed: 09/13/2024] Open
Abstract
Tyrannosauroids are a clade of theropod dinosaur taxa that varied greatly in their body size distribution. We investigated the feeding performance of six tyrannosaur genera of variable body size and skull morphology. We used 3D finite element analysis to test whether skull shape becomes more or less resistant to feeding-induced forces. Cranial and mandibular models were scaled by adult Tyrannosaurus's surface area to analyze the influence of shape on skull function. It was found that Tyrannosaurus experienced higher absolute stresses compared to small-bodied relatives. When surface area values were equalized across genera to account for the effect of size and test efficiency of skull shape, smaller individuals experience notably greater stresses than larger relatives due to the robust cranial osteology characterized in the allometry of tyrannosaurids. These results may indicate that the wide crania of tyrannosaurids convey a functional advantage that basal tyrannosauroids, juvenile tyrannosauroids, and alioramins lacked.
Collapse
Affiliation(s)
- Andre J Rowe
- School of Earth Sciences, University of Bristol, Bristol, UK
| | | |
Collapse
|
3
|
Wilken AT, Schultz JA, Luo ZX, Ross CF. A new biomechanical model of the mammal jaw based on load path analysis. J Exp Biol 2024; 227:jeb247030. [PMID: 39092673 PMCID: PMC11463961 DOI: 10.1242/jeb.247030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024]
Abstract
The primary function of the tetrapod jaw is to transmit jaw muscle forces to bite points. The routes of force transfer in the jaw have never been studied but can be quantified using load paths - the shortest, stiffest routes from regions of force application to support constraints. Here, we use load path analysis to map force transfer from muscle attachments to bite point and jaw joint, and to evaluate how different configurations of trabecular and cortical bone affect load paths. We created three models of the mandible of the Virginia opossum, Didelphis virginiana, each with a cortical bone shell, but with different material properties for the internal spaces: (1) a cortical-trabecular model, in which the interior space is modeled with bulk properties of trabecular bone; (2) a cortical-hollow model, in which trabeculae and mandibular canal are modeled as hollow; and (3) a solid-cortical model, in which the interior is modeled as cortical bone. The models were compared with published in vivo bite force and bone strain data, and the load paths calculated for each model. The trabecular model, which is preferred because it most closely approximates the actual morphology, was best validated by in vivo data. In all three models, the load path was confined to cortical bone, although its route within the cortex varied depending on the material properties of the inner model. Our analysis shows that most of the force is transferred through the cortical, rather than trabecular bone, and highlights the potential of load path analysis for understanding form-function relationships in the skeleton.
Collapse
Affiliation(s)
- Alec T. Wilken
- The University of Chicago, Department of Organismal Biology and Anatomy, 1027 E 57th Street, Chicago, IL, 60637, USA
| | - Julia A. Schultz
- Rheinische Friedrich-Wilhelms-Universität Bonn, Section Paleontology, Institute of Geosciences, 53115 Bonn, Germany
| | - Zhe-Xi Luo
- The University of Chicago, Department of Organismal Biology and Anatomy, 1027 E 57th Street, Chicago, IL, 60637, USA
| | - Callum F. Ross
- The University of Chicago, Department of Organismal Biology and Anatomy, 1027 E 57th Street, Chicago, IL, 60637, USA
| |
Collapse
|
4
|
Johnson-Ransom E, Li F, Xu X, Ramos R, Midzuk AJ, Thon U, Atkins-Weltman K, Snively E. Comparative cranial biomechanics reveal that Late Cretaceous tyrannosaurids exerted relatively greater bite force than in early-diverging tyrannosauroids. Anat Rec (Hoboken) 2024; 307:1897-1917. [PMID: 37772730 DOI: 10.1002/ar.25326] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/20/2023] [Accepted: 09/05/2023] [Indexed: 09/30/2023]
Abstract
Tyrannosaurus has been an exemplar organism in feeding biomechanical analyses. An adult Tyrannosaurus could exert a bone-splintering bite force, through expanded jaw muscles and a robust skull and teeth. While feeding function of adult Tyrannosaurus has been thoroughly studied, such analyses have yet to expand to other tyrannosauroids, especially early-diverging tyrannosauroids (Dilong, Proceratosaurus, and Yutyrannus). In our analysis, we broadly assessed the cranial and feeding performance of tyrannosauroids at varying body sizes. Our sample size included small (Proceratosaurus and Dilong), medium-sized (Teratophoneus), and large (Tarbosaurus, Daspletosaurus, Gorgosaurus, and Yutyrannus) tyrannosauroids, and incorporation of tyrannosaurines at different ontogenetic stages (small juvenile Tarbosaurus, Raptorex, and mid-sized juvenile Tyrannosaurus). We used jaw muscle force calculations and finite element analysis to comprehend the cranial performance of our tyrannosauroids. Scaled subtemporal fenestrae areas and calculated jaw muscle forces show that broad-skulled tyrannosaurines (Tyrannosaurus, Daspletosaurus, juvenile Tyrannosaurus, and Raptorex) exhibited higher jaw muscle forces than other similarly sized tyrannosauroids (Gorgosaurus, Yutyrannus, and Proceratosaurus). The large proceratosaurid Yutyrannus exhibited lower cranial stress than most adult tyrannosaurids. This suggests that cranial structural adaptations of large tyrannosaurids maintained adequate safety factors at greater bite force, but their robust crania did not notably decrease bone stress. Similarly, juvenile tyrannosaurines experienced greater cranial stress than similarly-sized earlier tyrannosauroids, consistent with greater adductor muscle forces in the juveniles, and with crania no more robust than in their small adult predecessors. As adult tyrannosauroid body size increased, so too did relative jaw muscle forces manifested even in juveniles of giant adults.
Collapse
Affiliation(s)
- Evan Johnson-Ransom
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois, USA
| | - Feng Li
- Tianjin Natural History Museum, Tianjin, China
| | - Xing Xu
- Centre for Vertebrate Evolutionary Biology, Yunnan University, Kunming, China
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China
| | - Raul Ramos
- Illustration Department, Rocky Mountain College of Art and Design, Lakewood, Colorado, USA
| | - Adam J Midzuk
- Evolutionary Studies Institute, School of Geosciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Ulrike Thon
- Informatik Department, Mannheim University of Applied Sciences, Mannheim, Germany
| | - Kyle Atkins-Weltman
- College of Osteopathic Medicine, Oklahoma State University, Tulsa, Oklahoma, USA
| | - Eric Snively
- Oklahoma State University College of Osteopathic Medicine-Cherokee Nation, Tahlequah, Oklahoma, USA
| |
Collapse
|
5
|
de Simão-Oliveira D, Dos Santos T, Pinheiro FL, Pretto FA. Assessing the adductor musculature and jaw mechanics of Proterochampsa nodosa (Archosauriformes: Proterochampsidae) through finite element analysis. Anat Rec (Hoboken) 2024; 307:1300-1314. [PMID: 38240352 DOI: 10.1002/ar.25380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/22/2023] [Accepted: 12/26/2023] [Indexed: 03/16/2024]
Abstract
Proterochampsids are a group of South American nonarchosaurian archosauromorphs whose general morphology has been historically likened to that of the extant Crocodylia, which purportedly exhibited similar habits by convergence. Taxa from the genus Proterochampsa, for example, show platyrostral skulls with dorsally faced orbits and external nares and elongated snouts that might indicate a feeding habit similar to that of crocodilians. Nonetheless, some aspects of their craniomandibular anatomy are distinct. Proterochampsa has comparatively larger skull temporal fenestrae, and a unique morphology of the mandibular adductor chamber, with a remarkably large surangular shelf and a fainter retroarticular region in the mandible. In light of this, we conducted biomechanical tests on a 3-dimensional model of Proterochampsa nodosa including the first Finite Element Analysis for proterochampsians and compared it with models of the extant crocodylians Tomistoma schlegelii and Alligator mississippiensis. Our analyses suggested that, despite the differences in adductor chamber, Proterochampsa was able to perform bite forces comparable to those modeled for Alligator and significantly higher than Tomistoma. However, the morphology of the surangular shelf and the adductor chamber of Proterochampsa renders it more prone to accumulate stresses resulting from muscle contraction, when compared with both analogs. The elongated lower jaw of Proterochampsa, like that of Tomistoma, is more susceptible to bending, when compared with Alligator. As a result, we suggest that Proterochampsa might employ anteriorly directed bites only when handling small and soft-bodied prey. In addition, Proterochampsa exemplifies the diversity of arrangements that the adductor musculature adopted in different diverging archosauromorph groups.
Collapse
Affiliation(s)
- Daniel de Simão-Oliveira
- Programa de Pós-Graduação em Biodiversidade Animal, Universidade Federal de Santa Maria (UFSM), Santa Maria, Rio Grande do Sul, Brazil
- Centro de Apoio à Pesquisa Paleontológica da Quarta Colônia (CAPPA), Universidade Federal de Santa Maria (UFSM), São João do Polêsine, Rio Grande do Sul, Brazil
| | - Tiago Dos Santos
- Departamento de Engenharia Mecânica, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Felipe Lima Pinheiro
- Laboratório de Paleobiologia, Universidade Federal do Pampa, São Gabriel, Rio Grande do Sul, Brazil
| | - Flávio Augusto Pretto
- Programa de Pós-Graduação em Biodiversidade Animal, Universidade Federal de Santa Maria (UFSM), Santa Maria, Rio Grande do Sul, Brazil
- Centro de Apoio à Pesquisa Paleontológica da Quarta Colônia (CAPPA), Universidade Federal de Santa Maria (UFSM), São João do Polêsine, Rio Grande do Sul, Brazil
| |
Collapse
|
6
|
Wang L, Meloro C, Fagan MJ, Kissane RWP, Bates KT, Askew GN, Watson PJ. Regional variation of the cortical and trabecular bone material properties in the rabbit skull. PLoS One 2024; 19:e0298621. [PMID: 38412158 PMCID: PMC10898762 DOI: 10.1371/journal.pone.0298621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/27/2024] [Indexed: 02/29/2024] Open
Abstract
The material properties of some bones are known to vary with anatomical location, orientation and position within the bone (e.g., cortical and trabecular bone). Details of the heterogeneity and anisotropy of bone is an important consideration for biomechanical studies that apply techniques such as finite element analysis, as the outcomes will be influenced by the choice of material properties used. Datasets detailing the regional variation of material properties in the bones of the skull are sparse, leaving many finite element analyses of skulls no choice but to employ homogeneous, isotropic material properties, often using data from a different species to the one under investigation. Due to the growing significance of investigating the cranial biomechanics of the rabbit in basic science and clinical research, this study used nanoindentation to measure the elastic modulus of cortical and trabecular bone throughout the skull. The elastic moduli of cortical bone measured in the mediolateral and ventrodorsal direction were found to decrease posteriorly through the skull, while it was evenly distributed when measured in the anteroposterior direction. Furthermore, statistical tests showed that the variation of elastic moduli between separate regions (anterior, middle and posterior) of the skull were significantly different in cortical bone, but was not in trabecular bone. Elastic moduli measured in different orthotropic planes were also significantly different, with the moduli measured in the mediolateral direction consistently lower than that measured in either the anteroposterior or ventrodorsal direction. These findings demonstrate the significance of regional and directional variation in cortical bone elastic modulus, and therefore material properties in finite element models of the skull, particularly those of the rabbit, should consider the heterogeneous and orthotropic properties of skull bone when possible.
Collapse
Affiliation(s)
- Linje Wang
- Structural Biomechanics, Department of Civil and Environmental Engineering, Imperial College London, London, United Kingdom
- School of Engineering, University of Hull, Hull, United Kingdom
| | - Carlo Meloro
- Research Centre in Evolutionary Anthropology and Palaeoecology, School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Michael J Fagan
- School of Engineering, University of Hull, Hull, United Kingdom
| | - Roger W P Kissane
- Department of Musculoskeletal & Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Karl T Bates
- Department of Musculoskeletal & Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Graham N Askew
- School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| | - Peter J Watson
- School of Engineering, University of Hull, Hull, United Kingdom
- Institute of Medical and Biological Engineering, School of Mechanical Engineering, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
7
|
Laird MF, Iriarte-Diaz J, Byron CD, Granatosky MC, Taylor AB, Ross CF. Gape drives regional variation in temporalis architectural dynamics in tufted capuchins. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220550. [PMID: 37839440 PMCID: PMC10577035 DOI: 10.1098/rstb.2022.0550] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 06/10/2023] [Indexed: 10/17/2023] Open
Abstract
Dynamic changes in jaw movements and bite forces depend on muscle architectural and neural factors that have rarely been compared within the same muscle. Here we investigate how regional muscle architecture dynamics-fascicle rotation, shortening, lengthening and architectural gear ratio (AGR)-vary during chewing across a functionally heterogeneous muscle. We evaluate whether timing in architecture dynamics relates to gape, food material properties and/or muscle activation. We also examine whether static estimates of temporalis fibre architecture track variation in dynamic architecture. Fascicle-level architecture dynamics were measured in three regions of the superficial temporalis of three adult tufted capuchins (Sapajus apella) using biplanar videoradiography and the XROMM workflow. Architecture dynamics data were paired with regional fine-wire electromyography data from four adult tufted capuchins. Gape accounted for most architectural change across the temporalis, but architectural dynamics varied between regions. Mechanically challenging foods were associated with lower AGRs in the anterior region. The timing of most dynamic architectural changes did not vary between regions and differed from regional variation in static architecture. Collectively these findings suggest that, when modelling temporalis muscle force production in extant and fossil primates, it is important to account for the effects of gape, regionalization and food material properties. This article is part of the theme issue 'Food processing and nutritional assimilation in animals'.
Collapse
Affiliation(s)
- Myra F. Laird
- Department of Basic and Translational Sciences, University of Pennsylvania, Levy 443, 4010 Locust Street, Philadelphia, PA 19104, USA
| | - Jose Iriarte-Diaz
- Department of Biology, University of the South, Sewanee, TN 37383-1000, USA
| | - Craig D. Byron
- Department of Biology, Mercer University, Macon, GA 312014, USA
| | - Michael C. Granatosky
- Department of Anatomy, New York Institute of Technology, Old Westbury, NY 11545, USA
| | - Andrea B. Taylor
- Department of Foundational Biomedical Sciences, Touro University, Vallejo, CA 94592, USA
| | - Callum F. Ross
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
8
|
Fernandez Blanco MV, Cassini GH, Bona P. A three-dimensional geometric morphometric analysis of the morphological transformation of Caiman lower jaw during post-hatching ontogeny. PeerJ 2023; 11:e15548. [PMID: 37456902 PMCID: PMC10349558 DOI: 10.7717/peerj.15548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/22/2023] [Indexed: 07/18/2023] Open
Abstract
Shape ontogenetic changes of the lower jaw in crocodylians are poorly understood. In order to answer some questions related to the inter- and intraspecific morphological variation of the mandible of two extant Caiman species, we performed a three-dimensional geometric morphometric approach. For this purpose, we used landmarks and semilandmarks on two ontogenetic mandibular series of 48 and 15 post-hatching specimens of C. yacare and C. latirostris, respectively. We have also examined the relationship between these anatomical transformations and ontogenetic shifts in diet. We performed a principal component analysis (PCA) for the two species, and regression and partial least squares (PLS) analyses for each species, separately. As a result, species were segregated along the PC1 with specimens of C. yacare showing more gracile mandibles, and specimens of C. latirostris more robust ones. The PC2 and regression analyses showed an age gradient and represented ontogenetic shape changes. Adult caiman mandibles are higher and wider than juvenile ones, and shape changes are more conspicuous in C. latirostris. The PLS analyses showed a significant relationship between shape and diet. Morphological changes of the PLS1 of block-1 match with those of the regression analysis for both species. We have detected morphological transformations in areas where the musculature in charge of mandibular movements is attached. Common morphological changes occurring during ontogeny seem to reflect the same mechanical properties required for crushing and killing in both species, driven by an ontogenetic shift in the diet from invertebrates to vertebrates. Additionally, interspecific differences were also found to be correlated to ontogenetic changes in diet and could be related to dissimilar feeding mechanical requirements (e.g., stiffness and toughness of the item consumed), and to different habitat preferences. Robust mandibles would be more suitable for shallow and fully vegetated environments, as it can be seen in C. latirostris, whereas slender jaws seem to be more suitable for more aquatic species such as C. yacare.
Collapse
Affiliation(s)
- María Victoria Fernandez Blanco
- División Paleontología Vertebrados, Museo de La Plata, Unidades de Investigación Anexo II Museo, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Guillermo Hernán Cassini
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
- División Mastozoología, Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”, Ciudad Autónoma de Buenos Aires, Argentina
- Departamento de Ciencias Básicas, Universidad Nacional de Luján, Luján, Buenos Aires, Argentina
| | - Paula Bona
- División Paleontología Vertebrados, Museo de La Plata, Unidades de Investigación Anexo II Museo, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
9
|
Lv Y, Zhou Z. Humeri under external load: Mechanical implications of differing bone curvature in American otter and honey badger. J Theor Biol 2023; 558:111358. [PMID: 36410449 DOI: 10.1016/j.jtbi.2022.111358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 11/04/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022]
Abstract
The mechanical properties of limb long bones are impacted by bone shape and especially curvature, which is therefore likely to be of adaptive value. We use finite element analysis to compare the mechanical properties of humeri of the closely related American otter and honey badger under external loads, and to analyze the significance of bone curvature. We simulate the effects generated by loads applied in directions that differ relative to the humeral longitudinal axes, and then compare the stress characteristics with a series of humerus-inspired abstracted curved structures with increasing ratio (C/R) of eccentricity C to radius of cross section R. The humeri of the two species differ in bone curvature, with C/R of 0.6201 and 0.8752, respectively. Our analysis shows that the peak and mean stress values found within the sampling line of bone models reach a minimum when the directions of loads are 105 ± 5°, and the humerus of the American otter always experienced lower stress values than those of the honey badger in the sampling line. An analysis of stress distribution in abstract curved structures showed the greatest reduction in stress when the direction of external load was equal or greater than 95°. This suggests that the variability of the direction of external loads is an important determinant of bone curvature, and should be accounted for when assessing load carrying capacity. This study provides a basis for biomechanics research and yields insight into the form-function relationship of nature's structural elements within limbs. It potentially contributes to the design of biomimetic robots while also highlighting the functional significance of humeral bone curvature in mammals.
Collapse
Affiliation(s)
- Yanzhao Lv
- School of Mechanical and Electrical Engineering, Guilin University of Electronic Technology, Guilin, 541004, China
| | - Zupeng Zhou
- School of Mechanical and Electrical Engineering, Guilin University of Electronic Technology, Guilin, 541004, China.
| |
Collapse
|
10
|
Button DJ, Porro LB, Lautenschlager S, Jones MEH, Barrett PM. Multiple pathways to herbivory underpinned deep divergences in ornithischian evolution. Curr Biol 2023; 33:557-565.e7. [PMID: 36603586 DOI: 10.1016/j.cub.2022.12.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/28/2022] [Accepted: 12/08/2022] [Indexed: 01/06/2023]
Abstract
The extent to which evolution is deterministic is a key question in biology,1,2,3,4,5,6,7,8,9 with intensive debate on how adaptation6,10,11,12,13 and constraints14,15,16 might canalize solutions to ecological challenges.4,5,6 Alternatively, unique adaptations1,9,17 and phylogenetic contingency1,3,18 may render evolution fundamentally unpredictable.3 Information from the fossil record is critical to this debate,1,2,11 but performance data for extinct taxa are limited.7 This knowledge gap is significant, as general morphology may be a poor predictor of biomechanical performance.17,19,20 High-fiber herbivory originated multiple times within ornithischian dinosaurs,21 making them an ideal clade for investigating evolutionary responses to similar ecological pressures.22 However, previous biomechanical modeling studies on ornithischian crania17,23,24,25 have not compared early-diverging taxa spanning independent acquisitions of herbivory. Here, we perform finite-element analysis on the skull of five early-diverging members of the major ornithischian clades to characterize morphofunctional pathways to herbivory. Results reveal limited functional convergence among ornithischian clades, with each instead achieving comparable performance, in terms of reconstructed patterns and magnitudes of functionally induced stress, through different adaptations of the feeding apparatus. Thyreophorans compensated for plesiomorphic low performance through increased absolute size, heterodontosaurids expanded jaw adductor muscle volume, ornithopods increased jaw system efficiency, and ceratopsians combined these approaches. These distinct solutions to the challenges of herbivory within Ornithischia underpinned the success of this diverse clade. Furthermore, the resolution of multiple solutions to equivalent problems within a single clade through macroevolutionary time demonstrates that phenotypic evolution is not necessarily predictable, instead arising from the interplay of adaptation, innovation, contingency, and constraints.1,2,3,7,8,9,18.
Collapse
Affiliation(s)
- David J Button
- Science Group, The Natural History Museum, Cromwell Road, London SW7 5BD, UK.
| | - Laura B Porro
- Centre for Integrative Anatomy, Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6DE, UK
| | - Stephan Lautenschlager
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Marc E H Jones
- Science Group, The Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Paul M Barrett
- Science Group, The Natural History Museum, Cromwell Road, London SW7 5BD, UK
| |
Collapse
|
11
|
Henderson DM. Growth constraints set an upper limit to theropod dinosaur body size. THE SCIENCE OF NATURE - NATURWISSENSCHAFTEN 2023; 110:4. [PMID: 36715746 DOI: 10.1007/s00114-023-01832-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/15/2022] [Accepted: 01/19/2023] [Indexed: 01/31/2023]
Abstract
Despite nearly 200 years of scientific collecting and study, none of the extinct, bipedal, predatory, theropod dinosaurs have been reliably shown to exceed 12 m in length. Using digital 3D models of theropods with lengths spanning 80 cm to 12 m, their body masses were found to scale to the 3.5 power of body lengths. The lateral area of the pelvis and the cross-sectional area of the tail base of these animals corresponds to the cross-sectional areas of key muscle groups important for balance and locomotion, and both scale to the 2.4 power of body length. Body accelerations in the lateral and forward directions are, using F = ma, given by dividing muscle area (force proxy) by body mass. Plotting these acceleration estimates against body length shows them to decrease exponentially. The largest theropods with body lengths of 10-12 m have less than 10% of the acceleration capacity of the smaller forms. The distinct lack of fossil remains of theropods demonstrably longer than 12 m suggests that the theropod body plan had an upper size limit based on a minimum acceleration threshold. Rotational inertia of the theropod body was found to be proportional to body length raised to the 5.5 power, and with increasing length, the capacity for agility would rapidly diminish. The tight relationship between theropod pelvic area and body length allows for the estimation of body lengths of specimens lacking complete axial skeletons, and this is done for four, large, well-preserved pelves.
Collapse
|
12
|
Chatar N, Boman R, Fallon Gaudichon V, MacLaren JA, Fischer V. ‘Fossils’: A new, fast and open‐source protocol to simulate muscle‐driven biomechanical loading of bone. Methods Ecol Evol 2023. [DOI: 10.1111/2041-210x.14051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Narimane Chatar
- Evolution & Diversity Dynamics lab, UR Geology Université de Liège Liège Belgium
| | - Romain Boman
- Department of Aerospace and Mechanical Engineering, Non‐Linear Computational Mechanics (MN2L) Research Group Université de Liège Liège Belgium
| | - Valentin Fallon Gaudichon
- Evolution & Diversity Dynamics lab, UR Geology Université de Liège Liège Belgium
- Institut des Sciences de l'Evolution de Montpellier (ISEM) Université de Poitiers‐Montpellier Montpellier France
| | - Jamie A. MacLaren
- Evolution & Diversity Dynamics lab, UR Geology Université de Liège Liège Belgium
- Functional Morphology Lab, Department of Biology Universiteit Antwerpen Antwerpen Belgium
| | - Valentin Fischer
- Evolution & Diversity Dynamics lab, UR Geology Université de Liège Liège Belgium
| |
Collapse
|
13
|
Johnson MM, Foffa D, Young MT, Brusatte SL. The ecological diversification and evolution of Teleosauroidea (Crocodylomorpha, Thalattosuchia), with insights into their mandibular biomechanics. Ecol Evol 2022; 12:e9484. [PMID: 36415878 PMCID: PMC9674474 DOI: 10.1002/ece3.9484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/13/2022] [Accepted: 10/19/2022] [Indexed: 11/20/2022] Open
Abstract
Throughout the Jurassic, a plethora of marine reptiles dominated ocean waters, including ichthyosaurs, plesiosaurs and thalattosuchian crocodylomorphs. These Jurassic ecosystems were characterized by high niche partitioning and spatial variation in dietary ecology. However, while the ecological diversity of many marine reptile lineages is well known, the overall ecological diversification of Teleosauroidea (one of the two major groups within thalattosuchian crocodylomorphs) has never been explored. Teleosauroids were previously deemed to have a morphologically conservative body plan; however, they were in actuality morphofunctionally more diverse than previously thought. Here we investigate the ecology and feeding specializations of teleosauroids, using morphological and functional cranio-dental characteristics. We assembled the most comprehensive dataset to date of teleosauroid taxa (approximately 20 species) and ran a series of principal component analyses (PC) to categorize them into various feeding ecomorphotypes based on 17 dental characteristics (38 specimens) and 16 functionally significant mandibular characters (18 specimens). The results were examined in conjunction with a comprehensive thalattosuchian phylogeny (153 taxa and 502 characters) to evaluate macroevolutionary patterns and significant ecological shifts. Machimosaurids display a well-developed ecological shift from: (1) slender, pointed tooth apices and an elongate gracile mandible; to (2) more robust, pointed teeth with a slightly deeper mandible; and finally, (3) rounded teeth and a deep-set, shortened mandible with enlarged musculature. Overall, there is limited mandibular functional variability in teleosaurids and machimosaurids, despite differing cranial morphologies and habitat preferences in certain taxa. This suggests a narrow feeding ecological divide between teleosaurids and machimosaurids. Resource partitioning was primarily related to snout and skull length as well as habitat; only twice did teleosauroids manage to make a major evolutionary leap to feed distinctly differently, with only the derived machimosaurines successfully radiating into new feeding ecologies.
Collapse
Affiliation(s)
| | - Davide Foffa
- Department of GeosciencesVirginia TechBlacksburgVirginiaUSA
- School of Geography, Earth and Environmental SciencesUniversity of BirminghamBirminghamUK
- National Museum of ScotlandEdinburghUK
| | - Mark T. Young
- School of GeoSciences, Grant InstituteUniversity of EdinburghEdinburghUK
- LWL‐Museum für NaturkundeMünsterGermany
| | - Stephen L. Brusatte
- National Museum of ScotlandEdinburghUK
- School of GeoSciences, Grant InstituteUniversity of EdinburghEdinburghUK
| |
Collapse
|
14
|
Rowe AJ, Rayfield EJ. The efficacy of computed tomography scanning versus surface scanning in 3D finite element analysis. PeerJ 2022; 10:e13760. [PMID: 36042861 PMCID: PMC9420411 DOI: 10.7717/peerj.13760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/29/2022] [Indexed: 01/17/2023] Open
Abstract
Finite element analysis (FEA) is a commonly used application in biomechanical studies of both extant and fossil taxa to assess stress and strain in solid structures such as bone. FEA can be performed on 3D structures that are generated using various methods, including computed tomography (CT) scans and surface scans. While previous palaeobiological studies have used both CT scanned models and surface scanned models, little research has evaluated to what degree FE results may vary when CT scans and surface scans of the same object are compared. Surface scans do not preserve the internal geometries of 3D structures, which are typically preserved in CT scans. Here, we created 3D models from CT scans and surface scans of the same specimens (crania and mandibles of a Nile crocodile, a green sea turtle, and a monitor lizard) and performed FEA under identical loading parameters. It was found that once surface scanned models are solidified, they output stress and strain distributions and model deformations comparable to their CT scanned counterparts, though differing by notable stress and strain magnitudes in some cases, depending on morphology of the specimen and the degree of reconstruction applied. Despite similarities in overall mechanical behaviour, surface scanned models can differ in exterior shape compared to CT scanned models due to inaccuracies that can occur during scanning and reconstruction, resulting in local differences in stress distribution. Solid-fill surface scanned models generally output lower stresses compared to CT scanned models due to their compact interiors, which must be accounted for in studies that use both types of scans.
Collapse
Affiliation(s)
- Andre J. Rowe
- School of Earth Sciences, University of Bristol, Bristol, United Kingdom
| | - Emily J. Rayfield
- School of Earth Sciences, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
15
|
Lautenschlager S. Functional and ecomorphological evolution of orbit shape in mesozoic archosaurs is driven by body size and diet. Commun Biol 2022; 5:754. [PMID: 35953708 PMCID: PMC9372157 DOI: 10.1038/s42003-022-03706-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 07/12/2022] [Indexed: 11/08/2022] Open
Abstract
The orbit is one of several skull openings in the archosauromorph skull. Intuitively, it could be assumed that orbit shape would closely approximate the shape and size of the eyeball resulting in a predominantly circular morphology. However, a quantification of orbit shape across Archosauromorpha using a geometric morphometric approach demonstrates a large morphological diversity despite the fact that the majority of species retained a circular orbit. This morphological diversity is nearly exclusively driven by large (skull length > 1000 mm) and carnivorous species in all studied archosauromorph groups, but particularly prominently in theropod dinosaurs. While circular orbit shapes are retained in most herbivores and smaller species, as well as in juveniles and early ontogenetic stages, large carnivores adopted elliptical and keyhole-shaped orbits. Biomechanical modelling using finite element analysis reveals that these morphologies are beneficial in mitigating and dissipating feeding-induced stresses without additional reinforcement of the bony structure of the skull.
Collapse
Affiliation(s)
- Stephan Lautenschlager
- School of Geography, Earth & Environmental Sciences, University of Birmingham, Birmingham, UK.
| |
Collapse
|
16
|
Charles J, Kissane R, Hoehfurtner T, Bates KT. From fibre to function: are we accurately representing muscle architecture and performance? Biol Rev Camb Philos Soc 2022; 97:1640-1676. [PMID: 35388613 PMCID: PMC9540431 DOI: 10.1111/brv.12856] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 03/22/2022] [Accepted: 03/25/2022] [Indexed: 12/11/2022]
Abstract
The size and arrangement of fibres play a determinate role in the kinetic and energetic performance of muscles. Extrapolations between fibre architecture and performance underpin our understanding of how muscles function and how they are adapted to power specific motions within and across species. Here we provide a synopsis of how this 'fibre to function' paradigm has been applied to understand muscle design, performance and adaptation in animals. Our review highlights the widespread application of the fibre to function paradigm across a diverse breadth of biological disciplines but also reveals a potential and highly prevalent limitation running through past studies. Specifically, we find that quantification of muscle architectural properties is almost universally based on an extremely small number of fibre measurements. Despite the volume of research into muscle properties, across a diverse breadth of research disciplines, the fundamental assumption that a small proportion of fibre measurements can accurately represent the architectural properties of a muscle has never been quantitatively tested. Subsequently, we use a combination of medical imaging, statistical analysis, and physics-based computer simulation to address this issue for the first time. By combining diffusion tensor imaging (DTI) and deterministic fibre tractography we generated a large number of fibre measurements (>3000) rapidly for individual human lower limb muscles. Through statistical subsampling simulations of these measurements, we demonstrate that analysing a small number of fibres (n < 25) typically used in previous studies may lead to extremely large errors in the characterisation of overall muscle architectural properties such as mean fibre length and physiological cross-sectional area. Through dynamic musculoskeletal simulations of human walking and jumping, we demonstrate that recovered errors in fibre architecture characterisation have significant implications for quantitative predictions of in-vivo dynamics and muscle fibre function within a species. Furthermore, by applying data-subsampling simulations to comparisons of muscle function in humans and chimpanzees, we demonstrate that error magnitudes significantly impact both qualitative and quantitative assessment of muscle specialisation, potentially generating highly erroneous conclusions about the absolute and relative adaption of muscles across species and evolutionary transitions. Our findings have profound implications for how a broad diversity of research fields quantify muscle architecture and interpret muscle function.
Collapse
Affiliation(s)
- James Charles
- Structure and Motion Lab, Comparative Biomedical SciencesRoyal Veterinary CollegeHawkshead LaneHatfieldHertfordshireAL9 7TAU.K.
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical SciencesUniversity of LiverpoolThe William Henry Duncan Building, 6 West Derby StreetLiverpoolL7 8TXU.K.
| | - Roger Kissane
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical SciencesUniversity of LiverpoolThe William Henry Duncan Building, 6 West Derby StreetLiverpoolL7 8TXU.K.
| | - Tatjana Hoehfurtner
- School of Life SciencesUniversity of Lincoln, Joseph Banks LaboratoriesGreen LaneLincolnLN6 7DLU.K.
| | - Karl T. Bates
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical SciencesUniversity of LiverpoolThe William Henry Duncan Building, 6 West Derby StreetLiverpoolL7 8TXU.K.
| |
Collapse
|
17
|
Herbst EC, Meade LE, Lautenschlager S, Fioritti N, Scheyer TM. A toolbox for the retrodeformation and muscle reconstruction of fossil specimens in Blender. ROYAL SOCIETY OPEN SCIENCE 2022. [PMID: 36039284 DOI: 10.5061/dryad.qjq2bvqk2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Accurate muscle reconstructions can offer new information on the anatomy of fossil organisms and are also important for biomechanical analysis (multibody dynamics and finite-element analysis (FEA)). For the sake of simplicity, muscles are often modelled as point-to-point strands or frustra (cut-off cones) in biomechanical models. However, there are cases in which it is useful to model the muscle morphology in three dimensions, to better examine the effects of muscle shape and size. This is especially important for fossil analyses, where muscle force is estimated from the reconstructed muscle morphology (rather than based on data collected in vivo). The two main aims of this paper are as follows. First, we created a new interactive tool in the free open access software Blender to enable interactive three-dimensional modelling of muscles. This approach can be applied to both palaeontological and human biomechanics research to generate muscle force magnitudes and lines of action for FEA. Second, we provide a guide on how to use existing Blender tools to reconstruct distorted or incomplete specimens. This guide is aimed at palaeontologists but can also be used by anatomists working with damaged specimens or to test functional implication of hypothetical morphologies.
Collapse
Affiliation(s)
- Eva C Herbst
- Palaeontological Institute and Museum, University of Zurich, Zurich, Switzerland
| | - Luke E Meade
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Stephan Lautenschlager
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Niccolo Fioritti
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Torsten M Scheyer
- Palaeontological Institute and Museum, University of Zurich, Zurich, Switzerland
| |
Collapse
|
18
|
Herbst EC, Meade LE, Lautenschlager S, Fioritti N, Scheyer TM. A toolbox for the retrodeformation and muscle reconstruction of fossil specimens in Blender. ROYAL SOCIETY OPEN SCIENCE 2022. [PMID: 36039284 DOI: 10.6084/m9.figshare.c.6145965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Accurate muscle reconstructions can offer new information on the anatomy of fossil organisms and are also important for biomechanical analysis (multibody dynamics and finite-element analysis (FEA)). For the sake of simplicity, muscles are often modelled as point-to-point strands or frustra (cut-off cones) in biomechanical models. However, there are cases in which it is useful to model the muscle morphology in three dimensions, to better examine the effects of muscle shape and size. This is especially important for fossil analyses, where muscle force is estimated from the reconstructed muscle morphology (rather than based on data collected in vivo). The two main aims of this paper are as follows. First, we created a new interactive tool in the free open access software Blender to enable interactive three-dimensional modelling of muscles. This approach can be applied to both palaeontological and human biomechanics research to generate muscle force magnitudes and lines of action for FEA. Second, we provide a guide on how to use existing Blender tools to reconstruct distorted or incomplete specimens. This guide is aimed at palaeontologists but can also be used by anatomists working with damaged specimens or to test functional implication of hypothetical morphologies.
Collapse
Affiliation(s)
- Eva C Herbst
- Palaeontological Institute and Museum, University of Zurich, Zurich, Switzerland
| | - Luke E Meade
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Stephan Lautenschlager
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Niccolo Fioritti
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Torsten M Scheyer
- Palaeontological Institute and Museum, University of Zurich, Zurich, Switzerland
| |
Collapse
|
19
|
Herbst EC, Meade LE, Lautenschlager S, Fioritti N, Scheyer TM. A toolbox for the retrodeformation and muscle reconstruction of fossil specimens in Blender. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220519. [PMID: 36039284 PMCID: PMC9399692 DOI: 10.1098/rsos.220519] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/27/2022] [Indexed: 05/10/2023]
Abstract
Accurate muscle reconstructions can offer new information on the anatomy of fossil organisms and are also important for biomechanical analysis (multibody dynamics and finite-element analysis (FEA)). For the sake of simplicity, muscles are often modelled as point-to-point strands or frustra (cut-off cones) in biomechanical models. However, there are cases in which it is useful to model the muscle morphology in three dimensions, to better examine the effects of muscle shape and size. This is especially important for fossil analyses, where muscle force is estimated from the reconstructed muscle morphology (rather than based on data collected in vivo). The two main aims of this paper are as follows. First, we created a new interactive tool in the free open access software Blender to enable interactive three-dimensional modelling of muscles. This approach can be applied to both palaeontological and human biomechanics research to generate muscle force magnitudes and lines of action for FEA. Second, we provide a guide on how to use existing Blender tools to reconstruct distorted or incomplete specimens. This guide is aimed at palaeontologists but can also be used by anatomists working with damaged specimens or to test functional implication of hypothetical morphologies.
Collapse
Affiliation(s)
- Eva C. Herbst
- Palaeontological Institute and Museum, University of Zurich, Zurich, Switzerland
| | - Luke E. Meade
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Stephan Lautenschlager
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Niccolo Fioritti
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Torsten M. Scheyer
- Palaeontological Institute and Museum, University of Zurich, Zurich, Switzerland
| |
Collapse
|
20
|
Holliday CM, Sellers KC, Lessner EJ, Middleton KM, Cranor C, Verhulst CD, Lautenschlager S, Bader K, Brown MA, Colbert MW. New frontiers in imaging, anatomy, and mechanics of crocodylian jaw muscles. Anat Rec (Hoboken) 2022; 305:3016-3030. [PMID: 35723491 DOI: 10.1002/ar.25011] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/16/2022] [Accepted: 05/21/2022] [Indexed: 12/12/2022]
Abstract
New imaging and biomechanical approaches have heralded a renaissance in our understanding of crocodylian anatomy. Here, we review a series of approaches in the preparation, imaging, and functional analysis of the jaw muscles of crocodylians. Iodine-contrast microCT approaches are enabling new insights into the anatomy of muscles, nerves, and other soft tissues of embryonic as well as adult specimens of alligators. These imaging data and other muscle modeling methods offer increased accuracy of muscle sizes and attachments without destructive methods like dissection. 3D modeling approaches and imaging data together now enable us to see and reconstruct 3D muscle architecture which then allows us to estimate 3D muscle resultants, but also measurements of pennation in ways not seen before. These methods have already revealed new information on the ontogeny, diversity, and function of jaw muscles and the heads of alligators and other crocodylians. Such approaches will lead to enhanced and accurate analyses of form, function, and evolution of crocodylians, their fossil ancestors and vertebrates in general.
Collapse
Affiliation(s)
- Casey M Holliday
- Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, Missouri, USA
| | - Kaleb C Sellers
- Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, Missouri, USA
| | - Emily J Lessner
- Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, Missouri, USA
| | - Kevin M Middleton
- Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, Missouri, USA
| | - Corrine Cranor
- Department of Geology and Geologic Engineering, South Dakota School of Mines and Technology, Rapid City, South Dakota, USA
| | - Conner D Verhulst
- Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, Missouri, USA
| | - Stephan Lautenschlager
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Kenneth Bader
- Texas Vertebrate Paleontology Collection, Jackson School of Geosciences, University of Texas at Austin, Austin, Texas, USA
| | - Matthew A Brown
- Texas Vertebrate Paleontology Collection, Jackson School of Geosciences, University of Texas at Austin, Austin, Texas, USA
| | - Matthew W Colbert
- Jackson School of Geosciences, University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
21
|
Sellers KC, Nieto MN, Degrange FJ, Pol D, Clark JM, Middleton KM, Holliday CM. The effects of skull flattening on suchian jaw muscle evolution. Anat Rec (Hoboken) 2022; 305:2791-2822. [PMID: 35661427 DOI: 10.1002/ar.24912] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 12/20/2022]
Abstract
Jaw muscles are key features of the vertebrate feeding apparatus. The jaw musculature is housed in the skull whose morphology reflects a compromise between multiple functions, including feeding, housing sensory structures, and defense, and the skull constrains jaw muscle geometry. Thus, jaw muscle anatomy may be suboptimally oriented for the production of bite force. Crocodylians are a group of vertebrates that generate the highest bite forces ever measured with a flat skull suited to their aquatic ambush predatory style. However, basal members of the crocodylian line (e.g., Prestosuchus) were terrestrial predators with plesiomorphically tall skulls, and thus the origin of modern crocodylians involved a substantial reorganization of the feeding apparatus and its jaw muscles. Here, we reconstruct jaw muscles across a phylogenetic range of crocodylians and fossil suchians to investigate the impact of skull flattening on muscle anatomy. We used imaging data to create 3D models of extant and fossil suchians that demonstrate the evolution of the crocodylian skull, using osteological correlates to reconstruct muscle attachment sites. We found that jaw muscle anatomy in early fossil suchians reflected the ancestral archosaur condition but experienced progressive shifts in the lineage leading to Metasuchia. In early fossil suchians, musculus adductor mandibulae posterior and musculus pterygoideus (mPT) were of comparable size, but by Metasuchia, the jaw musculature is dominated by mPT. As predicted, we found that taxa with flatter skulls have less efficient muscle orientations for the production of high bite force. This study highlights the diversity and evolution of jaw muscles in one of the great transformations in vertebrate evolution.
Collapse
Affiliation(s)
- Kaleb C Sellers
- Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, Missouri, USA.,Department of Clinical Anatomy and Osteopathic Principles and Practice, Rocky Vista University, Parker, Colorado, USA
| | - Mauro Nicolas Nieto
- Centro de Investigaciones en Ciencias de la Tierra (CICTERRA), UNC, CONICET, Córdoba, Argentina
| | - Federico J Degrange
- Centro de Investigaciones en Ciencias de la Tierra (CICTERRA), UNC, CONICET, Córdoba, Argentina
| | - Diego Pol
- CONICET, Museo Paleontológico Egidio Feruglio, Trelew, Argentina
| | - James M Clark
- Department of Biological Sciences, The George Washington University, Washington, District of Columbia, USA
| | - Kevin M Middleton
- Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, Missouri, USA
| | - Casey M Holliday
- Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
22
|
Meade LE, Ma W. Cranial muscle reconstructions quantify adaptation for high bite forces in Oviraptorosauria. Sci Rep 2022; 12:3010. [PMID: 35194096 PMCID: PMC8863891 DOI: 10.1038/s41598-022-06910-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 02/09/2022] [Indexed: 12/28/2022] Open
Abstract
Oviraptorosaurians are an unusual and probably herbivorous group of theropod dinosaurs that evolved pneumatised crania with robust, toothless jaws, apparently adapted for producing a strong bite. Using 3D retrodeformed skull models of oviraptorid oviraptorosaurians Citipati, Khaan, and Conchoraptor, along with the earliest diverging oviraptorosaurian, Incisivosaurus, we digitally reconstruct jaw adductor musculature and estimate bite force to investigate cranial function in each species. We model muscle length change during jaw opening to constrain optimal and maximum gape angles. Results demonstrate oviraptorids were capable of much stronger bite forces than herbivorous theropods among Ornithomimosauria and Therizinosauria, relative to body mass and absolutely. Increased bite forces in oviraptorid oviraptorosaurians compared to the earliest diverging oviraptorosaurian result from expanded muscular space and different cranial geometry, not changes in muscular arrangement. Estimated optimal and maximum possible gapes are much smaller than published estimates for carnivorous theropods, being more similar to the herbivorous therizinosaurian theropod Erlikosaurus and modern birds. Restrictive gape and high bite force may represent adaptation towards exploiting tough vegetation, suggesting cranial function and dietary habits differed between oviraptorids and other herbivorous theropods. Differences in the relative strength of jaw adductor muscles between co-occurring oviraptorids may be a factor in niche partitioning, alongside body size.
Collapse
Affiliation(s)
| | - Waisum Ma
- University of Birmingham, Birmingham, UK
| |
Collapse
|
23
|
Mitchell DR, Wroe S, Ravosa MJ, Menegaz RA. More Challenging Diets Sustain Feeding Performance: Applications Toward the Captive Rearing of Wildlife. Integr Org Biol 2021; 3:obab030. [PMID: 34888486 PMCID: PMC8653637 DOI: 10.1093/iob/obab030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/09/2021] [Accepted: 10/20/2021] [Indexed: 11/14/2022] Open
Abstract
The rescue and rehabilitation of young fauna is of substantial importance to conservation. However, it has been suggested that incongruous diets offered in captive environments may alter craniofacial morphology and hinder the success of reintroduced animals. Despite these claims, to what extent dietary variation throughout ontogeny impacts intrapopulation cranial biomechanics has not yet been tested. Here, finite element models were generated from the adult crania of 40 rats (n = 10 per group) that were reared on 4 different diet regimes and stress magnitudes compared during incisor bite simulations. The diets consisted of (1) exclusively hard pellets from weaning, (2) exclusively soft ground pellet meal from weaning, (3) a juvenile switch from pellets to meal, and (4) a juvenile switch from meal to pellets. We hypothesized that a diet of exclusively soft meal would result in the weakest adult skulls, represented by significantly greater stress magnitudes at the muzzle, palate, and zygomatic arch. Our hypothesis was supported at the muzzle and palate, indicating that a diet limited to soft food inhibits bone deposition throughout ontogeny. This finding presents a strong case for a more variable and challenging diet during development. However, rather than the "soft" diet group resulting in the weakest zygomatic arch as predicted, this region instead showed the highest stress among rats that switched as juveniles from hard pellets to soft meal. We attribute this to a potential reduction in number and activity of osteoblasts, as demonstrated in studies of sudden and prolonged disuse of bone. A shift to softer foods in captivity, during rehabilitation after injury in the wild for example, can therefore be detrimental to healthy development of the skull in some growing animals, potentially increasing the risk of injury and impacting the ability to access full ranges of wild foods upon release. We suggest captive diet plans consider not just nutritional requirements but also food mechanical properties when rearing wildlife to adulthood for reintroduction.
Collapse
Affiliation(s)
- D Rex Mitchell
- Center for Anatomical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Stephen Wroe
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia
| | - Matthew J Ravosa
- Departments of Biological Sciences, Aerospace and Mechanical Engineering, and Anthropology, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Rachel A Menegaz
- Center for Anatomical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| |
Collapse
|
24
|
Bestwick J, Jones AS, Nesbitt SJ, Lautenschlager S, Rayfield EJ, Cuff AR, Button DJ, Barrett PM, Porro LB, Butler RJ. Cranial functional morphology of the pseudosuchian Effigia and implications for its ecological role in the Triassic. Anat Rec (Hoboken) 2021; 305:2435-2462. [PMID: 34841701 DOI: 10.1002/ar.24827] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 09/10/2021] [Accepted: 10/07/2021] [Indexed: 11/06/2022]
Abstract
Pseudosuchians, archosaurian reptiles more closely related to crocodylians than to birds, exhibited high morphological diversity during the Triassic with numerous examples of morphological convergence described between Triassic pseudosuchians and post-Triassic dinosaurs. One example is the shuvosaurid Effigia okeeffeae which exhibits an "ostrich-like" bauplan comprising a gracile skeleton with edentulous jaws and large orbits, similar to ornithomimid dinosaurs and extant palaeognaths. This bauplan is regarded as an adaptation for herbivory, but this hypothesis assumes morphological convergence confers functional convergence, and has received little explicit testing. Here, we restore the skull morphology of Effigia, perform myological reconstructions, and apply finite element analysis to quantitatively investigate skull function. We also perform finite element analysis on the crania of the ornithomimid dinosaur Ornithomimus edmontonicus, the extant palaeognath Struthio camelus and the extant pseudosuchian Alligator mississippiensis to assess the degree of functional convergence with a taxon that exhibit "ostrich-like" bauplans and its closest extant relatives. We find that Effigia possesses a mosaic of mechanically strong and weak features, including a weak mandible that likely restricted feeding to the anterior portion of the jaws. We find limited functional convergence with Ornithomimus and Struthio and limited evidence of phylogenetic constraints with extant pseudosuchians. We infer that Effigia was a specialist herbivore that likely fed on softer plant material, a niche unique among the study taxa and potentially among contemporaneous Triassic herbivores. This study increases the known functional diversity of pseudosuchians and highlights that superficial morphological similarity between unrelated taxa does not always imply functional and ecological convergence.
Collapse
Affiliation(s)
- Jordan Bestwick
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Andrew S Jones
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| | | | - Stephan Lautenschlager
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| | | | - Andrew R Cuff
- Centre for Anatomical and Human Sciences, Hull York Medical School, University of York, York, UK
| | - David J Button
- Department of Earth Sciences, The Natural History Museum, London, UK
| | - Paul M Barrett
- Department of Earth Sciences, The Natural History Museum, London, UK
| | - Laura B Porro
- Centre for Integrative Anatomy, Department of Cell and Developmental Biology, University College London, London, UK
| | - Richard J Butler
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
25
|
Modeling tooth enamel in FEA comparisons of skulls: Comparing common simplifications with biologically realistic models. iScience 2021; 24:103182. [PMID: 34761178 PMCID: PMC8567004 DOI: 10.1016/j.isci.2021.103182] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/27/2021] [Accepted: 09/23/2021] [Indexed: 11/24/2022] Open
Abstract
Palaeontologists often use finite element analyses, in which forces propagate through objects with specific material properties, to investigate feeding biomechanics. Teeth are usually modeled with uniform properties (all bone or all enamel). In reality, most teeth are composed of pulp, dentine, and enamel. We tested how simplified teeth compare to more realistic models using mandible models of three reptiles. For each, we created models representing enamel thicknesses found in extant taxa, as well as simplified models (bone, dentine or enamel). Our results suggest that general comparisons of stress distribution among distantly related taxa do not require representation of dental tissues, as there was no noticeable effect on heatmap representations of stress. However, we find that representation of dental tissues impacts bite force estimates, although magnitude of these effects may differ depending on constraints. Thus, as others have shown, the detail necessary in a biomechanical model relates to the questions being examined.
Collapse
|
26
|
Miller CV, Pittman M. The diet of early birds based on modern and fossil evidence and a new framework for its reconstruction. Biol Rev Camb Philos Soc 2021; 96:2058-2112. [PMID: 34240530 PMCID: PMC8519158 DOI: 10.1111/brv.12743] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 12/14/2022]
Abstract
Birds are some of the most diverse organisms on Earth, with species inhabiting a wide variety of niches across every major biome. As such, birds are vital to our understanding of modern ecosystems. Unfortunately, our understanding of the evolutionary history of modern ecosystems is hampered by knowledge gaps in the origin of modern bird diversity and ecosystem ecology. A crucial part of addressing these shortcomings is improving our understanding of the earliest birds, the non-avian avialans (i.e. non-crown birds), particularly of their diet. The diet of non-avian avialans has been a matter of debate, in large part because of the ambiguous qualitative approaches that have been used to reconstruct it. Here we review methods for determining diet in modern and fossil avians (i.e. crown birds) as well as non-avian theropods, and comment on their usefulness when applied to non-avian avialans. We use this to propose a set of comparable, quantitative approaches to ascertain fossil bird diet and on this basis provide a consensus of what we currently know about fossil bird diet. While no single approach can precisely predict diet in birds, each can exclude some diets and narrow the dietary possibilities. We recommend combining (i) dental microwear, (ii) landmark-based muscular reconstruction, (iii) stable isotope geochemistry, (iv) body mass estimations, (v) traditional and/or geometric morphometric analysis, (vi) lever modelling, and (vii) finite element analysis to reconstruct fossil bird diet accurately. Our review provides specific methodologies to implement each approach and discusses complications future researchers should keep in mind. We note that current forms of assessment of dental mesowear, skull traditional morphometrics, geometric morphometrics, and certain stable isotope systems have yet to be proven effective at discerning fossil bird diet. On this basis we report the current state of knowledge of non-avian avialan diet which remains very incomplete. The ancestral dietary condition in non-avian avialans remains unclear due to scarce data and contradictory evidence in Archaeopteryx. Among early non-avian pygostylians, Confuciusornis has finite element analysis and mechanical advantage evidence pointing to herbivory, whilst Sapeornis only has mechanical advantage evidence indicating granivory, agreeing with fossilised ingested material known for this taxon. The enantiornithine ornithothoracine Shenqiornis has mechanical advantage and pedal morphometric evidence pointing to carnivory. In the hongshanornithid ornithuromorph Hongshanornis only mechanical advantage evidence indicates granivory, but this agrees with evidence of gastrolith ingestion in this taxon. Mechanical advantage and ingested fish support carnivory in the songlingornithid ornithuromorph Yanornis. Due to the sparsity of robust dietary assignments, no clear trends in non-avian avialan dietary evolution have yet emerged. Dietary diversity seems to increase through time, but this is a preservational bias associated with a predominance of data from the Early Cretaceous Jehol Lagerstätte. With this new framework and our synthesis of the current knowledge of non-avian avialan diet, we expect dietary knowledge and evolutionary trends to become much clearer in the coming years, especially as fossils from other locations and climates are found. This will allow for a deeper and more robust understanding of the role birds played in Mesozoic ecosystems and how this developed into their pivotal role in modern ecosystems.
Collapse
Affiliation(s)
- Case Vincent Miller
- Vertebrate Palaeontology Laboratory, Research Division for Earth and Planetary ScienceThe University of Hong KongPokfulamHong Kong SARChina
| | - Michael Pittman
- Vertebrate Palaeontology Laboratory, Research Division for Earth and Planetary ScienceThe University of Hong KongPokfulamHong Kong SARChina
| |
Collapse
|
27
|
Gignac PM, Smaers JB, O'Brien HD. Unexpected bite-force conservatism as a stable performance foundation across mesoeucrocodylian historical diversity. Anat Rec (Hoboken) 2021; 305:2823-2837. [PMID: 34555273 DOI: 10.1002/ar.24768] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 07/07/2021] [Accepted: 08/09/2021] [Indexed: 12/29/2022]
Abstract
Effective interpretation of historical selective regimes requires comprehensive in vivo performance evaluations and well-constrained ecomorphological proxies. The feeding apparatus is a frequent target of such evolutionary studies due to a direct relationship between feeding and survivorship, and the durability of craniodental elements in the fossil record. Among vertebrates, behaviors such as bite force have been central to evaluation of clade dynamics; yet, in the absence of detailed performance studies, such evaluations can misidentify potential selective factors and their roles. Here, we combine the results of a total-clade performance study with fossil-inclusive, phylogenetically informed methods to assess bite-force proxies throughout mesoeucrocodylian evolution. Although bite-force shifts were previously thought to respond to changing rostrodental selective regimes, we find body-size dependent conservation of performance proxies throughout the history of the clade, indicating stabilizing selection for bite-force potential. Such stasis reveals that mesoeucrocodylians with dietary ecologies as disparate as herbivory and hypercarnivory maintain similar bite-force-to-body-size relationships, a pattern which contrasts the precept that vertebrate bite forces should vary most strongly by diet. Furthermore, it may signal that bite-force conservation supported mesoeucrocodylian craniodental disparity by providing a stable performance foundation for the exploration of novel ecomorphospace.
Collapse
Affiliation(s)
- Paul M Gignac
- Department of Anatomy and Cell Biology, Oklahoma State University Center for Health Sciences, Tulsa, Oklahoma, USA
| | - Jeroen B Smaers
- Department of Anthropology, Stony Brook University, Circle Road, Social & Behavioral Sciences Building, Stony Brook, New York, USA
| | - Haley D O'Brien
- Department of Anatomy and Cell Biology, Oklahoma State University Center for Health Sciences, Tulsa, Oklahoma, USA
| |
Collapse
|
28
|
Nieto MN, Degrange FJ, Sellers KC, Pol D, Holliday CM. Biomechanical performance of the cranio-mandibular complex of the small notosuchian Araripesuchus gomesii (Notosuchia, Uruguaysuchidae). Anat Rec (Hoboken) 2021; 305:2695-2707. [PMID: 34132040 DOI: 10.1002/ar.24697] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/11/2021] [Accepted: 05/20/2021] [Indexed: 11/12/2022]
Abstract
Notosuchia is a clade of crocodyliforms that was highly successful and diverse in the Cretaceous of Gondwana. Araripesuchus gomesii is a small notosuchian from the Early Cretaceous of Brazil that belongs to Uruguaysuchidae, one of the subgroups of notosuchians that first radiated, during the Aptian-Albian. Here we present a finite element analysis of A. gomesii based on a model reconstructed from CT scans and performed using published bone properties for crocodiles. The adductor musculature and their respective attachment areas were reconstructed based on Extant Phylogenetic Bracket. Different functional scenarios were tested applying an estimated 158 N bite force: unilateral bite, bilateral bite, pullback, head-shake, and head-twist. The results obtained were compared with those of Alligator mississippiensis, one of its closest living relatives. In the different simulations, the skull and lower jaws of Araripesuchus suffers more stress in the head-shake movement, followed by the unilateral and pullback bites with stress focalized in the premaxillary region. In contrast, the head-twist is the one with smaller stress values. Araripesuchus possess an oreinirostral skull that may provide greater overall resistance in the different scenarios on average, unlike Alligator that has a platyrostral skull with less resistance to dorsoventral mechanical loads. Previous hypotheses that considered A. gomesii as omnivorous coupled with our results, its small size, and likely limited bite force, suggest this taxon probably fed on small prey and other trophic items that could catch and handle entirely with its mouth, such as insects and small vertebrates.
Collapse
Affiliation(s)
- Mauro N Nieto
- Centro de Investigaciones en Ciencias de la Tierra (CICTERRA), UNC, CONICET, Córdoba, Argentina
| | - Federico J Degrange
- Centro de Investigaciones en Ciencias de la Tierra (CICTERRA), UNC, CONICET, Córdoba, Argentina
| | - Kaleb C Sellers
- Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, Missouri, USA
| | - Diego Pol
- Museo Paleontológico Egidio Feruglio-CONICET, Trelew, Chubut, Argentina
| | - Casey M Holliday
- Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
29
|
Rowe AJ, Snively E. Biomechanics of juvenile tyrannosaurid mandibles and their implications for bite force: Evolutionary biology. Anat Rec (Hoboken) 2021; 305:373-392. [PMID: 33586862 DOI: 10.1002/ar.24602] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 12/25/2022]
Abstract
The tyrannosaurids are among the most well-studied dinosaurs described by science, and analysis of their feeding biomechanics allows for comparison between established tyrannosaurid genera and across ontogeny. 3D finite element analysis (FEA) was used to model and quantify the mechanical properties of the mandibles (lower jaws) of three tyrannosaurine tyrannosaurids of different sizes. To increase evolutionary scope and context for 3D tyrannosaurine results, a broader sample of validated 2D mandible FEA enabled comparisons between ontogenetic stages of Tyrannosaurus rex and other large theropods. It was found that mandibles of small juvenile and large subadult tyrannosaurs experienced lower stress overall because muscle forces were relatively lower, but experienced greater simulated stresses at decreasing sizes when specimen muscle force is normalized. The strain on post-dentary ligaments decreases stress and strain in the posterior region of the dentary and where teeth impacted food. Tension from the lateral insertion of the looping m. ventral pterygoid muscle increases compressive stress on the angular but may decrease anterior bending stress on the mandible. Low mid-mandible bending stresses are congruent with ultra-robust teeth and high anterior bite force in adult T. rex. Mandible strength increases with size through ontogeny in T. rex and phylogenetically among other tyrannosaurids, in addition to that tyrannosaurid mandibles exceed the mandible strength of other theropods at equivalent ramus length. These results may indicate separate predatory strategies used by juvenile and mature tyrannosaurids; juvenile tyrannosaurids lacked the bone-crunching bite of adult specimens and hunted smaller prey, while adult tyrannosaurids fed on larger prey.
Collapse
Affiliation(s)
- Andre J Rowe
- School of Earth Sciences, University of Bristol, Bristol, United Kingdom
| | - Eric Snively
- College of Osteopathic Medicine, Oklahoma State University, Tulsa, Oklahoma, USA
| |
Collapse
|
30
|
Panagiotopoulou O, Iriarte-Diaz J, Mehari Abraha H, Taylor AB, Wilshin S, Dechow PC, Ross CF. Biomechanics of the mandible of Macaca mulatta during the power stroke of mastication: Loading, deformation, and strain regimes and the impact of food type. J Hum Evol 2020; 147:102865. [PMID: 32905895 PMCID: PMC7541691 DOI: 10.1016/j.jhevol.2020.102865] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 07/21/2020] [Accepted: 07/21/2020] [Indexed: 12/26/2022]
Abstract
Mandible morphology has yet to yield definitive information on primate diet, probably because of poor understanding of mandibular loading and strain regimes, and overreliance on simple beam models of mandibular mechanics. We used a finite element model of a macaque mandible to test hypotheses about mandibular loading and strain regimes and relate variation in muscle activity during chewing on different foods to variation in strain regimes. The balancing-side corpus is loaded primarily by sagittal shear forces and sagittal bending moments. On the working side, sagittal bending moments, anteroposterior twisting moments, and lateral transverse bending moments all reach similar maxima below the bite point; sagittal shear is the dominant loading regime behind the bite point; and the corpus is twisted such that the mandibular base is inverted. In the symphyseal region, the predominant loading regimes are lateral transverse bending and negative twisting about a mediolateral axis. Compared with grape and dried fruit chewing, nut chewing is associated with larger sagittal and transverse bending moments acting on balancing- and working-side mandibles, larger sagittal shear on the working side, and larger twisting moments about vertical and transverse axes in the symphyseal region. Nut chewing is also associated with higher minimum principal strain magnitudes in the balancing-side posterior ramus; higher sagittal shear strain magnitudes in the working-side buccal alveolar process and the balancing-side oblique line, recessus mandibulae, and endocondylar ridge; and higher transverse shear strains in the symphyseal region, the balancing-side medial prominence, and the balancing-side endocondylar ridge. The largest food-related differences in maximum principal and transverse shear strain magnitudes are in the transverse tori and in the balancing-side medial prominence, extramolar sulcus, oblique line, and endocondylar ridge. Food effects on the strain regime are most salient in areas not traditionally investigated, suggesting that studies seeking dietary effects on mandible morphology might be looking in the wrong places.
Collapse
Affiliation(s)
- Olga Panagiotopoulou
- Department of Anatomy & Developmental Biology, Monash Biomedicine Discovery Institute, Faculty of Medicine Nursing and Health Sciences, Monash University, Clayton, Melbourne, Victoria, 3800, Australia.
| | - Jose Iriarte-Diaz
- Department of Biology, University of the South, Sewanee, TN, 37383, USA
| | - Hyab Mehari Abraha
- Department of Anatomy & Developmental Biology, Monash Biomedicine Discovery Institute, Faculty of Medicine Nursing and Health Sciences, Monash University, Clayton, Melbourne, Victoria, 3800, Australia
| | | | - Simon Wilshin
- Comparative Biomedical Sciences, The Royal Veterinary College, Hawkshead Lane, Herts, AL97TA, UK
| | - Paul C Dechow
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, USA
| | - Callum F Ross
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
31
|
Stein MD, Hand SJ, Archer M, Wroe S, Wilson LAB. Quantitatively assessing mekosuchine crocodile locomotion by geometric morphometric and finite element analysis of the forelimb. PeerJ 2020; 8:e9349. [PMID: 32587803 PMCID: PMC7301899 DOI: 10.7717/peerj.9349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 05/22/2020] [Indexed: 01/26/2023] Open
Abstract
Morphological shifts observed in the fossil record of a lineage potentially indicate concomitant shifts in ecology of that lineage. Mekosuchine crocodiles of Cenozoic Australia display departures from the typical eusuchian body-plan both in the cranium and postcranium. Previous qualitative studies have suggested that these crocodiles had a more terrestrial habitus than extant crocodylians, yet the capacity of mekosuchine locomotion remains to be tested. Limb bone shape, such as diaphyseal cross-section and curvature, has been related to habitual use and locomotory function across a wide variety of taxa. Available specimens of mekosuchine limbs, primarily humeri, are distinctly columnar compared with those of extant crocodylians. Here we apply a quantitative approach to biomechanics in mekosuchine taxa using both geomorphic morphometric and finite element methods to measure bone shape and estimate locomotory stresses in a comparative context. Our results show mekosuchines appear to diverge from extant semi-aquatic saltwater and freshwater crocodiles in cross-sectional geometry of the diaphysis and generate different structural stresses between models that simulate sprawling and high-walk gaits. The extant crocodylians display generally rounded cross-sectional diaphyseal outlines, which may provide preliminary indication of resistance to torsional loads that predominate during sprawling gait, whereas mekosuchine humeri appear to vary between a series of elliptical outlines. Mekosuchine structural stresses are comparatively lower than those of the extant crocodylians and reduce under high-walk gait in some instances. This appears to be a function of bending moments induced by differing configurations of diaphyseal curvature. Additionally, the neutral axis of structural stresses is differently oriented in mekosuchines. This suggests a shift in the focus of biomechanical optimisation, from torsional to axial loadings. Our results lend quantitative support to the terrestrial habitus hypothesis in so far as they suggest that mekosuchine humeri occupied a different morphospace than that associated with the semi-aquatic habit. The exact adaptational trajectory of mekosuchines, however, remains to be fully quantified. Novel forms appear to emerge among mekosuchines during the late Cenozoic. Their adaptational function is considered here; possible applications include navigation of uneven terrain and burrowing.
Collapse
Affiliation(s)
- Michael D Stein
- PANGEA Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Suzanne J Hand
- PANGEA Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Michael Archer
- PANGEA Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Stephen Wroe
- Function, Evolution and Anatomy Research Laboratory, School of Environmental and Rural Sciences, University of New England, Armidale, New South Wales, Australia
| | - Laura A B Wilson
- PANGEA Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
32
|
Montefeltro FC, Lautenschlager S, Godoy PL, Ferreira GS, Butler RJ. A unique predator in a unique ecosystem: modelling the apex predator within a Late Cretaceous crocodyliform-dominated fauna from Brazil. J Anat 2020; 237:323-333. [PMID: 32255518 DOI: 10.1111/joa.13192] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/05/2020] [Accepted: 03/05/2020] [Indexed: 12/19/2022] Open
Abstract
Theropod dinosaurs were relatively scarce in the Late Cretaceous ecosystems of southeast Brazil. Instead, hypercarnivorous crocodyliforms known as baurusuchids were abundant and probably occupied the ecological role of apex predators. Baurusuchids exhibited a series of morphological adaptations hypothesized to be associated with this ecological role, but quantitative biomechanical analyses of their morphology have so far been lacking. Here, we employ a biomechanical modelling approach, applying finite element analysis (FEA) to models of the skull and mandibles of a baurusuchid specimen. This allows us to characterize the craniomandibular apparatus of baurusuchids, as well as to compare the functional morphology of the group with that of other archosaurian carnivores, such as theropods and crocodylians. Our results support the ecological role of baurusuchids as specialized apex predators in the continental Late Cretaceous ecosystems of South America. With a relatively weak bite force (~600 N), the predation strategies of baurusuchids likely relied on other morphological specializations, such as ziphodont dentition and strong cervical musculature. Comparative assessments of the stress distribution and magnitude of scaled models of other predators (the theropod Allosaurus fragilis and the living crocodylian Alligator mississippiensis) consistently show different responses to loadings under the same functional scenarios, suggesting distinct predatory behaviors for these animals. The unique selective pressures in the arid to semi-arid Late Cretaceous ecosystems of southeast Brazil, which were dominated by crocodyliforms, possibly drove the emergence and evolution of the biomechanical features seen in baurusuchids, which are distinct from those previously reported for other predatory taxa.
Collapse
Affiliation(s)
- Felipe C Montefeltro
- Laboratório de Paleontologia e Evolução de Ilha Solteira, UNESP, Ilha Solteira, Brazil.,School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Stephan Lautenschlager
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Pedro L Godoy
- Department of Anatomical Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Gabriel S Ferreira
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Richard J Butler
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
33
|
Cost IN, Middleton KM, Sellers KC, Echols MS, Witmer LM, Davis JL, Holliday CM. Palatal Biomechanics and Its Significance for Cranial Kinesis in Tyrannosaurus rex. Anat Rec (Hoboken) 2019; 303:999-1017. [PMID: 31260190 DOI: 10.1002/ar.24219] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 04/13/2019] [Accepted: 04/22/2019] [Indexed: 02/02/2023]
Abstract
The extinct nonavian dinosaur Tyrannosaurus rex, considered one of the hardest biting animals ever, is often hypothesized to have exhibited cranial kinesis, or, mobility of cranial joints relative to the braincase. Cranial kinesis in T. rex is a biomechanical paradox in that forcefully biting tetrapods usually possess rigid skulls instead of skulls with movable joints. We tested the biomechanical performance of a tyrannosaur skull using a series of static positions mimicking possible excursions of the palate to evaluate Postural Kinetic Competency in Tyrannosaurus. A functional extant phylogenetic bracket was employed using taxa, which exhibit measurable palatal excursions: Psittacus erithacus (fore-aft movement) and Gekko gecko (mediolateral movement). Static finite element models of Psittacus, Gekko, and Tyrannosaurus were constructed and tested with different palatal postures using anatomically informed material properties, loaded with muscle forces derived from dissection, phylogenetic bracketing, and a sensitivity analysis of muscle architecture and tested in orthal biting simulations using element strain as a proxy for model performance. Extant species models showed lower strains in naturally occurring postures compared to alternatives. We found that fore-aft and neutral models of Tyrannosaurus experienced lower overall strains than mediolaterally shifted models. Protractor muscles dampened palatal strains, while occipital constraints increased strains about palatocranial joints compared to jaw joint constraints. These loading behaviors suggest that even small excursions can strain elements beyond structural failure. Thus, these postural tests of kinesis, along with the robusticity of other cranial features, suggest that the skull of Tyrannosaurus was functionally akinetic. Anat Rec, 303:999-1017, 2020. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ian N Cost
- Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, Missouri
| | - Kevin M Middleton
- Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, Missouri
| | - Kaleb C Sellers
- Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, Missouri
| | | | - Lawrence M Witmer
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio
| | - Julian L Davis
- Department of Engineering, University of Southern Indiana, Evansville, Indiana
| | - Casey M Holliday
- Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, Missouri
| |
Collapse
|
34
|
Jones MEH, Button DJ, Barrett PM, Porro LB. Digital dissection of the head of the rock dove ( Columba livia) using contrast-enhanced computed tomography. ZOOLOGICAL LETTERS 2019; 5:17. [PMID: 31205748 PMCID: PMC6558907 DOI: 10.1186/s40851-019-0129-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 04/09/2019] [Indexed: 06/09/2023]
Abstract
The rock dove (or common pigeon), Columba livia, is an important model organism in biological studies, including research focusing on head muscle anatomy, feeding kinematics, and cranial kinesis. However, no integrated computer-based biomechanical model of the pigeon head has yet been attempted. As an initial step towards achieving this goal, we present the first three-dimensional digital dissection of the pigeon head based on a contrast-enhanced computed tomographic dataset achieved using iodine potassium iodide as a staining agent. Our datasets enable us to visualize the skeletal and muscular anatomy, brain and cranial nerves, and major sense organs of the pigeon, including very small and fragile features, as well as maintaining the three-dimensional topology of anatomical structures. This work updates and supplements earlier anatomical work on this widely used laboratory organism. We resolve several key points of disagreement arising from previous descriptions of pigeon anatomy, including the precise arrangement of the external adductor muscles and their relationship to the posterior adductor. Examination of the eye muscles highlights differences between avian taxa and shows that pigeon eye muscles are more similar to those of a tinamou than they are to those of a house sparrow. Furthermore, we present our three-dimensional data as publicly accessible files for further research and education purposes. Digital dissection permits exceptional visualisation and will be a valuable resource for further investigations into the head anatomy of other bird species, as well as efforts to reconstruct soft tissues in fossil archosaurs.
Collapse
Affiliation(s)
- Marc E. H. Jones
- Department of Earth Sciences, Natural History Museum, London, SW7 5BD UK
| | - David J. Button
- Department of Earth Sciences, Natural History Museum, London, SW7 5BD UK
| | - Paul M. Barrett
- Department of Earth Sciences, Natural History Museum, London, SW7 5BD UK
| | - Laura B. Porro
- Department of Cell and Developmental Biology, UCL, University College London, Gower Street, London, WC1E 6BT UK
| |
Collapse
|
35
|
Lessner EJ, Gant CA, Hieronymus TL, Vickaryous MK, Holliday CM. Anatomy and Ontogeny of the Mandibular Symphysis in Alligator mississippiensis. Anat Rec (Hoboken) 2019; 302:1696-1708. [PMID: 30883043 DOI: 10.1002/ar.24116] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/14/2018] [Accepted: 12/10/2018] [Indexed: 01/13/2023]
Abstract
Crocodylians evolved some of the most characteristic skulls of the animal kingdom with specializations for semiaquatic and ambush lifestyles, resulting in a feeding apparatus capable of tolerating high biomechanical loads and bite forces and a head with a derived sense of trigeminal-nerve-mediated touch. The mandibular symphysis accommodates these specializations being both at the end of a biomechanical lever and an antenna for sensation. Little is known about the anatomy of the crocodylian mandibular symphysis, hampering our understanding of form, function, and evolution of the joint in extant and extinct lineages. We explore mandibular symphysis anatomy of an ontogenetic series of Alligator mississippiensis using imaging, histology, and whole mount methods. Complex sutural ligaments emanating about a midline-fused Meckel's cartilage bridge the symphysis. These tissues organize during days 37-42 of in ovo development. However, interdigitations do not manifest until after hatching. These soft tissues leave a hub and spoke-like bony morphology of the symphyseal plate, which never fuses. Interdigitation morphology varies within the symphysis suggesting differential loading about the joint. Neurovascular canals extend throughout the mandibles to alveoli, integument, and bone adjacent to the symphysis. These features suggest the Alligator mandibular symphysis offers compliance in an otherwise rigid skull. We hypothesize a fused Meckel's cartilage offers stiffness in hatchling mandibles prior to the development of organized sutural ligaments and mineralized bone while offering a scaffold for somatic growth. The porosity of the dentaries due to neurovascular tissues likely allows transmission of sensory and proprioceptive information from the surroundings and the loaded symphysis. Anat Rec, 302:1696-1708, 2019. © 2019 American Association for Anatomy.
Collapse
Affiliation(s)
- Emily J Lessner
- Program in Integrative Anatomy, Department of Pathology and Anatomical Sciences, University of Missouri Medical School, Columbia, Missouri
| | - Cortaiga A Gant
- Program in Integrative Anatomy, Department of Pathology and Anatomical Sciences, University of Missouri Medical School, Columbia, Missouri
| | - Tobin L Hieronymus
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, Ohio
| | - Matthew K Vickaryous
- Department of Biomedical Sciences, University of Guelph, Guelpgh, Ontario, Canada
| | - Casey M Holliday
- Program in Integrative Anatomy, Department of Pathology and Anatomical Sciences, University of Missouri Medical School, Columbia, Missouri
| |
Collapse
|
36
|
Feeding in Crocodylians and Their Relatives: Functional Insights from Ontogeny and Evolution. FEEDING IN VERTEBRATES 2019. [DOI: 10.1007/978-3-030-13739-7_15] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
37
|
Bates KT, Falkingham PL. The importance of muscle architecture in biomechanical reconstructions of extinct animals: a case study using Tyrannosaurus rex. J Anat 2018; 233:625-635. [PMID: 30129185 PMCID: PMC6183000 DOI: 10.1111/joa.12874] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2018] [Indexed: 11/29/2022] Open
Abstract
Functional reconstructions of extinct animals represent a crucial step towards understanding palaeocological interactions, selective pressures and macroevolutionary patterns in the fossil record. In recent years, computational approaches have revolutionised the field of 'evolutionary biomechanics' and have, in general, resulted in convergence of quantitative estimates of performance on increasingly narrow ranges for well studied taxa. Studies of body mass and locomotor performance of Tyrannosaurus rex - arguably the most intensively studied extinct animal - typify this pattern, with numerous independent studies predicting similar body masses and maximum locomotor speeds for this animal. In stark contrast to this trend, recent estimates of maximum bite force in T. rex vary considerably (> 50%) despite use of similar quantitative methodologies. Herein we demonstrate that the mechanistic causes of these disparate predictions are indicative of important and underappreciated limiting factors in biomechanical reconstructions of extinct organisms. Detailed comparison of previous models of T. rex bite force reveals that estimations of muscle fibre lengths and architecture are the principal source of disagreement between studies, and therefore that these parameters represents the greatest source of uncertainty in these reconstructions, and potentially therefore extinct animals generally. To address the issue of fibre length and architecture estimation in extinct animals we present data tabulated from the literature of muscle architecture from over 1100 muscles measured in extant terrestrial animals. Application of this dataset in a reanalysis of T. rex bite force emphasises the need for more data on jaw musculature from living carnivorous animals, alongside increased sophistication of modelling approaches. In the latter respect we predict that implementing limits on skeletal loading into musculoskeletal models will narrow predictions for T. rex bite force by excluding higher-end estimates.
Collapse
Affiliation(s)
- Karl T. Bates
- Department of Musculoskeletal BiologyInstitute of Aging and Chronic DiseaseUniversity of LiverpoolLiverpoolUK
| | - Peter L. Falkingham
- School of Natural Sciences and PsychologyLiverpool John Moores UniversityLiverpoolUK
| |
Collapse
|
38
|
Perry JMG, Prufrock KA. Muscle Functional Morphology in Paleobiology: The Past, Present, and Future of “Paleomyology”. Anat Rec (Hoboken) 2018; 301:538-555. [DOI: 10.1002/ar.23772] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 12/14/2017] [Accepted: 12/15/2017] [Indexed: 12/18/2022]
Affiliation(s)
- Jonathan M. G. Perry
- Center for Functional Anatomy and Evolution; The Johns Hopkins University School of Medicine; Baltimore Maryland
| | - Kristen A. Prufrock
- Center for Functional Anatomy and Evolution; The Johns Hopkins University School of Medicine; Baltimore Maryland
| |
Collapse
|
39
|
Ross CF, Porro LB, Herrel A, Evans SE, Fagan MJ. Bite force and cranial bone strain in four species of lizards. J Exp Biol 2018; 221:jeb.180240. [DOI: 10.1242/jeb.180240] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 10/16/2018] [Indexed: 11/20/2022]
Abstract
In vivo bone strain data provide direct evidence of strain patterns in the cranium during biting. Compared to mammals, in vivo bone strains in lizard skulls are poorly documented. This paper presents strain data from the skulls of Anolis equestris, Gekko gecko, Iguana iguana and Salvator merianae during transducer biting. Analysis of variance was used to investigate effects of bite force, bite point, diet, cranial morphology and cranial kinesis on strain magnitudes. Within individuals the most consistent determinants of variance in bone strain magnitudes are gage location and bite point, with the importance of bite force varying between individuals. Inter-site variance in strain magnitudes—strain gradient—is present in all individuals, and varies with bite point. Between individuals within species, variance in strain magnitude is driven primarily by variation in bite force, not gage location or bite point, suggesting that inter-individual variation in patterns of strain magnitude is minimal. Between species, variation in strain magnitudes is significantly impacted by bite force and species membership, as well as by interactions between gage location, species, and bite point. Independent of bite force, species differences in cranial strain magnitudes may reflect selection for different cranial morphology in relation to feeding function, but what these performance criteria are is not clear. The relatively low strain magnitudes in Iguana and Uromastyx compared to other lizards may be related to their herbivorous diet. Cranial kinesis and the presence or absence of postorbital and supratemporal bars are not important determinants of inter-specific variation in strain magnitudes.
Collapse
Affiliation(s)
- Callum F. Ross
- Organismal Biology & Anatomy, University of Chicago, 1027 East 57th Street, Chicago, IL 60637, USA
| | - Laura B. Porro
- School of Earth Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Anthony Herrel
- Sorbonne Universités, Département Adaptations du Vivant, UMR 7179, C.N.R.S/M.N.H.N., Paris, France
| | - Susan E. Evans
- Department of Cell and Developmental Biology, UCL, University College London, London, WC1E 6BT, UK
| | - Michael J. Fagan
- School of Engineering and Computer Science, University of Hull, Hull, HU6 7RX, UK
| |
Collapse
|
40
|
Panagiotopoulou O, Iriarte-Diaz J, Wilshin S, Dechow PC, Taylor AB, Mehari Abraha H, Aljunid SF, Ross CF. In vivo bone strain and finite element modeling of a rhesus macaque mandible during mastication. ZOOLOGY 2017; 124:13-29. [PMID: 29037463 DOI: 10.1016/j.zool.2017.08.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 08/25/2017] [Accepted: 08/25/2017] [Indexed: 12/29/2022]
Abstract
Finite element analysis (FEA) is a commonly used tool in musculoskeletal biomechanics and vertebrate paleontology. The accuracy and precision of finite element models (FEMs) are reliant on accurate data on bone geometry, muscle forces, boundary conditions and tissue material properties. Simplified modeling assumptions, due to lack of in vivo experimental data on material properties and muscle activation patterns, may introduce analytical errors in analyses where quantitative accuracy is critical for obtaining rigorous results. A subject-specific FEM of a rhesus macaque mandible was constructed, loaded and validated using in vivo data from the same animal. In developing the model, we assessed the impact on model behavior of variation in (i) material properties of the mandibular trabecular bone tissue and teeth; (ii) constraints at the temporomandibular joint and bite point; and (iii) the timing of the muscle activity used to estimate the external forces acting on the model. The best match between the FEA simulation and the in vivo experimental data resulted from modeling the trabecular tissue with an isotropic and homogeneous Young's modulus and Poisson's value of 10GPa and 0.3, respectively; constraining translations along X,Y, Z axes in the chewing (left) side temporomandibular joint, the premolars and the m1; constraining the balancing (right) side temporomandibular joint in the anterior-posterior and superior-inferior axes, and using the muscle force estimated at time of maximum strain magnitude in the lower lateral gauge. The relative strain magnitudes in this model were similar to those recorded in vivo for all strain locations. More detailed analyses of mandibular strain patterns during the power stroke at different times in the chewing cycle are needed.
Collapse
Affiliation(s)
- Olga Panagiotopoulou
- Moving Morphology & Functional Mechanics Laboratory, School of Biomedical Sciences, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia; Department of Anatomy and Developmental Biology, School of Biomedical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Melbourne, Victoria 3800, Australia
| | - José Iriarte-Diaz
- Department of Oral Biology, University of Illinois, 801 S. Paulina St., Chicago, IL 60612, USA
| | - Simon Wilshin
- Department of Biomedical Sciences, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire AL9 7TA, United Kingdom
| | - Paul C Dechow
- Department of Biomedical Sciences, College of Dentistry, Texas A&M University, 3302 Gaston Ave., Dallas, TX 75246, USA
| | - Andrea B Taylor
- Department of Basic Science, Touro University, 1310 Club Drive, Mare Island, Vellejo, CA 94592, USA
| | - Hyab Mehari Abraha
- Moving Morphology & Functional Mechanics Laboratory, School of Biomedical Sciences, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Sharifah F Aljunid
- Materialise Unit 5-01, Menara OBYU, No. 4, Jalan PJU 8/8A, Damansara Perdana, 47820 Petaling Jaya, Selangor, Malaysia
| | - Callum F Ross
- Department of Organismal Biology and Anatomy, University of Chicago, 1027 E. 57th St., Chicago, IL 60637, USA.
| |
Collapse
|
41
|
McCurry M, Walmsley C, Fitzgerald E, McHenry C. The biomechanical consequences of longirostry in crocodilians and odontocetes. J Biomech 2017; 56:61-70. [DOI: 10.1016/j.jbiomech.2017.03.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 03/02/2017] [Accepted: 03/03/2017] [Indexed: 11/29/2022]
|
42
|
Sellers KC, Middleton KM, Davis JL, Holliday CM. Ontogeny of bite force in a validated biomechanical model of the American alligator. J Exp Biol 2017; 220:2036-2046. [DOI: 10.1242/jeb.156281] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 03/15/2017] [Indexed: 11/20/2022]
Abstract
Three-dimensional computational modeling offers tools with which to investigate forces experienced by the skull encountered during feeding and other behaviors. American alligators (Alligator mississippiensis) generate some of the highest measured bite forces among extant tetrapods. A concomitant increase in bite force accompanies ontogenetic increases in body mass, which has been linked with dietary changes as animals increase in size. Because the flattened skull of crocodylians has substantial mediolaterally-oriented muscles, they are an excellent model taxon in which to explore the role of mediolateral force components experienced by the feeding apparatus. Many previous modeling studies of archosaur cranial function focused on planar analysis, ignoring the mediolateral aspects of cranial forces. Here we use three-dimensionally accurate anatomical data to resolve 3D muscle forces. Using dissection, imaging, and computational techniques, we developed lever and finite element models of an ontogenetic series of alligators to test the effects of size and shape on cranial loading and compared estimated bite forces to those previously measured in vivo in Alligator mississippiensis. We found that modeled forces matched in vivo data well for intermediately sized individuals, and somewhat overestimated force in smaller specimens and underestimated force in larger specimens, suggesting that ontogenetically static muscular parameters and bony attachment sites alone cannot account for all the variation in bite force. Adding aponeurotic muscle attachments would likely improve force predictions, but such data are challenging to model and integrate into analyses of extant taxa and are generally unpreserved in fossils. We conclude that anatomically accurate modeling of muscles can be coupled with finite element and lever analyses to produce reliable, reasonably accurate estimate bite forces and thus both skeletal and joint loading, with known sources of error, which can be applied to extinct taxa.
Collapse
Affiliation(s)
- Kaleb C. Sellers
- Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Kevin M. Middleton
- Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Julian L. Davis
- Department of Engineering, University of Southern Indiana, IN 47712, USA
| | - Casey M. Holliday
- Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
43
|
Wang Q, Dechow PC. Divided Zygomatic Bone in Primates With Implications of Skull Morphology and Biomechanics. Anat Rec (Hoboken) 2016; 299:1801-1829. [DOI: 10.1002/ar.23448] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 04/12/2016] [Accepted: 04/15/2016] [Indexed: 01/06/2023]
Affiliation(s)
- Qian Wang
- Department of Biomedical Sciences Texas A&M University College of Dentistry; Dallas Texas
| | - Paul C. Dechow
- Department of Biomedical Sciences Texas A&M University College of Dentistry; Dallas Texas
| |
Collapse
|
44
|
Nabavizadeh A, Weishampel DB. The Predentary Bone and Its Significance in the Evolution of Feeding Mechanisms in Ornithischian Dinosaurs. Anat Rec (Hoboken) 2016; 299:1358-88. [PMID: 27490958 DOI: 10.1002/ar.23455] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 06/11/2016] [Accepted: 06/16/2016] [Indexed: 11/10/2022]
Abstract
The characteristic predentary bone in ornithischian dinosaurs is a unique, unpaired element located at the midline of the mandibular symphysis. Although traditionally thought to only be a plant "nipping" bone, the true functional significance of this bone among feeding mechanisms of ornithischian dinosaurs is poorly known. Recent studies of a select few ornithischian genera have suggested rotation of the mandibular corpora around their long axes relative to their midline joint articulation with the predentary bone. This study aims to re-evaluate these hypotheses as well as provide in-depth qualitative comparative descriptions of predentary bone morphology in ornithischian genera throughout all subclades, including heterodontosaurids, thyreophorans, ornithopods, and marginocephalians. Descriptions evaluate overall shape of the predentary, its articular surfaces contacting the rostral ends of the dentaries, and the morphology of the rostral extent of the dentaries and their midline symphysis. Functionally relevant morphologies in each predentary morphotype are accentuated for further speculation of feeding mechanisms. Three predentary morphotypes are described throughout ornithischian subclades and each plays a unique role in feeding adaptations. Most notably, the predentary likely evolved as a midline axial point of the mandibular symphysis for simultaneous variable movement or rotation of the mandibular corpora in many, but not all, taxa. This simultaneous movement of the hemimandibles would have aided in feeding on both sides of the jaw at once. The function of the predentary as well as other jaw adaptations is discussed for genera throughout all subclades, focusing on both general shape and joint morphology. Anat Rec, 299:1358-1388, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ali Nabavizadeh
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, New Jersey.
| | - David B Weishampel
- Johns Hopkins University School of Medicine, Center for Functional Anatomy and Evolution, Baltimore, Maryland
| |
Collapse
|
45
|
Comparative 3D analyses and palaeoecology of giant early amphibians (Temnospondyli: Stereospondyli). Sci Rep 2016; 6:30387. [PMID: 27457883 PMCID: PMC4960601 DOI: 10.1038/srep30387] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 06/30/2016] [Indexed: 11/08/2022] Open
Abstract
Macroevolutionary, palaeoecological and biomechanical analyses in deep time offer the possibility to decipher the structural constraints, ecomorphological patterns and evolutionary history of extinct groups. Here, 3D comparative biomechanical analyses of the extinct giant early amphibian group of stereospondyls together with living lissamphibians and crocodiles, shows that: i) stereospondyls had peculiar palaeoecological niches with proper bites and stress patterns very different than those of giant salamanders and crocodiles; ii) their extinction may be correlated with the appearance of neosuchians, which display morphofunctional innovations. Stereospondyls weathered the end-Permian mass extinction, re-radiated, acquired gigantic sizes and dominated (semi) aquatic ecosystems during the Triassic. Because these ecosystems are today occupied by crocodilians, and stereospondyls are extinct amphibians, their palaeobiology is a matter of an intensive debate: stereospondyls were a priori compared with putative living analogous such as giant salamanders and/or crocodilians and our new results try to close this debate.
Collapse
|
46
|
Fong RK, LeBlanc AR, Berman DS, Reisz RR. Dental histology ofCoelophysis bauriand the evolution of tooth attachment tissues in early dinosaurs. J Morphol 2016; 277:916-24. [DOI: 10.1002/jmor.20545] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 03/16/2016] [Accepted: 03/25/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Raymond K.M. Fong
- Department of Biology; University of Toronto; Mississauga Ontario L5L 1C6 Canada
| | - Aaron R.H. LeBlanc
- Department of Biology; University of Toronto; Mississauga Ontario L5L 1C6 Canada
| | - David S. Berman
- Vertebrate Paleontology, Carnegie Museum of Natural History; Pittsburgh Pennsylvania
| | - Robert R. Reisz
- Department of Biology; University of Toronto; Mississauga Ontario L5L 1C6 Canada
| |
Collapse
|
47
|
Lautenschlager S. Estimating cranial musculoskeletal constraints in theropod dinosaurs. ROYAL SOCIETY OPEN SCIENCE 2015; 2:150495. [PMID: 26716007 PMCID: PMC4680622 DOI: 10.1098/rsos.150495] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 10/08/2015] [Indexed: 06/05/2023]
Abstract
Many inferences on the biology, behaviour and ecology of extinct vertebrates are based on the reconstruction of the musculature and rely considerably on its accuracy. Although the advent of digital reconstruction techniques has facilitated the creation and testing of musculoskeletal hypotheses in recent years, muscle strain capabilities have rarely been considered. Here, a digital modelling approach using the freely available visualization and animation software Blender is applied to estimate cranial muscle length changes and optimal and maximal possible gape in different theropod dinosaurs. Models of living archosaur taxa (Alligator mississippiensis, Buteo buteo) were used in an extant phylogenetically bracketed framework to validate the method. Results of this study demonstrate that Tyrannosaurus rex, Allosaurus fragilis and Erlikosaurus andrewsi show distinct differences in the recruitment of the jaw adductor musculature and resulting gape, confirming previous dietary and ecological assumptions. While the carnivorous taxa T. rex and Allo. fragilis were capable of a wide gape and sustained muscle force, the herbivorous therizinosaurian E. andrewsi was constrained to small gape angles.
Collapse
|
48
|
McCurry MR, Evans AR, McHenry CR. The sensitivity of biological finite element models to the resolution of surface geometry: a case study of crocodilian crania. PeerJ 2015; 3:e988. [PMID: 26056620 PMCID: PMC4458129 DOI: 10.7717/peerj.988] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 05/08/2015] [Indexed: 11/20/2022] Open
Abstract
The reliability of finite element analysis (FEA) in biomechanical investigations depends upon understanding the influence of model assumptions. In producing finite element models, surface mesh resolution is influenced by the resolution of input geometry, and influences the resolution of the ensuing solid mesh used for numerical analysis. Despite a large number of studies incorporating sensitivity studies of the effects of solid mesh resolution there has not yet been any investigation into the effect of surface mesh resolution upon results in a comparative context. Here we use a dataset of crocodile crania to examine the effects of surface resolution on FEA results in a comparative context. Seven high-resolution surface meshes were each down-sampled to varying degrees while keeping the resulting number of solid elements constant. These models were then subjected to bite and shake load cases using finite element analysis. The results show that incremental decreases in surface resolution can result in fluctuations in strain magnitudes, but that it is possible to obtain stable results using lower resolution surface in a comparative FEA study. As surface mesh resolution links input geometry with the resulting solid mesh, the implication of these results is that low resolution input geometry and solid meshes may provide valid results in a comparative context.
Collapse
Affiliation(s)
- Matthew R McCurry
- Department of Anatomy and Developmental Biology, Monash University , Clayton, Melbourne , Australia ; Geosciences, Museum Victoria , Carlton, Melbourne , Australia
| | - Alistair R Evans
- Geosciences, Museum Victoria , Carlton, Melbourne , Australia ; School of Biological Sciences, Monash University , Clayton, Melbourne , Australia
| | - Colin R McHenry
- Department of Anatomy and Developmental Biology, Monash University , Clayton, Melbourne , Australia ; School of Engineering, University of Newcastle , Callaghan , Australia
| |
Collapse
|
49
|
Descriptive anatomy and three-dimensional reconstruction of the skull of the early tetrapod Acanthostega gunnari Jarvik, 1952. PLoS One 2015; 10:e0118882. [PMID: 25760343 PMCID: PMC4356540 DOI: 10.1371/journal.pone.0118882] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 01/23/2015] [Indexed: 12/03/2022] Open
Abstract
The early tetrapod Acanthostega gunnari is an iconic fossil taxon exhibiting skeletal morphology reflecting the transition of vertebrates from water onto land. Computed tomography data of two Acanthostega skulls was segmented using visualization software to digitally separate bone from matrix and individual bones of the skull from each other. A revised description of cranial and lower jaw anatomy in this taxon based on CT data includes new details of sutural morphology, the previously undescribed quadrate and articular bones, and the mandibular symphysis. Sutural morphology is used to infer loading regime in the skull during feeding, and suggests Acanthostega used its anterior jaws to initially seize prey while smaller posterior teeth were used to restrain struggling prey during ingestion. Novel methods were used to repair and retrodeform the skull, resulting in a three-dimensional digital reconstruction that features a longer postorbital region and more strongly hooked anterior lower jaw than previous attempts while supporting the presence of a midline gap between the nasals and median rostrals.
Collapse
|
50
|
Snively E, Fahlke JM, Welsh RC. Bone-breaking bite force of Basilosaurus isis (Mammalia, Cetacea) from the late Eocene of Egypt estimated by finite element analysis. PLoS One 2015; 10:e0118380. [PMID: 25714832 PMCID: PMC4340796 DOI: 10.1371/journal.pone.0118380] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 01/15/2015] [Indexed: 11/19/2022] Open
Abstract
Bite marks suggest that the late Eocence archaeocete whale Basilosaurus isis (Birket Qarun Formation, Egypt) fed upon juveniles of the contemporary basilosaurid Dorudon atrox. Finite element analysis (FEA) of a nearly complete adult cranium of B. isis enables estimates of its bite force and tests the animal's capabilities for crushing bone. Two loadcases reflect different biting scenarios: 1) an intitial closing phase, with all adductors active and a full condylar reaction force; and 2) a shearing phase, with the posterior temporalis active and minimized condylar force. The latter is considered probable when the jaws were nearly closed because the preserved jaws do not articulate as the molariform teeth come into occulusion. Reaction forces with all muscles active indicate that B. isis maintained relatively greater bite force anteriorly than seen in large crocodilians, and exerted a maximum bite force of at least 16,400 N at its upper P3. Under the shearing scenario with minimized condylar forces, tooth reaction forces could exceed 20,000 N despite lower magnitudes of muscle force. These bite forces at the teeth are consistent with bone indentations on Dorudon crania, reatract-and-shear hypotheses of Basilosaurus bite function, and seizure of prey by anterior teeth as proposed for other archaeocetes. The whale's bite forces match those estimated for pliosaurus when skull lengths are equalized, suggesting similar tradeoffs of bite function and hydrodynamics. Reaction forces in B. isis were lower than maxima estimated for large crocodylians and carnivorous dinosaurs. However, comparison of force estimates from FEA and regression data indicate that B. isis exerted the largest bite forces yet estimated for any mammal, and greater force than expected from its skull width. Cephalic feeding biomechanics of Basilosaurus isis are thus consistent with habitual predation.
Collapse
Affiliation(s)
- Eric Snively
- Department of Biology, University of Wisconsin–La Crosse, 1725 State Street, La Crosse, Wisconsin, United States of America
| | - Julia M. Fahlke
- Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Invalidenstraße 43, D-10115 Berlin, Germany
| | - Robert C. Welsh
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|