1
|
Álvarez MGM, Madhuranthakam AJ, Udayakumar D. Quantitative non-contrast perfusion MRI in the body using arterial spin labeling. MAGMA (NEW YORK, N.Y.) 2024:10.1007/s10334-024-01188-1. [PMID: 39105949 DOI: 10.1007/s10334-024-01188-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 05/10/2024] [Accepted: 07/02/2024] [Indexed: 08/07/2024]
Abstract
Arterial spin labeling (ASL) is a non-invasive magnetic resonance imaging (MRI) method that enables the assessment and the quantification of perfusion without the need for an exogenous contrast agent. ASL was originally developed in the early 1990s to measure cerebral blood flow. The utility of ASL has since then broadened to encompass various organ systems, offering insights into physiological and pathological states. In this review article, we present a synopsis of ASL for quantitative non-contrast perfusion MRI, as a contribution to the special issue titled "Quantitative MRI-how to make it work in the body?" The article begins with an introduction to ASL principles, followed by different labeling strategies, such as pulsed, continuous, pseudo-continuous, and velocity-selective approaches, and their role in perfusion quantification. We proceed to address the technical challenges associated with ASL in the body and outline some of the innovative approaches devised to surmount these issues. Subsequently, we summarize potential clinical applications, challenges, and state-of-the-art ASL methods to quantify perfusion in some of the highly perfused organs in the thorax (lungs), abdomen (kidneys, liver, pancreas), and pelvis (placenta) of the human body. The article concludes by discussing future directions for successful translation of quantitative ASL in body imaging.
Collapse
Affiliation(s)
| | - Ananth J Madhuranthakam
- Department of Radiology, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390-9061, USA
- Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, TX, USA
| | - Durga Udayakumar
- Department of Radiology, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390-9061, USA.
- Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
2
|
Bao W, Chen C, Chen C, Zhang X, Miao H, Zhao X, Huang S, Li C. Association between estimated pulse wave velocity and risk of diabetes: A large sample size cohort study. Nutr Metab Cardiovasc Dis 2023; 33:1716-1724. [PMID: 37414667 DOI: 10.1016/j.numecd.2023.05.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/01/2023] [Accepted: 05/27/2023] [Indexed: 07/08/2023]
Abstract
BACKGROUND AND AIM Estimated pulse wave velocity (ePWV) measurements have good agreement with PWV measurements. However, the relationship between ePWV and the risk of new-onset diabetes remains unclear. Therefore, this study aimed to investigate whether ePWV was associated with new-onset diabetes. METHODS AND RESULTS Based on a secondary analysis of the Chinese Rich Health Care Group's cohort study, 211,809 participants who met the criteria were enrolled and divided into four groups based on the ePWV quartiles. Diabetes events are of interest as a result of the study. Over a mean follow-up of 3.12 years, 3000 male (1.41%) and 1173 female (0.55%) patients were diagnosed with new-onset diabetes. The cumulative incidence curves based on quartile subgroups showed that the Q4 group had a significantly higher overall incidence of diabetes than the other subgroups. A multivariate Cox regression analysis showed that ePWV was an independent predictor of new-onset diabetes (hazard ratio, 1.233; 95% confidence interval, 1.198-1.269; P < 0.001). The receiver operating characteristic curve showed that the predictive value was higher than for age and blood pressure. The ePWV was treated as a continuous variable using MaxStat, which identified that the best cut-off point for diabetes risk was 8.47 m/s. A stratified analysis showed that the association between ePWV and the risk of diabetes remained significant in multiple strata. CONCLUSIONS An elevated ePWV was independently associated with an increased risk of developing diabetes in Chinese adults. Thus, ePWV may be a reliable indicator of the risk of early diabetes.
Collapse
Affiliation(s)
- Wei Bao
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| | - Chunwei Chen
- Department of Cardiology, Xuzhou Central Hospital, Xuzhou, Jiangsu 221009, China
| | - Chengwen Chen
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| | - Xia Zhang
- The Xuzhou Clinical College of Xuzhou Medical University, Xuzhou, Jiangsu 221009, China
| | - Hao Miao
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| | - Xinliang Zhao
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| | - Shuo Huang
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| | - Chengzong Li
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221000, China.
| |
Collapse
|
3
|
Taso M, Aramendía-Vidaurreta V, Englund EK, Francis S, Franklin S, Madhuranthakam AJ, Martirosian P, Nayak KS, Qin Q, Shao X, Thomas DL, Zun Z, Fernández-Seara MA. Update on state-of-the-art for arterial spin labeling (ASL) human perfusion imaging outside of the brain. Magn Reson Med 2023; 89:1754-1776. [PMID: 36747380 DOI: 10.1002/mrm.29609] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/09/2023] [Accepted: 01/16/2023] [Indexed: 02/08/2023]
Abstract
This review article provides an overview of developments for arterial spin labeling (ASL) perfusion imaging in the body (i.e., outside of the brain). It is part of a series of review/recommendation papers from the International Society for Magnetic Resonance in Medicine (ISMRM) Perfusion Study Group. In this review, we focus on specific challenges and developments tailored for ASL in a variety of body locations. After presenting common challenges, organ-specific reviews of challenges and developments are presented, including kidneys, lungs, heart (myocardium), placenta, eye (retina), liver, pancreas, and muscle, which are regions that have seen the most developments outside of the brain. Summaries and recommendations of acquisition parameters (when appropriate) are provided for each organ. We then explore the possibilities for wider adoption of body ASL based on large standardization efforts, as well as the potential opportunities based on recent advances in high/low-field systems and machine-learning. This review seeks to provide an overview of the current state-of-the-art of ASL for applications in the body, highlighting ongoing challenges and solutions that aim to enable more widespread use of the technique in clinical practice.
Collapse
Affiliation(s)
- Manuel Taso
- Division of MRI Research, Department of Radiology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | | | - Erin K Englund
- Department of Radiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Susan Francis
- Sir Peter Mansfield Imaging Center, University of Nottingham, Nottingham, UK
| | - Suzanne Franklin
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
- Center for Image Sciences, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Ananth J Madhuranthakam
- Department of Radiology, Advanced Imaging Research Center, and Biomedical Engineering, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Petros Martirosian
- Section on Experimental Radiology, Department of Radiology, University Hospital of Tuebingen, Tuebingen, Germany
| | - Krishna S Nayak
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, California, USA
| | - Qin Qin
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Maryland, USA
| | - Xingfeng Shao
- Laboratory of FMRI Technology (LOFT), Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - David L Thomas
- Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Zungho Zun
- Department of Radiology, Weill Cornell Medicine, New York, New York, USA
| | | |
Collapse
|
4
|
Dynamic Contrast-Enhanced Magnetic Resonance Imaging for Measuring Perfusion in Pancreatic Ductal Adenocarcinoma and Different Tumor Grade: A Preliminary Single Center Study. Diagnostics (Basel) 2023; 13:diagnostics13030521. [PMID: 36766626 PMCID: PMC9914475 DOI: 10.3390/diagnostics13030521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/18/2023] [Accepted: 01/24/2023] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Dynamic contrast-enhanced magnetic resonance imaging is a noninvasive imaging modality that can supply information regarding the tumor anatomy and physiology. The aim of the study was to analyze DCE-MRI perfusion parameters in normal pancreatic parenchymal tissue and PDAC and to evaluate the efficacy of this diagnostic modality in determining the tumor grade. METHODS A single-center retrospective study was performed. A total of 28 patients with histologically proven PDAC underwent DCE-MRI; the control group enrolled 14 patients with normal pancreatic parenchymal tissue; the radiological findings were compared with histopathological data. The study patients were further grouped according to the differentiation grade (G value): well- and moderately differentiated and poorly differentiated PDAC. RESULTS The median values of Ktrans, kep and iAUC were calculated lower in PDAC compared with the normal pancreatic parenchymal tissue (p < 0.05). The mean value of Ve was higher in PDAC, compared with the normal pancreatic tissue (p < 0.05). Ktrans, kep and iAUC were lower in poorly differentiated PDAC, whereas Ve showed no differences between groups. CONCLUSIONS Ve and iAUC DCE-MRI perfusion parameters are important as independent diagnostic criteria predicting the probability of PDAC; the Ktrans and iAUC DCE-MRI perfusion parameters may serve as effective independent prognosticators preoperatively identifying poorly differentiated PDAC.
Collapse
|
5
|
Abstract
RATIONALE Previous studies on the relationship between diabetes and arterial stiffness were mostly cross-sectional. A few longitudinal studies focused on one single direction. Whether the association between arterial stiffness and diabetes is bidirectional remains unclear to date. OBJECTIVE To explore the temporal relationship between arterial stiffness and fasting blood glucose (FBG) status. METHODS AND RESULTS Included were 14 159 participants of the Kailuan study with assessment of brachial-ankle pulse wave velocity (baPWV) from 2010 to 2015, and free of diabetes, cardiovascular and cerebrovascular diseases, and chronic kidney disease at baseline. FBG and baPWV were repeatedly measured at baseline and follow-ups. Cox proportional hazard regression model was used to estimate hazard ratios and 95% confidence intervals (CIs) of incident diabetes across baseline baPWV groups: <1400 cm/s (ref), 1400≤ baPWV <1800 cm/s, and ≥1800 cm/s. Path analysis was used to analyze the possible temporal causal relationship between baPWV and FBG, among 8956 participants with repeated assessment of baPWV and FBG twice in 2010 to 2017. The mean baseline age of the observed population was 48.3±12.0 years. During mean 3.72 years of follow-up, 979 incident diabetes cases were identified. After adjusting for potential confounders, the hazard ratio (95% CI) for risk of diabetes was 1.59 (1.34-1.88) for the borderline arterial stiffness group and 2.11 (1.71-2.61) for the elevated arterial stiffness group, compared with the normal ideal arterial stiffness group. In the path analysis, baseline baPWV was associated with follow-up FBG (the standard regression coefficient was 0.09 [95% CI, 0.05-0.10]). In contrast, the standard regression coefficient of baseline FBG for follow-up baPWV (β=0.00 [95% CI, -0.02 to 0.02]) was not significant. CONCLUSIONS Arterial stiffness, as measured by baPWV, was associated with risk of developing diabetes. Arterial stiffness appeared to precede the increase in FBG.
Collapse
Affiliation(s)
- Mengyi Zheng
- Graduate School (M.Z., Y.S.), North China University of Science and Technology, Kailuan General Hospital, Tangshan, Hebei Province, China.,Department of Cardiology (M.Z., S.C., Y.S., Q.Z., S.W.), North China University of Science and Technology, Kailuan General Hospital, Tangshan, Hebei Province, China
| | - Xinyuan Zhang
- Department of Nutritional Sciences, the Pennsylvania State University, University Park, PA (X.Z., X.G.)
| | - Shuohua Chen
- Department of Cardiology (M.Z., S.C., Y.S., Q.Z., S.W.), North China University of Science and Technology, Kailuan General Hospital, Tangshan, Hebei Province, China
| | - Yongjian Song
- Graduate School (M.Z., Y.S.), North China University of Science and Technology, Kailuan General Hospital, Tangshan, Hebei Province, China.,Department of Cardiology (M.Z., S.C., Y.S., Q.Z., S.W.), North China University of Science and Technology, Kailuan General Hospital, Tangshan, Hebei Province, China
| | - Quanhui Zhao
- Department of Cardiology (M.Z., S.C., Y.S., Q.Z., S.W.), North China University of Science and Technology, Kailuan General Hospital, Tangshan, Hebei Province, China
| | - Xiang Gao
- Department of Nutritional Sciences, the Pennsylvania State University, University Park, PA (X.Z., X.G.)
| | - Shouling Wu
- Department of Cardiology (M.Z., S.C., Y.S., Q.Z., S.W.), North China University of Science and Technology, Kailuan General Hospital, Tangshan, Hebei Province, China
| |
Collapse
|
6
|
Abstract
MR imaging can be optimized to evaluate a spectrum of pancreatic disorders with advanced sequences aimed to provide quantitative results and increase MR diagnostic capabilities. The pancreas remains a challenging organ to image because of its small size and location deep within the body. Besides its anatomic limitations, pancreatic pathology can be difficult to identify in the early stages. For example, subtle changes in ductal anatomy and parenchymal composition seen in early chronic pancreatitis are imperceptible with other modalities, such as computed tomography. This article reviews the application of MR imaging techniques and emerging MR sequences used in pancreas imaging.
Collapse
Affiliation(s)
- Danielle V Hill
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 550 North University Boulevard, Suite UH0663, Indianapolis, IN 46202, USA
| | - Temel Tirkes
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 550 North University Boulevard, Suite UH0663, Indianapolis, IN 46202, USA.
| |
Collapse
|
7
|
Virostko J. Quantitative Magnetic Resonance Imaging of the Pancreas of Individuals With Diabetes. Front Endocrinol (Lausanne) 2020; 11:592349. [PMID: 33343509 PMCID: PMC7747766 DOI: 10.3389/fendo.2020.592349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/28/2020] [Indexed: 12/11/2022] Open
Abstract
Magnetic resonance imaging (MRI) has the potential to improve our understanding of diabetes and improve both diagnosis and monitoring of the disease. Although the spatial resolution of MRI is insufficient to directly image the endocrine pancreas in people, the increasing awareness that the exocrine pancreas is also involved in diabetes pathogenesis has spurred new MRI applications. These techniques build upon studies of exocrine pancreatic diseases, for which MRI has already developed into a routine clinical tool for diagnosis and monitoring of pancreatic cancer and pancreatitis. By adjusting the imaging contrast and carefully controlling image acquisition and processing, MRI can quantify a variety of tissue pathologies. This review introduces a number of quantitative MRI techniques that have been applied to study the diabetic pancreas, summarizes progress in validating and standardizing each technique, and discusses the need for image analyses that account for spatial heterogeneity in the pancreas.
Collapse
Affiliation(s)
- John Virostko
- Department of Diagnostic Medicine, University of Texas at Austin, Austin, TX, United States
- Livestrong Cancer Institutes, University of Texas at Austin, Austin, TX, United States
- Department of Oncology, University of Texas at Austin, Austin, TX, United States
- *Correspondence: John Virostko,
| |
Collapse
|
8
|
Taso M, Papadopoulou F, Smith MP, Tsai LL, Mortele KJ, Alsop DC. Pancreatic perfusion modulation following glucose stimulation assessed by noninvasive arterial spin labeling (ASL) MRI. J Magn Reson Imaging 2019; 51:854-860. [PMID: 31410924 DOI: 10.1002/jmri.26899] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/29/2019] [Accepted: 07/30/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND More than 100 million adults in the US suffer from prediabetes or type-2 diabetes. Noninvasive imaging of pancreas endocrine function might provide a surrogate marker of β-cell functional integrity loss linked to this disease. PURPOSE To noninvasively assess pancreatic blood-flow modulation following a glucose challenge using arterial spin labeling (ASL) MRI. STUDY TYPE Prospective. SUBJECTS Fourteen adults (30 ± 7 years old, 3M/11F, body mass index [BMI] = 24 ± 3 kg.m-2 ). FIELD STRENGTH/SEQUENCE 3T MRI / background-suppressed pseudocontinuous PCASL preparation with single-shot fast-spin-echo (FSE) readout before and after an oral glucose challenge using either fruit juice (n = 7) or over-the-counter glucose gel (n = 7). ASSESSMENT Subjects were fasting prior to initiation of oral stimulation, then dynamic perfusion measurements were performed every 2 minutes for 30 minutes. We quantified absolute blood flow at each timepoint. STATISTICAL TESTS Repeated-measures analysis of variance (ANOVA) followed by paired t-tests to assess for a significant effect of glucose challenge on measured perfusion. RESULTS Measured basal blood flow was 187 ± 53 mL/100g/min. A significant blood flow increase of +38 ± 26% was observed 10 minutes poststimulation (P < 0.05) and continuing until the end of the experiment. The gel stimulation provided the most consistent results, with an early rise followed by an additional later increase consistent with the known pancreatic insulin response to elevated blood glucose. Across-subject variations in blood flow increase were partially attributable to basal flow, with a negative correlation of r = -0.84 between basal and maximal relative flow increase in the gel group. DATA CONCLUSION ASL can be used to measure pancreatic flow in response to a glucose challenge, which could be linked to insulin release and secretion. This paradigm might be useful to characterize disorders of glucose regulation. LEVEL OF EVIDENCE 1 Technical Efficacy: Stage 3 J. Magn. Reson. Imaging 2020;51:854-860.
Collapse
Affiliation(s)
- Manuel Taso
- Division of MRI Research, Department of Radiology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Fotini Papadopoulou
- Division of MRI Research, Department of Radiology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Martin P Smith
- Division of MRI Research, Department of Radiology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Leo L Tsai
- Division of MRI Research, Department of Radiology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Koenraad J Mortele
- Division of MRI Research, Department of Radiology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - David C Alsop
- Division of MRI Research, Department of Radiology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
9
|
Donati F, Boraschi P, Cervelli R, Pacciardi F, Lombardo C, Boggi U, Falaschi F, Caramella D. 3 T MR perfusion of solid pancreatic lesions using dynamic contrast-enhanced DISCO sequence: Usefulness of qualitative and quantitative analyses in a pilot study. Magn Reson Imaging 2019; 59:105-113. [DOI: 10.1016/j.mri.2019.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 02/13/2019] [Accepted: 03/04/2019] [Indexed: 12/15/2022]
|
10
|
Intra- and interobserver reproducibility of pancreatic perfusion by computed tomography. Sci Rep 2019; 9:6043. [PMID: 30988325 PMCID: PMC6465241 DOI: 10.1038/s41598-019-42519-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 04/02/2019] [Indexed: 01/14/2023] Open
Abstract
The aim of this study was to measure intra- and interobserver agreement among radiologists in the assessment of pancreatic perfusion by computed tomography (CT). Thirty-nine perfusion CT scans were analyzed. The following parameters were measured by three readers: blood flow (BF), blood volume (BV), mean transit time (MTT) and time to peak (TTP). Statistical analysis was performed using the Bland-Altman method, linear mixed model analysis, and intraclass correlation coefficient (ICC). There was no significant intraobserver variability for the readers regarding BF, BV or TTP. There were session effects for BF in the pancreatic body and MTT in the pancreatic tail and whole pancreas. There were reader effects for BV in the pancreatic head, pancreatic body and whole pancreas. There were no effects for the interaction between session and reader for any perfusion parameter. ICCs showed substantial agreement for the interobserver measurements and moderate to substantial agreement for the intraobserver measurements, with the exception of MTT. In conclusion, satisfactory reproducibility of measurements was observed for TTP in all pancreatic regions, for BF in the head and BV in the tail, and these parameters seem to ensure a reasonable estimation of pancreatic perfusion.
Collapse
|
11
|
Siddiqui N, Vendrami CL, Chatterjee A, Miller FH. Advanced MR Imaging Techniques for Pancreas Imaging. Magn Reson Imaging Clin N Am 2019; 26:323-344. [PMID: 30376973 DOI: 10.1016/j.mric.2018.03.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Advances in MR imaging with optimization of hardware, software, and techniques have allowed for an increased role of MR in the identification and characterization of pancreatic disorders. Diffusion-weighted imaging improves the detection and staging of pancreatic neoplasms and aides in the evaluation of acute, chronic and autoimmune pancreatitis. The use of secretin-enhanced MR cholangiography improves the detection of morphologic ductal anomalies, and assists in the characterization of pancreatic cystic lesions and evaluation of acute and chronic pancreatitis. Emerging MR techniques such as MR perfusion, T1 mapping/relaxometry, and MR elastography show promise in further evaluating pancreatic diseases.
Collapse
Affiliation(s)
- Nasir Siddiqui
- Department of Radiology, DuPage Medical Group, 430 Warrenville Road, Lisle, IL 60532, USA
| | - Camila Lopes Vendrami
- Department of Radiology, Northwestern Memorial Hospital, Northwestern University Feinberg School of Medicine, 676 North St. Clair Street Suite 800, Chicago, IL 60611, USA
| | - Argha Chatterjee
- Department of Radiology, Northwestern Memorial Hospital, Northwestern University Feinberg School of Medicine, 676 North St. Clair Street Suite 800, Chicago, IL 60611, USA
| | - Frank H Miller
- Department of Radiology, Northwestern Memorial Hospital, Northwestern University Feinberg School of Medicine, 676 North St. Clair Street Suite 800, Chicago, IL 60611, USA.
| |
Collapse
|
12
|
Baleato-González S, García-Figueiras R, Luna A, Domínguez-Robla M, Vilanova J. Functional imaging in pancreatic disease. RADIOLOGIA 2018. [DOI: 10.1016/j.rxeng.2018.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Baleato-González S, García-Figueiras R, Luna A, Domínguez-Robla M, Vilanova JC. Functional imaging in pancreatic disease. RADIOLOGIA 2018; 60:451-464. [PMID: 30236460 DOI: 10.1016/j.rx.2018.07.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 07/19/2018] [Accepted: 07/23/2018] [Indexed: 12/12/2022]
Abstract
In addition to the classical morphological evaluation of pancreatic disease, the constant technological advances in imaging techniques based fundamentally on computed tomography and magnetic resonance imaging have enabled the quantitative functional and molecular evaluation of this organ. In many cases, this imaging-based information results in substantial changes to patient management and can be a fundamental tool for the development of biomarkers. The aim of this article is to review the role of emerging functional and molecular techniques based on computed tomography and magnetic resonance imaging in the evaluation of pancreatic disease.
Collapse
Affiliation(s)
- S Baleato-González
- Departamento de Radiología, Complexo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, A Coruña, España.
| | - R García-Figueiras
- Departamento de Radiología, Complexo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, A Coruña, España
| | - A Luna
- Grupo Health Time. Director - Advanced Medical Imaging, Sercosa (Servicio de Radiología Computerizada), Clínica Las Nieves, Jaén, España
| | - M Domínguez-Robla
- Departamento de Radiología, Complexo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, A Coruña, España
| | - J C Vilanova
- Departamento de Radiología, Clínica Girona-Hospital Santa Caterina, Girona, España
| |
Collapse
|
14
|
Taso M, Guidon A, Zhao L, Mortele KJ, Alsop DC. Pancreatic perfusion and arterial-transit-time quantification using pseudocontinuous arterial spin labeling at 3T. Magn Reson Med 2018; 81:542-550. [DOI: 10.1002/mrm.27435] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/11/2018] [Accepted: 06/06/2018] [Indexed: 12/24/2022]
Affiliation(s)
- Manuel Taso
- Division of MRI Research, Department of Radiology; Beth Israel Deaconess Medical Center; Boston Massachusetts
- Harvard Medical School; Boston Massachusetts
| | - Arnaud Guidon
- Global MR Applications and Workflow; GE Healthcare; Boston Massachusetts
| | - Li Zhao
- Division of MRI Research, Department of Radiology; Beth Israel Deaconess Medical Center; Boston Massachusetts
- Harvard Medical School; Boston Massachusetts
| | - Koenraad J. Mortele
- Division of MRI Research, Department of Radiology; Beth Israel Deaconess Medical Center; Boston Massachusetts
- Harvard Medical School; Boston Massachusetts
| | - David C. Alsop
- Division of MRI Research, Department of Radiology; Beth Israel Deaconess Medical Center; Boston Massachusetts
- Harvard Medical School; Boston Massachusetts
| |
Collapse
|
15
|
Schawkat K, Ith M, Christe A, Kühn W, Chittazhathu Y, Bains L, Runge VM, Heverhagen JT. Dynamic non-invasive ASL perfusion imaging of a normal pancreas with secretin augmented MR imaging. Eur Radiol 2018; 28:2389-2396. [PMID: 29302785 DOI: 10.1007/s00330-017-5227-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 11/23/2017] [Accepted: 11/30/2017] [Indexed: 02/07/2023]
Abstract
OBJECTIVES To investigate prospectively the repeatability of pancreatic perfusion measurements using arterial spin labelling (ASL) and to determine the increase in perfusion due to secretin stimulation. MATERIAL AND METHODS An (FAIR)-TrueFISP ASL sequence was applied to determine the perfusion of the pancreatic head in a 3T MRI scanner. Ten healthy volunteers (four men, six women: mean age 28.5 ± 4.6 years; age range 25-40 years) were investigated twice within 1 week. The inter-individual variability was calculated using the standard deviation. Intra-individual agreement between the first and second scan was estimated using the Pearson correlation coefficient. A paired Wilcoxon rank-sum test was used to compare perfusion at baseline (BL) and during secretin stimulation. RESULTS The mean BL perfusion of the pancreatic head was 285 ± 96 mL/100 g/min with an intra-individual correlation coefficient of 0.67 (strong) for repeated measurements. Secretin stimulation led to a significant increase (by 81%) in perfusion of the pancreatic head to 486 ±156 mL/100 g/min (p=0.002) with an intra-individual correlation of 0.29 (weak). A return to BL values was observed after 239 ± 92 s with a moderate intra-individual correlation coefficient of 0.42 for repeat measurements. CONCLUSION Dynamic non-invasive ASL imaging of the pancreas permitted quantification of pancreatic perfusion in a clinically applicable setting. KEY POINTS • ASL imaging of the pancreas permitted quantification of pancreatic perfusion • Secretin stimulation led to a significant increase in pancreatic perfusion • The intra-individual correlation coefficient for baseline perfusion was strong for repeated measurements.
Collapse
Affiliation(s)
- Khoschy Schawkat
- Department of Diagnostic, Interventional and Pediatric Radiology, Inselspital, University Hospital, University of Bern, Freiburgstrasse, 3010, Bern, Switzerland.
| | - Michael Ith
- Department of Diagnostic, Interventional and Pediatric Radiology, Inselspital, University Hospital, University of Bern, Freiburgstrasse, 3010, Bern, Switzerland
| | - Andreas Christe
- Department of Radiology, Tiefenau Hospital, Bern, Switzerland
| | - Wolfgang Kühn
- Department of Diagnostic, Interventional and Pediatric Radiology, Inselspital, University Hospital, University of Bern, Freiburgstrasse, 3010, Bern, Switzerland
| | - Yojena Chittazhathu
- Department of Diagnostic, Interventional and Pediatric Radiology, Inselspital, University Hospital, University of Bern, Freiburgstrasse, 3010, Bern, Switzerland
| | - Lauren Bains
- Department of Diagnostic, Interventional and Pediatric Radiology, Inselspital, University Hospital, University of Bern, Freiburgstrasse, 3010, Bern, Switzerland
| | - Val Murray Runge
- Department of Diagnostic, Interventional and Pediatric Radiology, Inselspital, University Hospital, University of Bern, Freiburgstrasse, 3010, Bern, Switzerland
| | - Johannes T Heverhagen
- Department of Diagnostic, Interventional and Pediatric Radiology, Inselspital, University Hospital, University of Bern, Freiburgstrasse, 3010, Bern, Switzerland
- Department of Clinical Research, University of Bern, Bern, Switzerland
| |
Collapse
|
16
|
Barkai U, Rotem A, de Vos P. Survival of encapsulated islets: More than a membrane story. World J Transplant 2016; 6:69-90. [PMID: 27011906 PMCID: PMC4801806 DOI: 10.5500/wjt.v6.i1.69] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 11/02/2015] [Accepted: 12/20/2015] [Indexed: 02/05/2023] Open
Abstract
At present, proven clinical treatments but no cures are available for diabetes, a global epidemic with a huge economic burden. Transplantation of islets of Langerhans by their infusion into vascularized organs is an experimental clinical protocol, the first approach to attain cure. However, it is associated with lifelong use of immunosuppressants. To overcome the need for immunosuppression, islets are encapsulated and separated from the host immune system by a permselective membrane. The lead material for this application is alginate which was tested in many animal models and a few clinical trials. This review discusses all aspects related to the function of transplanted encapsulated islets such as the basic requirements from a permselective membrane (e.g., allowable hydrodynamic radii, implications of the thickness of the membrane and relative electrical charge). Another aspect involves adequate oxygen supply, which is essential for survival/performance of transplanted islets, especially when using large retrievable macro-capsules implanted in poorly oxygenated sites like the subcutis. Notably, islets can survive under low oxygen tension and are physiologically active at > 40 Torr. Surprisingly, when densely crowded, islets are fully functional under hyperoxic pressure of up to 500 Torr (> 300% of atmospheric oxygen tension). The review also addresses an additional category of requirements for optimal performance of transplanted islets, named auxiliary technologies. These include control of inflammation, apoptosis, angiogenesis, and the intra-capsular environment. The review highlights that curing diabetes with a functional bio-artificial pancreas requires optimizing all of these aspects, and that significant advances have already been made in many of them.
Collapse
|
17
|
Luna A, Pahwa S, Bonini C, Alcalá-Mata L, Wright KL, Gulani V. Multiparametric MR Imaging in Abdominal Malignancies. Magn Reson Imaging Clin N Am 2016; 24:157-186. [PMID: 26613880 PMCID: PMC4974463 DOI: 10.1016/j.mric.2015.08.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Modern MR imaging protocols can yield both anatomic and functional information for the assessment of hepatobiliary and pancreatic malignancies. Diffusion-weighted imaging is fully integrated into state-of-the-art protocols for tumor detection, characterization, and therapy monitoring. Hepatobiliary contrast agents have gained ground in the evaluation of focal liver lesions during the last years. Perfusion MR imaging is expected to have a central role for monitoring therapy in body tumors treated with antivascular drugs. Approaches such as Magnetic resonance (MR) elastography and (1)H-MR spectroscopy are still confined to research centers, but with the potential to grow in a short time frame.
Collapse
Affiliation(s)
- Antonio Luna
- Department of Radiology, Health Time, Carmelo Torres 2, Jaén 23006, Spain; Department of Radiology, University Hospitals of Cleveland, Case Western Reserve University, Cleveland, OH, USA.
| | - Shivani Pahwa
- Department of Radiology, University Hospitals of Cleveland, Case Western Reserve University, Cleveland, OH, USA
| | | | - Lidia Alcalá-Mata
- Department of Radiology, Health Time, Carmelo Torres 2, Jaén 23006, Spain
| | - Katherine L Wright
- Department of Radiology, University Hospitals of Cleveland, Case Western Reserve University, Cleveland, OH, USA
| | - Vikas Gulani
- Department of Radiology, Case Comprehensive Cancer Center, University Hospitals of Cleveland, Case Western Reserve University, Cleveland, OH, USA; Department of Urology, Case Comprehensive Cancer Center, University Hospitals of Cleveland, Case Western Reserve University, Cleveland, OH, USA; Department of Biomedical Engineering, Case Comprehensive Cancer Center, University Hospitals of Cleveland, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
18
|
Cox EF, Smith JK, Chowdhury AH, Lobo DN, Francis ST, Simpson J. Temporal assessment of pancreatic blood flow and perfusion following secretin stimulation using noninvasive MRI. J Magn Reson Imaging 2015; 42:1233-40. [PMID: 25787269 DOI: 10.1002/jmri.24889] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 03/05/2015] [Indexed: 01/12/2023] Open
Abstract
PURPOSE To dynamically quantify pancreatic perfusion and flow within the arteries supplying the pancreas in response to secretin stimulation. MATERIALS AND METHODS Twelve healthy male subjects were scanned at 1.5T with arterial spin labeling to measure tissue perfusion and phase contrast magnetic resonance imaging (MRI) to measure vessel flow. Superior mesenteric (SMA), gastroduodenal (GDA), common hepatic (HA), and splenic (SA) arterial flow and pancreatic perfusion were serially measured for 50 minutes following 1 IU/kg intravenous secretin. The significance of differences between timepoints was tested using a repeated measures one-way analysis of variance (ANOVA). RESULTS Baseline blood flow (mean ± SEM or median [IQR]) for SMA, HA, SA, and GDA was 7.6 ± 1.3, 4.0 ± 0.5, 8.2 ± 0.8, and 0.9 (0.8-1.4) ml/s, respectively. Baseline pancreatic perfusion was 200 ± 25 ml/100g/min. Blood flow increased in the SMA (234%, P < 0.0001) and GDA (155%, P = 0.015) immediately after secretin injection. Reduced HA blood flow was observed after 10 minutes (P = 0.066) with no change in SA flow (P = 0.533). Increased pancreatic perfusion was maintained for 40 minutes after injection with a maximal increase at 5 minutes (16.8%, P = 0.025). CONCLUSION Intravenous secretin resulted in significant temporal changes in pancreatic perfusion and arterial blood flow.
Collapse
Affiliation(s)
- Eleanor F Cox
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Janette K Smith
- Division of Gastrointestinal Surgery, Nottingham Digestive Diseases Centre National Institute for Health Research Biomedical Research Unit, Nottingham University Hospitals NHS Trust and the University of Nottingham, Queen's Medical Centre, Nottingham, UK
| | - Abeed H Chowdhury
- Division of Gastrointestinal Surgery, Nottingham Digestive Diseases Centre National Institute for Health Research Biomedical Research Unit, Nottingham University Hospitals NHS Trust and the University of Nottingham, Queen's Medical Centre, Nottingham, UK
| | - Dileep N Lobo
- Division of Gastrointestinal Surgery, Nottingham Digestive Diseases Centre National Institute for Health Research Biomedical Research Unit, Nottingham University Hospitals NHS Trust and the University of Nottingham, Queen's Medical Centre, Nottingham, UK
| | - Susan T Francis
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - John Simpson
- Department of General Surgery, Harrogate District Hospital, Lancaster Park Road, Harrogate, N Yorks, UK
| |
Collapse
|
19
|
Ferré JC, Bannier E, Raoult H, Mineur G, Carsin-Nicol B, Gauvrit JY. Arterial spin labeling (ASL) perfusion: Techniques and clinical use. Diagn Interv Imaging 2013; 94:1211-23. [DOI: 10.1016/j.diii.2013.06.010] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
20
|
Ferré JC, Bannier E, Raoult H, Mineur G, Carsin-Nicol B, Gauvrit JY. Perfusion par arterial spin labeling (ASL) : technique et mise en œuvre clinique. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.jradio.2013.04.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Schraml C, Schwenzer NF, Claussen CD, Martirosian P. Examination of Tissue Perfusion by Arterial Spin Labeling (ASL). CURRENT RADIOLOGY REPORTS 2013. [DOI: 10.1007/s40134-013-0009-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
Buchbender S, Obenauer S, Mohrmann S, Martirosian P, Buchbender C, Miese F, Wittsack H, Miekley M, Antoch G, Lanzman R. Arterial spin labelling perfusion MRI of breast cancer using FAIR TrueFISP: Initial results. Clin Radiol 2013; 68:e123-7. [DOI: 10.1016/j.crad.2012.10.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 10/08/2012] [Accepted: 10/11/2012] [Indexed: 10/27/2022]
|
23
|
Katada Y, Shukuya T, Kawashima M, Nozaki M, Imai H, Natori T, Tamano M. A comparative study between arterial spin labeling and CT perfusion methods on hepatic portal venous flow. Jpn J Radiol 2012; 30:863-9. [PMID: 22986750 DOI: 10.1007/s11604-012-0127-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 08/20/2012] [Indexed: 12/24/2022]
Abstract
PURPOSE The purpose of this study was to evaluate the feasibility and potential usefulness of unenhanced magnetic resonance (MR) hepatic portal perfusion using arterial spin labeling (ASL) among healthy volunteers and hepatocellular carcinoma patients. MATERIALS AND METHODS The five healthy volunteers underwent unenhanced MR perfusion with inversion time 2 (TI2) values at 500-ms intervals between 2,000 and 4,000 ms, and the 12 patients underwent unenhanced MR perfusion using ASL and computed tomography (CT) perfusion during superior mesenteric artery (SMA) portography. The regions of interest were placed in both the right and left lobes of the liver or both the right anterior and posterior segments of the liver and were placed over the tumor if a lesion was located within a particular perfusion study slice. RESULTS In the healthy volunteer study, perfusion rate in hepatic parenchyma showed a peak at the TI2 value of 3,000 ms (254.3 ml/min/100 g ± 58.3). In patients, a fair correlation was observed between CT and MR perfusion (r = 0.795, P < 0.01). CONCLUSION Our results demonstrate a significant fair correlation between unenhanced MR hepatic portal perfusion imaging using ASL and CT perfusion during SMA portography.
Collapse
Affiliation(s)
- Yoshiaki Katada
- Department of Radiology, Dokkyo Medical University Koshigaya Hospital, 2-1-50, Minami-Koshigaya, Koshigaya, Saitama 343-8555, Japan.
| | | | | | | | | | | | | |
Collapse
|
24
|
Current problems and future opportunities of abdominal magnetic resonance imaging at higher field strengths. Top Magn Reson Imaging 2011; 21:141-8. [PMID: 21847033 DOI: 10.1097/rmr.0b013e3181e8f9b9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Introduction of high-field-strength whole-body MR scanners to clinical routine made abdominal magnetic resonance (MR) imaging widely available. Higher field strength provides improved signal yield, but other issues such as shorter wavelength and increased power deposition of radiofrequency in tissue must also be taken into account. This review describes current problems and future opportunities of abdominal MR imaging at 3.0 T under special consideration of relevant physical properties and technical challenges: impact of higher field strength on signal-to-noise ratio, Larmor frequency, and chemical shift effects are elucidated in detail. Furthermore, changes in longitudinal and transverse relaxation times as well as increased susceptibility effects at 3.0 T are reported. General safety issues and limitations in radiofrequency power deposition are discussed. Subsequently, implications of the previously mentioned changed MR properties at 3.0 T on clinical abdominal examinations applying different sequence types are described.
Collapse
|
25
|
Kawashima M, Katada Y, Shukuya T, Kojima M, Nozaki M. MR perfusion imaging using the arterial spin labeling technique for breast cancer. J Magn Reson Imaging 2011; 35:436-40. [DOI: 10.1002/jmri.22882] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 10/10/2011] [Indexed: 12/22/2022] Open
|
26
|
Rusinek H, Brys M, Glodzik L, Switalski R, Tsui WH, Haas F, McGorty K, Chen Q, de Leon MJ. Hippocampal blood flow in normal aging measured with arterial spin labeling at 3T. Magn Reson Med 2011; 65:128-37. [PMID: 20939094 DOI: 10.1002/mrm.22611] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Due to methodological difficulties related to the small size, variable distribution of hippocampal arteries, and the location of the hippocampus in the proximity of middle cranial fossa, little is known about hippocampal blood flow (HBF). We have tested the utility of a pulsed arterial spin labeling sequence based on multi-shot true fast imaging in steady precession to measure HBF in 34 normal volunteers (17 women, 17 men, 26-92 years old). Flow sensitivity to a mild hypercapnic challenge was also examined. Coregistered 3D MPRAGE sequence was used to eliminate from hippocampal and cortical regions of interest all voxel with <75% of gray matter. Large blood vessels were also excluded. HBF in normal volunteers averaged 61.2 ± 9.0 mL/(100 g min). There was no statistically significant age or gender effect. Under a mild hypercapnia challenge (end tidal CO(2) pressure increase of 6.8 ± 1.9 mmHg over the baseline), HBF response was 14.1 ± 10.8 mL/(100 g min), whereas cortical gray matter flow increased by 18.0 ± 12.2 mL/(100 g min). Flow response among women was significantly larger than in the men. The average absolute difference between two successive HBF measures was 3.6 mL/(100 g min) or 5.4%. The 3T true fast imaging in steady precession arterial spin labeling method offers a HBF measurement strategy that combines good spatial resolution, sensitivity, and minimal image distortions.
Collapse
Affiliation(s)
- Henry Rusinek
- Department of Radiology, New York University School of Medicine, New York, New York, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Martirosian P, Boss A, Schraml C, Schwenzer NF, Graf H, Claussen CD, Schick F. Magnetic resonance perfusion imaging without contrast media. Eur J Nucl Med Mol Imaging 2010; 37 Suppl 1:S52-64. [PMID: 20461372 DOI: 10.1007/s00259-010-1456-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PURPOSE Principles of magnetic resonance imaging techniques providing perfusion-related contrast weighting without administration of contrast media are reported and analysed systematically. Especially common approaches to arterial spin labelling (ASL) perfusion imaging allowing quantitative assessment of specific perfusion rates are described in detail. The potential of ASL for perfusion imaging was tested in several types of tissue. METHODS After a systematic comparison of technical aspects of continuous and pulsed ASL techniques the standard kinetic model and tissue properties of influence to quantitative measurements of perfusion are reported. For the applications demonstrated in this paper a flow-sensitive alternating inversion recovery (FAIR) ASL perfusion preparation approach followed by true fast imaging with steady precession (true FISP) data recording was developed and implemented on whole-body scanners operating at 0.2, 1.5 and 3 T for quantitative perfusion measurement in various types of tissue. RESULTS ASL imaging provides a non-invasive tool for assessment of tissue perfusion rates in vivo. Images recorded from kidney, lung, brain, salivary gland and thyroid gland provide a spatial resolution of a few millimetres and sufficient signal to noise ratio in perfusion maps after 2-5 min of examination time. CONCLUSIONS Newly developed ASL techniques provide especially high image quality and quantitative perfusion maps in tissues with relatively high perfusion rates (as also present in many tumours). Averaging of acquisitions and image subtraction procedures are mandatory, leading to the necessity of synchronization of data recording to breathing in abdominal and thoracic organs.
Collapse
|
28
|
Han W, Chuang KH, Chang YT, Olivo M, Velan SS, Bhakoo K, Townsend D, Radda GK. Imaging metabolic syndrome. EMBO Mol Med 2010; 2:196-210. [PMID: 20533426 PMCID: PMC3377322 DOI: 10.1002/emmm.201000074] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Metabolic syndrome is a fast growing public health burden for almost all the developed countries and many developing nations. Despite intense efforts from both biomedical and clinical scientists, many fundamental questions regarding its aetiology and development remain unclear, partly due to the lack of suitable imaging technologies to visualize lipid composition and distribution, insulin secretion, β-cell mass and functions in vivo. Such technologies would not only impact on our understanding of the complexity of metabolic disorders such as obesity and diabetes, but also aid in their diagnosis, drug development and assessment of treatment efficacy. In this article we discuss and propose several strategies for visualization of physiological and pathological changes that affect pancreas and adipose tissue as a result of the development of metabolic diseases.
Collapse
Affiliation(s)
- Weiping Han
- Singapore Bioimaging Consortium, Agency for Science Technology and Research (A*STAR), Singapore, Singapore
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Schraml C, Müssig K, Martirosian P, Schwenzer NF, Claussen CD, Häring HU, Balletshofer BM, Schick F. Autoimmune thyroid disease: arterial spin-labeling perfusion MR imaging. Radiology 2009; 253:435-42. [PMID: 19789231 DOI: 10.1148/radiol.2533090166] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PURPOSE To assess thyroid perfusion in patients with autoimmune thyroid diseases compared with that in healthy control subjects by using an arterial spin-labeling (ASL) magnetic resonance (MR) technique and to assess whether thyroid perfusion is associated with endocrine laboratory abnormalities. MATERIALS AND METHODS This study was approved by the local institutional review board. All participants gave written informed consent. Perfusion imaging of the thyroid gland was performed in 10 patients with Graves disease (GD) and 10 patients with Hashimoto thyroiditis (HT). Ten healthy individuals served as control subjects. Perfusion imaging was performed with a 1.5-T MR unit by using a flow-sensitive alternating inversion recovery-true fast imaging with steady-state precession technique. Perfusion maps of the entire thyroid gland were calculated on the basis of extended Bloch equations. Analysis of variance with a post hoc test (Tukey honestly significant difference) was performed to assess differences in perfusion between groups. Associations between perfusion and laboratory parameters were analyzed with univariate regression analysis. RESULTS Mean thyroid perfusion was 1596 mL/min/100 g +/- 436 (standard deviation) in patients with GD, 825 mL/min/100 g +/- 264 in patients with HT, and 491 mL/min/100 g +/- 89 in healthy control subjects. Perfusion was significantly higher in patients with GD (P < .0001) and those with HT (P < .05) than in control subjects. A significant difference in thyroid perfusion was detected between the two autoimmune entities (P < .0001). In patients with GD, significant associations were found between perfusion and serum concentrations of free thyroid hormones and anti-thyroid-stimulating hormone receptor antibodies (P < .05 for all). CONCLUSION Quantitative ASL perfusion imaging of the thyroid gland revealed significant perfusion differences in the autoimmune thyroid diseases GD and HT. Absolute quantification of thyroid perfusion may be useful in the clinical assessment of autoimmune thyroid disorders and when monitoring therapeutic treatment in GD.
Collapse
Affiliation(s)
- Christina Schraml
- Section on Experimental Radiology, Department of Diagnostic and Interventional Radiology, and Division of Endocrinology, Diabetes, Nephrology, Angiology, and Clinical Chemistry, University Hospital of Tübingen, Hoppe-Seyler-Str 3, 72076 Tübingen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|