1
|
Hu M, Yingyu Z, Zhang M, Wang Q, Cheng W, Hou L, Yuan J, Yu Z, Li L, Zhang X, Zhang W. Functionalizing tetrahedral framework nucleic acids-based nanostructures for tumor in situ imaging and treatment. Colloids Surf B Biointerfaces 2024; 240:113982. [PMID: 38788473 DOI: 10.1016/j.colsurfb.2024.113982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/13/2024] [Accepted: 05/20/2024] [Indexed: 05/26/2024]
Abstract
Timely in situ imaging and effective treatment are efficient strategies in improving the therapeutic effect and survival rate of tumor patients. In recent years, there has been rapid progress in the development of DNA nanomaterials for tumor in situ imaging and treatment, due to their unsurpassed structural stability, excellent material editability, excellent biocompatibility and individual endocytic pathway. Tetrahedral framework nucleic acids (tFNAs), are a typical example of DNA nanostructures demonstrating superior stability, biocompatibility, cell-entry performance, and flexible drug-loading ability. tFNAs have been shown to be effective in achieving timely tumor in situ imaging and precise treatment. Therefore, the progress in the fabrication, characterization, modification and cellular internalization pathway of tFNAs-based functional systems and their potential in tumor in situ imaging and treatment applications were systematically reviewed in this article. In addition, challenges and future prospects of tFNAs in tumor in situ imaging and treatment as well as potential clinical applications were discussed.
Collapse
Affiliation(s)
- Minghui Hu
- Health Commission of Henan Province Key Laboratory for Precision Diagnosis and Treatment of Pediatric Tumor, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China
| | - Zhang Yingyu
- Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | - Mengxin Zhang
- Health Commission of Henan Province Key Laboratory for Precision Diagnosis and Treatment of Pediatric Tumor, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China
| | - Qionglin Wang
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China
| | - Weyland Cheng
- Henan International Joint Laboratory for Prevention and Treatment of Pediatric Disease, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China
| | - Ligong Hou
- Henan International Joint Laboratory for Prevention and Treatment of Pediatric Disease, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China
| | - Jingya Yuan
- Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | - Zhidan Yu
- Henan International Joint Laboratory for Prevention and Treatment of Pediatric Disease, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China
| | - Lifeng Li
- Henan International Joint Laboratory for Prevention and Treatment of Pediatric Disease, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China
| | - Xianwei Zhang
- Health Commission of Henan Province Key Laboratory for Precision Diagnosis and Treatment of Pediatric Tumor, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China.
| | - Wancun Zhang
- Health Commission of Henan Province Key Laboratory for Precision Diagnosis and Treatment of Pediatric Tumor, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China; Henan International Joint Laboratory for Prevention and Treatment of Pediatric Disease, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China; Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China.
| |
Collapse
|
2
|
Du J, Jones T. Technical opportunities and challenges in developing total-body PET scanners for mice and rats. EJNMMI Phys 2023; 10:2. [PMID: 36592266 PMCID: PMC9807733 DOI: 10.1186/s40658-022-00523-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 12/20/2022] [Indexed: 01/03/2023] Open
Abstract
Positron emission tomography (PET) is the most sensitive in vivo molecular imaging technique available. Small animal PET has been widely used in studying pharmaceutical biodistribution and disease progression over time by imaging a wide range of biological processes. However, it remains true that almost all small animal PET studies using mouse or rat as preclinical models are either limited by the spatial resolution or the sensitivity (especially for dynamic studies), or both, reducing the quantitative accuracy and quantitative precision of the results. Total-body small animal PET scanners, which have axial lengths longer than the nose-to-anus length of the mouse/rat and can provide high sensitivity across the entire body of mouse/rat, can realize new opportunities for small animal PET. This article aims to discuss the technical opportunities and challenges in developing total-body small animal PET scanners for mice and rats.
Collapse
Affiliation(s)
- Junwei Du
- grid.27860.3b0000 0004 1936 9684Department of Biomedical Engineering, University of California at Davis, Davis, CA 95616 USA
| | - Terry Jones
- grid.27860.3b0000 0004 1936 9684Department of Radiology, University of California at Davis, Davis, CA 95616 USA
| |
Collapse
|
3
|
Aimaletdinov AM, Gomzikova MO. Tracking of Extracellular Vesicles' Biodistribution: New Methods and Approaches. Int J Mol Sci 2022; 23:11312. [PMID: 36232613 PMCID: PMC9569979 DOI: 10.3390/ijms231911312] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/15/2022] [Accepted: 09/21/2022] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) are nanosized lipid bilayer vesicles that are released by almost all cell types. They range in diameter from 30 nm to several micrometres and have the ability to carry biologically active molecules such as proteins, lipids, RNA, and DNA. EVs are natural vectors and play an important role in many physiological and pathological processes. The amount and composition of EVs in human biological fluids serve as biomarkers and are used for diagnosing diseases and monitoring the effectiveness of treatment. EVs are promising for use as therapeutic agents and as natural vectors for drug delivery. However, the successful use of EVs in clinical practice requires an understanding of their biodistribution in an organism. Numerous studies conducted so far on the biodistribution of EVs show that, after intravenous administration, EVs are mostly localized in organs rich in blood vessels and organs associated with the reticuloendothelial system, such as the liver, lungs, spleen, and kidneys. In order to improve resolution, new dyes and labels are being developed and detection methods are being optimized. In this work, we review all available modern methods and approaches used to assess the biodistribution of EVs, as well as discuss their advantages and limitations.
Collapse
Affiliation(s)
| | - Marina O. Gomzikova
- Laboratory of Intercellular Communication, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| |
Collapse
|
4
|
Vaughan HJ, Green JJ. Recent Advances in Gene Therapy for Cancer Theranostics. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2021; 20:100300. [PMID: 34738046 PMCID: PMC8562678 DOI: 10.1016/j.cobme.2021.100300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
There is great interest in developing gene therapies for many disease indications, including cancer. However, successful delivery of nucleic acids to tumor cells is a major challenge, and in vivo efficacy is difficult to predict. Cancer theranostics is an approach combining anti-tumor therapy with imaging or diagnostic capabilities, with the goal of monitoring successful delivery and efficacy of a therapeutic agent in a tumor. Successful theranostics must maintain a high degree of anticancer targeting and efficacy while incorporating high-contrast imaging agents that are nontoxic and compatible with clinical imaging modalities. This review highlights recent advancements in theranostic strategies, including imaging technologies and genetic engineering approaches. Graphical Abstract.
Collapse
Affiliation(s)
- Hannah J. Vaughan
- Department of Biomedical Engineering, Institute for NanoBioTechnology, and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, 400 N Broadway, Baltimore, MD 21231, USA
| | - Jordan J. Green
- Department of Biomedical Engineering, Institute for NanoBioTechnology, and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, 400 N Broadway, Baltimore, MD 21231, USA
- Departments of Ophthalmology, Oncology, Neurosurgery, Materials Science & Engineering, and Chemical & Biomolecular Engineering, and the Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, 400 N Broadway, Baltimore, MD 21231, USA
| |
Collapse
|
5
|
Du J, Wang Q, Liu CC, Qi J, Cherry SR. Performance evaluation of dual-ended readout PET detectors based on BGO arrays with different reflector arrangements. Phys Med Biol 2021; 66. [PMID: 34607324 DOI: 10.1088/1361-6560/ac2c9c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/04/2021] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Dual-ended readout depth-encoding detectors based on bismuth germanate (BGO) scintillation crystal arrays are good candidates for high-sensitivity small animal positron emission tomography used for very-low-dose imaging. In this paper, the performance of three dual-ended readout detectors based on 15 × 15 BGO arrays with three different reflector arrangements and 8 × 8 silicon photomultiplier arrays were evaluated and compared. APPROACH The three BGO arrays, denoted wo-ILG (without internal light guide), wp-ILG (with partial internal light guide), and wf-ILG (with full internal light guide), share a pitch size of 1.6 mm and thickness of 20 mm. Toray E60 with a thickness of 50μm was used as inter-crystal reflector. All reflector lengths in the wo-ILG and wf-ILG BGO arrays were 20 and 18 mm, respectively; the reflectors in the wp-ILG BGO array were 18 mm at the central region of the array and 20 mm at the edge. By using 18 mm reflectors, part of the crystals in the wp-ILG and wf-ILG BGO arrays worked as internal light guides. MAIN RESULTS The results showed that the detector based on the wo-ILG BGO array provided the best flood histogram. The energy, timing and DOI resolutions of the three detectors were similar. The energy resolutions full width at half maximum (FWHM value) based on the wo-ILG, wp-ILG and wf-ILG BGO arrays were 27.2 ± 3.9%, 28.7 ± 4.6%, and 29.5 ± 4.7%, respectively. The timing resolutions (FWHM value) were 4.7 ± 0.5 ns, 4.9 ± 0.5 ns, and 5.0 ± 0.6 ns, respectively. The DOI resolution (FWHM value) were 3.0 ± 0.2 mm, 2.9 ± 0.2 mm, and 3.0 ± 0.2 mm, respectively. Over all, the wo-ILG detector provided the best performance.
Collapse
Affiliation(s)
- Junwei Du
- Department of Biomedical Engineering, University of California at Davis, Davis, CA 95616, United States of America
| | - Qian Wang
- Department of Biomedical Engineering, University of California at Davis, Davis, CA 95616, United States of America
| | - Chih-Chieh Liu
- Department of Biomedical Engineering, University of California at Davis, Davis, CA 95616, United States of America
| | - Jinyi Qi
- Department of Biomedical Engineering, University of California at Davis, Davis, CA 95616, United States of America
| | - Simon R Cherry
- Department of Biomedical Engineering, University of California at Davis, Davis, CA 95616, United States of America
| |
Collapse
|
6
|
Song Y, Xu Z, Wang F. Genetically Encoded Reporter Genes for MicroRNA Imaging in Living Cells and Animals. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 21:555-567. [PMID: 32721876 PMCID: PMC7390858 DOI: 10.1016/j.omtn.2020.06.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/12/2020] [Accepted: 06/24/2020] [Indexed: 12/13/2022]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression by base paring with the complementary sequences of the target mRNAs, and then exert their function through degrading mRNA or inhibiting protein translation. They play a significant role as a regulatory factor in biological processes of organism development, cell proliferation, differentiation, and cell death. Some of the traditional methods for studying miRNAs, such as northern blot, real-time PCR, or microarray, have been extensively used to investigate the biological properties and expression patterns of miRNAs. However, these methods often require considerable time, cell samples, and the design of effective primers or specific probes. Therefore, in order to gain a deeper understanding of the role of miRNAs in biological processes and accelerate the clinical application of miRNAs in the field of disease treatment, non-invasive, sensitive, and efficient imaging methods are needed to visualize the dynamic expression of miRNAs in living cells and animals. In this study, we reviewed the recent progress in the genetically encoded reporter genes for miRNA imaging.
Collapse
Affiliation(s)
- Yingzhuang Song
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Zhijing Xu
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Fu Wang
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China; Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China.
| |
Collapse
|
7
|
Singh S, Singh S, Sharma RK, Kaul A, Mathur R, Tomar S, Varshney R, Mishra AK. Synthesis and preliminary evaluation of a 99mTc labelled deoxyglucose complex {[99mTc]DTPA-bis(DG)} as a potential SPECT based probe for tumor imaging. NEW J CHEM 2020. [DOI: 10.1039/c9nj04705k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
[99mTc]DTPA-bis(DG): a potent tumor imaging probe.
Collapse
Affiliation(s)
- Shivani Singh
- Division of Cyclotron and Radiopharmaceutical Sciences
- Institute of Nuclear Medicine and Allied Sciences
- Defence Research and Development Organisation
- Delhi-110054
- India
| | - Sweta Singh
- Division of Cyclotron and Radiopharmaceutical Sciences
- Institute of Nuclear Medicine and Allied Sciences
- Defence Research and Development Organisation
- Delhi-110054
- India
| | | | - Ankur Kaul
- Division of Cyclotron and Radiopharmaceutical Sciences
- Institute of Nuclear Medicine and Allied Sciences
- Defence Research and Development Organisation
- Delhi-110054
- India
| | - Rashi Mathur
- Division of Cyclotron and Radiopharmaceutical Sciences
- Institute of Nuclear Medicine and Allied Sciences
- Defence Research and Development Organisation
- Delhi-110054
- India
| | - Sarika Tomar
- Division of Cyclotron and Radiopharmaceutical Sciences
- Institute of Nuclear Medicine and Allied Sciences
- Defence Research and Development Organisation
- Delhi-110054
- India
| | - Raunak Varshney
- Division of Cyclotron and Radiopharmaceutical Sciences
- Institute of Nuclear Medicine and Allied Sciences
- Defence Research and Development Organisation
- Delhi-110054
- India
| | - Anil K. Mishra
- Division of Cyclotron and Radiopharmaceutical Sciences
- Institute of Nuclear Medicine and Allied Sciences
- Defence Research and Development Organisation
- Delhi-110054
- India
| |
Collapse
|
8
|
Abstract
Regenerative medicine with the use of stem cells has appeared as a potential therapeutic alternative for many disease states. Despite initial enthusiasm, there has been relatively slow transition to clinical trials. In large part, numerous questions remain regarding the viability, biology and efficacy of transplanted stem cells in the living subject. The critical issues highlighted the importance of developing tools to assess these questions. Advances in molecular biology and imaging have allowed the successful non-invasive monitoring of transplanted stem cells in the living subject. Over the years these methodologies have been updated to assess not only the viability but also the biology of transplanted stem cells. In this review, different imaging strategies to study the viability and biology of transplanted stem cells are presented. Use of these strategies will be critical as the different regenerative therapies are being tested for clinical use.
Collapse
Affiliation(s)
- Fakhar Abbas
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Joseph C. Wu
- Molecular Imaging Program at Stanford, Stanford University, Stanford, CA, USA
- Department of Medicine (Cardiology), Stanford University, Stanford, CA, USA
| | - Sanjiv Sam Gambhir
- Molecular Imaging Program at Stanford, Stanford University, Stanford, CA, USA
- Department of Bio-Engineering, Stanford University, Stanford, CA, USA
| | | |
Collapse
|
9
|
Lai WF, Rogach AL, Wong WT. Chemistry and engineering of cyclodextrins for molecular imaging. Chem Soc Rev 2018; 46:6379-6419. [PMID: 28930330 DOI: 10.1039/c7cs00040e] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cyclodextrins (CDs) are naturally occurring cyclic oligosaccharides bearing a basket-shaped topology with an "inner-outer" amphiphilic character. The abundance of hydroxyl groups enables CDs to be functionalized with multiple targeting ligands and imaging elements. The imaging time, and the payload of different imaging elements, can be tuned by taking advantage of the commercial availability of CDs with different sizes of the cavity. This review aims to offer an outlook of the chemistry and engineering of CDs for the development of molecular probes. Complexation thermodynamics of CDs, and the corresponding implications for probe design, are also presented with examples demonstrating the structural and physiochemical roles played by CDs in the full ambit of molecular imaging. We hope that this review not only offers a synopsis of the current development of CD-based molecular probes, but can also facilitate translation of the incremental advancements from the laboratory to real biomedical applications by illuminating opportunities and challenges for future research.
Collapse
Affiliation(s)
- Wing-Fu Lai
- School of Pharmaceutical Sciences, Health Science Centre, Shenzhen University, Shenzhen, China.
| | | | | |
Collapse
|
10
|
Microdosing, isotopic labeling, radiotracers and metabolomics: relevance in drug discovery, development and safety. Bioanalysis 2017; 9:1913-1933. [PMID: 29171759 DOI: 10.4155/bio-2017-0137] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
This review discusses the use of stable (13C, 2D) or radioactive isotopes (14C, 11C, 18F, 131I, 64Cu, 68Ga) incorporated into the molecular structure of new drug entities for the purpose of pharmacokinetic or -dynamic studies. Metabolite in safety testing requires the administration of pharmacologically active doses. In such studies, radiotracers find application mainly in preclinical animal investigations, whereby LC-MS/MS is used to identify metabolite structure and drug-related effects. In contrast, first-in-human metabolite studies have to be carried out at nonpharmacological doses not exceeding 100 μg (microdose), which is generally too low for metabolite detection by LC-MS/MS. This short-coming can be overcome by specific radio- or isotopic labeling of the drug of interest and measurements using accelerator mass spectroscopy, single-photon emission computed tomography and positron emission tomography. Such combined radioisotope-based approaches permit Phase 0, first-in-human metabolite study.
Collapse
|
11
|
Cen P, Chen J, Hu C, Fan L, Wang J, Li L. Noninvasive in-vivo tracing and imaging of transplanted stem cells for liver regeneration. Stem Cell Res Ther 2016; 7:143. [PMID: 27664081 PMCID: PMC5035504 DOI: 10.1186/s13287-016-0396-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Terminal liver disease is a major cause of death globally. The only ultimate therapeutic approach is orthotopic liver transplant. Because of the innate defects of organ transplantation, stem cell-based therapy has emerged as an effective alternative, based on the capacity of stem cells for multilineage differentiation and their homing to injured sites. However, the disease etiology, cell type, timing of cellular graft, therapeutic dose, delivery route, and choice of endpoints have varied between studies, leading to different, even divergent, results. In-vivo cell imaging could therefore help us better understand the fate and behaviors of stem cells to optimize cell-based therapy for liver regeneration. The primary imaging techniques in preclinical or clinical studies have consisted of optical imaging, magnetic resonance imaging, radionuclide imaging, reporter gene imaging, and Y chromosome-based fluorescence in-situ hybridization imaging. More attention has been focused on developing new or modified imaging methods for longitudinal and high-efficiency tracing. Herein, we provide a descriptive overview of imaging modalities and discuss recent advances in the field of molecular imaging of intrahepatic stem cell grafts.
Collapse
Affiliation(s)
- Panpan Cen
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, School of Medicine; First Affiliated Hospital; Zhejiang University, Hangzhou, 310006, China
| | - Jiajia Chen
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, School of Medicine; First Affiliated Hospital; Zhejiang University, Hangzhou, 310006, China
| | - Chenxia Hu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, School of Medicine; First Affiliated Hospital; Zhejiang University, Hangzhou, 310006, China
| | - Linxiao Fan
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, School of Medicine; First Affiliated Hospital; Zhejiang University, Hangzhou, 310006, China
| | - Jie Wang
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, School of Medicine; First Affiliated Hospital; Zhejiang University, Hangzhou, 310006, China
| | - Lanjuan Li
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, School of Medicine; First Affiliated Hospital; Zhejiang University, Hangzhou, 310006, China.
| |
Collapse
|
12
|
Khan MK, Nigavekar SS, Minc LD, Kariapper MST, Nair BM, Lesniak WG, Balogh LP. In Vivo Biodistribution of Dendrimers and Dendrimer Nanocomposites — Implications for Cancer Imaging and Therapy. Technol Cancer Res Treat 2016; 4:603-13. [PMID: 16292880 DOI: 10.1177/153303460500400604] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Our results indicate that the surface chemistry, composition, and 3-D structure of nanoparticles are critical in determining their in vivo biodistribution, and therefore the efficacy of nanodevice imaging and therapies. We demonstrate that gold/dendrimer nanocomposites in vivo, present biodistribution characteristics different from PAMAM dendrimers in a B16 mouse tumor model system. We review important chemical and biologic uses of these nanodevices and discuss the potential of nanocomposite devices to greatly improve cancer imaging and therapy, in particular radiation therapy. We also discuss major issues confronting the use of nanoparticles in the near future, with consideration of toxicity analysis and whether biodegradable devices are needed or even desirable.
Collapse
Affiliation(s)
- Mohamed K Khan
- NanoBiotechnology Center at RPCI, Department of Radiation Medicine, Roswell Park Cancer Institute, Buffalo, NY 14263, USA.
| | | | | | | | | | | | | |
Collapse
|
13
|
Jiang D, Sun Y, Li J, Li Q, Lv M, Zhu B, Tian T, Cheng D, Xia J, Zhang L, Wang L, Huang Q, Shi J, Fan C. Multiple-Armed Tetrahedral DNA Nanostructures for Tumor-Targeting, Dual-Modality in Vivo Imaging. ACS APPLIED MATERIALS & INTERFACES 2016; 8:4378-84. [PMID: 26878704 DOI: 10.1021/acsami.5b10792] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In this work, we have developed multiple-armed DNA tetrahedral nanostructures (TDNs) for dual-modality in vivo imaging using near-infrared (NIR) fluorescence and single-photon emission computed tomography (SPECT). We found that the presence of arm strands in TDNs remarkably enhanced their in vitro stability, allowing them to stay intact for at least 12 h in serum. By using NIR fluorescence imaging, we evaluated in mice the pharmacokinetics of TDNs, which exhibited distinctly different in vivo biodistribution patterns compared with those of double-stranded (ds)DNA. We also noticed that TDNs had twofold longer circulation time in the blood system than that of dsDNA. With the use of multiple-armed TDNs, we could precisely anchor an exact number of functional groups including tumor-targeting folic acid (FA), NIR emitter Dylight 755, and radioactive isotope (99m)Tc on prescribed positions of TDNs, which showed the capability of targeted imaging ability in cancer cells. Furthermore, we realized noninvasive tumor-targeting imaging in tumor-bearing mice by using both NIR and SPECT modalities.
Collapse
Affiliation(s)
- Dawei Jiang
- Division of Physical Biology & Bioimaging Center, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201800, China
| | - Yanhong Sun
- Division of Physical Biology & Bioimaging Center, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201800, China
| | - Jiang Li
- Division of Physical Biology & Bioimaging Center, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201800, China
| | - Qian Li
- Division of Physical Biology & Bioimaging Center, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201800, China
| | - Min Lv
- Division of Physical Biology & Bioimaging Center, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201800, China
| | - Bing Zhu
- Division of Physical Biology & Bioimaging Center, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201800, China
| | - Tian Tian
- Division of Physical Biology & Bioimaging Center, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201800, China
| | - Dengfeng Cheng
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University , Shanghai 200032, China
| | - Jiaoyun Xia
- School of Chemistry and Biology Engineering, Changsha University of Science and Technology , Changsha 410004, China
| | - Lan Zhang
- Division of Physical Biology & Bioimaging Center, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201800, China
| | - Lihua Wang
- Division of Physical Biology & Bioimaging Center, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201800, China
| | - Qing Huang
- Division of Physical Biology & Bioimaging Center, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201800, China
| | - Jiye Shi
- UCB Pharma , Slough, SL1 14EN Berkshire, United Kingdom
| | - Chunhai Fan
- Division of Physical Biology & Bioimaging Center, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201800, China
| |
Collapse
|
14
|
Hong G, Diao S, Antaris AL, Dai H. Carbon Nanomaterials for Biological Imaging and Nanomedicinal Therapy. Chem Rev 2015; 115:10816-906. [PMID: 25997028 DOI: 10.1021/acs.chemrev.5b00008] [Citation(s) in RCA: 837] [Impact Index Per Article: 83.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Guosong Hong
- Department of Chemistry, Stanford University , Stanford, California 94305, United States
| | - Shuo Diao
- Department of Chemistry, Stanford University , Stanford, California 94305, United States
| | - Alexander L Antaris
- Department of Chemistry, Stanford University , Stanford, California 94305, United States
| | - Hongjie Dai
- Department of Chemistry, Stanford University , Stanford, California 94305, United States
| |
Collapse
|
15
|
Zhang Y, Kuraitis D, Burgon PG, Crowe S, Vulesevic B, Beanlands RS, deKemp RA, DaSilva JN, Ruel M, Suuronen EJ. Development of reporter gene imaging techniques for long-term assessment of human circulating angiogenic cells. ACTA ACUST UNITED AC 2015; 10:034104. [PMID: 25782444 DOI: 10.1088/1748-6041/10/3/034104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The use of biomaterials and tracking the long-term fate of the transplanted cells is expected to help improve the clinical translation of cell therapies for cardiac regeneration. To this end, reporter gene strategies are promising for monitoring the fate of cells transplanted with or without a delivery biomaterial; however, their application with primary adult progenitor cells (such as human circulating angiogenic cells (CACs)) has not been extensively evaluated. In this study, human CACs were transduced with reporter genes via one of two lentiviral (LV) vectors: LV-GFP-iresTK or LV-Fluc-RFP-tTK. The mean transduction efficiency was 15% (LV-GFP-iresTK) and 13% (LV-Fluc-RFP-tTK) at multiplicities of infection (MOI) of 10 and 50, respectively. Western blot analysis confirmed HSV1-tk protein expression in transduced CACs. There was no significant difference in viability between the transduced CACs and the untreated controls at a MOI of 50 or below. However, a reduction was observed in cell viability of CACs transduced with LV-Fluc-RFP-tTK at an MOI of 100. Cell migration and angiogenic potential were not affected by transduction protocol. After 4 weeks, 80.3 ± 8.4% of the labeled cells continued to express the reporters and could be visualized when embedded within a collagen matrix scaffold. Therefore, quiescent human CACs can be stably transduced to express reporter genes without affecting their function. This reporter gene technique is a promising approach to be further tested for tracking transplanted CACs (±delivery matrix) non-invasively and longitudinally.
Collapse
Affiliation(s)
- Yan Zhang
- Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, K1Y 4W7, Canada. Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, K1H 8M5, Canada. Division of Cardiology (Department of Medicine), Central Hospital Affiliated to Shenyang Medical College, Shenyang, 110024, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Molecular imaging of oncolytic viral therapy. MOLECULAR THERAPY-ONCOLYTICS 2015; 1:14007. [PMID: 27119098 PMCID: PMC4782985 DOI: 10.1038/mto.2014.7] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Accepted: 03/09/2014] [Indexed: 01/25/2023]
Abstract
Oncolytic viruses have made their mark on the cancer world as a potential therapeutic option, with the possible advantages of reduced side effects and strengthened treatment efficacy due to higher tumor selectivity. Results have been so promising, that oncolytic viral treatments have now been approved for clinical trials in several countries. However, clinical studies may benefit from the ability to noninvasively and serially identify sites of viral targeting via molecular imaging in order to provide safety, efficacy, and toxicity information. Furthermore, molecular imaging of oncolytic viral therapy may provide a more sensitive and specific diagnostic technique to detect tumor origin and, more importantly, presence of metastases. Several strategies have been investigated for molecular imaging of viral replication broadly categorized into optical and deep tissue imaging, utilizing several reporter genes encoding for fluorescence proteins, conditional enzymes, and membrane protein and transporters. Various imaging methods facilitate molecular imaging, including computer tomography, magnetic resonance imaging, positron emission tomography, single photon emission CT, gamma-scintigraphy, and photoacoustic imaging. In addition, several molecular probes are used for medical imaging, which act as targeting moieties or signaling agents. This review will explore the preclinical and clinical use of in vivo molecular imaging of replication-competent oncolytic viral therapy.
Collapse
|
17
|
Khan N, Riggle BA, Seward GK, Bai Y, Dmochowski IJ. Cryptophane-folate biosensor for (129)xe NMR. Bioconjug Chem 2015; 26:101-9. [PMID: 25438187 PMCID: PMC4306503 DOI: 10.1021/bc5005526] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Indexed: 12/27/2022]
Abstract
Folate-conjugated cryptophane was developed for targeting cryptophane to membrane-bound folate receptors that are overexpressed in many human cancers. The cryptophane biosensor was synthesized in 20 nonlinear steps, which included functionalization with folate recognition moiety, solubilizing peptide, and Cy3 fluorophore. Hyperpolarized (129)Xe NMR studies confirmed xenon binding to the folate-conjugated cryptophane. Cellular internalization of biosensor was monitored by confocal laser scanning microscopy and quantified by flow cytometry. Competitive blocking studies confirmed cryptophane endocytosis through a folate receptor-mediated pathway. Flow cytometry revealed 10-fold higher cellular internalization in KB cancer cells overexpressing folate receptors compared to HT-1080 cells with normal folate receptor expression. The biosensor was determined to be nontoxic in HT-1080 and KB cells by MTT assay at low micromolar concentrations typically used for hyperpolarized (129)Xe NMR experiments.
Collapse
Affiliation(s)
- Najat
S. Khan
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Brittany A. Riggle
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Garry K. Seward
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Yubin Bai
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Ivan J. Dmochowski
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
18
|
Mathiasen AB, Kastrup J. Non-invasive in-vivo imaging of stem cells after transplantation in cardiovascular tissue. Am J Cancer Res 2013; 3:561-72. [PMID: 23946822 PMCID: PMC3741605 DOI: 10.7150/thno.5787] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Accepted: 03/03/2013] [Indexed: 12/11/2022] Open
Abstract
Stem cell therapy for degenerative diseases, including ischemic heart disease is now a clinical reality. In the search for the optimal cell type for each patient category, many different stem cell subpopulations have been used. In addition, different cell processing procedures and delivery methods have been utilized. Moreover, choices of endpoints have varied between studies. Diverging results have been reported from clinical experiences, with some studies demonstrating promising results with improved cardiac function and reduced mortality and clinical symptoms, and others have seen no improvements. To better understand the underlying mechanisms of these results, a reverse translation from bedside to bench has been opened. Non-invasive cell tracking after implantation has a pivotal role in this translation. Imaging based methods can help elucidate important issues such as retention, migration and efficacy of the transplanted cells. Great effort is being made in finding new and better imaging techniques for different imaging modalities, and much have already been learned. But there are still many unanswered questions. In this review, we give an overview of the imaging modalities used for cell tracking and summarize the latest advances within the field.
Collapse
|
19
|
Radioisotope imaging of microRNA-9-regulating neurogenesis using sodium iodide sympoter. Biomaterials 2013; 34:4803-9. [DOI: 10.1016/j.biomaterials.2013.03.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 03/11/2013] [Indexed: 12/28/2022]
|
20
|
Ovariectomy induces a shift in fuel availability and metabolism in the hippocampus of the female transgenic model of familial Alzheimer's. PLoS One 2013; 8:e59825. [PMID: 23555795 PMCID: PMC3608536 DOI: 10.1371/journal.pone.0059825] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 02/19/2013] [Indexed: 11/19/2022] Open
Abstract
Previously, we demonstrated that reproductive senescence in female triple transgenic Alzheimer's (3×TgAD) mice was paralleled by a shift towards a ketogenic profile with a concomitant decline in mitochondrial activity in brain, suggesting a potential association between ovarian hormone loss and alteration in the bioenergetic profile of the brain. In the present study, we investigated the impact of ovariectomy and 17β-estradiol replacement on brain energy substrate availability and metabolism in a mouse model of familial Alzheimer's (3×TgAD). Results of these analyses indicated that ovarian hormones deprivation by ovariectomy (OVX) induced a significant decrease in brain glucose uptake indicated by decline in 2-[18F]fluoro-2-deoxy-D-glucose uptake measured by microPET-imaging. Mechanistically, OVX induced a significant decline in blood-brain-barrier specific glucose transporter expression, hexokinase expression and activity. The decline in glucose availability was accompanied by a significant rise in glial LDH5 expression and LDH5/LDH1 ratio indicative of lactate generation and utilization. In parallel, a significant rise in ketone body concentration in serum occurred which was coupled to an increase in neuronal MCT2 expression and 3-oxoacid-CoA transferase (SCOT) required for conversion of ketone bodies to acetyl-CoA. In addition, OVX-induced decline in glucose metabolism was paralleled by a significant increase in Aβ oligomer levels. 17β-estradiol preserved brain glucose-driven metabolic capacity and partially prevented the OVX-induced shift in bioenergetic substrate as evidenced by glucose uptake, glucose transporter expression and gene expression associated with aerobic glycolysis. 17β-estradiol also partially prevented the OVX-induced increase in Aβ oligomer levels. Collectively, these data indicate that ovarian hormone loss in a preclinical model of Alzheimer's was paralleled by a shift towards the metabolic pathway required for metabolism of alternative fuels in brain with a concomitant decline in brain glucose transport and metabolism. These findings also indicate that estrogen plays a critical role in sustaining brain bioenergetic capacity through preservation of glucose metabolism.
Collapse
|
21
|
Cook JR, Frey W, Emelianov S. Quantitative photoacoustic imaging of nanoparticles in cells and tissues. ACS NANO 2013; 7:1272-80. [PMID: 23312348 PMCID: PMC3584228 DOI: 10.1021/nn304739s] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Quantitative visualization of nanoparticles in cells and tissues, while preserving the spatial information, is very challenging. A photoacoustic imaging technique to depict the presence and quantity of nanoparticles is presented. This technique is based on the dependence of the photoacoustic signal on both the nanoparticle quantity and the laser fluence. Quantitative photoacoustic imaging is a robust technique that does not require knowledge of the local fluence, but a relative change in the fluence. This eliminates the need for sophisticated methods or models to determine the energy distribution of light in turbid media. Quantitative photoacoustic imaging was first applied to nanoparticle-loaded cells, and quantitation was validated by inductively coupled plasma mass spectrometry. Quantitative photoacoustic imaging was then extended to xenograft tumor tissue sections, and excellent agreement with traditional histopathological analysis was demonstrated. Our results suggest that quantitative photoacoustic imaging may be used in many applications including the determination of the efficiency and effectiveness of molecular targeting strategies for cell studies and animal models, the quantitative assessment of photoacoustic contrast agent biodistribution, and the validation of in vivo photoacoustic imaging.
Collapse
|
22
|
Ha SH, Carson AR, Kim K. Ferritin as a novel reporter gene for photoacoustic molecular imaging. Cytometry A 2012; 81:910-5. [PMID: 22949299 DOI: 10.1002/cyto.a.22160] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 07/27/2012] [Accepted: 07/29/2012] [Indexed: 11/10/2022]
Abstract
Reporter genes may serve as endogenous contrast agents in the field of photoacoustic (PA) molecular imaging (PMI), enabling greater characterization of detailed cellular processes and disease progression. To demonstrate the feasibility of using ferritin as a reporter gene, human melanoma SK-24 (SK-MEL-24) cells were co-transfected with plasmid expressing human heavy chain ferritin (H-FT) and plasmid expressing enhanced green fluorescent protein (pEGFP-C1) using lipofectamine™ 2000. Nontransfected SK-MEL-24 cells served as a negative control. Fluorescent imaging of GFP confirmed transfection and transgene expression in co-transfected cells. To detect iron accumulation due to ferritin overexpression in SK-MEL-24 cells, a focused high-frequency ultrasonic transducer (60 MHz, f/1.5), synchronized to a pulsed laser (fluence < 5 mJ/cm(2)) was used to scan the PA signal at a wide range NIR wavelengths (850-950 nm). PA signal intensity from H-FT transfected SK-MEL-24 cells was about 5-9 dB higher than nontransfected SK-MEL-24 cells at 850-950 nm. Immunofluorescence and RT-PCR analysis both indicate high levels of ferritin expression in H-FT transfected SK-MEL24 cells, with little ferritin expression in nontransfected SK-MEL-24 cells. In this study, the feasibility of using ferritin as a reporter gene for PMI has been demonstrated in vitro. The use of ferritin as a reporter gene represents a novel concept for PMI using an endogenous contrast agent and may provide various opportunities for molecular imaging and basic science research.
Collapse
Affiliation(s)
- Seung Han Ha
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15213, USA
| | | | | |
Collapse
|
23
|
Penheiter AR, Russell SJ, Carlson SK. The sodium iodide symporter (NIS) as an imaging reporter for gene, viral, and cell-based therapies. Curr Gene Ther 2012; 12:33-47. [PMID: 22263922 PMCID: PMC3367315 DOI: 10.2174/156652312799789235] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 01/04/2012] [Accepted: 01/06/2012] [Indexed: 02/06/2023]
Abstract
Preclinical and clinical tomographic imaging systems increasingly are being utilized for non-invasive imaging of reporter gene products to reveal the distribution of molecular therapeutics within living subjects. Reporter gene and probe combinations can be employed to monitor vectors for gene, viral, and cell-based therapies. There are several reporter systems available; however, those employing radionuclides for positron emission tomography (PET) or singlephoton emission computed tomography (SPECT) offer the highest sensitivity and the greatest promise for deep tissue imaging in humans. Within the category of radionuclide reporters, the thyroidal sodium iodide symporter (NIS) has emerged as one of the most promising for preclinical and translational research. NIS has been incorporated into a remarkable variety of viral and non-viral vectors in which its functionality is conveniently determined by in vitro iodide uptake assays prior to live animal imaging. This review on the NIS reporter will focus on 1) differences between endogenous NIS and heterologously-expressed NIS, 2) qualitative or comparative use of NIS as an imaging reporter in preclinical and translational gene therapy, oncolytic viral therapy, and cell trafficking research, and 3) use of NIS as an absolute quantitative reporter.
Collapse
Affiliation(s)
- Alan R Penheiter
- Department of Molecular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | | | | |
Collapse
|
24
|
Synthesis and characterization of a (68)Ga-labeled N-(2-diethylaminoethyl)benzamide derivative as potential PET probe for malignant melanoma. Bioorg Med Chem 2012; 20:4915-20. [PMID: 22831797 DOI: 10.1016/j.bmc.2012.06.047] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 06/27/2012] [Accepted: 06/27/2012] [Indexed: 10/28/2022]
Abstract
Radiolabeled benzamides have been reported to be attractive agents for targeting malignant melanoma as they bind melanin and display high accumulation in melanoma cells. Herein, we report the synthesis and bioevaluation of a novel (68)Ga-labeled benzamide as a potential PET agent for malignant melanoma. The novel radiotracer was synthesized in good radiochemical yields (80% decay corrected yield) and high specific radioactivity (10 GBq/μmol). Cellular uptake of (68)Ga-SCN-NOTA-BZA was significantly higher in B16F10 cells (mouse melanoma) treated with L-tyrosine. Biodistribution and micro-PET studies of (68)Ga-SCN-NOTA-BZA in B16F10-bearing mice showed selective uptake into the tumor. The radiotracer was cleared via renal excretion without further metabolism. These results demonstrate that (68)Ga-SCN-NOTA-BZA is a potential PET probe for malignant melanoma.
Collapse
|
25
|
Sundaram GSM, Harpstrite SE, Kao JLF, Collins SD, Sharma V. A new nucleoside analogue with potent activity against mutant sr39 herpes simplex virus-1 (HSV-1) thymidine kinase (TK). Org Lett 2012; 14:3568-71. [PMID: 22765027 DOI: 10.1021/ol300728a] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nucleoside analogues, such as penciclovir, ganciclovir, acyclovir, and their fluoro-substituted derivatives, have wide utility as antivirals. Among these analogues, FHBG ((18)F-Fluorohydroxybutylguanine) is a well-validated PET (positron emission tomography) probe for monitoring reporter gene expression. To evaluate whether or not imposing rigidity into the flexible side chain of FHBG 4 could also impact its interaction, with amino acid residues within the binding site of HSV1-TK (Herpes Simplex Virus-1 Thymidine Kinase), thus influencing its cytotoxic activity. Herein, the synthesis of a new fluorinated nucleoside analogue 6 (conceived via ligand-docking studies) is reported. Agent 6 demonstrates selective activity against HeLa cells stably transfected with mutant HSV1-sr39TK and is also 47-fold more potent than FHBG.
Collapse
Affiliation(s)
- G S M Sundaram
- BRIGHT Institute, Molecular Imaging Center, Mallinckrodt Institute of Radiology, Department of Chemistry, Washington University School of Medicine , Box 8225, 510 South Kingshighway Boulevard, St. Louis, Missouri 63110, United States
| | | | | | | | | |
Collapse
|
26
|
Guo H, Lu J, Hathaway H, Royce ME, Prossnitz ER, Miao Y. Synthesis and evaluation of novel gonadotropin-releasing hormone receptor-targeting peptides. Bioconjug Chem 2011; 22:1682-9. [PMID: 21749045 DOI: 10.1021/bc200252j] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The purpose of this study was to develop novel radiolabeled gonadotropin-releasing hormone (GnRH) receptor-targeting peptides for breast cancer imaging. Three novel 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA)-conjugated GnRH peptides were designed and synthesized. The radiometal chelator DOTA was conjugated to the epsilon or alpha amino group of D-lysine, or the epsilon amino group of L-lysine via an Ahx {aminohexanoic acid} linker to generate DOTA-Ahx-(D-Lys(6)-GnRH1), DOTA-Ahx-(D-Lys(6)-GnRH2) and DOTA-Ahx-(L-Lys(6)-GnRH3), respectively. The conjugation of the DOTA to the epsilon amino group of D-lysine (rather than alpha amino group of D-lysine nor epsilon amino group of L-lysine) maintained the nanomolar GnRH receptor binding affinity. The IC(50) values of DOTA-Ahx-(D-Lys(6)-GnRH1), DOTA-Ahx-(D-Lys(6)-GnRH2) and DOTA-Ahx-(L-Lys(6)-GnRH3) were 36.1 nM, 10.6 mM and 4.3 mM, respectively. Since only DOTA-Ahx-(D-Lys(6)-GnRH1) displayed nanomolar receptor binding affinity, the specific GnRH receptor binding of (111)In-DOTA-Ahx-(D-Lys(6)-GnRH1) was determined in human GnRH receptor membrane preparations. Furthermore, the biodistribution and tumor imaging properties of (111)In-DOTA-Ahx-(D-Lys(6)-GnRH1) were examined in MDA-MB-231 human breast cancer-xenografted nude mice. (111)In-DOTA-Ahx-(D-Lys(6)-GnRH1) exhibited specific GnRH receptor binding and rapid tumor uptake (1.76 ± 0.58% ID/g at 0.5 h postinjection) coupled with fast whole-body clearance through the urinary system. The MDA-MB-231 human breast cancer-xenografted tumor lesions were clearly visualized by single photon emission computed tomography (SPECT)/CT at 1 h postinjection of (111)In-DOTA-Ahx-(D-Lys(6)-GnRH1). The profound impact of DOTA position on the binding affinity of the GnRH peptide provided a new insight into the design of novel radiolabeled GnRH peptides. The successful imaging of MDA-MB-231 human breast cancer-xenografted tumor lesions using (111)In-DOTA-Ahx-(D-Lys(6)-GnRH1) suggested its potential as a novel imaging probe for human breast cancer imaging.
Collapse
Affiliation(s)
- Haixun Guo
- College of Pharmacy, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | | | | | | | | | | |
Collapse
|
27
|
Abstract
Regenerative medicine using stem cells has appeared as a potential therapeutic alternative for coronary artery disease, and stem cell clinical studies are currently on their way. However, initial results of these studies have provided mixed information, in part because of the inability to correlate organ functional information with the presence/absence of transplanted stem cells. Recent advances in molecular biology and imaging have allowed the successful noninvasive monitoring of transplanted stem cells in the living subject. In this article, different imaging strategies (direct labeling, indirect labeling with reporter genes) to study the viability and biology of stem cells are discussed. In addition, the limitations of each approach and imaging modality (eg, single photon emission computed tomography, positron emission tomography, and MRI) and their requirements for clinical use are addressed. Use of these strategies will be critical as the different regenerative therapies are being tested for clinical use.
Collapse
|
28
|
Lennerz JK, Hurov JB, White LS, Lewandowski KT, Prior JL, Planer GJ, Gereau RW, Piwnica-Worms D, Schmidt RE, Piwnica-Worms H. Loss of Par-1a/MARK3/C-TAK1 kinase leads to reduced adiposity, resistance to hepatic steatosis, and defective gluconeogenesis. Mol Cell Biol 2010; 30:5043-56. [PMID: 20733003 PMCID: PMC2953066 DOI: 10.1128/mcb.01472-09] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Revised: 12/22/2009] [Accepted: 07/29/2010] [Indexed: 12/11/2022] Open
Abstract
Par-1 is an evolutionarily conserved protein kinase required for polarity in worms, flies, frogs, and mammals. The mammalian Par-1 family consists of four members. Knockout studies of mice implicate Par-1b/MARK2/EMK in regulating fertility, immune homeostasis, learning, and memory as well as adiposity, insulin hypersensitivity, and glucose metabolism. Here, we report phenotypes of mice null for a second family member (Par-1a/MARK3/C-TAK1) that exhibit increased energy expenditure, reduced adiposity with unaltered glucose handling, and normal insulin sensitivity. Knockout mice were protected against high-fat diet-induced obesity and displayed attenuated weight gain, complete resistance to hepatic steatosis, and improved glucose handling with decreased insulin secretion. Overnight starvation led to complete hepatic glycogen depletion, associated hypoketotic hypoglycemia, increased hepatocellular autophagy, and increased glycogen synthase levels in Par-1a(-/-) but not in control or Par-1b(-/-) mice. The intercrossing of Par-1a(-/-) with Par-1b(-/-) mice revealed that at least one of the four alleles is necessary for embryonic survival. The severity of phenotypes followed a rank order, whereby the loss of one Par-1b allele in Par-1a(-/-) mice conveyed milder phenotypes than the loss of one Par-1a allele in Par-1b(-/-) mice. Thus, although Par-1a and Par-1b can compensate for one another during embryogenesis, their individual disruption gives rise to distinct metabolic phenotypes in adult mice.
Collapse
Affiliation(s)
- Jochen K. Lennerz
- Department of Pathology and Immunology, Department of Cell Biology and Physiology, Molecular Imaging Center, Mallinckrodt Institute of Radiology, Department of Neurology, Neuromuscular Laboratory, Washington University Pain Center and Department of Anesthesiology, Department of Developmental Biology, Department of Internal Medicine, BRIGHT Institute, Washington University School of Medicine, St. Louis, Missouri 63110, Howard Hughes Medical Institute, Chevy Chase, Maryland 20815
| | - Jonathan B. Hurov
- Department of Pathology and Immunology, Department of Cell Biology and Physiology, Molecular Imaging Center, Mallinckrodt Institute of Radiology, Department of Neurology, Neuromuscular Laboratory, Washington University Pain Center and Department of Anesthesiology, Department of Developmental Biology, Department of Internal Medicine, BRIGHT Institute, Washington University School of Medicine, St. Louis, Missouri 63110, Howard Hughes Medical Institute, Chevy Chase, Maryland 20815
| | - Lynn S. White
- Department of Pathology and Immunology, Department of Cell Biology and Physiology, Molecular Imaging Center, Mallinckrodt Institute of Radiology, Department of Neurology, Neuromuscular Laboratory, Washington University Pain Center and Department of Anesthesiology, Department of Developmental Biology, Department of Internal Medicine, BRIGHT Institute, Washington University School of Medicine, St. Louis, Missouri 63110, Howard Hughes Medical Institute, Chevy Chase, Maryland 20815
| | - Katherine T. Lewandowski
- Department of Pathology and Immunology, Department of Cell Biology and Physiology, Molecular Imaging Center, Mallinckrodt Institute of Radiology, Department of Neurology, Neuromuscular Laboratory, Washington University Pain Center and Department of Anesthesiology, Department of Developmental Biology, Department of Internal Medicine, BRIGHT Institute, Washington University School of Medicine, St. Louis, Missouri 63110, Howard Hughes Medical Institute, Chevy Chase, Maryland 20815
| | - Julie L. Prior
- Department of Pathology and Immunology, Department of Cell Biology and Physiology, Molecular Imaging Center, Mallinckrodt Institute of Radiology, Department of Neurology, Neuromuscular Laboratory, Washington University Pain Center and Department of Anesthesiology, Department of Developmental Biology, Department of Internal Medicine, BRIGHT Institute, Washington University School of Medicine, St. Louis, Missouri 63110, Howard Hughes Medical Institute, Chevy Chase, Maryland 20815
| | - G. James Planer
- Department of Pathology and Immunology, Department of Cell Biology and Physiology, Molecular Imaging Center, Mallinckrodt Institute of Radiology, Department of Neurology, Neuromuscular Laboratory, Washington University Pain Center and Department of Anesthesiology, Department of Developmental Biology, Department of Internal Medicine, BRIGHT Institute, Washington University School of Medicine, St. Louis, Missouri 63110, Howard Hughes Medical Institute, Chevy Chase, Maryland 20815
| | - Robert W. Gereau
- Department of Pathology and Immunology, Department of Cell Biology and Physiology, Molecular Imaging Center, Mallinckrodt Institute of Radiology, Department of Neurology, Neuromuscular Laboratory, Washington University Pain Center and Department of Anesthesiology, Department of Developmental Biology, Department of Internal Medicine, BRIGHT Institute, Washington University School of Medicine, St. Louis, Missouri 63110, Howard Hughes Medical Institute, Chevy Chase, Maryland 20815
| | - David Piwnica-Worms
- Department of Pathology and Immunology, Department of Cell Biology and Physiology, Molecular Imaging Center, Mallinckrodt Institute of Radiology, Department of Neurology, Neuromuscular Laboratory, Washington University Pain Center and Department of Anesthesiology, Department of Developmental Biology, Department of Internal Medicine, BRIGHT Institute, Washington University School of Medicine, St. Louis, Missouri 63110, Howard Hughes Medical Institute, Chevy Chase, Maryland 20815
| | - Robert E. Schmidt
- Department of Pathology and Immunology, Department of Cell Biology and Physiology, Molecular Imaging Center, Mallinckrodt Institute of Radiology, Department of Neurology, Neuromuscular Laboratory, Washington University Pain Center and Department of Anesthesiology, Department of Developmental Biology, Department of Internal Medicine, BRIGHT Institute, Washington University School of Medicine, St. Louis, Missouri 63110, Howard Hughes Medical Institute, Chevy Chase, Maryland 20815
| | - Helen Piwnica-Worms
- Department of Pathology and Immunology, Department of Cell Biology and Physiology, Molecular Imaging Center, Mallinckrodt Institute of Radiology, Department of Neurology, Neuromuscular Laboratory, Washington University Pain Center and Department of Anesthesiology, Department of Developmental Biology, Department of Internal Medicine, BRIGHT Institute, Washington University School of Medicine, St. Louis, Missouri 63110, Howard Hughes Medical Institute, Chevy Chase, Maryland 20815
| |
Collapse
|
29
|
Mathiasen AB, Haack-Sørensen M, Kastrup J. Mesenchymal stromal cells for cardiovascular repair: current status and future challenges. Future Cardiol 2010; 5:605-17. [PMID: 19886787 DOI: 10.2217/fca.09.42] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Ischemic heart disease is the most common cause of death in most industrialized countries. Early treatment with stabilizing drugs and mechanical revascularization by percutaneous coronary intervention or coronary bypass surgery has reduced the mortality significantly. In spite of improved offers of treatments in patients with heart failure, the 1-year mortality is still approximately 20% after the diagnosis has been established. Treatment with stem cells with the potential to regenerate the damaged myocardium is a relatively new approach. Mesenchymal stromal cells are a promising source of stem cells for regenerative therapy. Clinical studies on stem cell therapy for cardiac regeneration have shown significant improvements in ventricular pump function, ventricular remodeling, myocardial perfusion, exercise potential and clinical symptoms compared with conventionally treated control groups. The results of most studies are promising, but there are still many unanswered questions. In this review, we explore present preclinical and clinical knowledge regarding the use of stem cells in cardiovascular regenerative medicine, with special focus on mesenchymal stromal cells. We take a closer look at sources of stem cells, delivery method and methods for tracking injected cells.
Collapse
Affiliation(s)
- Anders Bruun Mathiasen
- Cardiac Stem Cell laboratory & Cardiac Catheterization Laboratory 2014, The Heart Centre, Rigshospitalet, Copenhagen University Hospital & Faculty of Health Sciences, Blegdamsvej 9, DK-2100 Copenhagen, Denmark.
| | | | | |
Collapse
|
30
|
Li ZB, Chen X. MicroPET, MicroSPECT, and NIR fluorescence imaging of biomolecules in vivo. Methods Mol Biol 2009; 544:461-81. [PMID: 19488719 DOI: 10.1007/978-1-59745-483-4_31] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
Abstract
Molecular imaging is a newly merged multidisciplinary subject that requires contributions from biology, medical physics, and chemistry/radiochemistry. Integrin alpha(v)beta(3), a cell adhesion molecule, plays pivotal roles in regulating tumor angiogenesis and the growth of new blood vessels. In this chapter, we use the cell adhesion molecule integrin alpha(v)beta(3) as an example to demonstrate how one can synthesize appropriate arginine-glycine-aspartic acid (RGD) peptide-containing probes for visualizing and quantifying the receptor expression in vivo by means of microPET, microSPECT, and NIR fluorescence.
Collapse
Affiliation(s)
- Zi-Bo Li
- Department of Radiology, Stanford University School of Medicine, 94305-5484, Stanford, CA, USA
| | | |
Collapse
|
31
|
Guo H, Shenoy N, Gershman BM, Yang J, Sklar LA, Miao Y. Metastatic melanoma imaging with an (111)In-labeled lactam bridge-cyclized alpha-melanocyte-stimulating hormone peptide. Nucl Med Biol 2009; 36:267-76. [PMID: 19324272 DOI: 10.1016/j.nucmedbio.2009.01.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Revised: 01/02/2009] [Accepted: 01/06/2009] [Indexed: 10/21/2022]
Abstract
INTRODUCTION The purpose of this study was to examine whether a novel lactam bridge-cyclized (111)In-labeled 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid-Gly-Glu-c[Lys-Nle-Glu-His-d-Phe-Arg-Trp-Gly-Arg-Pro-Val-Asp] {DOTA-GlyGlu-CycMSH} could be an effective imaging probe for metastatic melanoma detection. METHODS (111)In-DOTA-GlyGlu-CycMSH was prepared and purified by reverse-phase high-performance liquid chromatography (RP-HPLC). The internalization and efflux of (111)In-DOTA-GlyGlu-CycMSH were examined in B16/F10 melanoma cells. The biodistribution of (111)In-DOTA-GlyGlu-CycMSH was determined in B16/F10 pulmonary metastatic melanoma-bearing and normal C57 mice. Pulmonary metastatic melanoma imaging was performed by small-animal single-photon emission computed tomography (SPECT)/CT (Nano-SPECT/CT) using (111)In-DOTA-GlyGlu-CycMSH as an imaging probe and compared with 2-[(18)F]fluoro-2-deoxy-d-glucose ([(18)F]FDG) positron emission tomography (PET) imaging. RESULTS (111)In-DOTA-GlyGlu-CycMSH was readily prepared with greater than 95% radiolabeling yield. (111)In-DOTA-GlyGlu-CycMSH displayed rapid internalization and extended efflux in B16/F10 cells. (111)In-DOTA-GlyGlu-CycMSH exhibited significantly (P<.05) higher uptakes (2.00+/-0.74%ID/g at 2 h post-injection and 1.83+/-0.12%ID/g at 4 h post-injection) in metastatic melanoma-bearing lung than that in normal lung (0.08+/-0.08%ID/g and 0.05+/-0.05%ID/g at 2 and 4 h post-injection, respectively). The activity accumulation in normal organs was low (<0.5%ID/g) except for the kidneys 2 and 4 h post-injection. B16/F10 pulmonary melanoma metastases were clearly visualized with (111)In-DOTA-GlyGlu-CycMSH 2 h post-injection rather than with [(18)F]FDG 1 h post-injection. CONCLUSIONS (111)In-DOTA-GlyGlu-CycMSH exhibited favorable metastatic melanoma-targeting and -imaging properties, highlighting its potential as an effective imaging probe for metastatic melanoma detection.
Collapse
Affiliation(s)
- Haixun Guo
- College of Pharmacy, University of New Mexico, Albuquerque, NM 87131, USA
| | | | | | | | | | | |
Collapse
|
32
|
Small animal imaging facility: new perspectives for the radiologist. Radiol Med 2008; 114:152-67. [PMID: 19082783 DOI: 10.1007/s11547-008-0352-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2008] [Accepted: 03/11/2008] [Indexed: 12/13/2022]
Abstract
In recent years, new technologies have become available for imaging small animals. The use of animal models in basic and preclinical sciences, for example, offers the possibility of testing diagnostic markers and drugs, which is becoming crucial in the success and timeliness of research and is allowing a more efficient approach in defining study objectives and providing many advantages for both clinical research and the pharmaceutical industry. The use of these instruments offers data that are more predictive of the distribution and efficacy of a compound. The mouse, in particular, has become a key animal model system for studying human disease. It offers the possibility of manipulating its genome and producing accurate models for many human disorders, thus resulting in significant progress in understanding pathologenic mechanisms. In neurobiology, the possibility of simulating neurodegenerative diseases has enabled the development and validation of new treatment strategies based on gene therapy or cell grafting. Noninvasive imaging in small living animal models has gained increasing importance in preclinical research, itself becoming an independent specialty. The aim of this article is to review the characteristics of these systems and illustrate their main applications.
Collapse
|
33
|
Phase I study of noninvasive imaging of adenovirus-mediated gene expression in the human prostate. Mol Ther 2008; 16:1761-9. [PMID: 18714306 DOI: 10.1038/mt.2008.172] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
To monitor noninvasively potentially therapeutic adenoviruses for cancer, we have developed a methodology based on the sodium iodide symporter (NIS). Men with clinically localized prostate cancer were administered an intraprostatic injection of a replication-competent adenovirus, Ad5-yCD/utTK(SR39)rep-hNIS, armed with two suicide genes and the NIS gene. NIS gene expression (GE) was imaged noninvasively by uptake of Na(99 m)TcO(4) in infected cells using single photon emission-computed tomography (SPECT). The investigational therapy was safe with 98% of the adverse events being grade 1 or 2. GE was detected in the prostate in seven of nine (78%) patients at 1 x 10(12) virus particles (vp) but not at 1 x 10(11) vp. Volume and total amount of GE was quantified by SPECT. Following injection of 1 x 10(12) vp in 1 cm(3), GE volume (GEV) increased to a mean of 6.6 cm(3), representing, on average, 18% of the total prostate volume. GEV and intensity peaked 1-2 days after the adenovirus injection and was detectable in the prostate up to 7 days. Whole-body imaging demonstrated intraprostatic gene expression, and there was no evidence of extraprostatic dissemination of the adenovirus by SPECT imaging. The results demonstrate that noninvasive imaging of adenovirus-mediated gene therapy in humans is feasible and safe.
Collapse
|
34
|
Nikiforidis GC, Sakellaropoulos GC, Kagadis GC. Molecular imaging and the unification of multilevel mechanisms and data in medical physics. Med Phys 2008; 35:3444-52. [DOI: 10.1118/1.2948321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
35
|
Walls ZF, Puttaraju M, Temple GF, Gambhir SS. A generalizable strategy for imaging pre-mRNA levels in living subjects using spliceosome-mediated RNA trans-splicing. J Nucl Med 2008; 49:1146-54. [PMID: 18552150 DOI: 10.2967/jnumed.107.047662] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED Molecular imaging of gene expression is currently hindered by the lack of a generalizable platform for probe design. For any gene of interest, a probe that targets protein levels must often be generated empirically. Targeting gene expression at the level of mRNA, however, would allow probes to be built on the basis of sequence information alone. Presented here is a class of generalizable probes that can image pre-mRNA in a sequence-specific manner, using signal amplification and a facile method of delivery. METHODS Pre-trans-splicing molecules (PTMs) were engineered to capitalize on the phenomenon of spliceosome-mediated RNA trans-splicing. Using a modular binding domain that confers specificity by base-pair complementarity to the target pre-mRNA, PTMs were designed to target a chimeric target mini gene and trans-splice the Renilla luciferase gene onto the end of the target. PTMs and target genes were transfected in cell culture and assessed by luciferase assay, reverse-transcriptase polymerase chain reaction, Western blot, and rapid analysis of 5' cDNA ends. PTMs and target genes were also assessed in vivo by hydrodynamic delivery in mice. RESULTS Efficiency and specificity of the trans-splicing reaction were found to vary depending on the binding domain length and structure. Specific trans-splicing was observed in living animals (P = 0.0862, Kruskal-Wallis test). CONCLUSION Described here is a model system used to demonstrate the feasibility of spliceosome-mediated RNA trans-splicing for imaging gene expression at the level of pre-mRNA using optical imaging techniques in living animals. The experiments reported here show proof of principle for a generalizable imaging probe against RNA that can amplify signal on detection and be delivered using existing gene delivery methodology.
Collapse
Affiliation(s)
- Zachary F Walls
- Department of Molecular and Medical Pharmacology, Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | | | | | | |
Collapse
|
36
|
Song Y, Kohlmeir EK, Meade TJ. Synthesis of multimeric MR contrast agents for cellular imaging. J Am Chem Soc 2008; 130:6662-3. [PMID: 18452288 DOI: 10.1021/ja0777990] [Citation(s) in RCA: 162] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We have prepared a series of molecular multimeric MR contrast agents for cell labeling that are easy to synthesize, relatively low molecular weight, and biocompatible. The relaxivities of the agents range from 17 to 85 mM(-1) s(-1). Cellular uptake is concentration dependent and viability is excellent. MR images of cell pellets reveal a marked increase in observed signal intensity.
Collapse
Affiliation(s)
- Ying Song
- Departments of Chemistry, Biochemistry and Molecular and Cell Biology, Neurobiology and Physiology, Radiology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA
| | | | | |
Collapse
|
37
|
Segura J, Fillat C, Andreu D, Llop J, Millan O, de la Torre BG, Nikolovski Z, Gomez V, Andreu N, Pinyot A, Castelo R, Gispert JD, Pascual JA. Monitoring gene therapy by external imaging of mRNA: pilot study on murine erythropoietin. Ther Drug Monit 2007; 29:612-8. [PMID: 17898652 DOI: 10.1097/ftd.0b013e31811f3af6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Gene therapy is anticipated as being an important medical development. Essential to its effectiveness is the appropriate activity (protein expression) in the expected target cells. A noninvasive diagnostic procedure of successful gene expression will be of paramount importance to validate its use or its misuse (eg, sports gene doping). Externally detectable labeled oligonucleotide hybridizing with the messenger RNA generated by the transferred gene has been proposed as a possibility to monitor successful gene therapy. The authors selected the erythropoietin gene (Epo) for a pilot study on erythropoietin protein expression in mouse muscle. Oligonucleotides of peptide nucleic acid (PNA) type capable of antisense binding to unique murine Epo-mRNA sequences were synthesized by solid phase methods, and elongated at the N-terminus with the HIV Tat (48-60) cell penetrating peptide. They were labeled with fluorescence and radioactive tags to verify penetration and longer half-life properties in Epo gene transfected C2C12 mouse muscle cells as compared with corresponding wild-type cells. Downregulation of newly expressed erythropoietin protein in such cells additionally confirmed the penetration and hybridizing properties of the selected labeled oligonucleotide. I-labeled Tat-PNAs were intravenously injected into mice that had previously received the Epo gene into the right tibialis muscle by DNA electrotransfer. Preferential accumulation of radioactivity in the transferred limb as compared with the contralateral limb was ascertained, especially for I-Tat-CTA CGT AGA CCA CT (labeled Tat-PNA 1). This study provides experimental data to support the potential use of external noninvasive image detection to monitor gene therapy. The extension of the approach to more sensitive methods for whole-body external detection such as positron emission tomography appears feasible.
Collapse
Affiliation(s)
- J Segura
- Institut Municipal d'Investigació Mèdica IMIM-Hospital del Mar, Barcelona, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Hoffman JM, Gambhir SS. Molecular imaging: the vision and opportunity for radiology in the future. Radiology 2007; 244:39-47. [PMID: 17507723 DOI: 10.1148/radiol.2441060773] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Molecular imaging is being hailed as the next great advance for imaging. This introductory article in the molecular imaging series to be published over the next several months in Radiology sets the stage for the subsequent set of articles by providing relevant definitions and background information and traces the evolution of molecular imaging to its current state of research and clinical practice. It discusses in detail the evolution of molecular imaging and the role that the National Cancer Institute and the National Institutes of Health have had in the funding and development of many of the important molecular imaging research programs that are in existence today. The article also provides basic information about the complex biology of the cell and details of the pathogenesis of cancer and how molecular imaging will be critical for earlier detection and management of cancer in the future. The article lays the foundation for the subsequent articles in the series and describes how and why molecular imaging will be critical and integral for clinical care of patients in the future. The introductory article also discusses the relevance of molecular imaging to clinical radiology practice and why it is critical for the practicing radiologist to understand these evolving techniques, as they will be the future of imaging.
Collapse
Affiliation(s)
- John M Hoffman
- Department of Radiology, University of Utah School of Medicine, 2000 Circle of Hope, Suite 2121, Salt Lake City, UT 84112-5550, USA.
| | | |
Collapse
|
39
|
Harpstrite SE, Prior J, Rath NP, Sharma V. Metalloprobes: synthesis, characterization, and potency of a novel gallium(III) complex in human epidermal carcinoma cells. J Inorg Biochem 2007; 101:1347-53. [PMID: 17617464 PMCID: PMC4349512 DOI: 10.1016/j.jinorgbio.2007.04.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2007] [Revised: 04/17/2007] [Accepted: 04/20/2007] [Indexed: 12/20/2022]
Abstract
Multidrug resistance (MDR) mediated by overexpression of the MDR1 gene product, P-glycoprotein (Pgp), represents one of the best characterized barriers to chemotherapeutic treatment in cancer and may be a pivotal factor in progression of Alzheimer's disease (AD). Thus, agents capable of probing Pgp-mediated transport could be beneficial in biomedical imaging. Herein, we synthesized and structurally characterized a gallium(III) complex (5) of the naphthol-Schiff base ligand. The crystal structure revealed octahedral geometry for the metallodrug. Cytotoxicity profiles of 5 were evaluated in KB-3-1 (Pgp-) and KB-8-5 (Pgp+) human epidermal carcinoma cell lines. Compared with an LC(50) (the half-maximal cytotoxic concentration) value of 1.93 microM in drug-sensitive (Pgp-) cells, the gallium(III) complex 5 demonstrated an LC(50) value>100 microM in drug-resistant (Pgp+) cells, thus indicating that 5 was recognized by the Pgp as its substrate, thereby extruded from the cells and sequestered away from their cytotoxic targets. Radiolabeled analogues of 5 could be beneficial in noninvasive imaging of Pgp-mediated transport in vivo.
Collapse
Affiliation(s)
- Scott E. Harpstrite
- Molecular Imaging Center, Mallinckrodt Institute of Radiology, Washington University Medical School, St. Louis, MO 63110
| | - Julie Prior
- Molecular Imaging Center, Mallinckrodt Institute of Radiology, Washington University Medical School, St. Louis, MO 63110
| | - Nigam P. Rath
- Department of Chemistry & Biochemistry, University of Missouri, St. Louis, MO 63121
| | - Vijay Sharma
- Molecular Imaging Center, Mallinckrodt Institute of Radiology, Washington University Medical School, St. Louis, MO 63110
- Correspondence: Vijay Sharma, Ph.D., Mallinckrodt Institute of Radiology, Washington University Medical School, Box 8225, 510 S. Kingshighway Blvd., St. Louis, MO 63110, Tele: 314-362-9358; Fax: 314-362-0152,
| |
Collapse
|
40
|
Sadaghiani AM, Verhelst SH, Bogyo M. Tagging and detection strategies for activity-based proteomics. Curr Opin Chem Biol 2006; 11:20-8. [PMID: 17174138 DOI: 10.1016/j.cbpa.2006.11.030] [Citation(s) in RCA: 183] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2006] [Accepted: 11/22/2006] [Indexed: 10/23/2022]
Abstract
The field of activity-based proteomics is a relatively new discipline that makes use of small molecules, termed activity-based probes (ABPs), to tag and monitor distinct sets of proteins within a complex proteome. These activity-dependant labels facilitate analysis of systems-wide changes at the level of enzyme activity rather than simple protein abundance. While the use of small molecule inhibitors to label enzyme targets is not a new concept, the past ten years have seen a rapid expansion in the diversity of probe families that have been developed. In addition to increasing the number and types of enzymes that can be targeted by this method, there has also been an increase in the number of methods used to visualize probes once they are bound to target enzymes. In particular, the use of small organic fluorophores has created a wealth of applications for ABPs that range from biochemical profiling of diverse proteomes to direct imaging of active enzymes in live cells and even whole animals. In addition, the advent of new bioorthogonal coupling chemistries now enables a diverse array of tags to be added after targets are labeled with an ABP. This strategy has opened the door to new in vivo applications for activity-based proteomic methods.
Collapse
Affiliation(s)
- Amir M Sadaghiani
- Department of Pathology, Stanford University, Stanford, CA 94305-5324, USA
| | | | | |
Collapse
|
41
|
Bhojani MS, Hamstra DA, Chang DC, Coppola JM, Khan AP, Reddy GR, Ross BD, Rehemtulla A. Imaging of Proteolytic Activity Using a Conditional Cell Surface Receptor. Mol Imaging 2006. [DOI: 10.2310/7290.2006.00014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
42
|
Lampidis TJ, Kurtoglu M, Maher JC, Liu H, Krishan A, Sheft V, Szymanski S, Fokt I, Rudnicki WR, Ginalski K, Lesyng B, Priebe W. Efficacy of 2-halogen substituted D-glucose analogs in blocking glycolysis and killing "hypoxic tumor cells". Cancer Chemother Pharmacol 2006; 58:725-34. [PMID: 16555088 DOI: 10.1007/s00280-006-0207-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2005] [Accepted: 02/01/2006] [Indexed: 11/25/2022]
Abstract
PURPOSE Since 2-deoxy-D-glucose (2-DG) is currently in phase I clinical trials to selectively target slow-growing hypoxic tumor cells, 2-halogenated D-glucose analogs were synthesized for improved activity. Given the fact that 2-DG competes with D-glucose for binding to hexokinase, in silico modeling of molecular interactions between hexokinase I and these new analogs was used to determine whether binding energies correlate with biological effects, i.e. inhibition of glycolysis and subsequent toxicity in hypoxic tumor cells. METHODS AND RESULTS Using a QSAR-like approach along with a flexible docking strategy, it was determined that the binding affinities of the analogs to hexokinase I decrease as a function of increasing halogen size as follows: 2-fluoro-2-deoxy-D-glucose (2-FG) > 2-chloro-2-deoxy-D-glucose (2-CG) > 2-bromo-2-deoxy-D-glucose (2-BG). Furthermore, D-glucose was found to have the highest affinity followed by 2-FG and 2-DG, respectively. Similarly, flow cytometry and trypan blue exclusion assays showed that the efficacy of the halogenated analogs in preferentially inhibiting growth and killing hypoxic vs. aerobic cells increases as a function of their relative binding affinities. These results correlate with the inhibition of glycolysis as measured by lactate inhibition, i.e. ID50 1 mM for 2-FG, 6 mM for 2-CG and > 6 mM for 2-BG. Moreover, 2-FG was found to be more potent than 2-DG for both glycolytic inhibition and cytotoxicity. CONCLUSIONS Overall, our in vitro results suggest that 2-FG is more potent than 2-DG in killing hypoxic tumor cells, and therefore may be more clinically effective when combined with standard chemotherapeutic protocols.
Collapse
Affiliation(s)
- Theodore J Lampidis
- School of Medicine and Sylvester Cancer Center, The University of Miami, Miami, FL, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Jekerle V, Klinkhammer W, Scollard DA, Breitbach K, Reilly RM, Piquette-Miller M, Wiese M. In vitro andin vivo evaluation of WK-X-34, a novel inhibitor of P-glycoprotein and BCRP, using radio imaging techniques. Int J Cancer 2006; 119:414-22. [PMID: 16646006 DOI: 10.1002/ijc.21827] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Overexpression of the multidrug resistance proteins P-glycoprotein (Pgp) and breast cancer resistance protein (BCRP) results in treatment failure of many malignancies including ovarian cancer. Dual inhibition of Pgp and BCRP may restore the sensitivity of resistant cells to anticancer drugs. We report the synthesis and characterization of a novel anthranilic-acid based Pgp and BCRP modulator, WK-X-34. In vitro inhibition of Pgp activity was evaluated using 99mTc-Sestamibi and daunorubicin accumulation in Pgp overexpressing human ovarian cancer cells (A2780/Adr) and its sensitive counterpart (A2780/wt). Interaction with BCRP was examined with a mitoxantrone-efflux assay in BCRP-overexpressing MCF7/mx cells, with flow cytometry. Interactions with the multidrug resistance associated proteins (MRP) were evaluated in transfected MRP1, MRP2 and MRP3 cell lines, using a 5-CFDA efflux assay. In vivo 99mTc-Sestamibi imaging of human ovarian cancer xenografts was used to evaluate the in vivo efficacy of WK-X-34 in mice. Daunorubicin accumulation in A2780/Adr cells was inhibited by WK-X-34 at nanomolar concentrations (IC50: 82.1 +/- 6 nM). WK-X-34 inhibited mitoxantrone accumulation in BCRP-overexpressing cells at micromolar concentrations (IC50 = 26.5 +/- 4.6 microM), whereas WK-X-34 did not significantly alter 5-CFDA accumulation in MRP transfected cells. In vivo, uptake of 99mTc-Sestamibi was significantly increased in A2780/Adr xenograft tumors, brain and intestine (AUCs(0-4h) 136%, 147% and 138%; p < 0.05) in mice dosed with WK-X-34 (20 mg/kg i.p.). WK-X-34 selectively modulates Pgp and BCRP in vitro and in vivo in multidrug resistant ovarian cancer cells, and thus may have potential utility in the treatment of multidrug resistant tumors.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/antagonists & inhibitors
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- ATP Binding Cassette Transporter, Subfamily G, Member 2
- ATP-Binding Cassette Transporters/antagonists & inhibitors
- ATP-Binding Cassette Transporters/metabolism
- Antineoplastic Agents/administration & dosage
- Antineoplastic Agents/metabolism
- Antineoplastic Agents/pharmacology
- Area Under Curve
- Benzamides/administration & dosage
- Benzamides/pharmacology
- Cell Line, Tumor
- Daunorubicin/metabolism
- Drug Resistance, Multiple
- Drug Resistance, Neoplasm
- Female
- Flow Cytometry
- Fluorescence
- Gene Expression Regulation, Neoplastic
- Humans
- Mitoxantrone/metabolism
- Multidrug Resistance-Associated Proteins/drug effects
- Multidrug Resistance-Associated Proteins/metabolism
- Neoplasm Proteins/antagonists & inhibitors
- Neoplasm Proteins/metabolism
- Ovarian Neoplasms/drug therapy
- Ovarian Neoplasms/metabolism
- Radiopharmaceuticals
- Technetium Tc 99m Sestamibi
- Time Factors
- Tissue Distribution
- Transplantation, Heterologous
- Up-Regulation
Collapse
|
44
|
Gheysens O, Gambhir SS. Studying molecular and cellular processes in the intact organism. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 2005; 62:117-50. [PMID: 16329256 DOI: 10.1007/3-7643-7426-8_4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Olivier Gheysens
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University, 318 Campus Dr., Clark Center, E-150, Stanford, CA 94305, USA
| | | |
Collapse
|
45
|
Cai W, Sam Gambhir S, Chen X. Multimodality tumor imaging targeting integrin αvβ3. Biotechniques 2005; 39:S14-25. [DOI: 10.2144/000112091] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The cell adhesion molecule integrin αvβ3 is an important player in the process of tumor angiogenesis and metastasis. Antibodies, peptides, peptidomimetics, and small molecule antagonists against integrin αvβ3 have been shown to induce endothelial apoptosis, to inhibit tumor angiogenesis, and to increase endothelial permeability. The ability to quantitatively image integrin αvβ3 expression in vivo in a noninvasive manner may shed new light into the mechanism of angiogenesis and antiangiogenic treatment efficacy based on integrin antagonism. Tumor integrin expression imaging will also aid in lesion detection, patient stratification, new anti-integrin drug development/validation, as well as treatment monitoring and optimization. This review summarizes the recent advances in multimodality imaging of tumor integrin αvβ3 expression using magnetic resonance imaging (MRI), ultrasound, near-infrared (NIR) fluorescence, single photon emission computed tomography (SPECT), and positron emission tomography (PET).
Collapse
Affiliation(s)
- Weibo Cai
- Stanford University School of Medicine, Stanford, CA, USA
| | | | - Xiaoyuan Chen
- Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
46
|
Choi SR, Zhuang ZP, Chacko AM, Acton PD, Tjuvajev-Gelovani J, Doubrovin M, Chu DCK, Kung HF. SPECT imaging of herpes simplex virus type1 thymidine kinase gene expression by [(123)I]FIAU(1). Acad Radiol 2005; 12:798-805. [PMID: 16039533 DOI: 10.1016/j.acra.2005.04.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2005] [Revised: 04/07/2005] [Accepted: 04/08/2005] [Indexed: 11/22/2022]
Abstract
RATIONALE AND OBJECTIVES Introduction of suicide genes, such as herpes simplex virus type1 thymidine kinase (HSV1-tk), in tumor cells has provided a useful method for tumor gene therapy. Several L-nucleosides, such as Lamivudine (3TC) and Clevudine (L-FMAU), have been successfully tested as high-potency antiviral agents. To investigate the potential differences between D- and L-isomers of nucleosides, [(125/123)I]-2'-fluoro-2'-deoxy-1beta-D/L-arabino-furanosy-5-iodo-uracil (D/L-FIAU) have been synthesized and evaluated as potential SPECT agents for imaging HSV1-tk gene expression. MATERIALS AND METHODS [(125/123)I]D- and L-FIAU were prepared by iododestannylation of the respective tin precursors with (125/123)I-sodium iodide. In vitro cell uptake studies were performed by incubation of [(125)I]D- and L-FIAU in RG2 cells expressing HSV1-tk (RG2TK+). In vivo studies including biodistribution and SPECT were performed in RG2TK+ and RG2TK- tumor-bearing nude mice using [(123)I]D- and L-FIAU. RESULTS Cell uptake and biodistribution studies indicated that [(125/123)I]L-FIAU did not show any high accumulation (sensitivity) or uptake ratios (selectivity) in HSV1-TK-positive (RG2TK+) tumors as compared to control tumors. In contrast, [(125/123)I]D-FIAU displayed both sensitivity and selectivity to RG2TK+ tumors. The selective in vivo accumulation of [(123)I]D-FIAU increased with time and the tumor uptake ratios (RG2TK+/RG2TK-) for 2, 4, and 24 hours averaged 6.2, 22.7, and 58.8, respectively. High-resolution SPECT of four nude tumor-bearing mice demonstrated a very high uptake of [(123)I]D-FIAU in the RG2TK+ tumor, while no significant tracer accumulation was observed in the RG2TK- tumor and other organs. CONCLUSION The data suggest that only the D-isomer of [(123)I]FIAU is useful for imaging HSV1-tk gene expression in mice by high-resolution SPECT imaging.
Collapse
Affiliation(s)
- Seok Rye Choi
- Department of Radiology, University of Pennsylvania, 3700 Market Street, Room 305, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Cassidy PJ, Radda GK. Molecular imaging perspectives. J R Soc Interface 2005; 2:133-44. [PMID: 16849174 PMCID: PMC1629073 DOI: 10.1098/rsif.2005.0040] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2005] [Accepted: 03/21/2005] [Indexed: 12/29/2022] Open
Abstract
Molecular imaging is an emerging technology at the life science/physical science interface which is set to revolutionize our understanding and treatment of disease. The tools of molecular imaging are the imaging modalities and their corresponding contrast agents. These facilitate interaction with a biological target at a molecular level in a number of ways. The diverse nature of molecular imaging requires knowledge from both the life and physical sciences for its successful development and implementation. The aim of this review is to introduce the subject of molecular imaging from both life science and physical science perspectives. However, we will restrict our coverage to the prominent in vivo molecular imaging modalities of magnetic resonance imaging, optical imaging and nuclear imaging. The physical basis of these imaging modalities, the use of contrast agents and the imaging parameters of sensitivity, temporal resolution and spatial resolution are described. Then, the specificity of contrast agents for targeting and sensing molecular events, and some applications of molecular imaging in biology and medicine are given. Finally, the diverse nature of molecular imaging and its reliance on interdisciplinary collaboration is discussed.
Collapse
Affiliation(s)
- Paul J Cassidy
- Oxford Cardiac Metabolism Research Group, University Laboratory of Physiology, University of Oxford, Parks Road, Oxford OX1 3PT, UK.
| | | |
Collapse
|
48
|
Ruijter JM, Soufan AT, Hagoort J, Moorman AFM. Molecular imaging of the embryonic heart: Fables and facts on 3D imaging of gene expression patterns. ACTA ACUST UNITED AC 2005; 72:224-40. [PMID: 15495186 DOI: 10.1002/bdrc.20018] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Molecular imaging, which is the three-dimensional (3D) visualization of gene expression patterns, is indispensable for the study of the function of genes in cardiac development. The instrumentation, as well as the development of specific contrast agents for molecular imaging, has shown spectacular advances in the last decade. In this review, the spatial resolutions, contrast agents, and applications of these imaging methods in the field of cardiac embryology are discussed. Apart from 3D reconstructions from histological sections, not many of these methods have been applied in embryological research. This review shows that, for most methods, neither the spatial resolutions nor the specificity and applicability of the contrast agents are adequate for the reliable imaging of specific gene expression at the microscopic resolution required for embryological studies of small organs like the developing heart. Although a 3D reconstruction from sections will always suffer from imperfections, the resulting reconstructions meet the aim of most biological studies, especially since the original microscopic images are linked. With respect to imaging of gene expression, only histological sections and laser scanning microscopy provide the required resolution and specificity at the tissue and cellular level. Episcopic fluorescence image capturing and optical projection tomography are being used for microscopic phenotyping and lineage analysis, and both show potential for detailed molecular imaging. Other methods can be used very efficiently in rapid evaluation of biological experiments and high-throughput screens of large-scale gene expression profiling efforts when high spatial resolution is not required.
Collapse
Affiliation(s)
- Jan M Ruijter
- Department of Anatomy and Embryology, Experimental and Molecular Cardiology Group, Academic Medical Center, Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
49
|
Ray S, Paulmurugan R, Hildebrandt I, Iyer M, Wu L, Carey M, Gambhir SS. Novel bidirectional vector strategy for amplification of therapeutic and reporter gene expression. Hum Gene Ther 2005; 15:681-90. [PMID: 15242528 PMCID: PMC4153396 DOI: 10.1089/1043034041361271] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Molecular imaging methods have previously been employed to image tissue-specific reporter gene expression by a two-step transcriptional amplification (TSTA) strategy. We have now developed a new bidirectional vector system, based on the TSTA strategy, that can simultaneously amplify expression for both a target gene and a reporter gene, using a relatively weak promoter. We used the synthetic Renilla luciferase (hrl) and firefly luciferase (fl) reporter genes to validate the system in cell cultures and in living mice. When mammalian cells were transiently cotransfected with the GAL4-responsive bidirectional reporter vector and various doses of the activator plasmid encoding the GAL4-VP16 fusion protein, pSV40-GAL4-VP16, a high correlation (r(2) = 0.95) was observed between the expression levels of both reporter genes. Good correlations (r(2) = 0.82 and 0.66, respectively) were also observed in vivo when the transiently transfected cells were implanted subcutaneously in mice or when the two plasmids were delivered by hydrodynamic injection and imaged. This work establishes a novel bidirectional vector approach utilizing the TSTA strategy for both target and reporter gene amplification. This validated approach should prove useful for the development of novel gene therapy vectors, as well as for transgenic models, allowing noninvasive imaging for indirect monitoring and amplification of target gene expression.
Collapse
Affiliation(s)
- Sunetra Ray
- Crump Institute for Molecular Imaging, and Department of Molecular and Medical Pharmacology, UCLA School of Medicine, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Gross S, Piwnica-Worms D. Monitoring proteasome activity in cellulo and in living animals by bioluminescent imaging: technical considerations for design and use of genetically encoded reporters. Methods Enzymol 2005; 399:512-30. [PMID: 16338379 DOI: 10.1016/s0076-6879(05)99035-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The ubiquitin-proteasome pathway is the central mediator of regulated proteolysis, instrumental for switching on and off a variety of signaling cascades. Deregulation of proteasomal activity or improper substrate recognition and processing by the ubiquitin-proteasome machinery may lead to cancer, stroke, chronic inflammation, and neurodegenerative diseases. Quantifying total and substrate-specific proteasome activity in intact cells and living animals would enable analysis in vivo of proteasomal regulation and facilitate the screening and validation of potential modulators of the proteasome or its substrates. We discuss examples of tetra-ubiquitin or IkappaBalpha fused to firefly luciferase as genetically encoded reporters for monitoring total and IkappaBalpha-specific proteasomal activity by bioluminescence imaging. Such technology enables repetitive, temporally resolved, and regionally targeted assessment of proteasomal activity in vivo.
Collapse
Affiliation(s)
- Shimon Gross
- Molecular Imaging Center, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | | |
Collapse
|