1
|
Meissner F, Galbas MC, Szvetics S, von Zur Mühlen C, Heidt T, Maier A, Bock M, Czerny M, Bothe W, Reiss S. Cardioaortic dimensions in German landrace pigs derived from cardiac magnetic resonance imaging. Sci Rep 2024; 14:1869. [PMID: 38253776 PMCID: PMC10803781 DOI: 10.1038/s41598-024-52376-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/17/2024] [Indexed: 01/24/2024] Open
Abstract
Pigs are frequently applied as animal models in cardiovascular research due to their anatomical and physiological similarity to humans. For study planning and refinement, precise knowledge of the cardioaortic dimensions is essential. In a retrospective single-center study, the cardioaortic dimensions and left ventricular function of German Landrace pigs were assessed using cardiac MRI. All parameters were compared between male and female pigs and analyzed for correlation with body weight. In total, 15 pigs were included (7 male and 8 female, weight 60.9 ± 7.0 kg). The left ventricle revealed an end-diastolic diameter of 50.5 ± 4.4 mm and an ejection fraction of 51.2 ± 9.8%. The diameters of the ascending and descending aorta were 21.3 ± 2.3 and 16.2 ± 1.4 mm, respectively. There were no significant differences between male and female pigs, except that males had a smaller end-diastolic left ventricular volume (p = 0.041). A moderate correlation was found between body weight and the aortic annulus diameter (R = 0.57, p = 0.027). In conclusion, cardiac MRI allows precise quantification of porcine cardioaortic dimensions. For medical device testing, size differences between pigs and humans should be considered.
Collapse
Affiliation(s)
- Florian Meissner
- Department of Cardiovascular Surgery, University Heart Center Freiburg - Bad Krozingen, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106, Freiburg, Germany.
| | - Michelle Costa Galbas
- Department of Cardiovascular Surgery, University Heart Center Freiburg - Bad Krozingen, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106, Freiburg, Germany
| | - Sophie Szvetics
- Department of Cardiovascular Surgery, University Heart Center Freiburg - Bad Krozingen, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106, Freiburg, Germany
| | - Constantin von Zur Mühlen
- Department of Cardiology and Angiology, University Heart Center Freiburg - Bad Krozingen, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106, Freiburg, Germany
| | - Timo Heidt
- Department of Cardiology and Angiology, University Heart Center Freiburg - Bad Krozingen, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106, Freiburg, Germany
| | - Alexander Maier
- Department of Cardiology and Angiology, University Heart Center Freiburg - Bad Krozingen, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106, Freiburg, Germany
| | - Michael Bock
- Department of Diagnostic and Interventional Radiology, Medical Physics, Faculty of Medicine, University of Freiburg, Killianstrasse 5a, 79106, Freiburg, Germany
| | - Martin Czerny
- Department of Cardiovascular Surgery, University Heart Center Freiburg - Bad Krozingen, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106, Freiburg, Germany
| | - Wolfgang Bothe
- Department of Cardiovascular Surgery, University Heart Center Freiburg - Bad Krozingen, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106, Freiburg, Germany
| | - Simon Reiss
- Department of Diagnostic and Interventional Radiology, Medical Physics, Faculty of Medicine, University of Freiburg, Killianstrasse 5a, 79106, Freiburg, Germany
| |
Collapse
|
2
|
Özen AC, Russe MF, Lottner T, Reiss S, Littin S, Zaitsev M, Bock M. RF-induced heating of interventional devices at 23.66 MHz. MAGMA (NEW YORK, N.Y.) 2023:10.1007/s10334-023-01099-7. [PMID: 37195365 PMCID: PMC10386938 DOI: 10.1007/s10334-023-01099-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/29/2023] [Accepted: 05/04/2023] [Indexed: 05/18/2023]
Abstract
OBJECTIVE Low-field MRI systems are expected to cause less RF heating in conventional interventional devices due to lower Larmor frequency. We systematically evaluate RF-induced heating of commonly used intravascular devices at the Larmor frequency of a 0.55 T system (23.66 MHz) with a focus on the effect of patient size, target organ, and device position on maximum temperature rise. MATERIALS AND METHODS To assess RF-induced heating, high-resolution measurements of the electric field, temperature, and transfer function were combined. Realistic device trajectories were derived from vascular models to evaluate the variation of the temperature increase as a function of the device trajectory. At a low-field RF test bench, the effects of patient size and positioning, target organ (liver and heart) and body coil type were measured for six commonly used interventional devices (two guidewires, two catheters, an applicator and a biopsy needle). RESULTS Electric field mapping shows that the hotspots are not necessarily localized at the device tip. Of all procedures, the liver catheterizations showed the lowest heating, and a modification of the transmit body coil could further reduce the temperature increase. For common commercial needles no significant heating was measured at the needle tip. Comparable local SAR values were found in the temperature measurements and the TF-based calculations. CONCLUSION At low fields, interventions with shorter insertion lengths such as hepatic catheterizations result in less RF-induced heating than coronary interventions. The maximum temperature increase depends on body coil design.
Collapse
Affiliation(s)
- Ali Caglar Özen
- Division of Medical Physics, Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Maximilian Frederik Russe
- Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Thomas Lottner
- Division of Medical Physics, Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Simon Reiss
- Division of Medical Physics, Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sebastian Littin
- Division of Medical Physics, Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Maxim Zaitsev
- Division of Medical Physics, Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Michael Bock
- Division of Medical Physics, Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
3
|
Najafi G, Kreiser K, Abdelaziz MEMK, Hamady MS. Current State of Robotics in Interventional Radiology. Cardiovasc Intervent Radiol 2023; 46:549-561. [PMID: 37002481 PMCID: PMC10156773 DOI: 10.1007/s00270-023-03421-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 03/11/2023] [Indexed: 05/04/2023]
Abstract
As a relatively new specialty with a minimally invasive nature, the field of interventional radiology is rapidly growing. Although the application of robotic systems in this field shows great promise, such as with increased precision, accuracy, and safety, as well as reduced radiation dose and potential for teleoperated procedures, the progression of these technologies has been slow. This is partly due to the complex equipment with complicated setup procedures, the disruption to theatre flow, the high costs, as well as some device limitations, such as lack of haptic feedback. To further assess these robotic technologies, more evidence of their performance and cost-effectiveness is needed before their widespread adoption within the field. In this review, we summarise the current progress of robotic systems that have been investigated for use in vascular and non-vascular interventions.
Collapse
Affiliation(s)
- Ghazal Najafi
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK.
| | - Kornelia Kreiser
- Department of Neuroradiology, Rehabilitations - und Universitätskliniken Ulm, 89081, Ulm, Germany
| | - Mohamed E M K Abdelaziz
- The Hamlyn Centre, Imperial College London, London, SW7 2AZ, UK
- Department of Electrical and Electronic Engineering, Faculty of Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Mohamad S Hamady
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK
- The Hamlyn Centre, Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|
4
|
Tiryaki ME, Elmacıoğlu YG, Sitti M. Magnetic guidewire steering at ultrahigh magnetic fields. SCIENCE ADVANCES 2023; 9:eadg6438. [PMID: 37126547 PMCID: PMC10132757 DOI: 10.1126/sciadv.adg6438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
With remote magnetic steering capabilities, magnetically actuated guidewires have proven their potential in minimally invasive medical procedures. Existing magnetic steering strategies, however, have been limited to low magnetic fields, which prevents the integration into medical systems operating at ultrahigh fields (UHF), such as magnetic resonance imaging (MRI) scanners. Here, we present magnetic guidewire design and steering strategies by elucidating the magnetic actuation principles of permanent magnets at UHF. By modeling the uniaxial magnetization behavior of permanent magnets, we outline the magnetic torque and force and demonstrate unique magnetic actuation opportunities at UHF, such as in situ remagnetization. Last, we illustrate the proposed steering principles using a magnetic guidewire composed of neodymium magnets and a fiber optic rod in a 7-Tesla preclinical MRI scanner. The developed UHF magnetic actuation framework would enable next-generation magnetic robots to operate inside MRI scanners.
Collapse
Affiliation(s)
- Mehmet Efe Tiryaki
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
- Institute for Biomedical Engineering ETH, Zurich, 8092 Zurich, Switzerland
| | - Yiğit Günsür Elmacıoğlu
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
| | - Metin Sitti
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
- Institute for Biomedical Engineering ETH, Zurich, 8092 Zurich, Switzerland
- School of Medicine and College of Engineering, Koç University, 34450 Istanbul, Turkey
| |
Collapse
|
5
|
Reiss S, Wäscher K, Caglar Özen A, Lottner T, Timo Heidt, von Zur Mühlen C, Bock M. Quantifying myocardial perfusion during MR-guided interventions without exogenous contrast agents: intra-arterial spin labeling. Z Med Phys 2023:S0939-3889(23)00002-8. [PMID: 36717310 DOI: 10.1016/j.zemedi.2023.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/05/2023] [Accepted: 01/05/2023] [Indexed: 01/30/2023]
Abstract
PURPOSE To test intra-arterial spin labeling (iASL) using active guiding catheters for myocardial perfusion measurements during magnetic resonance (MR)-guided interventions in a pig study. METHODS In this work, a single-loop radiofrequency (RF) coil at the tip of a 6F active coronary catheter was used as a transmit coil for local spin labeling. The transmit magnetic RF field (B1) of the coil and the labeling efficiency were determined, and iASL was tested in two pigs after the catheter was engaged in the aortic root, the ostium of the left coronary artery (LCA) under MR-guidance. The iASL effect was assessed by the signal difference between spin-labeling On and control (spin-labeling OFF) images, and in a cross-correlation between ON/Off states of spin-labeling a binary labeling paradigm. In addition, quantitative myocardial perfusion was calculated from the iASL experiments. RESULTS The maximum B1 in the vicinity of the catheter coil was 2.1 µT. A strong local labeling effect with a labeling efficiency of 0.45 was achieved with iASL both in vitro and in vivo. In both pigs, the proximal myocardial segments supplied by the LCA showed significant labelling effect up to distances of 60 mm from the aortic root with a relative signal difference of (3.14 ± 2.89)% in the first and (3.50 ± 1.25)% in the second animal. The mean correlation coefficients were R = 0.63 ± 0.22 and 0.42 ± 0.16, respectively. The corresponding computed myocardial perfusion values in this region of the myocardium were similar to those obtained with contrast perfusion methods ((1.2 ± 1.1) mL/min/g and (0.8 ± 0.6) mL/min/g). CONCLUSION The proposed iASL method demonstrates the feasibility of selective myocardial perfusion measurements during MR-guided coronary interventions, which with further technical improvements may provide an alternative to exogenous contrast-based perfusion. Due to the invasive nature of the iASL method, it can potentially be used in concert with MRI-guided coronary angioplasty.
Collapse
Affiliation(s)
- Simon Reiss
- Department of Diagnostic and Interventional Radiology, Medical Physics, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Kevin Wäscher
- Department of Diagnostic and Interventional Radiology, Medical Physics, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ali Caglar Özen
- Department of Diagnostic and Interventional Radiology, Medical Physics, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Thomas Lottner
- Department of Diagnostic and Interventional Radiology, Medical Physics, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Timo Heidt
- Department of Cardiology and Angiology I, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Constantin von Zur Mühlen
- Department of Cardiology and Angiology I, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Michael Bock
- Department of Diagnostic and Interventional Radiology, Medical Physics, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
6
|
Gruionu LG, Udriștoiu AL, Iacob AV, Constantinescu C, Stan R, Gruionu G. Feasibility of a lung airway navigation system using fiber-Bragg shape sensing and artificial intelligence for early diagnosis of lung cancer. PLoS One 2022; 17:e0277938. [PMID: 36476838 PMCID: PMC9728835 DOI: 10.1371/journal.pone.0277938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 11/07/2022] [Indexed: 12/12/2022] Open
Abstract
Currently early diagnosis of malignant lesions at the periphery of lung parenchyma requires guidance of the biopsy needle catheter from the bronchoscope into the smaller peripheral airways via harmful X-ray radiation. Previously, we developed an image-guided system, iMTECH which uses electromagnetic tracking and although it increases the precision of biopsy collection and minimizes the use of harmful X-ray radiation during the interventional procedures, it only traces the tip of the biopsy catheter leaving the remaining catheter untraceable in real time and therefore increasing image registration error. To address this issue, we developed a shape sensing guidance system containing a fiber-Bragg grating (FBG) catheter and an artificial intelligence (AI) software, AIrShape to track and guide the entire biopsy instrument inside the lung airways, without radiation or electromagnetic navigation. We used a FBG fiber with one central and three peripheral cores positioned at 120° from each other, an array of 25 draw tower gratings with 1cm/3nm spacing, 2 mm grating length, Ormocer-T coating, and a total outer diameter of 0.2 mm. The FBG fiber was placed in the working channel of a custom made three-lumen catheter with a tip bending mechanism (FBG catheter). The AIrShape software determines the position of the FBG catheter by superimposing its position to the lung airway center lines using an AI algorithm. The feasibility of the FBG system was tested in an anatomically accurate lung airway model and validated visually and with the iMTECH platform. The results prove a viable shape-sensing hardware and software navigation solution for flexible medical instruments to reach the peripheral airways. During future studies, the feasibility of FBG catheter will be tested in pre-clinical animal models.
Collapse
Affiliation(s)
| | | | | | - Cătălin Constantinescu
- Faculty of Automation, Computers and Electronics, University of Craiova, Craiova, Romania
| | - Răzvan Stan
- Faculty of Mechanics, University of Craiova, Craiova, Romania
| | - Gabriel Gruionu
- Faculty of Mechanics, University of Craiova, Craiova, Romania
- Division of Cardiology, Department of Medicine, Krannert Cardiovascular Research Center, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- * E-mail: (GG); (LGG)
| |
Collapse
|
7
|
Nijsink H, Overduin CG, Willems LH, Warlé MC, Fütterer JJ. Current State of MRI-Guided Endovascular Arterial Interventions: A Systematic Review of Preclinical and Clinical Studies. J Magn Reson Imaging 2022; 56:1322-1342. [PMID: 35420239 PMCID: PMC9790618 DOI: 10.1002/jmri.28205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/04/2022] [Accepted: 04/04/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND MRI guidance of arterial endovascular interventions could be beneficial as it does not require radiation exposure, allows intrinsic blood-tissue contrast, and enables three-dimensional and functional imaging, however, clinical applications are still limited. PURPOSE To review the current state of MRI-guided arterial endovascular interventions and to identify the most commonly reported challenges. STUDY TYPE Systematic review. POPULATION Pubmed, Embase, Web of Science, and The Cochrane Library were systematically searched to find relevant articles. The search strategy combined synonyms for vascular pathology, endovascular therapy, and real-time MRI guidance. FIELD STRENGTH/SEQUENCE No field strength or sequence restrictions were applied. ASSESSMENT Two reviewers independently identified and reviewed the original articles and extracted relevant data. STATISTICAL TESTS Results of the included original articles are reported. RESULTS A total of 24,809 studies were identified for screening. Eighty-eight studies were assessed for eligibility, after which data were extracted from 43 articles (6 phantom, 33 animal, and 4 human studies). Reported technical success rates for animal and human studies ranged between 42% to 100%, and the average complication rate was 5.8% (animal studies) and 8.8% (human studies). Main identified challenges were related to spatial and temporal resolution as well as safety, design, and scarcity of current MRI-compatible endovascular devices. DATA CONCLUSION MRI guidance of endovascular arterial interventions seems feasible, however, included articles included mostly small single-center case series. Several hurdles remain to be overcome before larger trials can be undertaken. Main areas of research should focus on adequate imaging protocols with integrated tracking of dedicated endovascular devices.
Collapse
Affiliation(s)
- Han Nijsink
- Department of Medical ImagingRadboudumcNijmegenNetherlands
| | | | | | | | | |
Collapse
|
8
|
Kilbride BF, Narsinh KH, Jordan CD, Mueller K, Moore T, Martin AJ, Wilson MW, Hetts SW. MRI-guided endovascular intervention: current methods and future potential. Expert Rev Med Devices 2022; 19:763-778. [PMID: 36373162 PMCID: PMC9869980 DOI: 10.1080/17434440.2022.2141110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 10/25/2022] [Indexed: 11/16/2022]
Abstract
INTRODUCTION Image-guided endovascular interventions, performed using the insertion and navigation of catheters through the vasculature, have been increasing in number over the years, as minimally invasive procedures continue to replace invasive surgical procedures. Such endovascular interventions are almost exclusively performed under x-ray fluoroscopy, which has the best spatial and temporal resolution of all clinical imaging modalities. Magnetic resonance imaging (MRI) offers unique advantages and could be an attractive alternative to conventional x-ray guidance, but also brings with it distinctive challenges. AREAS COVERED In this review, the benefits and limitations of MRI-guided endovascular interventions are addressed, systems and devices for guiding such interventions are summarized, and clinical applications are discussed. EXPERT OPINION MRI-guided endovascular interventions are still relatively new to the interventional radiology field, since significant technical hurdles remain to justify significant costs and demonstrate safety, design, and robustness. Clinical applications of MRI-guided interventions are promising but their full potential may not be realized until proper tools designed to function in the MRI environment are available. Translational research and further preclinical studies are needed before MRI-guided interventions will be practical in a clinical interventional setting.
Collapse
Affiliation(s)
- Bridget F. Kilbride
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Kazim H. Narsinh
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | | | | | - Teri Moore
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Alastair J. Martin
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Mark W. Wilson
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Steven W. Hetts
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
9
|
Kundrat D, Dagnino G, Kwok TMY, Abdelaziz MEMK, Chi W, Nguyen A, Riga C, Yang GZ. An MR-Safe Endovascular Robotic Platform: Design, Control, and Ex-Vivo Evaluation. IEEE Trans Biomed Eng 2021; 68:3110-3121. [PMID: 33705306 DOI: 10.1109/tbme.2021.3065146] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Cardiovascular diseases are the most common cause of global death. Endovascular interventions, in combination with advanced imaging technologies, are promising approaches for minimally invasive diagnosis and therapy. More recently, teleoperated robotic platforms target improved manipulation accuracy, stabilisation of instruments in the vasculature, and reduction of patient recovery times. However, benefits of recent platforms are undermined by a lack of haptics and residual patient exposure to ionising radiation. The purpose of this research was to design, implement, and evaluate a novel endovascular robotic platform, which accommodates emerging non-ionising magnetic resonance imaging (MRI). METHODS We proposed a pneumatically actuated MR-safe teleoperation platform to manipulate endovascular instrumentation remotely and to provide operators with haptic feedback for endovascular tasks. The platform task performance was evaluated in an ex vivo cannulation study with clinical experts ( N = 7) under fluoroscopic guidance and haptic assistance on abdominal and thoracic phantoms. RESULTS The study demonstrated that the robotic dexterity involving pneumatic actuation concepts enabled successful remote cannulation of different vascular anatomies with success rates of 90%-100%. Compared to manual cannulation, slightly lower interaction forces between instrumentation and phantoms were measured for specific tasks. The maximum robotic interaction forces did not exceed 3N. CONCLUSION This research demonstrates a promising versatile robotic technology for remote manipulation of endovascular instrumentation in MR environments. SIGNIFICANCE The results pave the way for clinical translation with device deployment to endovascular interventions using non-ionising real-time 3D MR guidance.
Collapse
|
10
|
Fabrication of Fe 3O 4@PVA microspheres by one-step electrospray for magnetic resonance imaging during transcatheter arterial embolization. Acta Biomater 2021; 131:532-543. [PMID: 34245893 DOI: 10.1016/j.actbio.2021.07.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 06/25/2021] [Accepted: 07/02/2021] [Indexed: 02/08/2023]
Abstract
Magnetic resonance imaging (MRI) has attracted increasing attention as a feasible alternative or adjunctive imaging modality for X-ray digital subtraction angiography because of the high tissue resolution and non-ionization radiation. In this study, a one-step electrospray method was developed to fabricate PVA microspheres encapsulated with in situ synthesized Fe3O4 nanoparticles. Fe3O4@PVA microspheres were mono-dispersed black spheres with a wide range of sizes (262-958 µm). The in situ-synthesized Fe3O4 nanoparticles were used as the contrast agent of MRI and the cross-linkers of PVA matrixes for the embolization purpose. In vivo evaluation of renal arteries of normal rabbits showed that Fe3O4@PVA microspheres had good embolic effect and enhanced capability of MRI. In vitro and in vivo biosafety assessment confirmed that Fe3O4@PVA microspheres had favorable biocompatibility. The DOX-loaded Fe3O4@PVA microspheres showed a typical drug-sustained release profile. These results suggest that the prepared DOX-loaded Fe3O4@PVA microspheres have the function of MRI, embolotherapy and chemotherapy. We expect our study could provide a simple and useful approach for the systematic design, fabrication, and application of a new type of magnetic microspheres as a triple-functional embolic agent for the development of MRI-guided TACE. STATEMENT OF SIGNIFICANCE: Due to the low tissue resolution and hazardous ionization radiation of X-ray digital subtraction angiography, it is beneficial to study MR imaging embolic microspheres for the development of MRI-guided TACE. In this study, a one-step electrospray method was firstly developed to fabricate PVA microspheres encapsulated with in situ synthesized Fe3O4 nanoparticles. Then, chemotherapeutic agent (DOX), contrast media of MRI (Fe3O4) and embolic agent (PVA matrix) were combined together in one body (DOX-loaded Fe3O4@PVA microspheres) to achieve the triple effects of chemotherapy, MR imaging and embolization. This triple-functional embolic agent offers potential for the future development of MRI-guided TACE.
Collapse
|
11
|
Ergonomics in Interventional Radiology: Awareness Is Mandatory. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:medicina57050500. [PMID: 34069174 PMCID: PMC8157181 DOI: 10.3390/medicina57050500] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/07/2021] [Accepted: 05/12/2021] [Indexed: 12/17/2022]
Abstract
Ergonomics in interventional radiology has not been thoroughly evaluated. Like any operators, interventional radiologists are exposed to the risk of work-related musculoskeletal disorders. The use of lead shielding to radiation exposure and the lack of ergonomic principles developed so far contribute to these disorders, which may potentially affect their livelihoods, quality of life, and productivity. The objectives of this review were to describe the different situations encountered in interventional radiology and to compile the strategies both available to date and in development to improve ergonomics.
Collapse
|
12
|
Reiss S, Lottner T, Ozen AC, Polei S, Bitzer A, Bock M. Analysis of the RF Excitation of Endovascular Stents in Small Gap and Overlap Scenarios Using an Electro-Optical E-field Sensor. IEEE Trans Biomed Eng 2021; 68:783-792. [DOI: 10.1109/tbme.2020.3009869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
13
|
Reichert A, Reiss S, Krafft AJ, Bock M. Passive needle guide tracking with radial acquisition and phase-only cross-correlation. Magn Reson Med 2020; 85:1039-1046. [PMID: 32767451 DOI: 10.1002/mrm.28448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/07/2020] [Accepted: 07/07/2020] [Indexed: 12/24/2022]
Abstract
PURPOSE Acceleration of a passive tracking sequence based on phase-only cross-correlation (POCC) using radial undersampling. METHODS The phase-only cross-correlation (POCC) algorithm allows passive tracking of interventional instruments in real-time. In a POCC sequence, two cross-sectional images of a needle guide with a positive MR contrast are continuously acquired from which the instrument trajectory is calculated. Conventional Cartesian imaging for tracking is very time consuming; here, a higher temporal resolution is achieved using a highly undersampled radial acquisition together with a modified POCC algorithm that incorporates the point-spread-function. Targeting and needle insertion is performed in two phantom experiments with 16 fiducial targets, each using 4 and 16 radial projections for passive tracking. Additionally, targeting of eight deep lying basivertebral veins in the lumbar spines is performed for in vivo proof-of-application with four radial projections for needle guide tracking. RESULTS The radially undersampled POCC sequence yielded in the phantom experiments a lateral targeting accuracy of 1.1 ± 0.4 mm and 1.0 ± 0.5 mm for 16 and 4 radial projections, respectively, without any statistically significant difference. In the in vivo application, a mean targeting duration of 62 ± 13 s was measured. CONCLUSION Radial undersampling can drastically reduce the acquisition time for passive tracking in a POCC sequences for MR-guided needle interventions without compromising the targeting accuracy.
Collapse
Affiliation(s)
- Andreas Reichert
- Department of Radiology, Medical Physics, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Simon Reiss
- Department of Radiology, Medical Physics, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Axel Joachim Krafft
- Department of Radiology, Medical Physics, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Michael Bock
- Department of Radiology, Medical Physics, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
14
|
Heidt T, Reiss S, Lottner T, Özen AC, Bode C, Bock M, von Zur Mühlen C. Magnetic resonance imaging for pathobiological assessment and interventional treatment of the coronary arteries. Eur Heart J Suppl 2020; 22:C46-C56. [PMID: 32368198 PMCID: PMC7189741 DOI: 10.1093/eurheartj/suaa009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
X-ray-based fluoroscopy is the standard tool for diagnostics and intervention in coronary artery disease. In recent years, computed tomography has emerged as a non-invasive alternative to coronary angiography offering detection of coronary calcification and imaging of the vessel lumen by the use of iodinated contrast agents. Even though currently available invasive or non-invasive techniques can show the degree of vessel stenosis, they are unable to provide information about biofunctional plaque properties, e.g. plaque inflammation. Furthermore, the use of radiation and the necessity of iodinated contrast agents remain unfavourable prerequisites. Magnetic resonance imaging (MRI) is a radiation-free alternative to X-ray which offers anatomical and functional imaging contrasts fostering the idea of non-invasive biofunctional assessment of the coronary vessel wall. In combination with molecular contrast agents that target-specific epitopes of the vessel wall, MRI might reveal unique plaque properties rendering it, for example, ‘vulnerable and prone to rupture’. Early detection of these lesions may allow for early or prophylactic treatment even before an adverse coronary event occurs. Besides diagnostic imaging, advances in real-time image acquisition and motion compensation now provide grounds for MRI-guided coronary interventions. In this article, we summarize our research on MRI-based molecular imaging in cardiovascular disease and feature our advances towards real-time MRI-based coronary interventions in a porcine model.
Collapse
Affiliation(s)
- Timo Heidt
- Department of Cardiology, Cardiology and Angiology I, Heart Center Freiburg University and Faculty of Medicine, Hugstetterstr. 55, 79106 Freiburg, Germany
| | - Simon Reiss
- Department of Radiology, Medical Physics, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany
| | - Thomas Lottner
- Department of Radiology, Medical Physics, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany
| | - Ali C Özen
- Department of Radiology, Medical Physics, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany.,German Cancer Consortium Partner Site Freiburg, German Cancer Research Center (DKFZ), Stefan-Meier-Str. 17, 79104 Freiburg, Germany
| | - Christoph Bode
- Department of Cardiology, Cardiology and Angiology I, Heart Center Freiburg University and Faculty of Medicine, Hugstetterstr. 55, 79106 Freiburg, Germany
| | - Michael Bock
- Department of Radiology, Medical Physics, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany
| | - Constantin von Zur Mühlen
- Department of Cardiology, Cardiology and Angiology I, Heart Center Freiburg University and Faculty of Medicine, Hugstetterstr. 55, 79106 Freiburg, Germany
| |
Collapse
|
15
|
Reichert A, Bock M, Vogele M, Joachim Krafft A. GantryMate: A Modular MR-Compatible Assistance System for MR-Guided Needle Interventions. ACTA ACUST UNITED AC 2020; 5:266-273. [PMID: 31245548 PMCID: PMC6588201 DOI: 10.18383/j.tom.2019.00007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Percutaneous minimally invasive interventions are difficult to perform in closed-bore high-field magnetic resonance systems owing to the limited space between magnet and patient. To enable magnetic resonance–guided needle interventions, we combine a small, patient-mounted assistance system with a real-time instrument tracking sequence based on a phase-only cross-correlation algorithm for marker detection. The assistance system uses 2 movable plates to align an external passive marker with the anatomical target structure. The targeting accuracy is measured in phantom experiments, yielding a precision of 1.7 ± 1.0 mm for target depths up to 38 ± 13 mm. In in vivo experiments, the possibility to track and target static and moving structures is demonstrated.
Collapse
Affiliation(s)
- Andreas Reichert
- Department of Radiology, Medical Physics, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany and
| | - Michael Bock
- Department of Radiology, Medical Physics, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany and
| | | | - Axel Joachim Krafft
- Department of Radiology, Medical Physics, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany and
| |
Collapse
|
16
|
Özen AC, Silemek B, Lottner T, Atalar E, Bock M. MR safety watchdog for active catheters: Wireless impedance control with real-time feedback. Magn Reson Med 2020; 84:1048-1060. [PMID: 31961965 DOI: 10.1002/mrm.28153] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/29/2019] [Accepted: 12/09/2019] [Indexed: 12/13/2022]
Abstract
PURPOSE To dynamically minimize radiofrequency (RF)-induced heating of an active catheter through an automatic change of the termination impedance. METHODS A prototype wireless module was designed that modifies the input impedance of an active catheter to keep the temperature rise during MRI below a threshold, ΔTmax . The wireless module (MR safety watchdog; MRsWD) measures the local temperature at the catheter tip using either a built-in thermistor or external data from a fiber-optical thermometer. It automatically changes the catheter input impedance until the temperature rise during MRI is minimized. If ΔTmax is exceeded, RF transmission is blocked by a feedback system. RESULTS The thermistor and fiber-optical thermometer provided consistent temperature data in a phantom experiment. During MRI, the MRsWD was able to reduce the maximum temperature rise by 25% when operated in real-time feedback mode. CONCLUSION This study demonstrates the technical feasibility of an MRsWD as an alternative or complementary approach to reduce RF-induced heating of active interventional devices. The automatic MRsWD can reduce heating using direct temperature measurements at the tip of the catheter. Given that temperature measurements are intrinsically slow, for a clinical implementation, a faster feedback parameter would be required such as the RF currents along the catheter or scattered electric fields at the tip.
Collapse
Affiliation(s)
- Ali Caglar Özen
- Department of Radiology, Medical Physics, Medical Center - University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,German Consortium for Translational Cancer Research Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Berk Silemek
- National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, Turkey.,Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Thomas Lottner
- Department of Radiology, Medical Physics, Medical Center - University of Freiburg, Freiburg, Germany
| | - Ergin Atalar
- National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, Turkey.,Department of Electrical and Electronics Engineering, Bilkent University, Ankara, Turkey
| | - Michael Bock
- Department of Radiology, Medical Physics, Medical Center - University of Freiburg, Freiburg, Germany
| |
Collapse
|
17
|
Heidt T, Reiss S, Krafft AJ, Özen AC, Lottner T, Hehrlein C, Galmbacher R, Kayser G, Hilgendorf I, Stachon P, Wolf D, Zirlik A, Düring K, Zehender M, Meckel S, von Elverfeldt D, Bode C, Bock M, von Zur Mühlen C. Real-time magnetic resonance imaging - guided coronary intervention in a porcine model. Sci Rep 2019; 9:8663. [PMID: 31209241 PMCID: PMC6572773 DOI: 10.1038/s41598-019-45154-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 06/03/2019] [Indexed: 11/28/2022] Open
Abstract
X-ray fluoroscopy is the gold standard for coronary diagnostics and intervention. Magnetic resonance imaging is a radiation-free alternative to x-ray with excellent soft tissue contrast in arbitrary slice orientation. Here, we assessed real-time MRI-guided coronary interventions from femoral access using newly designed MRI technologies. Six Goettingen minipigs were used to investigate coronary intervention using real-time MRI. Catheters were custom-designed and equipped with an active receive tip-coil to improve visibility and navigation capabilities. Using modified standard clinical 5 F catheters, intubation of the left coronary ostium was successful in all animals. For the purpose of MR-guided coronary interventions, a custom-designed 8 F catheter was used. In spite of the large catheter size, and therefore limited steerability, intubation of the left coronary ostium was successful in 3 of 6 animals within seconds. Thereafter, real-time guided implantation of a non-metallic vascular scaffold into coronary arteries was possible. This study demonstrates that real-time MRI-guided coronary catheterization and intervention via femoral access is possible without the use of any contrast agents or radiation, including placement of non-metallic vascular scaffolds into coronary arteries. Further development, especially in catheter and guidewire technology, will be required to drive forward routine MR-guided coronary interventions as an alternative to x-ray fluoroscopy.
Collapse
Affiliation(s)
- Timo Heidt
- Cardiology and Angiology I, Heart Center Freiburg University and Faculty of Medicine, Freiburg, Germany.
| | - Simon Reiss
- Department of Radiology, Medical Physics, University Medical Center Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Axel J Krafft
- Department of Radiology, Medical Physics, University Medical Center Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Ali Caglar Özen
- Department of Radiology, Medical Physics, University Medical Center Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Thomas Lottner
- Department of Radiology, Medical Physics, University Medical Center Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Christoph Hehrlein
- Cardiology and Angiology I, Heart Center Freiburg University and Faculty of Medicine, Freiburg, Germany
| | - Roland Galmbacher
- Department of Experimental Anesthesiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Gian Kayser
- Department of Pathology, Institute of Surgical Pathology, University Medical Center Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Ingo Hilgendorf
- Cardiology and Angiology I, Heart Center Freiburg University and Faculty of Medicine, Freiburg, Germany
| | - Peter Stachon
- Cardiology and Angiology I, Heart Center Freiburg University and Faculty of Medicine, Freiburg, Germany
| | - Dennis Wolf
- Cardiology and Angiology I, Heart Center Freiburg University and Faculty of Medicine, Freiburg, Germany
| | - Andreas Zirlik
- Cardiology and Angiology I, Heart Center Freiburg University and Faculty of Medicine, Freiburg, Germany
| | | | - Manfred Zehender
- Cardiology and Angiology I, Heart Center Freiburg University and Faculty of Medicine, Freiburg, Germany
| | - Stephan Meckel
- Department of Neuroradiology, University Medical Center Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Dominik von Elverfeldt
- Department of Radiology, Medical Physics, University Medical Center Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Christoph Bode
- Cardiology and Angiology I, Heart Center Freiburg University and Faculty of Medicine, Freiburg, Germany
| | - Michael Bock
- Department of Radiology, Medical Physics, University Medical Center Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Constantin von Zur Mühlen
- Cardiology and Angiology I, Heart Center Freiburg University and Faculty of Medicine, Freiburg, Germany
| |
Collapse
|
18
|
Degrauwe N, Hocquelet A, Digklia A, Schaefer N, Denys A, Duran R. Theranostics in Interventional Oncology: Versatile Carriers for Diagnosis and Targeted Image-Guided Minimally Invasive Procedures. Front Pharmacol 2019; 10:450. [PMID: 31143114 PMCID: PMC6521126 DOI: 10.3389/fphar.2019.00450] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 04/08/2019] [Indexed: 12/12/2022] Open
Abstract
We are continuously progressing in our understanding of cancer and other diseases and learned how they can be heterogeneous among patients. Therefore, there is an increasing need for accurate characterization of diseases at the molecular level. In parallel, medical imaging and image-guided therapies are rapidly developing fields with new interventions and procedures entering constantly in clinical practice. Theranostics, a relatively new branch of medicine, refers to procedures combining diagnosis and treatment, often based on patient and disease-specific features or molecular markers. Interventional oncology which is at the convergence point of diagnosis and treatment employs several methods related to theranostics to provide minimally invasive procedures tailored to the patient characteristics. The aim is to develop more personalized procedures able to identify cancer cells, selectively reach and treat them, and to assess drug delivery and uptake in real-time in order to perform adjustments in the treatment being delivered based on obtained procedure feedback and ultimately predict response. Here, we review several interventional oncology procedures referring to the field of theranostics, and describe innovative methods that are under development as well as future directions in the field.
Collapse
Affiliation(s)
- Nils Degrauwe
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Arnaud Hocquelet
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Antonia Digklia
- Department of Oncology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Niklaus Schaefer
- Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Alban Denys
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Rafael Duran
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
19
|
Simultaneous slice excitation for accelerated passive marker tracking via phase-only cross correlation (POCC) in MR-guided needle interventions. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2018; 31:781-788. [DOI: 10.1007/s10334-018-0701-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 08/09/2018] [Accepted: 08/15/2018] [Indexed: 12/24/2022]
|
20
|
Mewes A, Heinrich F, Kägebein U, Hensen B, Wacker F, Hansen C. Projector-based augmented reality system for interventional visualization inside MRI scanners. Int J Med Robot 2018; 15:e1950. [DOI: 10.1002/rcs.1950] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 07/11/2018] [Accepted: 08/01/2018] [Indexed: 11/09/2022]
Affiliation(s)
- André Mewes
- Faculty of Computer Science; Otto von Guericke University Magdeburg; Magdeburg Germany
| | - Florian Heinrich
- Faculty of Computer Science; Otto von Guericke University Magdeburg; Magdeburg Germany
| | - Urte Kägebein
- Faculty of Computer Science; Otto von Guericke University Magdeburg; Magdeburg Germany
| | - Bennet Hensen
- Institute of Diagnostic and Interventional Radiology; Hannover Medical School; Hanover Germany
| | - Frank Wacker
- Institute of Diagnostic and Interventional Radiology; Hannover Medical School; Hanover Germany
| | - Christian Hansen
- Faculty of Computer Science; Otto von Guericke University Magdeburg; Magdeburg Germany
| |
Collapse
|
21
|
Schleicher KE, Bock M, Düring K, Kroboth S, Krafft AJ. Radial MRI with variable echo times: reducing the orientation dependency of susceptibility artifacts of an MR-safe guidewire. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2017; 31:235-242. [PMID: 28770356 DOI: 10.1007/s10334-017-0645-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 07/20/2017] [Accepted: 07/21/2017] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Guidewires are indispensable tools for intravascular MR-guided interventions. Recently, an MR-safe guidewire made from a glass-fiber/epoxy compound material with embedded iron particles was developed. The size of the induced susceptibility artifact, and thus the guidewire's visibility, depends on its orientation against B 0. We present a radial acquisition scheme with variable echo times that aims to reduce the artifact's orientation dependency. MATERIALS AND METHODS The radial acquisition scheme uses sine-squared modulated echo times depending on the physical direction of the spoke to balance the susceptibility artifact of the guidewire. The acquisition scheme was studied in simulations based on dipole fields and in phantom experiments for different orientations of the guidewire against B 0. The simulated and measured artifact widths were quantitatively compared. RESULTS Compared to acquisitions with non-variable echo times, the proposed acquisition scheme shows a reduced angular variability. For the two main orientations (i.e., parallel and perpendicular to B 0), the ratio of the artifact widths was reduced from about 2.2 (perpendicular vs. parallel) to about 1.2 with the variable echo time approach. CONCLUSION The reduction of the orientation dependency of the guidewire's artifact via sine-squared varying echo times could be verified in simulations and measurements. The more balanced artifact allows for a better overall visibility of the guidewire.
Collapse
Affiliation(s)
- Katharina E Schleicher
- Department of Radiology, Medical Physics, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacher Strasse 60a, 79106, Freiburg, Germany.
| | - Michael Bock
- Department of Radiology, Medical Physics, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacher Strasse 60a, 79106, Freiburg, Germany
| | | | - Stefan Kroboth
- Department of Radiology, Medical Physics, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacher Strasse 60a, 79106, Freiburg, Germany
| | - Axel J Krafft
- Department of Radiology, Medical Physics, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacher Strasse 60a, 79106, Freiburg, Germany
| |
Collapse
|
22
|
Ataollahi A, Karim R, Fallah AS, Rhode K, Razavi R, Seneviratne LD, Schaeffter T, Althoefer K. Three-Degree-of-Freedom MR-Compatible Multisegment Cardiac Catheter Steering Mechanism. IEEE Trans Biomed Eng 2016; 63:2425-2435. [DOI: 10.1109/tbme.2013.2276739] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
23
|
Improving Endovascular Intraoperative Navigation with Real-Time Skeleton-Based Deformation of Virtual Vascular Structures. ACTA ACUST UNITED AC 2016. [DOI: 10.1007/978-3-319-40651-0_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
24
|
Lillaney PV, Yang JK, Losey AD, Martin AJ, Cooke DL, Thorne BRH, Barry DC, Chu A, Stillson C, Do L, Arenson RL, Saeed M, Wilson MW, Hetts SW. Endovascular MR-guided Renal Embolization by Using a Magnetically Assisted Remote-controlled Catheter System. Radiology 2016; 281:219-28. [PMID: 27019290 DOI: 10.1148/radiol.2016152036] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Purpose To assess the feasibility of a magnetically assisted remote-controlled (MARC) catheter system under magnetic resonance (MR) imaging guidance for performing a simple endovascular procedure (ie, renal artery embolization) in vivo and to compare with x-ray guidance to determine the value of MR imaging guidance and the specific areas where the MARC system can be improved. Materials and Methods In concordance with the Institutional Animal Care and Use Committee protocol, in vivo renal artery navigation and embolization were tested in three farm pigs (mean weight 43 kg ± 2 [standard deviation]) under real-time MR imaging at 1.5 T. The MARC catheter device was constructed by using an intramural copper-braided catheter connected to a laser-lithographed saddle coil at the distal tip. Interventionalists controlled an in-room cart that delivered electrical current to deflect the catheter in the MR imager. Contralateral kidneys were similarly embolized under x-ray guidance by using standard clinical catheters and guidewires. Changes in renal artery flow and perfusion were measured before and after embolization by using velocity-encoded and perfusion MR imaging. Catheter navigation times, renal parenchymal perfusion, and renal artery flow rates were measured for MR-guided and x-ray-guided embolization procedures and are presented as means ± standard deviation in this pilot study. Results Embolization was successful in all six kidneys under both x-ray and MR imaging guidance. Mean catheterization time with MR guidance was 93 seconds ± 56, compared with 60 seconds ± 22 for x-ray guidance. Mean changes in perfusion rates were 4.9 au/sec ± 0.8 versus 4.6 au/sec ± 0.6, and mean changes in renal flow rate were 2.1 mL/min/g ± 0.2 versus 1.9 mL/min/g ± 0.2 with MR imaging and x-ray guidance, respectively. Conclusion The MARC catheter system is feasible for renal artery catheterization and embolization under real-time MR imaging in vivo, and quantitative physiologic measures under MR imaging guidance were similar to those measured under x-ray guidance, suggesting that the MARC catheter system could be used for endovascular procedures with interventional MR imaging. (©) RSNA, 2016.
Collapse
Affiliation(s)
- Prasheel V Lillaney
- From the Department of Radiology and Biomedical Imaging, University of California, San Francisco, 185 Berry St, Suite 350, Room 320, San Francisco, CA 94107-5705 (P.V.L., J.K.Y., A.D.L., A.J.M., D.L.C., B.R.H.T., C.S., L.D., R.L.A., M.S., M.W.W., S.W.H.); and Penumbra, Alameda, Calif (D.C.B., A.C.)
| | - Jeffrey K Yang
- From the Department of Radiology and Biomedical Imaging, University of California, San Francisco, 185 Berry St, Suite 350, Room 320, San Francisco, CA 94107-5705 (P.V.L., J.K.Y., A.D.L., A.J.M., D.L.C., B.R.H.T., C.S., L.D., R.L.A., M.S., M.W.W., S.W.H.); and Penumbra, Alameda, Calif (D.C.B., A.C.)
| | - Aaron D Losey
- From the Department of Radiology and Biomedical Imaging, University of California, San Francisco, 185 Berry St, Suite 350, Room 320, San Francisco, CA 94107-5705 (P.V.L., J.K.Y., A.D.L., A.J.M., D.L.C., B.R.H.T., C.S., L.D., R.L.A., M.S., M.W.W., S.W.H.); and Penumbra, Alameda, Calif (D.C.B., A.C.)
| | - Alastair J Martin
- From the Department of Radiology and Biomedical Imaging, University of California, San Francisco, 185 Berry St, Suite 350, Room 320, San Francisco, CA 94107-5705 (P.V.L., J.K.Y., A.D.L., A.J.M., D.L.C., B.R.H.T., C.S., L.D., R.L.A., M.S., M.W.W., S.W.H.); and Penumbra, Alameda, Calif (D.C.B., A.C.)
| | - Daniel L Cooke
- From the Department of Radiology and Biomedical Imaging, University of California, San Francisco, 185 Berry St, Suite 350, Room 320, San Francisco, CA 94107-5705 (P.V.L., J.K.Y., A.D.L., A.J.M., D.L.C., B.R.H.T., C.S., L.D., R.L.A., M.S., M.W.W., S.W.H.); and Penumbra, Alameda, Calif (D.C.B., A.C.)
| | - Bradford R H Thorne
- From the Department of Radiology and Biomedical Imaging, University of California, San Francisco, 185 Berry St, Suite 350, Room 320, San Francisco, CA 94107-5705 (P.V.L., J.K.Y., A.D.L., A.J.M., D.L.C., B.R.H.T., C.S., L.D., R.L.A., M.S., M.W.W., S.W.H.); and Penumbra, Alameda, Calif (D.C.B., A.C.)
| | - David C Barry
- From the Department of Radiology and Biomedical Imaging, University of California, San Francisco, 185 Berry St, Suite 350, Room 320, San Francisco, CA 94107-5705 (P.V.L., J.K.Y., A.D.L., A.J.M., D.L.C., B.R.H.T., C.S., L.D., R.L.A., M.S., M.W.W., S.W.H.); and Penumbra, Alameda, Calif (D.C.B., A.C.)
| | - Andrew Chu
- From the Department of Radiology and Biomedical Imaging, University of California, San Francisco, 185 Berry St, Suite 350, Room 320, San Francisco, CA 94107-5705 (P.V.L., J.K.Y., A.D.L., A.J.M., D.L.C., B.R.H.T., C.S., L.D., R.L.A., M.S., M.W.W., S.W.H.); and Penumbra, Alameda, Calif (D.C.B., A.C.)
| | - Carol Stillson
- From the Department of Radiology and Biomedical Imaging, University of California, San Francisco, 185 Berry St, Suite 350, Room 320, San Francisco, CA 94107-5705 (P.V.L., J.K.Y., A.D.L., A.J.M., D.L.C., B.R.H.T., C.S., L.D., R.L.A., M.S., M.W.W., S.W.H.); and Penumbra, Alameda, Calif (D.C.B., A.C.)
| | - Loi Do
- From the Department of Radiology and Biomedical Imaging, University of California, San Francisco, 185 Berry St, Suite 350, Room 320, San Francisco, CA 94107-5705 (P.V.L., J.K.Y., A.D.L., A.J.M., D.L.C., B.R.H.T., C.S., L.D., R.L.A., M.S., M.W.W., S.W.H.); and Penumbra, Alameda, Calif (D.C.B., A.C.)
| | - Ronald L Arenson
- From the Department of Radiology and Biomedical Imaging, University of California, San Francisco, 185 Berry St, Suite 350, Room 320, San Francisco, CA 94107-5705 (P.V.L., J.K.Y., A.D.L., A.J.M., D.L.C., B.R.H.T., C.S., L.D., R.L.A., M.S., M.W.W., S.W.H.); and Penumbra, Alameda, Calif (D.C.B., A.C.)
| | - Maythem Saeed
- From the Department of Radiology and Biomedical Imaging, University of California, San Francisco, 185 Berry St, Suite 350, Room 320, San Francisco, CA 94107-5705 (P.V.L., J.K.Y., A.D.L., A.J.M., D.L.C., B.R.H.T., C.S., L.D., R.L.A., M.S., M.W.W., S.W.H.); and Penumbra, Alameda, Calif (D.C.B., A.C.)
| | - Mark W Wilson
- From the Department of Radiology and Biomedical Imaging, University of California, San Francisco, 185 Berry St, Suite 350, Room 320, San Francisco, CA 94107-5705 (P.V.L., J.K.Y., A.D.L., A.J.M., D.L.C., B.R.H.T., C.S., L.D., R.L.A., M.S., M.W.W., S.W.H.); and Penumbra, Alameda, Calif (D.C.B., A.C.)
| | - Steven W Hetts
- From the Department of Radiology and Biomedical Imaging, University of California, San Francisco, 185 Berry St, Suite 350, Room 320, San Francisco, CA 94107-5705 (P.V.L., J.K.Y., A.D.L., A.J.M., D.L.C., B.R.H.T., C.S., L.D., R.L.A., M.S., M.W.W., S.W.H.); and Penumbra, Alameda, Calif (D.C.B., A.C.)
| |
Collapse
|
25
|
Karimi H, Dominguez-Viqueira W, Cunningham CH. Position and orientation measurement of susceptibility markers using spectrally selective spin-echo projections. Magn Reson Med 2015; 76:1563-1573. [PMID: 26599342 DOI: 10.1002/mrm.26039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Revised: 09/27/2015] [Accepted: 10/17/2015] [Indexed: 11/10/2022]
Abstract
PURPOSE To develop an accurate technique for simultaneously measuring the position and orientation of interventional devices using a projection-based spectrally selective refocusing pulse sequence. METHODS Projections along physical axes using spectrally selective excitation were acquired to track a catheter. A 9F passive tracking device capable of generating controllable susceptibility artifacts using susceptibility materials (titanium and graphite) was attached to the catheter. A library of projections for different orientations of the device with respect to the main magnetic field were simulated offline. Cross-correlations with these templates were computed to determine the orientation and position of the device. A phantom study was performed to evaluate the accuracy of the tracking technique. The tracking technique was also evaluated in vivo in the carotid artery of a pig. RESULTS Simultaneous and accurate measurement of position and orientation of the tracking device was obtained in the phantom and in vivo studies with reasonable temporal resolution. For the phantom study, the average of absolute errors in the Z-, Y-, and X-axes are 0.37, 0.76, and 0.85 mm, respectively. The mean absolute error and standard deviation of orientation measurement are 1.5 and 1.1 degrees, respectively. CONCLUSION This positioning technique, in conjunction with a controllable tracking device, can provide accurate tracking of interventional devices in MR-guided interventions. Magn Reson Med 76:1563-1573, 2016. © 2015 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Hirad Karimi
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada. .,Department of Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada..
| | | | - Charles H Cunningham
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Department of Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
| |
Collapse
|
26
|
Eibofner F, Martirosian P, Würslin C, Graf H, Syha R, Clasen S. Technical Note: MR-visualization of interventional devices using transient field alterations and balanced steady-state free precession imaging. Med Phys 2015; 42:6558-63. [PMID: 26520746 DOI: 10.1118/1.4932629] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE In interventional magnetic resonance imaging, instruments can be equipped with conducting wires for visualization by current application. The potential of sequence triggered application of transient direct currents in balanced steady-state free precession (bSSFP) imaging is demonstrated. METHODS A conductor and a modified catheter were examined in water phantoms and in an ex vivo porcine liver. The current was switched by a trigger pulse in the bSSFP sequence in an interval between radiofrequency pulse and signal acquisition. Magnitude and phase images were recorded. Regions with transient field alterations were evaluated by a postprocessing algorithm. A phase mask was computed and overlaid with the magnitude image. RESULTS Transient field alterations caused continuous phase shifts, which were separated by the postprocessing algorithm from phase jumps due to persistent field alterations. The overlaid images revealed the position of the conductor. The modified catheter generated visible phase offset in all orientations toward the static magnetic field and could be unambiguously localized in the ex vivo porcine liver. CONCLUSIONS The application of a sequence triggered, direct current in combination with phase imaging allows conspicuous localization of interventional devices with a bSSFP sequence.
Collapse
Affiliation(s)
- Frank Eibofner
- Section on Experimental Radiology, University Hospital Tübingen, Tübingen D-72076, Germany
| | - Petros Martirosian
- Section on Experimental Radiology, University Hospital Tübingen, Tübingen D-72076, Germany
| | - Christian Würslin
- Section on Experimental Radiology, University Hospital Tübingen, Tübingen D-72076, Germany
| | - Hansjörg Graf
- Section on Experimental Radiology, University Hospital Tübingen, Tübingen D-72076, Germany
| | - Roland Syha
- Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, Tübingen D-72076, Germany
| | - Stephan Clasen
- Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, Tübingen D-72076, Germany
| |
Collapse
|
27
|
Saeed M, Van TA, Krug R, Hetts SW, Wilson MW. Cardiac MR imaging: current status and future direction. Cardiovasc Diagn Ther 2015; 5:290-310. [PMID: 26331113 DOI: 10.3978/j.issn.2223-3652.2015.06.07] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 06/17/2015] [Indexed: 12/12/2022]
Abstract
Coronary artery disease is currently a worldwide epidemic with increasing impact on healthcare systems. Magnetic resonance imaging (MRI) sequences give complementary information on LV function, regional perfusion, angiogenesis, myocardial viability and orientations of myocytes. T2-weighted short-tau inversion recovery (T2-STIR), fat suppression and black blood sequences have been frequently used for detecting edematous area at risk (AAR) of infarction. T2 mapping, however, indicated that the edematous reaction in acute myocardial infarct (AMI) is not stable and warranted the use of edematous area in evaluating therapies. On the other hand, cine MRI demonstrated reproducible data on LV function in healthy volunteers and LV remodeling in patients. Noninvasive first pass perfusion, using exogenous tracer (gadolinium-based contrast media) and arterial spin labeling MRI, using endogenous tracer (water), are sensitive and useful techniques for evaluating myocardial perfusion and angiogenesis. Recently, new strategies have been developed to quantify myocardial viability using T1-mapping and equilibrium contrast enhanced MR techniques because existing delayed contrast enhancement MRI (DE-MRI) sequences are limited in detecting patchy microinfarct and diffuse fibrosis. These new techniques were successfully used for characterizing diffuse myocardial fibrosis associated with myocarditis, amyloidosis, sarcoidosis heart failure, aortic hypertrophic cardiomyopathy, congenital heart disease, restrictive cardiomyopathy, arrhythmogenic right ventricular dysplasia and hypertension). Diffusion MRI provides information regarding microscopic tissue structure, while diffusion tensor imaging (DTI) helps to characterize the myocardium and monitor the process of LV remodeling after AMI. Novel trends in hybrid imaging, such as cardiac positron emission tomography (PET)/MRI and optical imaging/MRI, are recently under intensive investigation. With the promise of higher spatial-temporal resolution and 3D coverage in the near future, cardiac MRI will be an indispensible tool in the diagnosis of cardiac diseases, coronary intervention and myocardial therapeutic delivery.
Collapse
Affiliation(s)
- Maythem Saeed
- 1 Department of Radiology and Biomedical Imaging, School of Medicine, University of California San Francisco, San Francisco, CA, USA ; 2 Zentralinstitut für Medizintechnik, Technical University of Munich, Munich, Germany
| | - Tu Anh Van
- 1 Department of Radiology and Biomedical Imaging, School of Medicine, University of California San Francisco, San Francisco, CA, USA ; 2 Zentralinstitut für Medizintechnik, Technical University of Munich, Munich, Germany
| | - Roland Krug
- 1 Department of Radiology and Biomedical Imaging, School of Medicine, University of California San Francisco, San Francisco, CA, USA ; 2 Zentralinstitut für Medizintechnik, Technical University of Munich, Munich, Germany
| | - Steven W Hetts
- 1 Department of Radiology and Biomedical Imaging, School of Medicine, University of California San Francisco, San Francisco, CA, USA ; 2 Zentralinstitut für Medizintechnik, Technical University of Munich, Munich, Germany
| | - Mark W Wilson
- 1 Department of Radiology and Biomedical Imaging, School of Medicine, University of California San Francisco, San Francisco, CA, USA ; 2 Zentralinstitut für Medizintechnik, Technical University of Munich, Munich, Germany
| |
Collapse
|
28
|
Comparative ergonomic workflow and user experience analysis of MRI versus fluoroscopy-guided vascular interventions: an iliac angioplasty exemplar case study. Int J Comput Assist Radiol Surg 2015; 10:1639-50. [DOI: 10.1007/s11548-015-1152-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Accepted: 01/26/2015] [Indexed: 12/12/2022]
|
29
|
Lalande V, Gosselin FP, Vonthron M, Conan B, Tremblay C, Beaudoin G, Soulez G, Martel S. In vivodemonstration of magnetic guidewire steerability in a MRI system with additional gradient coils. Med Phys 2015; 42:969-76. [DOI: 10.1118/1.4906194] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
30
|
Rube MA, Fernandez-Gutierrez F, Cox BF, Holbrook AB, Houston JG, White RD, McLeod H, Fatahi M, Melzer A. Preclinical feasibility of a technology framework for MRI-guided iliac angioplasty. Int J Comput Assist Radiol Surg 2014; 10:637-50. [PMID: 25102933 DOI: 10.1007/s11548-014-1102-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 07/02/2014] [Indexed: 11/25/2022]
Abstract
PURPOSE Interventional MRI has significant potential for image guidance of iliac angioplasty and related vascular procedures. A technology framework with in-room image display, control, communication and MRI-guided intervention techniques was designed and tested for its potential to provide safe, fast and efficient MRI-guided angioplasty of the iliac arteries. METHODS A 1.5-T MRI scanner was adapted for interactive imaging during endovascular procedures using new or modified interventional devices such as guidewires and catheters. A perfused vascular phantom was used for testing. Pre-, intra- and post-procedural visualization and measurement of vascular morphology and flow was implemented. A detailed analysis of X-ray fluoroscopic angiography workflow was conducted and applied. Two interventional radiologists and one physician in training performed 39 procedures. All procedures were timed and analyzed. RESULTS MRI-guided iliac angioplasty procedures were successfully performed with progressive adaptation of techniques and workflow. The workflow, setup and protocol enabled a reduction in table time for a dedicated MRI-guided procedure to 6 min 33 s with a mean procedure time of 9 min 2 s, comparable to the mean procedure time of 8 min 42 s for the standard X-ray-guided procedure. CONCLUSIONS MRI-guided iliac vascular interventions were found to be feasible and practical using this framework and optimized workflow. In particular, the real-time flow analysis was found to be helpful for pre- and post-interventional assessments. Design optimization of the catheters and in vivo experiments are required before clinical evaluation.
Collapse
Affiliation(s)
- Martin A Rube
- Division of Imaging and Technology, Institute for Medical Science and Technology, University of Dundee, Wilson House, 1 Wurzburg Loan, Dundee, DD2 1FD, UK,
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Eibofner F, Wojtczyk H, Graf H, Clasen S. Magnetic resonance visualization of conductive structures by sequence-triggered direct currents and spin-echo phase imaging. Med Phys 2014; 41:062301. [PMID: 24877833 DOI: 10.1118/1.4875679] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Instrument visualization in interventional magnetic resonance imaging (MRI) is commonly performed via susceptibility artifacts. Unfortunately, this approach suffers from limited conspicuity in inhomogeneous tissue and disturbed spatial encoding. Also, susceptibility artifacts are controllable only by sequence parameters. This work presents the basics of a new visualization method overcoming such problems by applying sequence-triggered direct current (DC) pulses in spin-echo (SE) imaging. SE phase images allow for background free current path localization. METHODS Application of a sequence-triggered DC pulse in SE imaging, e.g., during a time period between radiofrequency excitation and refocusing, results in transient field inhomogeneities. Dependent on the additional z-magnetic field from the DC, a phase offset results despite the refocusing pulse. False spatial encoding is avoided by DC application during periods when read-out or slice-encoding gradients are inactive. A water phantom containing a brass conductor (water equivalent susceptibility) and a titanium needle (serving as susceptibility source) was used to demonstrate the feasibility. Artifact dependence on current strength and orientation was examined. RESULTS Without DC, the brass conductor was only visible due to its water displacement. The titanium needle showed typical susceptibility artifacts. Applying triggered DC pulses, the phase offset of spins near the conductor appeared. Because SE phase images are homogenous also in regions of persistent field inhomogeneities, the position of the conductor could be determined with high reliability. Artifact characteristic could be easily controlled by amperage leaving sequence parameters unchanged. For an angle of 30° between current and static field visualization was still possible. CONCLUSIONS SE phase images display the position of a conductor carrying pulsed DC free from artifacts caused by persistent field inhomogeneities. Magnitude and phase images are acquired simultaneously under the same conditions without the use of extra measurement time. The presented technique offers many advantages for precise instrument localization in interventional MRI.
Collapse
Affiliation(s)
- Frank Eibofner
- Section on Experimental Radiology, University Hospital Tübingen, Tübingen D-72076, Germany
| | - Hanne Wojtczyk
- Section on Experimental Radiology, University Hospital Tübingen, Tübingen D-72076, Germany
| | - Hansjörg Graf
- Section on Experimental Radiology, University Hospital Tübingen, Tübingen D-72076, Germany
| | - Stephan Clasen
- Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, Tübingen D-72076, Germany
| |
Collapse
|
32
|
Papanikolaou IS, van der Voort IR, Chopra SS, Seebauer CJ, Rump J, Papas MG, Triantafyllou K, Baumgart DC, Teichgräber UK, Wiedenmann B, Rösch T. MRI-guided percutaneous transhepatic cholangiodrainage: feasibility study in a porcine model. Scand J Gastroenterol 2014; 49:722-6. [PMID: 24694300 DOI: 10.3109/00365521.2014.899619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND AND STUDY AIMS MRI-guided procedures combine high-quality imaging with lack of radiation. Percutaneous transhepatic cholangiodrainage under real-time MRI guidance (MRI-PTCD) seems promising, allowing targeted puncture and avoiding multiple blind passes and use of contrast, which are associated with standard PTCD's heaviest complications. PATIENTS AND METHODS Aim of this study was to investigate the feasibility of MRI-PTCD in three outbred piglets. Obstructive cholestasis was induced by common bile duct ligation. Two days later, MRI-PTCD was performed (open MRI, 1.0 Tesla) with prototype MRI-compatible accessories. Visualization was achieved with a balanced steady-state free precession real-time sequence (bSSFP: 0.75 frames/s, TR/TE [ms]: 7.2/3.6; flip angle: 45°; 200 × 200 matrix size; resolution: 1.3 × 1.3 mm(2), slice thickness: 7 mm). Cannulation of the bile ducts was followed by placement of Yamakawa drainages. RESULTS Twelve punctures were performed (four per animal, 10/12 successful); in 2/10 the bile ducts could not be cannulated. Animal survival was 100% and no significant complications occurred. CONCLUSIONS Initial data show that MRI-PTCD can be successfully performed. This may lead to establishment of a new optimized PTCD technique compared to the standard approach under fluoroscopy.
Collapse
Affiliation(s)
- Ioannis S Papanikolaou
- Department of Internal Medicine, Division of Hepatology & Gastroenterology, Charité Campus Virchow Clinic , Augustenburger Platz 1, D-13353, Berlin , Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Duschka RL, Wojtczyk H, Panagiotopoulos N, Haegele J, Bringout G, Buzug TM, Barkhausen J, Vogt FM. Safety measurements for heating of instruments for cardiovascular interventions in magnetic particle imaging (MPI) - first experiences. JOURNAL OF HEALTHCARE ENGINEERING 2014; 5:79-93. [PMID: 24691388 DOI: 10.1260/2040-2295.5.1.79] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Magnetic particle imaging (MPI) has emerged as a new imaging method with the potential of delivering images of high spatial and temporal resolutions and free of ionizing radiation. Recent studies demonstrated the feasibility of differentiation between signal-generating and non-signal-generating devices in Magnetic Particle Spectroscopy (MPS) and visualization of commercially available catheters and guide-wires in MPI itself. Thus, MPI seems to be a promising imaging tool for cardiovascular interventions. Several commercially available catheters and guide-wires were tested in this study regarding heating. Heating behavior was correlated to the spectra generated by the devices and measured by the MPI. The results indicate that each instrument should be tested separately due to the wide spectrum of measured temperature changes of signal-generating instruments, which is up to 85°C in contrast to non-signal-generating devices. Development of higher temperatures seems to be a limitation for the use of these devices in cardiovascular interventions.
Collapse
Affiliation(s)
- Robert L Duschka
- Department of Radiology and Nuclear Medicine, University Hospital Schleswig-Holstein, Luebeck, Germany
| | - Hanne Wojtczyk
- Institute of Medical Engineering, University of Luebeck, Luebeck, Germany
| | - Nikolaos Panagiotopoulos
- Department of Radiology and Nuclear Medicine, University Hospital Schleswig-Holstein, Luebeck, Germany
| | - Julian Haegele
- Department of Radiology and Nuclear Medicine, University Hospital Schleswig-Holstein, Luebeck, Germany
| | - Gael Bringout
- Institute of Medical Engineering, University of Luebeck, Luebeck, Germany
| | - Thorsten M Buzug
- Institute of Medical Engineering, University of Luebeck, Luebeck, Germany
| | - Joerg Barkhausen
- Department of Radiology and Nuclear Medicine, University Hospital Schleswig-Holstein, Luebeck, Germany
| | - Florian M Vogt
- Department of Radiology and Nuclear Medicine, University Hospital Schleswig-Holstein, Luebeck, Germany
| |
Collapse
|
34
|
Martin AJ, Lillaney P, Saeed M, Losey AD, Settecase F, Evans L, Arenson RL, Wilson MW, Hetts SW. Digital subtraction MR angiography roadmapping for magnetic steerable catheter tracking. J Magn Reson Imaging 2014; 41:1157-62. [PMID: 24797218 DOI: 10.1002/jmri.24651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 04/15/2014] [Accepted: 04/16/2014] [Indexed: 11/06/2022] Open
Abstract
PURPOSE To develop a high temporal resolution MR imaging technique that could be used with magnetically assisted remote control (MARC) endovascular catheters. MATERIALS AND METHODS A technique is proposed based on selective intra-arterial injections of dilute MR contrast at the beginning of a fluoroscopic MR angiography acquisition. The initial bolus of contrast is used to establish a vascular roadmap upon which MARC catheters can be tracked. The contrast to noise ratio (CNR) of the achieved roadmap was assessed in phantoms and in a swine animal model. The ability of the technique to permit navigation of activated MARC catheters through arterial branch points was evaluated. RESULTS The roadmapping mode proved effective in phantoms for tracking objects and achieved a CNR of 35.7 between the intra- and extra-vascular space. In vivo, the intra-arterial enhancement strategy produced roadmaps with a CNR of 42.0. The artifact produced by MARC catheter activation provided signal enhancement patterns on the roadmap that experienced interventionalists could track through vascular structures. CONCLUSION A roadmapping approach with intra-arterial contrast-enhanced MR angiography is introduced for navigating the MARC catheter. The technique mitigates the artifact produced by the MARC catheter, greatly limits the required specific absorption rate, permits regular roadmap updates due to the low contrast agent requirements, and proved effective in the in vivo setting. Inc.
Collapse
Affiliation(s)
- Alastair J Martin
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, California, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Losey AD, Lillaney P, Martin AJ, Cooke DL, Wilson MW, Thorne BRH, Sincic RS, Arenson RL, Saeed M, Hetts SW. Magnetically assisted remote-controlled endovascular catheter for interventional MR imaging: in vitro navigation at 1.5 T versus X-ray fluoroscopy. Radiology 2014; 271:862-9. [PMID: 24533872 DOI: 10.1148/radiol.14132041] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PURPOSE To compare in vitro navigation of a magnetically assisted remote-controlled (MARC) catheter under real-time magnetic resonance (MR) imaging with manual navigation under MR imaging and standard x-ray guidance in endovascular catheterization procedures in an abdominal aortic phantom. MATERIALS AND METHODS The 2-mm-diameter custom clinical-grade microcatheter prototype with a solenoid coil at the distal tip was deflected with a foot pedal actuator used to deliver 300 mA of positive or negative current. Investigators navigated the catheter into branch vessels in a custom cryogel abdominal aortic phantom. This was repeated under MR imaging guidance without magnetic assistance and under conventional x-ray fluoroscopy. MR experiments were performed at 1.5 T by using a balanced steady-state free precession sequence. The mean procedure times and percentage success data were determined and analyzed with a linear mixed-effects regression analysis. RESULTS The catheter was clearly visible under real-time MR imaging. One hundred ninety-two (80%) of 240 turns were successfully completed with magnetically assisted guidance versus 144 (60%) of 240 turns with nonassisted guidance (P < .001) and 119 (74%) of 160 turns with standard x-ray guidance (P = .028). Overall mean procedure time was shorter with magnetically assisted than with nonassisted guidance under MR imaging (37 seconds ± 6 [standard error of the mean] vs 55 seconds ± 3, P < .001), and time was comparable between magnetically assisted and standard x-ray guidance (37 seconds ± 6 vs 44 seconds ± 3, P = .045). When stratified by angle of branch vessel, magnetic assistance was faster than nonassisted MR guidance at turns of 45°, 60°, and 75°. CONCLUSION In this study, a MARC catheter for endovascular navigation under real-time MR imaging guidance was developed and tested. For catheterization of branch vessels arising at large angles, magnetically assisted catheterization was faster than manual catheterization under MR imaging guidance and was comparable to standard x-ray guidance.
Collapse
Affiliation(s)
- Aaron D Losey
- From the Department of Radiology and Biomedical Imaging, School of Medicine, University of California-San Francisco, 185 Berry St, Suite 350, Campus Box 0946, San Francisco, CA 94107-5705
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Yoshimitsu K, Kato T, Song SE, Hata N. A novel four-wire-driven robotic catheter for radio-frequency ablation treatment. Int J Comput Assist Radiol Surg 2014; 9:867-74. [PMID: 24510205 DOI: 10.1007/s11548-014-0982-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 01/24/2014] [Indexed: 11/28/2022]
Abstract
PURPOSE Robotic catheters have been proposed to increase the efficacy and safety of the radio-frequency ablation treatment. The robotized motion of current robotic catheters mimics the motion of manual ones-namely, deflection in one direction and rotation around the catheter. With the expectation that the higher dexterity may achieve further efficacy and safety of the robotically driven treatment, we prototyped a four-wire-driven robotic catheter with the ability to deflect in two- degree-of-freedom motions in addition to rotation. METHODS A novel quad-directional structure with two wires was designed and developed to attain yaw and pitch motion in the robotic catheter. We performed a mechanical evaluation of the bendability and maneuverability of the robotic catheter and compared it with current manual catheters. RESULTS We found that the four-wire-driven robotic catheter can achieve a pitching angle of 184.7[Formula: see text] at a pulling distance of wire for 11 mm, while the yawing angle was 170.4[Formula: see text] at 11 mm. The robotic catheter could attain the simultaneous two- degree-of-freedom motions in a simulated cardiac chamber. CONCLUSION The results indicate that the four-wire-driven robotic catheter may offer physicians the opportunity to intuitively control a catheter and smoothly approach the focus position that they aim to ablate.
Collapse
Affiliation(s)
- Kitaro Yoshimitsu
- Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, 75 Francis Street, SPL L1-050 ASB1, Boston, MA, USA,
| | | | | | | |
Collapse
|
37
|
Condino S, Calabrò E, Alberti A, Parrini S, Cioni R, Berchiolli R, Gesi M, Ferrari V, Ferrari M. Simultaneous Tracking of Catheters and Guidewires: Comparison to Standard Fluoroscopic Guidance for Arterial Cannulation. Eur J Vasc Endovasc Surg 2014; 47:53-60. [DOI: 10.1016/j.ejvs.2013.10.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 10/01/2013] [Indexed: 11/15/2022]
|
38
|
Brunner A, Groebner J, Umathum R, Maier F, Semmler W, Bock M. An MR-compatible stereoscopic in-room 3D display for MR-guided interventions. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2013; 27:277-82. [PMID: 24322339 DOI: 10.1007/s10334-013-0423-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 10/10/2013] [Accepted: 11/12/2013] [Indexed: 10/25/2022]
Abstract
BACKGROUND AND METHODS A commercial three-dimensional (3D) monitor was modified for use inside the scanner room to provide stereoscopic real-time visualization during magnetic resonance (MR)-guided interventions, and tested in a catheter-tracking phantom experiment at 1.5 T. Brightness, uniformity, radio frequency (RF) emissions and MR image interferences were measured. RESULTS AND DISCUSSION Due to modifications, the center luminance of the 3D monitor was reduced by 14%, and the addition of a Faraday shield further reduced the remaining luminance by 31%. RF emissions could be effectively shielded; only a minor signal-to-noise ratio (SNR) decrease of 4.6% was observed during imaging. During the tracking experiment, the 3D orientation of the catheter and vessel structures in the phantom could be visualized stereoscopically.
Collapse
Affiliation(s)
- Alexander Brunner
- Department of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany,
| | | | | | | | | | | |
Collapse
|
39
|
Rafii-Tari H, Payne CJ, Yang GZ. Current and emerging robot-assisted endovascular catheterization technologies: a review. Ann Biomed Eng 2013; 42:697-715. [PMID: 24281653 DOI: 10.1007/s10439-013-0946-8] [Citation(s) in RCA: 154] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 11/14/2013] [Indexed: 11/30/2022]
Abstract
Endovascular techniques have been embraced as a minimally-invasive treatment approach within different disciplines of interventional radiology and cardiology. The current practice of endovascular procedures, however, is limited by a number of factors including exposure to high doses of X-ray radiation, limited 3D imaging, and lack of contact force sensing from the endovascular tools and the vascular anatomy. More recently, advances in steerable catheters and development of master/slave robots have aimed to improve these practices by removing the operator from the radiation source and increasing the precision and stability of catheter motion with added degrees-of-freedom. Despite their increased application and a growing research interest in this area, many such systems have been designed without considering the natural manipulation skills and ergonomic preferences of the operators. Existing studies on tool interactions and natural manipulation skills of the operators are limited. In this manuscript, new technical developments in different aspects of robotic endovascular intervention including catheter instrumentation, intra-operative imaging and navigation techniques, as well as master/slave based robotic catheterization platforms are reviewed. We further address emerging trends and new research opportunities towards more widespread clinical acceptance of robotically assisted endovascular technologies.
Collapse
Affiliation(s)
- Hedyeh Rafii-Tari
- The Hamlyn Centre for Robotic Surgery, Imperial College London, London, SW7 2AZ, UK,
| | | | | |
Collapse
|
40
|
Krafft AJ, Zamecnik P, Maier F, de Oliveira A, Hallscheidt P, Schlemmer HP, Bock M. Passive marker tracking via phase-only cross correlation (POCC) for MR-guided needle interventions: Initial in vivo experience. Phys Med 2013; 29:607-14. [DOI: 10.1016/j.ejmp.2012.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 09/07/2012] [Accepted: 09/20/2012] [Indexed: 10/27/2022] Open
|
41
|
Hetts SW, Saeed M, Martin AJ, Evans L, Bernhardt AF, Malba V, Settecase F, Do L, Yee EJ, Losey A, Sincic R, Lillaney P, Roy S, Arenson RL, Wilson MW. Endovascular catheter for magnetic navigation under MR imaging guidance: evaluation of safety in vivo at 1.5T. AJNR Am J Neuroradiol 2013; 34:2083-91. [PMID: 23846795 DOI: 10.3174/ajnr.a3530] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Endovascular navigation under MR imaging guidance can be facilitated by a catheter with steerable microcoils on the tip. Not only do microcoils create visible artifacts allowing catheter tracking, but also they create a small magnetic moment permitting remote-controlled catheter tip deflection. A side product of catheter tip electrical currents, however, is the heat that might damage blood vessels. We sought to determine the upper boundary of electrical currents safely usable at 1.5T in a coil-tipped microcatheter system. MATERIALS AND METHODS Alumina tubes with solenoid copper coils were attached to neurovascular microcatheters with heat shrink-wrap. Catheters were tested in carotid arteries of 8 pigs. The catheters were advanced under x-ray fluoroscopy and MR imaging. Currents from 0 mA to 700 mA were applied to test heating and potential vascular damage. Postmortem histologic analysis was the primary endpoint. RESULTS Several heat-mitigation strategies demonstrated negligible vascular damage compared with control arteries. Coil currents ≤300 mA resulted in no damage (0/58 samples) compared with 9 (25%) of 36 samples for > 300-mA activations (P = .0001). Tip coil activation ≤1 minute and a proximal carotid guide catheter saline drip > 2 mL/minute also had a nonsignificantly lower likelihood of vascular damage. For catheter tip coil activations ≤300 mA for ≤1 minute in normal carotid flow, 0 of 43 samples had tissue damage. CONCLUSIONS Activations of copper coils at the tip of microcatheters at low currents in 1.5T MR scanners can be achieved without significant damage to blood vessel walls in a controlled experimental setting. Further optimization of catheter design and procedure protocols is necessary for safe remote control magnetic catheter guidance.
Collapse
Affiliation(s)
- S W Hetts
- Departments of Radiology and Biomedical Imaging
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Sharafi A, Martel S. Magnetic resonance tracking of catheters and mechatronic devices operating in the vascular network with an embedded photovoltaic-based microelectronic circuit. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2013; 2013:2952-5. [PMID: 24110346 DOI: 10.1109/embc.2013.6610159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Tracking of a catheter through the arterial system is critical in several medical interventions. To avoid excessive dose of x-ray irradiation, Magnetic Resonance Imaging (MRI) has been proposed. In such a case, a simple ferromagnetic sphere placed at the tip of the catheter could be used. However, due to the artifact created by the ferromagnetic core, it becomes impossible to gather an image of the tissues surrounding such a marker. Hence, in this paper we propose replacing the ferromagnetic marker with a microchip containing a coil and a photovoltaic cell. By radiating light to the photovoltaic cell, the coil generates a magnetic field which is detected as an artifact in MR images. By turning off the light, the effect of the coil is eliminated allowing images of tissues next to the marker to be taken. In this paper, simulated results based on experimental data from the preliminary designs suggest that this approach could be viable not only for catheters but also, it could potentially be used in various tools as well as mechatronic devices being moved inside the body.
Collapse
|
43
|
Zaun G, Zahedi Y, Maderwald S, Orzada S, Pütter C, Scherag A, Winterhager E, Ladd ME, Grümmer R. Repetitive exposure of mice to strong static magnetic fields in utero does not impair fertility in adulthood but may affect placental weight of offspring. J Magn Reson Imaging 2013; 39:683-90. [DOI: 10.1002/jmri.24208] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 04/12/2013] [Indexed: 12/21/2022] Open
Affiliation(s)
- Gregor Zaun
- Institute of Molecular Biology; University Hospital; University Duisburg-Essen; Germany
| | - Yasmin Zahedi
- Institute of Molecular Biology; University Hospital; University Duisburg-Essen; Germany
| | - Stefan Maderwald
- Erwin L. Hahn Institute for Magnetic Resonance Imaging; University Duisburg-Essen; Germany
| | - Stephan Orzada
- Erwin L. Hahn Institute for Magnetic Resonance Imaging; University Duisburg-Essen; Germany
- Department of Diagnostic and Interventional Radiology and Neuroradiology; University Hospital; University Duisburg-Essen; Germany
| | - Carolin Pütter
- Institute for Medical Informatics; Biometry and Epidemiology, University Hospital; University of Duisburg-Essen; Germany
| | - André Scherag
- Institute for Medical Informatics; Biometry and Epidemiology, University Hospital; University of Duisburg-Essen; Germany
| | - Elke Winterhager
- Institute of Molecular Biology; University Hospital; University Duisburg-Essen; Germany
| | - Mark E. Ladd
- Erwin L. Hahn Institute for Magnetic Resonance Imaging; University Duisburg-Essen; Germany
- Department of Diagnostic and Interventional Radiology and Neuroradiology; University Hospital; University Duisburg-Essen; Germany
| | - Ruth Grümmer
- Institute of Molecular Biology; University Hospital; University Duisburg-Essen; Germany
- Institute for Anatomy; University Hospital; University Duisburg-Essen; Germany
| |
Collapse
|
44
|
Duschka RL, Haegele J, Panagiotopoulos N, Wojtczyk H, Barkhausen J, Vogt FM, Buzug TM, Lüdtke-Buzug K. Fundamentals and Potential of Magnetic Particle Imaging. CURRENT CARDIOVASCULAR IMAGING REPORTS 2013. [DOI: 10.1007/s12410-013-9217-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
45
|
Initial In Vivo Experience With a Novel Type of MR-Safe Pushable Coils for MR-Guided Embolizations. Invest Radiol 2013; 48:485-91. [DOI: 10.1097/rli.0b013e3182856a6f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
46
|
Qin L, Schmidt EJ, Tse ZTH, Santos J, Hoge WS, Tempany-Afdhal C, Butts-Pauly K, Dumoulin CL. Prospective motion correction using tracking coils. Magn Reson Med 2013; 69:749-59. [PMID: 22565377 PMCID: PMC3416927 DOI: 10.1002/mrm.24310] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 03/31/2012] [Accepted: 04/04/2012] [Indexed: 11/10/2022]
Abstract
Intracavity imaging coils provide higher signal-to-noise than surface coils and have the potential to provide higher spatial resolution in shorter acquisition times. However, images from these coils suffer from physiologically induced motion artifacts, as both the anatomy and the coils move during image acquisition. We developed prospective motion-correction techniques for intracavity imaging using an array of tracking coils. The system had <50 ms latency between tracking and imaging, so that the images from the intracavity coil were acquired in a frame of reference defined by the tracking array rather than by the system's gradient coils. Two-dimensional gradient-recalled and three-dimensional electrocardiogram-gated inversion-recovery-fast-gradient-echo sequences were tested with prospective motion correction using ex vivo hearts placed on a moving platform simulating both respiratory and cardiac motion. Human abdominal tests were subsequently conducted. The tracking array provided a positional accuracy of 0.7 ± 0.5 mm, 0.6 ± 0.4 mm, and 0.1 ± 0.1 mm along the X, Y, and Z directions at a rate of 20 frames-per-second. The ex vivo and human experiments showed significant image quality improvements for both in-plane and through-plane motion correction, which although not performed in intracavity imaging, demonstrates the feasibility of implementing such a motion-correction system in a future design of combined tracking and intracavity coil.
Collapse
Affiliation(s)
- Lei Qin
- Department of Radiology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Kuntz J, Gupta R, Schönberg SO, Semmler W, Kachelrieß M, Bartling S. Real-time X-ray-based 4D image guidance of minimally invasive interventions. Eur Radiol 2013; 23:1669-77. [DOI: 10.1007/s00330-012-2761-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 11/24/2012] [Accepted: 11/28/2012] [Indexed: 12/18/2022]
|
48
|
Yao W, Schaeffter T, Seneviratne L, Althoefer K. Developing a Magnetic Resonance-Compatible Catheter for Cardiac Catheterization. J Med Device 2012. [DOI: 10.1115/1.4007281] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Magnetic Resonance Imaging (MRI) is a means to guide cardiac interventions and provide excellent soft tissue contrast while avoiding radiation hazards. This paper investigates and evaluates a new Magnetic Resonance (MR)-compatible catheter for cardiac catheterization. Important mechanical properties of the catheter are measured and investigated; these include flexibility, pushability, and torquability. The mechanical performance of the MR-compatible and steerable catheter is benchmarked against three commercially-available clinical ablation catheters that are not MR-compatible. The MR-compatibility of the proposed catheter is also evaluated through an experimental study inside a 1.5 T MRI scanner. The new catheter is shown to have a mechanical performance comparable to that of existing catheters while being MR compatible.
Collapse
Affiliation(s)
- Wei Yao
- Research Associate Division of Engineering, King's College London, Strand, London WC2R 2LS, UK e-mail:
| | - Tobias Schaeffter
- Professor Division of Imaging Sciences and Biomedical Engineering, King's College London, St. Thomas's Hospital, London SE1 7EH, UK e-mail:
| | - Lakmal Seneviratne
- Professor Division of Engineering, King's College London, Strand, London WC2R 2LS, UK; Khalifa University of Science, Technology and Research, P.O. Box 127788, Abu Dhabi, United Arab Emirates e-mail:
| | - Kaspar Althoefer
- Professor Department of Informatics, King's College London, Strand, London WC2R 2LS, UK e-mail:
| |
Collapse
|
49
|
Haegele J, Biederer S, Wojtczyk H, Gräser M, Knopp T, Buzug TM, Barkhausen J, Vogt FM. Toward cardiovascular interventions guided by magnetic particle imaging: first instrument characterization. Magn Reson Med 2012; 69:1761-7. [PMID: 22829518 DOI: 10.1002/mrm.24421] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Revised: 06/06/2012] [Accepted: 06/25/2012] [Indexed: 11/11/2022]
Abstract
Magnetic particle imaging has emerged as a new technique for the visualization and quantification of superparamagnetic iron oxide nanoparticles. It seems to be a very promising application for cardiovascular interventional radiology. A prerequisite for interventions is the artifact-free visualization of the required instruments and implants. Various commercially available catheters, guide wires, and a catheter experimentally coated with superparamagnetic iron oxide nanoparticles were tested regarding their signal characteristics using magnetic particle spectroscopy to evaluate their performance in magnetic particle imaging. The results indicate that signal-generating and non-signal-generating instruments can be distinguished. Furthermore, coating or loading non-signal-generating instruments with superparamagnetic iron oxide nanoparticles seems to be a promising approach, but optimized nanoparticles need yet to be developed.
Collapse
Affiliation(s)
- Julian Haegele
- Department of Radiology and Nuclear Medicine, University Hospital Schleswig-Holstein, Campus Luebeck, Luebeck, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Fandrey S, Weiss S, Müller J. A novel active MR probe using a miniaturized optical link for a 1.5-T MRI scanner. Magn Reson Med 2011; 67:148-55. [PMID: 21837807 DOI: 10.1002/mrm.23002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 04/20/2011] [Accepted: 04/21/2011] [Indexed: 11/07/2022]
Abstract
Applying an active intravascular MR catheter device that allows signal transmission from the catheter tip requires special means to avoid radiofrequency-induced heating. This article presents a novel, miniaturized all-optical active MR probe to use with real-time MRI in minimally invasive interventions for catheter guidance and intravascular imaging. An optical link transmits the received MR signals from the catheter tip to the MR receiver with inherently radiofrequency-safe optical fibers. Furthermore, power is supplied optically to the transmitter as well. The complete integration into a small tube of 6-Fr (2-mm diameter) size with a 7-Fr (2.33-mm diameter) rigid tubing was realized using chip components for the optical modulator and a novel miniaturized optical bench fabricated from silicon substrates with 3D self-aligning structures for fiber integration. In MRI phantom measurements, projection-based tip tracking and high-resolution imaging were successfully performed with the optical link inside a 1.5-T MRI scanner. Images were obtained in a homogeneous phantom liquid, and first pictures were acquired from inside a kiwi that demonstrates the potential of the MR-safe optical link. The signal-to-noise ratio has significantly improved compared with former systems, and it is demonstrated that the novel optical link exhibits a signal-to-noise ratio comparable to a direct electrical link.
Collapse
Affiliation(s)
- Stephan Fandrey
- Institute of Micro Systems Technology, Hamburg University of Technology, Hamburg, Germany.
| | | | | |
Collapse
|