1
|
Wang L, Liu H, Feng Y, Liu X, Wang Y, Liu Y, Li H, Zhang Y. Decoding the immune landscape: a comprehensive analysis of immune-associated biomarkers in cervical carcinoma and their implications for immunotherapy strategies. Front Genet 2024; 15:1340569. [PMID: 38933923 PMCID: PMC11199791 DOI: 10.3389/fgene.2024.1340569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
Background and aims Cervical cancer, a prevalent gynecological malignant tumor, poses a significant threat to women's health and lives. Immune checkpoint inhibitor (ICI) therapy has emerged as a promising avenue for treating cervical cancer. For patients with persistent or recurrent metastatic cervical cancer, If the sequence of dead receptor ligand-1 (PD-L1) is positive, ICI show significant clinical efficacy. PD-L1 expression serves as a valuable biomarker for assessing ICI therapeutic efficacy. However, the complex tumor immune microenvironment (TIME), encompassing immune cell composition and tumor-infiltrating lymphocyte (TIL) status, also exerts a profound influence on tumor immunity and prognosis. Given the remarkable strides made by ICI treatments in improving the survival rates of cervical cancer patients, it becomes essential to identify a comprehensive biomarker that integrates various TIME aspects to enhance the effectiveness of ICI treatment. Therefore, the quest for biomarkers linked to multiple facets of TIME in cervical cancer is a vital pursuit. Methods In this study, we have developed an Immune-Associated Gene Prognostic Index (IRGPI) with remarkable prognostic value specifically for cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC). The Cancer Genome Atlas CESC dataset (n = 305) was meticulously analyzed to pinpoint key immune-related genes via weighted gene co-expression network analysis and differential gene expression assays. Subsequently, we employed Cox regression analysis to construct the IRGPI. Furthermore, the composition of immune cells and TIL status were examined using CIBERSORT and TIDE. Tumor expression of Epigen, LCN10, and P73 were determined with immunohistochemistry. Results The resulting IRGPI, composed of EPGN, LCN10, and TP73 genes, displayed a strong negative correlation with patient survival. The discovery was validated with a patient cohort from our hospital. The IRGPI not only predicts the composition of immune cell subtypes such as Macrophages M1, NK cells, Mast cells, Plasma cells, Neutrophils, Dendritic cells, T cells CD8, and T cells CD4 within CESC, but also indicates TIL exclusion, dysfunction, and PD-1 and PD-L1 expression. Therefore, the IRGPI emerges as a promising biomarker not only for prognostic assessment but also for characterizing multiple immune features in CESC. Additionally, our results underscored the significant associations between the IRGPI and immune cell composition, TIL exclusion, and dysfunction, along with PD-1 and PD-L1 expression in the TIME. Conclusion Consequently, the IRGPI stands out as a biomarker intimately connected to both the survival and TIME status of CESC patients, offering potential insights into immunotherapy strategies for CESC.
Collapse
Affiliation(s)
- Le Wang
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, China
| | - Huatian Liu
- Department of Anesthesiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yue Feng
- Department of Gynecological Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
| | - Xueting Liu
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yuan Wang
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yujie Liu
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, China
| | - Hao Li
- Harbin Medical University Cancer Hospital, Harbin, China
| | - Yunyan Zhang
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
2
|
Yamamoto K, Matsumaru D, Ishida K, Endo S, Hiromori Y, Nakanishi T. Binding profiles of human and mouse complement component 8γ to trisubstituted organometallic compounds. Chem Biol Interact 2024; 395:110998. [PMID: 38614317 DOI: 10.1016/j.cbi.2024.110998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/03/2024] [Accepted: 04/07/2024] [Indexed: 04/15/2024]
Abstract
Complement component 8gamma (C8γ), a member of the lipocalin protein family, is suggested to act as a carrier protein for various chemicals. Although C8γ has been identified in both humans and rodents for some time, our understanding of the species differences in its chemical binding properties remains limited. In the present study, with the aim to elucidate the potential role of C8γ as a carrier protein in both humans and mice, we conducted a radioligand binding assay to examine the chemical binding properties of human C8γ (hC8γ) and mouse C8γ (mC8γ). Scatchard analysis revealed that [14C]TPT bound to hC8γ with an equilibrium dissociation constant (Kd) of 64.2 ± 32.4 nM, comparable to that of [14C]TPT to mC8γ. Competitive ligand-binding assays demonstrated binding of TPT and TBT to hC8γ, while diphenyltin, dibutyltin, monophenyltin, monobutyltin, and tetrabutyltin did not exhibit binding. These results suggest that for effective binding to C8γ, chemicals must possess substituents of appropriate bulkiness. Further analyses with other group 14 compounds with triphenyl substituents revealed that a central metal atom, rather than a central non-metal or semi-metal atom, is crucial for specific binding to both hC8γ and mC8γ. Overall our findings imply that C8γ may play a role in the physiological or toxicological actions of group 14 metal compounds with tributyl or triphenyl substituents by binding to these chemicals in both humans and mice.
Collapse
Affiliation(s)
- Katsuya Yamamoto
- Laboratory of Hygienic Chemistry and Molecular Toxicology, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, Gifu, 501-1196, Japan
| | - Daisuke Matsumaru
- Laboratory of Hygienic Chemistry and Molecular Toxicology, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, Gifu, 501-1196, Japan
| | - Keishi Ishida
- Laboratory of Hygienic Chemistry and Molecular Toxicology, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, Gifu, 501-1196, Japan
| | - Satoshi Endo
- Laboratory of Biochemistry, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, Gifu, 501-1196, Japan
| | - Youhei Hiromori
- Laboratory of Hygienic Chemistry and Molecular Toxicology, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, Gifu, 501-1196, Japan; Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, 3500-3 Minamitamagaki, Suzuka, Mie, 513-8670, Japan
| | - Tsuyoshi Nakanishi
- Laboratory of Hygienic Chemistry and Molecular Toxicology, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, Gifu, 501-1196, Japan.
| |
Collapse
|
3
|
Chen S, Pan Z, Liu M, Guo L, Jiang X, He G. Recent Advances on Small-Molecule Inhibitors of Lipocalin-like Proteins. J Med Chem 2024; 67:5144-5167. [PMID: 38525852 DOI: 10.1021/acs.jmedchem.4c00086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Lipid transfer proteins (LTPs) are crucial players in nonvesicular lipid trafficking. LTPs sharing a lipocalin lipid transfer domain (lipocalin-like proteins) have a wide range of biological functions, such as regulating immune responses and cell proliferation, differentiation, and death as well as participating in the pathogenesis of inflammatory, metabolic, and neurological disorders and cancer. Therefore, the development of small-molecule inhibitors targeting these LTPs is important and has potential clinical applications. Herein, we summarize the structure and function of lipocalin-like proteins, mainly including retinol-binding proteins, lipocalins, and fatty acid-binding proteins and discuss the recent advances on small-molecule inhibitors for these protein families and their applications in disease treatment. The findings of our Perspective can provide guidance for the development of inhibitors of these LTPs and highlight the challenges that might be faced during the procedures.
Collapse
Affiliation(s)
- Siliang Chen
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhaoping Pan
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Mingxia Liu
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Linghong Guo
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xian Jiang
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Gu He
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
4
|
Miccoli A, Pianese V, Bidoli C, Fausto AM, Scapigliati G, Picchietti S. Transcriptome profiling of microdissected cortex and medulla unravels functional regionalization in the European sea bass Dicentrarchus labrax thymus. FISH & SHELLFISH IMMUNOLOGY 2024; 145:109319. [PMID: 38145782 DOI: 10.1016/j.fsi.2023.109319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 12/27/2023]
Abstract
The thymus is a sophisticated primary lymphoid organ in jawed vertebrates, but knowledge on teleost thymus remains scarce. In this study, for the first time in the European sea bass, laser capture microdissection was leveraged to collect two thymic regions based on histological features, namely the cortex and the medulla. The two regions were then processed by RNAseq and in-depth functional transcriptome analyses with the aim of revealing differential gene expression patterns and gene sets enrichments, ultimately unraveling unique microenvironments imperative for the development of functional T cells. The sea bass cortex emerged as a hub of T cell commitment, somatic recombination, chromatin remodeling, cell cycle regulation, and presentation of self antigens from autophagy-, proteasome- or proteases-processed proteins. The cortex therefore accommodated extensive thymocyte proliferation and differentiation up to the checkpoint of positive selection. The medulla instead appeared as the center stage in autoimmune regulation by negative selection and deletion of autoreactive T cells, central tolerance mechanisms and extracellular matrix organization. Region-specific canonical markers of T and non-T lineage cells as well as signals for migration to/from, and trafficking within, the thymus were identified, shedding light on the highly coordinated and exquisitely complex bi-directional interactions among thymocytes and stromal components. Markers ascribable to thymic nurse cells and poorly characterized post-aire mTEC populations were found in the cortex and medulla, respectively. An in-depth data mining also exposed previously un-annotated genomic resources with differential signatures. Overall, our findings contribute to a broader understanding of the relationship between regional organization and function in the European sea bass thymus, and provide essential insights into the molecular mechanisms underlying T-cell mediated adaptive immune responses in teleosts.
Collapse
Affiliation(s)
- A Miccoli
- National Research Council, Institute for Marine Biological Resources and Biotechnology (IRBIM), 60125, Ancona, Italy
| | - V Pianese
- Dept. for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, Largo Dell'Università Snc, 01100, Viterbo, Italy
| | - C Bidoli
- Dept. of Life Sciences, University of Trieste, 34127, Trieste, Italy
| | - A M Fausto
- Dept. for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, Largo Dell'Università Snc, 01100, Viterbo, Italy
| | - G Scapigliati
- Dept. for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, Largo Dell'Università Snc, 01100, Viterbo, Italy
| | - S Picchietti
- Dept. for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, Largo Dell'Università Snc, 01100, Viterbo, Italy.
| |
Collapse
|
5
|
Yang HH, Wang X, Li S, Liu Y, Akbar R, Fan GC. Lipocalin family proteins and their diverse roles in cardiovascular disease. Pharmacol Ther 2023; 244:108385. [PMID: 36966973 PMCID: PMC10079643 DOI: 10.1016/j.pharmthera.2023.108385] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 03/01/2023] [Accepted: 03/13/2023] [Indexed: 04/03/2023]
Abstract
The lipocalin (LCN) family members, a group of small extracellular proteins with 160-180 amino acids in length, can be detected in all kingdoms of life from bacteria to human beings. They are characterized by low similarity of amino acid sequence but highly conserved tertiary structures with an eight-stranded antiparallel β-barrel which forms a cup-shaped ligand binding pocket. In addition to bind small hydrophobic ligands (i.e., fatty acids, odorants, retinoids, and steroids) and transport them to specific cells, lipocalins (LCNs) can interact with specific cell membrane receptors to activate their downstream signaling pathways, and with soluble macromolecules to form the complex. Consequently, LCNs exhibit great functional diversity. Accumulating evidence has demonstrated that LCN family proteins exert multiple layers of function in the regulation of many physiological processes and human diseases (i.e., cancers, immune disorders, metabolic disease, neurological/psychiatric disorders, and cardiovascular disease). In this review, we firstly introduce the structural and sequence properties of LCNs. Next, six LCNs including apolipoprotein D (ApoD), ApoM, lipocalin 2 (LCN2), LCN10, retinol-binding protein 4 (RBP4), and Lipocalin-type prostaglandin D synthase (L-PGDS) which have been characterized so far are highlighted for their diagnostic/prognostic values and their potential effects on coronary artery disease and myocardial infarction injury. The roles of these 6 LCNs in cardiac hypertrophy, heart failure, diabetes-induced cardiac disorder, and septic cardiomyopathy are also summarized. Finally, their therapeutic potential for cardiovascular disease is discussed in each section.
Collapse
Affiliation(s)
- Hui-Hui Yang
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Xiaohong Wang
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Siru Li
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Yueying Liu
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Rubab Akbar
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Guo-Chang Fan
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
| |
Collapse
|
6
|
Lee C, Kim MI, Park J, Kim J, Oh H, Cho Y, Son J, Jeon BY, Ka H, Hong M. Crystal structure of the Pseudomonas aeruginosa PA0423 protein and its functional implication in antibiotic sequestration. Biochem Biophys Res Commun 2020; 528:85-91. [PMID: 32451086 DOI: 10.1016/j.bbrc.2020.05.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 05/04/2020] [Indexed: 01/06/2023]
Abstract
Pseudomonas aeruginosa is a widely found opportunistic pathogen. The emergence of multidrug-resistant strains and persistent chronic infections have increased. The protein encoded by the pa0423 gene in P. aeruginosa is proposed to be critical for pathogenesis and could be a virulence-promoting protease or a bacterial lipocalin that binds a lipid-like antibiotic for drug resistance. Although two functions of proteolysis and antibiotic resistance are mutually related to bacterial survival in the host, it is very unusual for a single-domain protein to target unrelated ligand molecules such as protein substrates and lipid-like antibiotics. To clearly address the biological role of the PA0423 protein, we performed structural and biochemical studies. We found that PA0423 adopts a single-domain β-barrel structure and belongs to the lipocalin family. The PA0423 structure houses an internal tubular cavity, which accommodates a ubiquinone-8 molecule. Furthermore, we reveal that PA0423 can directly interact with the polymyxin B antibiotic using the internal cavity, suggesting that PA0423 has a physiological function in the antibiotic resistance of P. aeruginosa.
Collapse
Affiliation(s)
- Choongdeok Lee
- Division of Biological Science and Technology, Yonsei University, Wonju 26493, Republic of Korea
| | - Meong Il Kim
- Division of Biological Science and Technology, Yonsei University, Wonju 26493, Republic of Korea
| | - Jaewan Park
- Division of Biological Science and Technology, Yonsei University, Wonju 26493, Republic of Korea
| | - Junghun Kim
- Division of Biological Science and Technology, Yonsei University, Wonju 26493, Republic of Korea
| | - Hansol Oh
- Division of Biological Science and Technology, Yonsei University, Wonju 26493, Republic of Korea
| | - Yoeseph Cho
- Doping Control Center, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea; Department of Microbiology and Immunology, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Junghyun Son
- Doping Control Center, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea; Department of Biological Chemistry, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Bo-Young Jeon
- Department of Biomedical Laboratory Science, Yonsei University, Wonju, 26493, Republic of Korea
| | - Hakhyun Ka
- Division of Biological Science and Technology, Yonsei University, Wonju 26493, Republic of Korea
| | - Minsun Hong
- Division of Biological Science and Technology, Yonsei University, Wonju 26493, Republic of Korea.
| |
Collapse
|
7
|
Identification of common and distinct features of ligand-binding sites in kernel and outlier lipocalins. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2019.05.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
8
|
Gu L, Xia C. Cluster expansion of apolipoprotein D (ApoD) genes in teleost fishes. BMC Evol Biol 2019; 19:9. [PMID: 30621595 PMCID: PMC6325677 DOI: 10.1186/s12862-018-1323-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 12/11/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Gene and genome duplication play important roles in the evolution of gene function. Compared to individual duplicated genes, gene clusters attract particular attention considering their frequent associations with innovation and adaptation. Here, we report for the first time the expansion of the apolipoprotein D (ApoD) ligand-transporter genes in a cluster manner specific to teleost fishes. RESULTS Based on comparative genomic and transcriptomic analyses, protein 3D structure comparison, positive selection detection and breakpoints detection, the single ApoD gene in the ancestor expanded into two clusters following a dynamic evolutionary pattern in teleost fishes. Orthologous genes show conserved expression patterns, whereas lineage-specific duplicated genes show tissue-specific expression patterns and even evolve new gene expression profiles. Positive selection occurred in branches before and after gene duplication, especially for lineage-specific duplicated genes. Cluster analyses based on protein 3D structure comparisons, especially comparisons of the four loops at the opening side, show gene duplication-segregating patterns. Duplicated ApoD genes are predicted to be associated with forkhead transcription factors and MAPK genes. ApoD clusters are located next to the breakpoints of genome rearrangements. CONCLUSIONS Here, we report the expansion of ApoD genes specific to teleost fishes in a cluster manner for the first time. Neofunctionalization and subfunctionalization were observed at both the protein and expression levels after duplication. Evidence from different aspects-i.e., abnormal expression-induced disease in humans, fish-specific expansion, predicted associations with forkhead transcription factors and MAPK genes, specific expression patterns in tissues related to sexual selection and adaptation, duplicated genes under positive selection and their location next to the breakpoints of genome rearrangements-suggests the potentially advantageous roles of ApoD genes in teleost fishes. The cluster expansion of ApoD genes specific to teleost fishes provides thus an ideal evo-devo model for studying gene duplication, cluster maintenance and new gene function emergence.
Collapse
Affiliation(s)
- Langyu Gu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Canwei Xia
- Ministry of Education Key Laboratory for Biodiversity and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
| |
Collapse
|
9
|
Sokalingam S, Munussami G, Kim JR, Lee SG. Validation on the molecular docking efficiency of lipocalin family of proteins. J IND ENG CHEM 2018. [DOI: 10.1016/j.jiec.2018.06.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Al-Shabib NA, Khan JM, Malik A, Alsenaidy MA, Rehman MT, AlAjmi MF, Alsenaidy AM, Husain FM, Khan RH. Molecular insight into binding behavior of polyphenol (rutin) with beta lactoglobulin: Spectroscopic, molecular docking and MD simulation studies. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.07.122] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
11
|
Capo A, Pennacchio A, Varriale A, D'Auria S, Staiano M. The porcine odorant-binding protein as molecular probe for benzene detection. PLoS One 2018; 13:e0202630. [PMID: 30183769 PMCID: PMC6124761 DOI: 10.1371/journal.pone.0202630] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 08/06/2018] [Indexed: 11/19/2022] Open
Abstract
In recent years, air pollution has been a subject of great scientific and public interests for the strong impact on human health. Air pollution is due to the presence in the atmosphere of polluting substances, such as carbon monoxide, sulfur and nitrogen oxides, particulates and volatile organic compounds (VOCs), derived predominantly from various combustion processes. Benzene is a VOC belonging to group-I carcinogens with a toxicity widely demonstrated. The emission limit values and the daily exposure time to benzene (TLV-TWA) are 5μg/m3 (0.00157 ppm) and 1.6mg/m3 (0.5 ppm), respectively. Currently, expensive and time-consuming analytical methods are used for detection of benzene. These methods require to perform a few preliminary steps such as sampling, and matrices pre-treatments. In addition, it is also needed the support of specialized personnel. Recently, single-walled carbon nanotube (SWNTs) gas sensors with a limit detection (LOD) of 20 ppm were developed for benzene detection. Other innovative bioassay, called bio-report systems, were proposed. They use a whole cell (Pseudomona putida or Escherichia coli) as molecular recognition element and exhibit a LOD of about 10 μM. Here, we report on the design of a highly sensitive fluorescence assay for monitoring atmospheric level of benzene. For this purpose, we used as molecular recognition element the porcine odorant-binding protein (pOBP). 1-Aminoanthracene was selected as extrinsic fluorescence probe for designing a competitive fluorescence resonance energy transfer (FRET) assay for benzene detection. The detection limit of our assay was 3.9μg/m3, a value lower than the actual emission limit value of benzene as regulated by European law.
Collapse
Affiliation(s)
- Alessandro Capo
- Institute of Food Science, Consiglio Nazionale delle Ricerche, Avellino, Italy
| | - Angela Pennacchio
- Institute of Food Science, Consiglio Nazionale delle Ricerche, Avellino, Italy
| | - Antonio Varriale
- Institute of Food Science, Consiglio Nazionale delle Ricerche, Avellino, Italy
| | - Sabato D'Auria
- Institute of Food Science, Consiglio Nazionale delle Ricerche, Avellino, Italy
| | - Maria Staiano
- Institute of Food Science, Consiglio Nazionale delle Ricerche, Avellino, Italy
| |
Collapse
|
12
|
Willerton L, Mason HJ. The development of methods to measure exposure to a major rabbit allergen (Ory c 1). AIMS Public Health 2018; 5:99-110. [PMID: 30094273 PMCID: PMC6079056 DOI: 10.3934/publichealth.2018.2.99] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 03/28/2018] [Indexed: 11/18/2022] Open
Abstract
Rabbits are used as laboratory animal models and are also popular domestic pets. Allergic responses to rabbit allergens have been documented in both settings, and several rabbit allergens identified. We have purified an 18 kD protein extracted from rabbit fur that was shown by N-terminal sequencing and mass spectrometry (MS) to be a lipocalin, identical to that identified as an odorant binding protein and an allergen with the formal nomenclature of Ory c 1. De novo sequencing of the MS peptide fragments gave additional primary sequence data of this protein. Polyclonal antisera were raised against the purified protein and used to develop two types of immunoassay. Ory c 1 content was measured in used rabbit bedding and household dust samples from homes keeping rabbits as pets. Atmospheric sampling was also undertaken in an animal facility undertaking rabbit experimental work. Ory c 1 levels in house dust where rabbits were kept as pets were between undetectable–41,290 ng·g−1, and in used bedding between 370–26,740 ng·g−1. Significantly higher house dust levels were found where rabbits spent large amounts, or all of, their time indoors. Personal air sampler levels within the animal facility were between 65–216 ng·m−3. Low levels (0.8–2 ng·m−3) were found in the facility's changing rooms, but undetected in the entrance lobby, office and laundry. We believe that these immunochemical assays may be used to identify activities in the occupational and domestic setting which produce higher levels of exposure to rabbit allergens, and where measures to control exposure may be warranted to reduce potential risk of allergic outcomes.
Collapse
Affiliation(s)
- Laura Willerton
- Public Health England, Manchester Royal Infirmary, Manchester, M13 9WZ UK
| | | |
Collapse
|
13
|
In Silico Study on Retinoid-binding Modes in Human RBP and ApoD Lipocalins. BIOTECHNOL BIOPROC E 2018. [DOI: 10.1007/s12257-018-0032-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
14
|
Nevoa JC, Mendes MT, da Silva MV, Soares SC, Oliveira CJF, Ribeiro JMC. An insight into the salivary gland and fat body transcriptome of Panstrongylus lignarius (Hemiptera: Heteroptera), the main vector of Chagas disease in Peru. PLoS Negl Trop Dis 2018; 12:e0006243. [PMID: 29462134 PMCID: PMC5834209 DOI: 10.1371/journal.pntd.0006243] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 03/02/2018] [Accepted: 01/17/2018] [Indexed: 12/31/2022] Open
Abstract
Triatomines are hematophagous arthropod vectors of Trypanosoma cruzi, the causative agent of Chagas Disease. Panstrongylus lignarius, also known as Panstrongylus herreri, is considered one of the most versatile triatomines because it can parasitize different hosts, it is found in different habitats and countries, it has sylvatic, peridomestic and domestic behavior and it is a very important vector of Chagas disease, especially in Peru. Molecules produced and secreted by salivary glands and fat body are considered of important adaptational value for triatomines because, among other functions, they subvert the host haemostatic, inflammatory and immune systems and detoxify or protect them against environmental aggressors. In this context, the elucidation of the molecules produced by these tissues is highly valuable to understanding the ability of this species to adapt and transmit pathogens. Here, we use high-throughput sequencing techniques to assemble and describe the coding sequences resulting from the transcriptome of the fat body and salivary glands of P. lignarius. The final assembly of both transcriptomes together resulted in a total of 11,507 coding sequences (CDS), which were mapped from a total of 164,676,091 reads. The CDS were subdivided according to their 10 folds overexpression on salivary glands (513 CDS) or fat body (2073 CDS). Among the families of proteins found in the salivary glands, lipocalins were the most abundant. Other ubiquitous families of proteins present in other sialomes were also present in P. lignarius, including serine protease inhibitors, apyrase and antigen-5. The unique transcriptome of fat body showed proteins related to the metabolic function of this organ. Remarkably, nearly 20% of all reads mapped to transcripts coded by Triatoma virus. The data presented in this study improve the understanding on triatomines' salivary glands and fat body function and reveal important molecules used in the interplay between vectors and vertebrate hosts.
Collapse
Affiliation(s)
- Jessica C. Nevoa
- Institute of Natural and Biological Sciences, Laboratory of Immunology, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Maria T. Mendes
- University of Texas at El Paso, El Paso, Texas, United States of America
| | - Marcos V. da Silva
- Institute of Natural and Biological Sciences, Laboratory of Immunology, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Siomar C. Soares
- Institute of Natural and Biological Sciences, Laboratory of Immunology, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Carlo J. F. Oliveira
- Institute of Natural and Biological Sciences, Laboratory of Immunology, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - José M. C. Ribeiro
- National Institute of Allergy and Infectious Diseases (NIAID), Laboratory of Malaria and Vector Research (LMVR), Rockville, Maryland, United States of America
- * E-mail:
| |
Collapse
|
15
|
Santiago PB, de Araújo CN, Charneau S, Bastos IMD, Assumpção TCF, Queiroz RML, Praça YR, Cordeiro TDM, Garcia CHS, da Silva IG, Raiol T, Motta FN, de Araújo Oliveira JV, de Sousa MV, Ribeiro JMC, de Santana JM. Exploring the molecular complexity of Triatoma dimidiata sialome. J Proteomics 2017; 174:47-60. [PMID: 29288089 DOI: 10.1016/j.jprot.2017.12.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 12/20/2017] [Accepted: 12/22/2017] [Indexed: 01/19/2023]
Abstract
Triatoma dimidiata, a Chagas disease vector widely distributed along Central America, has great capability for domestic adaptation as the majority of specimens caught inside human dwellings or in peridomestic areas fed human blood. Exploring the salivary compounds that overcome host haemostatic and immune responses is of great scientific interest. Here, we provide a deeper insight into its salivary gland molecules. We used high-throughput RNA sequencing to examine in depth the T. dimidiata salivary gland transcriptome. From >51 million reads assembled, 92.21% are related to putative secreted proteins. Lipocalin is the most abundant gene family, confirming it is an expanded family in Triatoma genus salivary repertoire. Other putatively secreted members include phosphatases, odorant binding protein, hemolysin, proteases, protease inhibitors, antigen-5 and antimicrobial peptides. This work expands the previous set of functionally annotated sequences from T. dimidiata salivary glands available in NCBI from 388 to 3815. Additionally, we complemented the salivary analysis through proteomics (available data via ProteomeXchange with identifier PXD008510), disclosing the set complexity of 119 secreted proteins and validating the transcriptomic results. Our large-scale approach enriches the pharmacologically active molecules database and improves our knowledge about the complexity of salivary compounds from haematophagous vectors and their biological interactions. SIGNIFICANCE Several haematophagous triatomine species can transmit Trypanosoma cruzi, the etiological agent of Chagas disease. Due to the reemergence of this disease, new drugs for its prevention and treatment are considered priorities. For this reason, the knowledge of vector saliva emerges as relevant biological finding, contributing to the design of different strategies for vector control and disease transmission. Here we report the transcriptomic and proteomic compositions of the salivary glands (sialome) of the reduviid bug Triatoma dimidiata, a relevant Chagas disease vector in Central America. Our results are robust and disclosed unprecedented insights into the notable diversity of its salivary glands content, revealing relevant anti-haemostatic salivary gene families. Our work expands almost ten times the previous set of functionally annotated sequences from T. dimidiata salivary glands available in NCBI. Moreover, using an integrated transcriptomic and proteomic approach, we showed a correlation pattern of transcription and translation processes for the main gene families found, an important contribution to the research of triatomine sialomes. Furthermore, data generated here reinforces the secreted proteins encountered can greatly contribute for haematophagic habit, Trypanosoma cruzi transmission and development of therapeutic agent studies.
Collapse
Affiliation(s)
- Paula Beatriz Santiago
- Programa Pós-Graduação em Ciências Médicas, Faculty of Medicine, The University of Brasília, Brasília, Brazil
| | - Carla Nunes de Araújo
- Programa Pós-Graduação em Ciências Médicas, Faculty of Medicine, The University of Brasília, Brasília, Brazil; Faculty of Ceilândia, The University of Brasília, Brasília, Brazil.
| | - Sébastien Charneau
- Department of Cell Biology, The University of Brasília, Brasília, Brazil
| | | | - Teresa Cristina F Assumpção
- Vector Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, Rockville, United States
| | | | - Yanna Reis Praça
- Programa Pós-Graduação em Ciências Médicas, Faculty of Medicine, The University of Brasília, Brasília, Brazil
| | | | | | | | - Tainá Raiol
- Department of Cell Biology, The University of Brasília, Brasília, Brazil; Instituto Leônidas e Maria Deane - Fiocruz Amazônia, Manaus, AM, Brazil
| | | | | | | | - José Marcos C Ribeiro
- Vector Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, Rockville, United States
| | - Jaime Martins de Santana
- Programa Pós-Graduação em Ciências Médicas, Faculty of Medicine, The University of Brasília, Brasília, Brazil; Department of Cell Biology, The University of Brasília, Brasília, Brazil
| |
Collapse
|
16
|
Ascenzi P, di Masi A, Leboffe L, Fanali G, Fasano M. The drug-dependent five- to six-coordination transition of the heme-Fe atom modulates allosterically human serum heme-albumin reactivity. RENDICONTI LINCEI-SCIENZE FISICHE E NATURALI 2016. [DOI: 10.1007/s12210-016-0562-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
17
|
di Masi A, Trezza V, Leboffe L, Ascenzi P. Human plasma lipocalins and serum albumin: Plasma alternative carriers? J Control Release 2016; 228:191-205. [PMID: 26951925 DOI: 10.1016/j.jconrel.2016.02.049] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 02/23/2016] [Accepted: 02/24/2016] [Indexed: 01/14/2023]
Abstract
Lipocalins are an evolutionarily conserved family of proteins that bind and transport a variety of exogenous and endogenous ligands. Lipocalins share a conserved eight anti-parallel β-sheet structure. Among the different lipocalins identified in humans, α-1-acid glycoprotein (AGP), apolipoprotein D (apoD), apolipoprotein M (apoM), α1-microglobulin (α1-m) and retinol-binding protein (RBP) are plasma proteins. In particular, AGP is the most important transporter for basic and neutral drugs, apoD, apoM, and RBP mainly bind endogenous molecules such as progesterone, pregnenolone, bilirubin, sphingosine-1-phosphate, and retinol, while α1-m binds the heme. Human serum albumin (HSA) is a monomeric all-α protein that binds endogenous and exogenous molecules like fatty acids, heme, and acidic drugs. Changes in the plasmatic levels of lipocalins and HSA are responsible for the onset of pathological conditions associated with an altered drug transport and delivery. This, however, does not necessary result in potential adverse effects in patients because many drugs can bind both HSA and lipocalins, and therefore mutual compensatory binding mechanisms can be hypothesized. Here, molecular and clinical aspects of ligand transport by plasma lipocalins and HSA are reviewed, with special attention to their role as alterative carriers in health and disease.
Collapse
Affiliation(s)
- Alessandra di Masi
- Dipartimento di Scienze, Università Roma Tre, Viale Marconi 446, I-00146 Roma, Italy; Istituto Nazionale di Biostrutture e Biosistemi, Via delle Medaglie d'Oro 305, I-00136 Roma, Italy.
| | - Viviana Trezza
- Dipartimento di Scienze, Università Roma Tre, Viale Marconi 446, I-00146 Roma, Italy
| | - Loris Leboffe
- Dipartimento di Scienze, Università Roma Tre, Viale Marconi 446, I-00146 Roma, Italy; Istituto Nazionale di Biostrutture e Biosistemi, Via delle Medaglie d'Oro 305, I-00136 Roma, Italy
| | - Paolo Ascenzi
- Istituto Nazionale di Biostrutture e Biosistemi, Via delle Medaglie d'Oro 305, I-00136 Roma, Italy; Laboratorio Interdipartimentale di Microscopia Elettronica, Università Roma Tre, Via della Vasca Navale 79, I-00146 Roma, Italy
| |
Collapse
|
18
|
de Bekker C, Ohm RA, Loreto RG, Sebastian A, Albert I, Merrow M, Brachmann A, Hughes DP. Gene expression during zombie ant biting behavior reflects the complexity underlying fungal parasitic behavioral manipulation. BMC Genomics 2015; 16:620. [PMID: 26285697 PMCID: PMC4545319 DOI: 10.1186/s12864-015-1812-x] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 08/03/2015] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Adaptive manipulation of animal behavior by parasites functions to increase parasite transmission through changes in host behavior. These changes can range from slight alterations in existing behaviors of the host to the establishment of wholly novel behaviors. The biting behavior observed in Carpenter ants infected by the specialized fungus Ophiocordyceps unilateralis s.l. is an example of the latter. Though parasitic manipulation of host behavior is generally assumed to be due to the parasite's gene expression, few studies have set out to test this. RESULTS We experimentally infected Carpenter ants to collect tissue from both parasite and host during the time period when manipulated biting behavior is experienced. Upon observation of synchronized biting, samples were collected and subjected to mixed RNA-Seq analysis. We also sequenced and annotated the O. unilateralis s.l. genome as a reference for the fungal sequencing reads. CONCLUSIONS Our mixed transcriptomics approach, together with a comparative genomics study, shows that the majority of the fungal genes that are up-regulated during manipulated biting behavior are unique to the O. unilateralis s.l. genome. This study furthermore reveals that the fungal parasite might be regulating immune- and neuronal stress responses in the host during manipulated biting, as well as impairing its chemosensory communication and causing apoptosis. Moreover, we found genes up-regulated during manipulation that putatively encode for proteins with reported effects on behavioral outputs, proteins involved in various neuropathologies and proteins involved in the biosynthesis of secondary metabolites such as alkaloids.
Collapse
Affiliation(s)
- Charissa de Bekker
- Institute of Medical Psychology, Faculty of Medicine, Ludwig-Maximilians-University Munich, Goethestrasse 31, 80336, Munich, Germany.
- Department of Entomology and Department of Biology, Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, State College, Pennsylvania, 16802, PA, USA.
| | - Robin A Ohm
- Microbiology, Faculty of Science, Utrecht University, Padualaan 8, 3584, CH, Utrecht, The Netherlands
| | - Raquel G Loreto
- Department of Entomology and Department of Biology, Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, State College, Pennsylvania, 16802, PA, USA
- CAPES Foundation, Ministry of Education of Brazil, Brasília, 70040-020, DF, Brazil
| | - Aswathy Sebastian
- Bioinformatics Consulting Center, Pennsylvania State University, University Park, State College, Pennsylvania, 16802, PA, USA
| | - Istvan Albert
- Bioinformatics Consulting Center, Pennsylvania State University, University Park, State College, Pennsylvania, 16802, PA, USA
- Department of Biochemistry and Molecular Biology, The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, State College, Pennsylvania, 16802, PA, USA
| | - Martha Merrow
- Institute of Medical Psychology, Faculty of Medicine, Ludwig-Maximilians-University Munich, Goethestrasse 31, 80336, Munich, Germany
| | - Andreas Brachmann
- Faculty of Biology, Section Genetics, Ludwig-Maximilians-University Munich, Grosshaderner Strasse 2-4, 82152, Martinsried, Germany
| | - David P Hughes
- Department of Entomology and Department of Biology, Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, State College, Pennsylvania, 16802, PA, USA.
| |
Collapse
|
19
|
Lakshmi B, Mishra M, Srinivasan N, Archunan G. Structure-Based Phylogenetic Analysis of the Lipocalin Superfamily. PLoS One 2015; 10:e0135507. [PMID: 26263546 PMCID: PMC4532494 DOI: 10.1371/journal.pone.0135507] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 07/22/2015] [Indexed: 01/26/2023] Open
Abstract
Lipocalins constitute a superfamily of extracellular proteins that are found in all three kingdoms of life. Although very divergent in their sequences and functions, they show remarkable similarity in 3-D structures. Lipocalins bind and transport small hydrophobic molecules. Earlier sequence-based phylogenetic studies of lipocalins highlighted that they have a long evolutionary history. However the molecular and structural basis of their functional diversity is not completely understood. The main objective of the present study is to understand functional diversity of the lipocalins using a structure-based phylogenetic approach. The present study with 39 protein domains from the lipocalin superfamily suggests that the clusters of lipocalins obtained by structure-based phylogeny correspond well with the functional diversity. The detailed analysis on each of the clusters and sub-clusters reveals that the 39 lipocalin domains cluster based on their mode of ligand binding though the clustering was performed on the basis of gross domain structure. The outliers in the phylogenetic tree are often from single member families. Also structure-based phylogenetic approach has provided pointers to assign putative function for the domains of unknown function in lipocalin family. The approach employed in the present study can be used in the future for the functional identification of new lipocalin proteins and may be extended to other protein families where members show poor sequence similarity but high structural similarity.
Collapse
Affiliation(s)
- Balasubramanian Lakshmi
- Department of Animal Science, Bharathidasan University, Tiruchirappalli, 620024, India
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India
| | - Madhulika Mishra
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Narayanaswamy Srinivasan
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India
- * E-mail: (NS); (GA)
| | - Govindaraju Archunan
- Department of Animal Science, Bharathidasan University, Tiruchirappalli, 620024, India
- * E-mail: (NS); (GA)
| |
Collapse
|
20
|
Energy Transfer Studies between Trp Residues of Three Lipocalin Proteins Family, α1-Acid Glycoprotein, (Orosomucoid), β-Lactoglobulin and Porcine Odorant Binding Protein and the Fluorescent Probe, 1-Aminoanthracene (1-AMA). J Fluoresc 2015; 25:167-72. [DOI: 10.1007/s10895-014-1493-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 12/02/2014] [Indexed: 11/30/2022]
|
21
|
Pilbrow J, Sabherwal M, Garama D, Carne A. A novel fatty acid-binding protein-like carotenoid-binding protein from the gonad of the New Zealand sea urchin Evechinus chloroticus. PLoS One 2014; 9:e106465. [PMID: 25192378 PMCID: PMC4156332 DOI: 10.1371/journal.pone.0106465] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 07/30/2014] [Indexed: 11/19/2022] Open
Abstract
A previously uncharacterized protein with a carotenoid-binding function has been isolated and characterized from the gonad of the New Zealand sea urchin Evechinus chloroticus. The main carotenoid bound to the protein was determined by reversed phase-high performance liquid chromatography to be 9'-cis-echinenone and hence this 15 kDa protein has been called an echinenone-binding protein (EBP). Purification of the EBP in quantity from the natural source proved to be challenging. However, analysis of EBP by mass spectrometry combined with information from the Strongylocentrotus purpuratus genome sequence and the recently published E. chloroticus transcriptome database, enabled recombinant expression of wild type EBP and also of a cysteine61 to serine mutant that had improved solubility characteristics. Circular dichroism data and ab initio structure prediction suggests that the EBP adopts a 10-stranded β-barrel fold consistent with that of fatty acid-binding proteins. Therefore, EBP may represent the first report of a fatty acid-binding protein in complex with a carotenoid.
Collapse
Affiliation(s)
- Jodi Pilbrow
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Manya Sabherwal
- Centre for Protein Research, Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Daniel Garama
- Monash Institute of Medical Research-Prince Henry's Institute, Monash University, Melbourne, Victoria, Australia
| | - Alan Carne
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| |
Collapse
|
22
|
Kumar A, Punta M, Axelrod HL, Das D, Farr CL, Grant JC, Chiu HJ, Miller MD, Coggill PC, Klock HE, Elsliger MA, Deacon AM, Godzik A, Lesley SA, Wilson IA. Crystal structures of three representatives of a new Pfam family PF14869 (DUF4488) suggest they function in sugar binding/uptake. Protein Sci 2014; 23:1380-91. [PMID: 25044324 DOI: 10.1002/pro.2522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 07/10/2014] [Accepted: 07/11/2014] [Indexed: 12/27/2022]
Abstract
Crystal structures of three members (BACOVA_00364 from Bacteroides ovatus, BACUNI_03039 from Bacteroides uniformis and BACEGG_00036 from Bacteroides eggerthii) of the Pfam domain of unknown function (DUF4488) were determined to 1.95, 1.66, and 1.81 Å resolutions, respectively. The protein structures adopt an eight-stranded, calycin-like, β-barrel fold and bind an endogenous unknown ligand at one end of the β-barrel. The amino acids interacting with the ligand are not conserved in any other protein of known structure with this particular fold. The size and chemical environment of the bound ligand suggest binding or transport of a small polar molecule(s) as a potential function for these proteins. These are the first structural representatives of a newly defined PF14869 (DUF4488) Pfam family.
Collapse
Affiliation(s)
- Abhinav Kumar
- Joint Center for Structural Genomics, http://www.jcsg.org; Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California, 94025
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
A computational microscope focused on the sense of smell. Biochimie 2014; 107 Pt A:3-10. [PMID: 24952349 DOI: 10.1016/j.biochi.2014.06.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 06/07/2014] [Indexed: 11/24/2022]
Abstract
In this article, we review studies of the protagonists of the perception of smell focusing on Odorant-Binding Proteins and Olfactory Receptors. We notably put forward studies performed by means of molecular modeling, generally combined with experimental data. Those works clearly emphasize that computational approaches are now a force to reckon with. In the future, they will certainly be more and more used, notably in the framework of a computational microscope meant to observe how the laws of physics govern the biomolecular systems originating our sense of smell.
Collapse
|
24
|
Kumar TKS, Sivaraman T, Samuel D, Srisailam S, Ganesh G, Hsieh HC, Hung KW, Peng HJ, Ho MC, Arunkumar AI, Yu C. Protein Folding and β-Sheet Proteins. J CHIN CHEM SOC-TAIP 2013. [DOI: 10.1002/jccs.200000141] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
25
|
Abstract
PURPOSE OF REVIEW The review will address the potential roles of apolipoprotein M (apoM) as a carrier protein and modulator of sphingosine-1-phosphate (S1P) bioactivity. RECENT FINDINGS Recombinant apoM can bind small lipids such as retinoic acid, oxidized phospholipids, and S1P. Thus, the effects of apoM may be pleiotrophic. The S1P binding ability of apoM has biological impact. ApoM-bound S1P can activate S1P1 receptors on endothelial cells and deficiency of apoM abolishes the presence of S1P in HDL. In mice, the lack of apoM causes dysfunctional endothelial barrier function in the lungs. In humans, sepsis that is characterized by impaired endothelial function is associated with low plasma apoM. SUMMARY Plasma apoM is mainly bound to HDL. The roles of apoM in atherosclerosis and lipoprotein metabolism have been given much attention. New in the field is the discovery of apoM as a chaperone for S1P. S1P is a bioactive lipid with effects on angiogenesis, lymphocyte trafficking, endothelial cell migration, and inflammation. A drug targeting the S1P-system (fingolimod) is now used for treatment of multiple sclerosis. It improves the blood-brain barrier and inhibits migration of lymphocytes into the brain. Further exploration of the apoM/S1P axis may uncover its potential as a biomarker and target for new treatments.
Collapse
Affiliation(s)
- Christina Christoffersen
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.
| | | |
Collapse
|
26
|
Heydel JM, Coelho A, Thiebaud N, Legendre A, Bon AML, Faure P, Neiers F, Artur Y, Golebiowski J, Briand L. Odorant-Binding Proteins and Xenobiotic Metabolizing Enzymes: Implications in Olfactory Perireceptor Events. Anat Rec (Hoboken) 2013; 296:1333-45. [DOI: 10.1002/ar.22735] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 02/01/2013] [Accepted: 02/26/2013] [Indexed: 11/10/2022]
Affiliation(s)
- Jean-Marie Heydel
- INRA UMR1324, CNRS UMR6265; Université de Bourgogne, Centre des Sciences du Goût et de l'Alimentation; F-21000 Dijon France
| | - Alexandra Coelho
- INRA UMR1324, CNRS UMR6265; Université de Bourgogne, Centre des Sciences du Goût et de l'Alimentation; F-21000 Dijon France
| | - Nicolas Thiebaud
- INRA UMR1324, CNRS UMR6265; Université de Bourgogne, Centre des Sciences du Goût et de l'Alimentation; F-21000 Dijon France
| | - Arièle Legendre
- INRA UMR1324, CNRS UMR6265; Université de Bourgogne, Centre des Sciences du Goût et de l'Alimentation; F-21000 Dijon France
| | - Anne-Marie Le Bon
- INRA UMR1324, CNRS UMR6265; Université de Bourgogne, Centre des Sciences du Goût et de l'Alimentation; F-21000 Dijon France
| | - Philippe Faure
- INRA UMR1324, CNRS UMR6265; Université de Bourgogne, Centre des Sciences du Goût et de l'Alimentation; F-21000 Dijon France
| | - Fabrice Neiers
- INRA UMR1324, CNRS UMR6265; Université de Bourgogne, Centre des Sciences du Goût et de l'Alimentation; F-21000 Dijon France
| | - Yves Artur
- INRA UMR1324, CNRS UMR6265; Université de Bourgogne, Centre des Sciences du Goût et de l'Alimentation; F-21000 Dijon France
| | - Jérôme Golebiowski
- Université de Nice Sophia Antipolis; CNRS UMR7272, Institut de Chimie de Nice; F-06108 Nice Cedex 2 France
| | - Loïc Briand
- INRA UMR1324, CNRS UMR6265; Université de Bourgogne, Centre des Sciences du Goût et de l'Alimentation; F-21000 Dijon France
| |
Collapse
|
27
|
Golebiowski J, Topin J, Charlier L, Briand L. Interaction between odorants and proteins involved in the perception of smell: the case of odorant-binding proteins probed by molecular modelling and biophysical data. FLAVOUR FRAG J 2012. [DOI: 10.1002/ffj.3121] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jérôme Golebiowski
- Institut de Chimie de Nice, UMR7272 CNRS; Université de Nice Sophia Antipolis; 06108; Nice; France
| | - Jérémie Topin
- Institut de Chimie de Nice, UMR7272 CNRS; Université de Nice Sophia Antipolis; 06108; Nice; France
| | - Landry Charlier
- Institut de Chimie de Nice, UMR7272 CNRS; Université de Nice Sophia Antipolis; 06108; Nice; France
| | - Loïc Briand
- Centre des Sciences du Goût et de l'Alimentation, INRA UMR1324, CNRS UMR6265; Université de Bourgogne; 21000; Dijon; France
| |
Collapse
|
28
|
Assumpção TCF, Eaton DP, Pham VM, Francischetti IMB, Aoki V, Hans-Filho G, Rivitti EA, Valenzuela JG, Diaz LA, Ribeiro JMC. An insight into the sialotranscriptome of Triatoma matogrossensis, a kissing bug associated with fogo selvagem in South America. Am J Trop Med Hyg 2012; 86:1005-14. [PMID: 22665609 DOI: 10.4269/ajtmh.2012.11-0690] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Triatoma matogrossensis is a Hemiptera that belongs to the oliveirai complex, a vector of Chagas' disease that feeds on vertebrate blood in all life stages. Hematophagous insects' salivary glands (SGs) produce potent pharmacologic compounds that counteract host hemostasis, including anticlotting, antiplatelet, and vasodilatory molecules. Exposure to T. matogrossensis was also found to be a risk factor associated with the endemic form of the autoimmune skin disease pemphigus foliaceus, which is described in the same regions where Chagas' disease is observed in Brazil. To obtain a further insight into the salivary biochemical and pharmacologic diversity of this kissing bug and to identify possible allergens that might be associated with this autoimmune disease, a cDNA library from its SGs was randomly sequenced. We present the analysis of a set of 2,230 (SG) cDNA sequences, 1,182 of which coded for proteins of a putative secretory nature.
Collapse
Affiliation(s)
- Teresa C F Assumpção
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20892, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Eberini I, Sensi C, Bovi M, Molinari H, Galliano M, Bonomi F, Iametti S, Gianazza E. Wards in the keyway: amino acids with anomalous pK(a)s in calycins. Amino Acids 2012; 43:2457-68. [PMID: 22643844 DOI: 10.1007/s00726-012-1324-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 05/15/2012] [Indexed: 11/24/2022]
Abstract
As a follow-up to our recent analysis of the electrostatics of bovine β-lactoglobulin (Eberini et al. in Amino Acids 42:2019-2030, 2011), we investigated whether the occurrence in the native structure of calycins-the superfamily to which β-lactoglobulin belongs-of amino acids with anomalous pK (a)s is an infrequent or, on the contrary, a common occurrence, and whether or not a general pattern may be recognized. To this aim, we randomly selected four calycins we had either purified from natural sources or prepared with recombinant DNA technologies during our previous and current structural and functional studies on this family. Their pIs vary over several pH units and their known functions are as diverse as carriers, enzymes, immunomodulators and/or extracellular chaperones. In our survey, we used both in silico prediction methods and in vitro procedures, such as isoelectric focusing, electrophoretic titration curves and spectroscopic techniques. By comparing the results under native conditions (no exposure of the proteins to chaotropic agents) to those after protein unfolding (in the presence of 8 M urea), a shift is observed in the pK (a) of at least one amino acid per protein, which results in a measurable change in pI. Three types of amino acids are involved: Cys, Glu, and His, their position varies along the calycin sequence. Although no common mechanism may thus be recognized, we hypothesize that the 'normalization' of anomalous pK (a)s may be the phenomenon that accompanies, and favors, structural rearrangements such as those involved in ligand binding by these proteins. An interesting, if anecdotal, validation to this view comes from the behavior of human retinol binding protein, for which the pI of the folded and liganded protein is intermediate between those of the folded and unliganded and of the unfolded protein forms. Likewise, both solid (from crystallography) and solution state (from CD spectroscopy) data confirm that the protein undergoes structural rearrangement upon retinol binding.
Collapse
Affiliation(s)
- Ivano Eberini
- Gruppo di Studio per la Proteomica e la Struttura delle Proteine, Dipartimento di Scienze Farmacologiche, Università degli Studi di Milano, via Giuseppe Balzaretti 9, 20133, Milan, Italy
| | | | | | | | | | | | | | | |
Collapse
|
30
|
de Araújo CN, Bussacos AC, Sousa AO, Hecht MM, Teixeira ARL. Interactome: Smart hematophagous triatomine salivary gland molecules counteract human hemostasis during meal acquisition. J Proteomics 2012; 75:3829-41. [PMID: 22579750 DOI: 10.1016/j.jprot.2012.05.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Revised: 04/09/2012] [Accepted: 05/01/2012] [Indexed: 01/06/2023]
Abstract
Human populations are constantly plagued by hematophagous insects' bites, in particular the triatomine insects that are vectors of the Trypanosoma cruzi agent in Chagas disease. The pharmacologically-active molecules present in the salivary glands of hematophagous insects are injected into the human skin to initiate acquisition of blood meals. Sets of vasodilators, anti-platelet aggregators, anti-coagulants, immunogenic polypeptides, anesthetics, odorants, antibiotics, and detoxifying molecules have been disclosed with the aid of proteomics and recombinant cDNA techniques. These molecules can provide insights about the insect-pathogen-host interactions essential for understanding the physiopathology of the insect bite. The data and information presented in this review aim for the development of new drugs to prevent insect bites and the insect-transmitted endemic of Chagas disease.
Collapse
Affiliation(s)
- Carla Nunes de Araújo
- Chagas Disease Multidisciplinary Research Laboratory, Faculty of Medicine of the University of Brasilia, 70.910.900, Brasília Federal District, Brazil.
| | | | | | | | | |
Collapse
|
31
|
Komori H, Nishi K, Uehara N, Watanabe H, Shuto T, Suenaga A, Maruyama T, Otagiri M. Characterization of Hepatic Cellular Uptake of α1-Acid Glycoprotein (AGP), Part 2: Involvement of Hemoglobin β-Chain on Plasma Membranes in the Uptake of Human AGP by Liver Parenchymal Cells. J Pharm Sci 2012; 101:1607-15. [DOI: 10.1002/jps.23015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 09/26/2011] [Accepted: 11/22/2011] [Indexed: 11/12/2022]
|
32
|
Nishi K, Komori H, Kikuchi M, Uehara N, Fukunaga N, Matsumoto K, Watanabe H, Nakajou K, Misumi S, Suenaga A, Maruyama T, Otagiri M. Characterization of the Hepatic Cellular Uptake of α1-Acid Glycoprotein (AGP), Part 1: A Peptide Moiety of Human AGP Is Recognized by the Hemoglobin β-Chain on Mouse Liver Parenchymal Cells. J Pharm Sci 2012; 101:1599-606. [DOI: 10.1002/jps.22804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 09/02/2011] [Accepted: 10/14/2011] [Indexed: 11/10/2022]
|
33
|
Abstract
Lipocalins are a family of diverse low molecular weight proteins that act extracellularly. They use multiple recognition properties that include 1) ligand binding to small hydrophobic molecules, 2) macromolecular complexation with other soluble macromolecules, and 3) binding to specific cell surface receptors to deliver cargo. Tear lipocalin (TLC) is a major protein in tears and has a large ligand-binding cavity that allows the lipocalin to bind an extensive and diverse set of lipophilic molecules. TLC can also bind to macromolecules, including the tear proteins lactoferin and lysozyme. The receptor to which TLC binds is termed tear lipocalin-interacting membrane receptor (LIMR). LIMR appears to work by endocytosis. TLC has a variety of suggested functions in tears, including regulation of tear viscosity, binding and release of lipids, endonuclease inactivation of viral DNA, binding of microbial siderophores (iron chelators used to deliver essential iron to bacteria), serving as a biomarker for dry eye, and possessing anti-inflammatory activity. Additional research is warranted to determine the actual functions of TLC in tears and the presence of its receptor on the ocular surface.
Collapse
Affiliation(s)
- Darlene A Dartt
- Schepens Eye Research Institute and Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
34
|
Elsøe S, Ahnström J, Christoffersen C, Hoofnagle AN, Plomgaard P, Heinecke JW, Binder CJ, Björkbacka H, Dahlbäck B, Nielsen LB. Apolipoprotein M binds oxidized phospholipids and increases the antioxidant effect of HDL. Atherosclerosis 2011; 221:91-7. [PMID: 22204862 DOI: 10.1016/j.atherosclerosis.2011.11.031] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 11/19/2011] [Accepted: 11/21/2011] [Indexed: 11/15/2022]
Abstract
OBJECTIVE Oxidation of LDL plays a key role in the development of atherosclerosis. HDL may, in part, protect against atherosclerosis by inhibiting LDL oxidation. Overexpression of HDL-associated apolipoprotein M (apoM) protects mice against atherosclerosis through a not yet clarified mechanism. Being a lipocalin, apoM contains a binding pocket for small lipophilic molecules. Here, we report that apoM likely serves as an antioxidant in HDL by binding oxidized phospholipids, thus enhancing the antioxidant potential of HDL. METHODS AND RESULTS HDL was isolated from wild type mice, apoM-deficient mice, and two lines of apoM-Tg mice with ∼2-fold and ∼10-fold increased plasma apoM, respectively. Increasing amounts of HDL-associated apoM were associated with an increase in the resistance of HDL to oxidation with Cu(2+) or 2,2'-azobis 2-methyl-propanimidamide, dihydrochloride (AAPH) and to an increased ability of HDL to protect human LDL against oxidation. Oxidized phospholipids, but not native phospholipids, quenched the intrinsic fluorescence of recombinant human apoM and the quenching could be competed with myristic acid suggesting selective binding of oxidized phospholipid in the lipocalin-binding pocket of apoM. CONCLUSIONS The results suggest that apoM can bind oxidized phospholipids and that it increases the antioxidant effect of HDL. This new mechanism may explain at least part of the antiatherogenic potential of apoM.
Collapse
Affiliation(s)
- Sara Elsøe
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Denmark
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Khoo SK, Petillo D, Parida M, Tan AC, Resau JH, Obaro SK. Host response transcriptional profiling reveals extracellular components and ABC (ATP-binding cassette) transporters gene enrichment in typhoid fever-infected Nigerian children. BMC Infect Dis 2011; 11:241. [PMID: 21914192 PMCID: PMC3189140 DOI: 10.1186/1471-2334-11-241] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Accepted: 09/13/2011] [Indexed: 12/18/2022] Open
Abstract
Background Salmonella enterica serovar Typhi (S. Typhi) is a human-specific pathogen that causes typhoid fever, and remains a global health problem especially in developing countries. Its pathogenesis is complex and host response is poorly understood. In Africa, typhoid fever can be a major cause of morbidity in young infected children. The onset of the illness is insidious and clinical diagnosis is often unreliable. Gold standard blood culture diagnostic services are limited, thus rapid, sensitive, and affordable diagnostic test is essential in poor-resourced clinical settings. Routine typhoid fever vaccination is highly recommended but currently licensed vaccines provide only 55-75% protection. Recent epidemiological studies also show the rapid emergence of multi-drug resistant S. Typhi strains. High-throughput molecular technologies, such as microarrays, can dissect the molecular mechanisms of host responses which are S. Typhi-specific to provide a comprehensive genomic component of immunological responses and suggest new insights for diagnosis and treatment. Methods Global transcriptional profiles of S. Typhi-infected young Nigerian children were obtained from their peripheral blood and compared with that of other bacteremic infections using Agilent gene expression microarrays. The host-response profiles of the same patients in acute vs. convalescent phases were also determined. The top 96-100 differentially-expressed genes were identified and four genes were validated by quantitative real-time PCR. Gene clusters were obtained and functional pathways were predicted by DAVID (Database for Annotation, Visualization and Integrated Discovery). Results Transcriptional profiles from S. Typhi-infected children could be distinguished from those of other bacteremic infections. Enriched gene clusters included genes associated with extracellular peptides/components such as lipocalin (LCN2) and systemic immune response which is atypical in bacterial invasion. Distinct gene expression profiles can also be obtained from acute vs. convalescent phase during typhoid fever infection. We found novel down-regulation of ABC (ATP-binding cassette) transporters genes such as ABCA7, ABCC5, and ABCD4 and ATPase activity as the highest enriched pathway. Conclusions We identified unique extracellular components and ABC transporters gene enrichments in typhoid fever-infected Nigerian children, which have never been reported. These enriched gene clusters may represent novel targeted pathways to improve diagnostic, prognostic, therapeutic and next-generation vaccine strategies for typhoid fever in Africa.
Collapse
Affiliation(s)
- Sok Kean Khoo
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, East Lansing, MI, USA.
| | | | | | | | | | | |
Collapse
|
36
|
Eberini I, Emerson A, Sensi C, Ragona L, Ricchiuto P, Pedretti A, Gianazza E, Tramontano A. Simulation of urea-induced protein unfolding: A lesson from bovine β-lactoglobulin. J Mol Graph Model 2011; 30:24-30. [DOI: 10.1016/j.jmgm.2011.06.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 06/01/2011] [Accepted: 06/02/2011] [Indexed: 01/16/2023]
|
37
|
Assumpção TCF, Charneau S, Santiago PBM, Francischetti IMB, Meng Z, Araújo CN, Pham VM, Queiroz RML, de Castro CN, Ricart CA, Santana JM, Ribeiro JMC. Insight into the salivary transcriptome and proteome of Dipetalogaster maxima. J Proteome Res 2011; 10:669-79. [PMID: 21058630 DOI: 10.1021/pr100866h] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Dipetalogaster maxima is a blood-sucking Hemiptera that inhabits sylvatic areas in Mexico. It usually takes its blood meal from lizards, but following human population growth, it invaded suburban areas, feeding also on humans and domestic animals. Hematophagous insect salivary glands produce potent pharmacologic compounds that counteract host hemostasis, including anticlotting, antiplatelet, and vasodilatory molecules. To obtain further insight into the salivary biochemical and pharmacologic complexity of this insect, a cDNA library from its salivary glands was randomly sequenced. Salivary proteins were also submitted to one- and two-dimensional gel electrophoresis (1DE and 2DE) followed by mass spectrometry analysis. We present the analysis of a set of 2728 cDNA sequences, 1375 of which coded for proteins of a putative secretory nature. The saliva 2DE proteome displayed approximately 150 spots. The mass spectrometry analysis revealed mainly lipocalins, pallidipins, antigen 5-like proteins, and apyrases. The redundancy of sequence identification of saliva-secreted proteins suggests that proteins are present in multiple isoforms or derive from gene duplications.
Collapse
Affiliation(s)
- Teresa C F Assumpção
- Vector Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland 20852, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Madhurantakam C, Nilsson OB, Uchtenhagen H, Konradsen J, Saarne T, Högbom E, Sandalova T, Grönlund H, Achour A. Crystal structure of the dog lipocalin allergen Can f 2: implications for cross-reactivity to the cat allergen Fel d 4. J Mol Biol 2010; 401:68-83. [PMID: 20621650 DOI: 10.1016/j.jmb.2010.05.043] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Revised: 05/17/2010] [Accepted: 05/18/2010] [Indexed: 12/25/2022]
Abstract
The dog lipocalin allergen Can f 2 is an important cause of allergic sensitization in humans worldwide. Here, the first crystal structure of recombinant rCan f 2 at 1.45 A resolution displays a classical lipocalin fold with a conserved Gly-Xaa-Trp motif, in which Trp19 stabilizes the overall topology of the monomeric rCan f 2. Phe38 and Tyr84 localized on the L1 and L5 loops, respectively, control access to the highly hydrophobic calyx. Although the rCan f 2 calyx is nearly identical with the aero-allergens MUP1, Equ c 1 and A2U from mouse, horse and rat, respectively, no IgE cross-reactivity was found using sera from five mono-sensitized subjects. However, clear IgE cross-reactivity was demonstrated between Can f 2 and the cat allergen Fel d 4, although they share less than 22% sequence identity. This suggests a role for these allergens in co-sensitization between cat- and dog-allergic patients.
Collapse
Affiliation(s)
- Chaithanya Madhurantakam
- Centre for Infectious Medicine, F59, Department of Medicine Huddinge, Karolinska University Hospital Huddinge, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Guo C, Lian Y, Liu Q, Liu J, Zhang Y, Lin D. Soluble expression and characterization of a mouse epididymis-specific protein lipocalin6. Protein Expr Purif 2010; 69:64-7. [DOI: 10.1016/j.pep.2009.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Revised: 06/29/2009] [Accepted: 07/01/2009] [Indexed: 10/20/2022]
|
40
|
Kupka M, Zhang J, Fu WL, Tu JM, Böhm S, Su P, Chen Y, Zhou M, Scheer H, Zhao KH. Catalytic mechanism of S-type phycobiliprotein lyase: chaperone-like action and functional amino acid residues. J Biol Chem 2009; 284:36405-36414. [PMID: 19864423 DOI: 10.1074/jbc.m109.056382] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The phycobilin:cysteine 84-phycobiliprotein lyase, CpcS1, catalyzes phycocyanobilin (PCB) and phycoerythrobilin (PEB) attachment at nearly all cysteine 82 binding sites (consensus numbering) of phycoerythrin, phycoerythrocyanin, phycocyanin, and allophycocyanin (Zhao, K. H., Su, P., Tu, J. M., Wang, X., Liu, H., Plöscher, M., Eichacker, L., Yang, B., Zhou, M., and Scheer, H. (2007) Proc. Natl. Acad. Sci. U.S.A. 104, 14300-14305). We now show that CpcS1 binds PCB and PEB rapidly with bi-exponential kinetics (38/119 and 12/8300 ms, respectively). Chromophore binding to the lyase is reversible and much faster than the spontaneous, but low fidelity chromophore addition to the apo-protein in the absence of the lyase. This indicates kinetic control by the enzyme, which then transfers the chromophore to the apo-protein in a slow (tens of minutes) but stereo- and regioselectively corrects the reaction. This mode of action is reminiscent of chaperones but does not require ATP. The amino acid residues Arg-18 and Arg-149 of the lyase are essential for chromophore attachment in vitro and in Escherichia coli, mutations of His-21, His-22, Trp-75, Trp-140, and Arg-147 result in reduced activity (<30% of wild type in vitro). Mutants R147Q and W69M were active but had reduced capacity for PCB binding; additionally, with W69M there was loss of fidelity in chromophore attachment. Imidazole is a non-competitive inhibitor, supporting a bilin-binding function of histidine. Evidence was obtained that CpcS1 also catalyzes exchange of C-beta84-bound PCB in biliproteins by PEB.
Collapse
Affiliation(s)
- Michaela Kupka
- Department Biologie I, Universität München, Menzinger Strasse 67, D-80638 München, Germany
| | - Juan Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Wei-Lei Fu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jun-Ming Tu
- Department Biologie I, Universität München, Menzinger Strasse 67, D-80638 München, Germany; State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; College of Life Sciences, Hubei Normal University, Huangshi 435002, Hubei, China
| | - Stephan Böhm
- Department Biologie I, Universität München, Menzinger Strasse 67, D-80638 München, Germany
| | - Ping Su
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; College of Life Sciences, Hubei Normal University, Huangshi 435002, Hubei, China
| | - Yu Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ming Zhou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hugo Scheer
- Department Biologie I, Universität München, Menzinger Strasse 67, D-80638 München, Germany
| | - Kai-Hong Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
41
|
Serendipitous fatty acid binding reveals the structural determinants for ligand recognition in apolipoprotein M. J Mol Biol 2009; 393:920-36. [PMID: 19733574 DOI: 10.1016/j.jmb.2009.08.071] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Revised: 08/19/2009] [Accepted: 08/25/2009] [Indexed: 11/21/2022]
Abstract
Apolipoprotein M (ApoM) is a 25-kDa HDL-associated apolipoprotein and a member of the lipocalin family of proteins. Mature apoM retains its signal peptide, which serves as a lipid anchor attaching apoM to the lipoproteins, thereby keeping it in the circulation. Studies in mice have suggested apoM to be antiatherogenic, but its physiological function is yet unknown. We have now determined the 1.95 A resolution crystal structure of recombinant human apoM expressed in Escherichia coli and made the unexpected discovery that apoM, although refolded from inclusion bodies, was in complex with fatty acids containing 14, 16 or 18 carbon atoms. ApoM displays the typical lipocalin fold characterised by an eight-stranded antiparallel beta-barrel that encloses an internal ligand-binding pocket. The crystal structures of two different complexes provide a detailed picture of the ligand-binding determinants of apoM. Additional fatty acid- and lipid-binding studies with apoM and the mutants apoM(W47F) and apoM(W100F) showed that sphingosine-1-phosphate is able to displace the bound fatty acids and efficiently quenched the intrinsic fluorescence with an IC(50) of 0.90 muM. Whereas the fatty acids bound in the crystal structure could be a mere consequence of recombinant protein production, the observed binding of sphingosine-1-phosphate might provide a key to a better understanding of the physiological function of apoM.
Collapse
|
42
|
How does human odorant binding protein bind odorants? The case of aldehydes studied by molecular dynamics. CR CHIM 2009. [DOI: 10.1016/j.crci.2008.09.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
43
|
Charlier L, Nespoulous C, Fiorucci S, Antonczak S, Golebiowski J. Binding free energy prediction in strongly hydrophobic biomolecular systems. Phys Chem Chem Phys 2009; 9:5761-71. [PMID: 19462571 DOI: 10.1039/b710186d] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present a comparison of various computational approaches aiming at predicting the binding free energy in ligand-protein systems where the ligand is located within a highly hydrophobic cavity. The relative binding free energy between similar ligands is obtained by means of the thermodynamic integration (TI) method and compared to experimental data obtained through isothermal titration calorimetry measurements. The absolute free energy of binding prediction was obtained on a similar system (a pyrazine derivative bound to a lipocalin) by TI, potential of mean force (PMF) and also by means of the MMPBSA protocols. Although the TI protocol performs poorly either with an explicit or an implicit solvation scheme, the PMF calculation using an implicit solvation scheme leads to encouraging results, with a prediction of the binding affinity being 2 kcal mol(-1) lower than the experimental value. The use of an implicit solvation scheme appears to be well suited for the study of such hydrophobic systems, due to the lack of water molecules within the binding site.
Collapse
Affiliation(s)
- Landry Charlier
- LCMBA, Faculté des sciences de Nice-Sophia Antipolis, Centre National de la Recherche Scientifique, UMR 6001, Universitè de Nice-Sophia-Antipolis, UFR Sciences, Parc Valrose, 28, avenue Valrose, 06108 Nice Cedex 2, France
| | | | | | | | | |
Collapse
|
44
|
Jobichen C, Fernandis AZ, Velazquez-Campoy A, Leung KY, Mok YK, Wenk MR, Sivaraman J. Identification and characterization of the lipid-binding property of GrlR, a locus of enterocyte effacement regulator. Biochem J 2009; 420:191-9. [PMID: 19228114 PMCID: PMC3672471 DOI: 10.1042/bj20081588] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Lipocalins are a broad family of proteins identified initially in eukaryotes and more recently in Gram-negative bacteria. The functions of lipocalin or lipid-binding proteins are often elusive and very diverse. Recently, we have determined the structure of GrlR (global regulator of LEE repressor), which plays a key role in the regulation of LEE (locus of enterocyte effacement) proteins. GrlR adopts a lipocalin-like fold that is composed of an eight-stranded beta-barrel followed by an alpha-helix at the C-terminus. GrlR has a highly hydrophobic cavity region and could be a potential transporter of lipophilic molecules. To verify this hypothesis, we carried out structure-based analysis of GrlR, determined the structure of the lipid-GrlR complex and measured the binding of lipid to recombinant GrlR by ITC (isothermal titration calorimetry). In addition, we identified phosphatidylglycerol and phosphatidylethanolamine as the endogenously bound lipid species of GrlR using electrospray-ionization MS. Furthermore, we have shown that the lipid-binding property of GrlR is similar to that of its closest lipocalin structural homologue, beta-lactoglobulin. Our studies demonstrate the hitherto unknown lipid-binding property of GrlR.
Collapse
Affiliation(s)
- Chacko Jobichen
- Department of Biological Sciences, National University of Singapore, Singapore 117543
| | - Aaron Zefrin Fernandis
- Yong Loo Lin School of Medicine, Department of Biochemistry, Centre for Life Sciences, National University of Singapore, Singapore 117456
| | - Adrian Velazquez-Campoy
- Institute of Biocomputation and Physics of Complex Systems (BIFI), and Fundacion Aragon I+D (ARAID-BIFI), University of Zaragoza, Zaragoza 50009, Spain
| | - Ka Yin Leung
- Department of Biological Sciences, National University of Singapore, Singapore 117543
- Faculty of Natural and Applied Sciences, Department of Biology, Trinity Western University, Langley, B.C., Canada V2Y 1Y1
| | - Yu-Keung Mok
- Department of Biological Sciences, National University of Singapore, Singapore 117543
| | - Markus R Wenk
- Department of Biological Sciences, National University of Singapore, Singapore 117543
- Yong Loo Lin School of Medicine, Department of Biochemistry, Centre for Life Sciences, National University of Singapore, Singapore 117456
| | - J Sivaraman
- Department of Biological Sciences, National University of Singapore, Singapore 117543
| |
Collapse
|
45
|
Assumpção TCF, Francischetti IMB, Andersen JF, Schwarz A, Santana JM, Ribeiro JMC. An insight into the sialome of the blood-sucking bug Triatoma infestans, a vector of Chagas' disease. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2008; 38:213-32. [PMID: 18207082 PMCID: PMC2262853 DOI: 10.1016/j.ibmb.2007.11.001] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2007] [Revised: 11/06/2007] [Accepted: 11/06/2007] [Indexed: 05/09/2023]
Abstract
Triatoma infestans is a hemiptera, vector of Chagas' disease that feeds exclusively on vertebrate blood in all life stages. Hematophagous insects' salivary glands (SG) produce potent pharmacological compounds that counteract host hemostasis, including anticlotting, antiplatelet, and vasodilatory molecules. To obtain a further insight into the salivary biochemical and pharmacological complexity of this insect, a cDNA library from its SG was randomly sequenced. Also, salivary proteins were submitted to two-dimensional gel (2D-gel) electrophoresis followed by MS analysis. We present the analysis of a set of 1534 (SG) cDNA sequences, 645 of which coded for proteins of a putative secretory nature. Most salivary proteins described as lipocalins matched peptide sequences obtained from proteomic results.
Collapse
Affiliation(s)
- Teresa C F Assumpção
- Laboratory of Host-Parasite Interface, University of Brasília, Brasília-DF 70.910-900, Brazil.
| | | | | | | | | | | |
Collapse
|
46
|
Francischetti IM, Mans BJ, Meng Z, Guderra N, Veenstra TD, Pham VM, Ribeiro JM. An insight into the sialome of the soft tick, Ornithodorus parkeri. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2008; 38:1-21. [PMID: 18070662 PMCID: PMC2233652 DOI: 10.1016/j.ibmb.2007.09.009] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2007] [Revised: 09/10/2007] [Accepted: 09/18/2007] [Indexed: 05/15/2023]
Abstract
While hard ticks (Ixodidae) take several days to feed on their hosts, soft ticks (Argasidae) feed faster, usually taking less than 1h per meal. Saliva assists in the feeding process by providing a cocktail of anti-hemostatic, anti-inflammatory and immunomodullatory compounds. Saliva of hard ticks has been shown to contain several families of genes each having multiple members, while those of soft ticks are relatively unexplored. Analysis of the salivary transcriptome of the soft tick Ornithodorus parkeri, the vector of the relapsing fever agent Borrelia parkeri, indicates that gene duplication events have led to a large expansion of the lipocalin family, as well as of several genes containing Kunitz domains indicative of serine protease inhibitors, and several other gene families also found in hard ticks. Novel protein families with sequence homology to insulin growth factor-binding protein (prostacyclin-stimulating factor), adrenomedulin, serum amyloid A protein precursor and similar to HIV envelope protein were also characterized for the first time in the salivary gland of a blood-sucking arthropod. The sialotranscriptome of O. parkeri confirms that gene duplication events are an important driving force in the creation of salivary cocktails of blood-feeding arthropods, as was observed with hard ticks and mosquitoes. Most of the genes coding for expanded families are homologous to those found in hard ticks, indicating a strong common evolutionary path between the two families. As happens to all genera of blood-sucking arthropods, several new proteins were also found, indicating the process of adaptation to blood feeding still continues to recent times.
Collapse
Affiliation(s)
- Ivo M.B. Francischetti
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-8132, USA
| | - Ben J. Mans
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-8132, USA
| | - Zhaojing Meng
- Laboratory of Proteomics and Analytical Technologies, Advanced Technologies Program, SAIC-Frederick, Inc., P.O. Box B, Frederick, Maryland 21702, USA
| | - Nanda Guderra
- Biomedical Research Laboratory, George Mason University, Manassas, Virginia 20110
| | - Timothy D. Veenstra
- Laboratory of Proteomics and Analytical Technologies, Advanced Technologies Program, SAIC-Frederick, Inc., P.O. Box B, Frederick, Maryland 21702, USA
| | - Van M. Pham
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-8132, USA
| | - José M.C. Ribeiro
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-8132, USA
- * Corresponding author. Tel.: + 1 301 496 9389 fax: + 1 301 480 2571
| |
Collapse
|
47
|
Golebiowski J, Antonczak S, Fiorucci S, Cabrol-Bass D. Mechanistic events underlying odorant binding protein chemoreception. Proteins 2007; 67:448-58. [PMID: 17285634 DOI: 10.1002/prot.21307] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Odorant binding proteins (OBP's) are small hydrophilic proteins, belonging to the lipocalin family dedicated to bind and transport small hydrophobic ligands. Despite many works, the mechanism of ligand binding, together with the functional role of these proteins remains a topic of debate and little is known at the atomic level. The present work reports a computational study of odorants capture and release by an OBP, using both constrained and unconstrained simulations, giving a glimpse on the molecular mechanism of chemoreception. The residues at the origin of the regulation of the protein door opening are identified and a tyrosine amino-acid together with other nearby residues appear to play a crucial role in allowing this event to occur. The simulations reveal that this tyrosine and the protein's L5 loop are implicated in the ligand contact with the protein and act as an anchoring point for the ligand. The protein structural features required for the ligand entry are highly conserved among many transport proteins, suggesting that this mechanism could somewhat be extended to some members of the larger family of lipocalin.
Collapse
Affiliation(s)
- Jérôme Golebiowski
- Laboratoire de Chimie des Molecules Bioactives et des Aromes, Faculté des sciences de Nice-Sophia Antipolis, Centre National de la Recherche Scientifique, UMR 6001, Université de Nice-Sophia-Antipolis, France.
| | | | | | | |
Collapse
|
48
|
Grzyb J, Latowski D, Strzałka K. Lipocalins - a family portrait. JOURNAL OF PLANT PHYSIOLOGY 2006; 163:895-915. [PMID: 16504339 DOI: 10.1016/j.jplph.2005.12.007] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2005] [Accepted: 12/12/2005] [Indexed: 05/06/2023]
Abstract
Lipocalins are a widely distributed group of proteins whose common feature is the presence of six-or eight-stranded beta-barrel in their tertiary structure and highly conservative motifs short conserved region, (SCR) in their amino acid sequences. The presence of three SCRs is typical for kernel lipocalins, while outlier lipocalins have only one or two such regions. Owing to their ability to bind and transport small, hydrophobic molecules, lipocalins participate in the distribution of such substances. However, the physiological significance of lipocalins is not limited to transfer processes. They play an important role in the regulation of immunological and developmental processes, and are also involved in the reactions of organisms to various stress factors and in the pathways of signal transduction. Of special interest is the enzymatic activity found in a few members of the lipocalin family, as well as the interaction with natural membranes, both directly with lipids and through membrane-localized protein receptors.
Collapse
Affiliation(s)
- Joanna Grzyb
- Department of Plant Physiology and Biochemistry, Faculty of Biotechnology, Jagiellonian University, Gronostajowa 7, Kraków, Poland
| | | | | |
Collapse
|
49
|
Golebiowski J, Antonczak S, Cabrol-Bass D. Molecular dynamics studies of odorant binding protein free of ligand and complexed to pyrazine and octenol. ACTA ACUST UNITED AC 2006. [DOI: 10.1016/j.theochem.2006.01.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
50
|
Abstract
Anticalins are a class of engineered ligand-binding proteins that are based on the lipocalin scaffold. The lipocalin protein architecture is characterised by a compact, rigid beta-barrel that supports four structurally hypervariable loops. These loops form a pocket for the specific complexation of differing target molecules. Natural lipocalins occur in human plasma and body fluids, where they usually function in the transport of vitamins, steroids or metabolic compounds. Using targeted mutagenesis of the loop region and biochemical selection techniques, variants with novel ligand specificities, both for low-molecular weight substances and for macromolecular protein targets, can be generated. Due to their small size, typically between 160 and 180 residues, robust tertiary structure and composition of a single polypeptide chain, such 'anticalins' provide several advantages over antibodies concerning economy of production, stability during storage, faster pharmacokinetics and better tissue penetration. At present, anticalins offer three major mechanisms for therapeutic application: (i) as antidotes, by quickly removing toxic or otherwise irritating compounds from the human body; (ii) as antagonists, for example, by binding to cellular receptors and blocking them from interaction with their natural signalling molecules; (iii) as tissue-targeting vehicles, by addressing toxic molecules or enzymes to disease-related cell surface proteins.
Collapse
|