1
|
Shigematsu H, Fujimoto M, Kobayashi Y, Yasui D, Komoto D, Matsuura N, Kuraoka K, Yoshiyama T. Prognostic Value of MRI Assessment of Residual Peritumoral Edema in Breast Cancer Treated With Neoadjuvant Chemotherapy. J Magn Reson Imaging 2024. [PMID: 38809133 DOI: 10.1002/jmri.29456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/30/2024] Open
Abstract
BACKGROUND Peritumoral edema (PE) identified on T2-weighted breast MRI is a factor for poor prognosis in breast cancer. PURPOSE To assess the prognostic value of residual PE (rPE) in patients with PE positive breast cancer prior to neoadjuvant chemotherapy (NACT) who subsequently underwent curative surgery. STUDY TYPE Retrospective. POPULATION In total, 128 patients with nonmetastatic invasive breast cancer who underwent breast MRI before and after NACT. FIELD STRENGTH/SEQUENCE Axial precontrast 2D fast spin echo T2W fat-suppressed sequence. Axial dynamic 3D gradient echo T1W fat-suppressed sequence. ASSESSMENT PE was diagnosed when a signal intensity as high as water was detected surrounding the tumor on a T2-weighted breast MRI. PE was qualitatively evaluated by three readers with more than 20 years of experience in interpreting breast field imaging findings. Residual cancer burden (RCB) were assessed post-NACT. Recurrence-free survival (RFS) and overall survival (OS) were evaluated as the endpoints of this study. STATISTICAL TESTS Chi-square test; Kaplan-Meier method, log-rank test, and Cox proportional hazard model. A P-value <0.05 was considered statistically significant. RESULTS Pre-PE was observed in 64 out of 128 patients. Of these, rPE was observed in 21. In the log-rank test, breast cancer with rPE had significantly worse RFS and OS than that without rPE. Cox proportional hazard analysis identified rPE as a significant prognostic factor for recurrence (hazard ratio, 11.6; 95% confidence interval [CI], 3.05-43.8) and death (hazard ratio, 17.8; 95% CI, 3.30-96.3). Breast cancer with rPE had significant worse RFS and OS than that without rPE in RCB class II, and significant worse OS in pathological complete response, class I and class II in the log-rank test. DATA CONCLUSION rPE on a T2-weighted breast MRI was a significant factor for breast cancer recurrence and death in patients with pre-PE-positive breast cancer treated with NACT. LEVEL OF EVIDENCE: 3 TECHNICAL EFFICACY Stage 2.
Collapse
Affiliation(s)
- Hideo Shigematsu
- Department of Breast Surgery, National Hospital Organization Kure Medical Center and Chugoku Cancer Center, Hiroshima, Japan
| | - Mutsumi Fujimoto
- Department of Breast Surgery, National Hospital Organization Kure Medical Center and Chugoku Cancer Center, Hiroshima, Japan
| | - Yoshie Kobayashi
- Department of Breast Surgery, National Hospital Organization Kure Medical Center and Chugoku Cancer Center, Hiroshima, Japan
| | - Daisuke Yasui
- Department of Breast Surgery, National Hospital Organization Kure Medical Center and Chugoku Cancer Center, Hiroshima, Japan
| | - Daisuke Komoto
- Department of Radiology, National Hospital Organization Kure Medical Center and Chugoku Cancer Center, Hiroshima, Japan
| | - Noriaki Matsuura
- Department of Radiology, National Hospital Organization Kure Medical Center and Chugoku Cancer Center, Hiroshima, Japan
| | - Kazuya Kuraoka
- Department of Pathology, National Hospital Organization Kure Medical Center and Chugoku Cancer Center, Hiroshima, Japan
| | - Tomoyuki Yoshiyama
- Department of Breast Surgery, National Hospital Organization Kure Medical Center and Chugoku Cancer Center, Hiroshima, Japan
| |
Collapse
|
2
|
Demetriou D, Lockhat Z, Brzozowski L, Saini KS, Dlamini Z, Hull R. The Convergence of Radiology and Genomics: Advancing Breast Cancer Diagnosis with Radiogenomics. Cancers (Basel) 2024; 16:1076. [PMID: 38473432 DOI: 10.3390/cancers16051076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/09/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Despite significant progress in the prevention, screening, diagnosis, prognosis, and therapy of breast cancer (BC), it remains a highly prevalent and life-threatening disease affecting millions worldwide. Molecular subtyping of BC is crucial for predictive and prognostic purposes due to the diverse clinical behaviors observed across various types. The molecular heterogeneity of BC poses uncertainties in its impact on diagnosis, prognosis, and treatment. Numerous studies have highlighted genetic and environmental differences between patients from different geographic regions, emphasizing the need for localized research. International studies have revealed that patients with African heritage are often diagnosed at a more advanced stage and exhibit poorer responses to treatment and lower survival rates. Despite these global findings, there is a dearth of in-depth studies focusing on communities in the African region. Early diagnosis and timely treatment are paramount to improving survival rates. In this context, radiogenomics emerges as a promising field within precision medicine. By associating genetic patterns with image attributes or features, radiogenomics has the potential to significantly improve early detection, prognosis, and diagnosis. It can provide valuable insights into potential treatment options and predict the likelihood of survival, progression, and relapse. Radiogenomics allows for visual features and genetic marker linkage that promises to eliminate the need for biopsy and sequencing. The application of radiogenomics not only contributes to advancing precision oncology and individualized patient treatment but also streamlines clinical workflows. This review aims to delve into the theoretical underpinnings of radiogenomics and explore its practical applications in the diagnosis, management, and treatment of BC and to put radiogenomics on a path towards fully integrated diagnostics.
Collapse
Affiliation(s)
- Demetra Demetriou
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield, Pretoria 0028, South Africa
| | - Zarina Lockhat
- Department of Radiology, Faculty of Health Sciences, Steve Biko Academic Hospital, University of Pretoria, Hatfield, Pretoria 0028, South Africa
| | - Luke Brzozowski
- Translational Research and Core Facilities, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Kamal S Saini
- Fortrea Inc., 8 Moore Drive, Durham, NC 27709, USA
- Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK
| | - Zodwa Dlamini
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield, Pretoria 0028, South Africa
| | - Rodney Hull
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield, Pretoria 0028, South Africa
| |
Collapse
|
3
|
Zhang L, Zhou XX, Liu L, Liu AY, Zhao WJ, Zhang HX, Zhu YM, Kuai ZX. Comparison of Dynamic Contrast-Enhanced MRI and Non-Mono-Exponential Model-Based Diffusion-Weighted Imaging for the Prediction of Prognostic Biomarkers and Molecular Subtypes of Breast Cancer Based on Radiomics. J Magn Reson Imaging 2023; 58:1590-1602. [PMID: 36661350 DOI: 10.1002/jmri.28611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/10/2023] [Accepted: 01/10/2023] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Dynamic contrast-enhanced (DCE) MRI and non-mono-exponential model-based diffusion-weighted imaging (NME-DWI) that does not require contrast agent can both characterize breast cancer. However, which technique is superior remains unclear. PURPOSE To compare the performances of DCE-MRI, NME-DWI and their combination as multiparametric MRI (MP-MRI) in the prediction of breast cancer prognostic biomarkers and molecular subtypes based on radiomics. STUDY TYPE Prospective. POPULATION A total of 477 female patients with 483 breast cancers (5-fold cross-validation: training/validation, 80%/20%). FIELD STRENGTH/SEQUENCE A 3.0 T/DCE-MRI (6 dynamic frames) and NME-DWI (13 b values). ASSESSMENT After data preprocessing, high-throughput features were extracted from each tumor volume of interest, and optimal features were selected using recursive feature elimination method. To identify ER+ vs. ER-, PR+ vs. PR-, HER2+ vs. HER2-, Ki-67+ vs. Ki-67-, luminal A/B vs. nonluminal A/B, and triple negative (TN) vs. non-TN, the following models were implemented: random forest, adaptive boosting, support vector machine, linear discriminant analysis, and logistic regression. STATISTICAL TESTS Student's t, chi-square, and Fisher's exact tests were applied on clinical characteristics to confirm whether significant differences exist between different statuses (±) of prognostic biomarkers or molecular subtypes. The model performances were compared between the DCE-MRI, NME-DWI, and MP-MRI datasets using the area under the receiver-operating characteristic curve (AUC) and the DeLong test. P < 0.05 was considered significant. RESULTS With few exceptions, no significant differences (P = 0.062-0.984) were observed in the AUCs of models for six classification tasks between the DCE-MRI (AUC = 0.62-0.87) and NME-DWI (AUC = 0.62-0.91) datasets, while the model performances on the two imaging datasets were significantly poorer than on the MP-MRI dataset (AUC = 0.68-0.93). Additionally, the random forest and adaptive boosting models (AUC = 0.62-0.93) outperformed other three models (AUC = 0.62-0.90). DATA CONCLUSION NME-DWI was comparable with DCE-MRI in predictive performance and could be used as an alternative technique. Besides, MP-MRI demonstrated significantly higher AUCs than either DCE-MRI or NME-DWI. EVIDENCE LEVEL 2. TECHNICAL EFFICACY Stage 2.
Collapse
Affiliation(s)
- Lan Zhang
- Imaging Center, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xin-Xiang Zhou
- Imaging Center, Harbin Medical University Cancer Hospital, Harbin, China
| | - Lu Liu
- Imaging Center, Harbin Medical University Cancer Hospital, Harbin, China
| | - Ao-Yu Liu
- Imaging Center, Harbin Medical University Cancer Hospital, Harbin, China
| | - Wen-Juan Zhao
- Imaging Center, Harbin Medical University Cancer Hospital, Harbin, China
| | - Hong-Xia Zhang
- Imaging Center, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yue-Min Zhu
- CREATIS, CNRS UMR 5220-INSERM U1206-University Lyon 1-INSA Lyon-University Jean Monnet Saint-Etienne, Lyon, France
| | - Zi-Xiang Kuai
- Imaging Center, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
4
|
Chen W, Sá RC, Bai Y, Napel S, Gevaert O, Lauderdale DS, Giger ML. Machine learning with multimodal data for COVID-19. Heliyon 2023; 9:e17934. [PMID: 37483733 PMCID: PMC10362086 DOI: 10.1016/j.heliyon.2023.e17934] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/03/2023] [Indexed: 07/25/2023] Open
Abstract
In response to the unprecedented global healthcare crisis of the COVID-19 pandemic, the scientific community has joined forces to tackle the challenges and prepare for future pandemics. Multiple modalities of data have been investigated to understand the nature of COVID-19. In this paper, MIDRC investigators present an overview of the state-of-the-art development of multimodal machine learning for COVID-19 and model assessment considerations for future studies. We begin with a discussion of the lessons learned from radiogenomic studies for cancer diagnosis. We then summarize the multi-modality COVID-19 data investigated in the literature including symptoms and other clinical data, laboratory tests, imaging, pathology, physiology, and other omics data. Publicly available multimodal COVID-19 data provided by MIDRC and other sources are summarized. After an overview of machine learning developments using multimodal data for COVID-19, we present our perspectives on the future development of multimodal machine learning models for COVID-19.
Collapse
Affiliation(s)
- Weijie Chen
- Medical Imaging and Data Resource Center (MIDRC), USA
- Division of Imaging, Diagnostics, and Software Reliability, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, USA
| | - Rui C. Sá
- Medical Imaging and Data Resource Center (MIDRC), USA
- Department of Medicine, University of California, San Diego, USA
| | - Yuntong Bai
- Medical Imaging and Data Resource Center (MIDRC), USA
- Division of Imaging, Diagnostics, and Software Reliability, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, USA
| | - Sandy Napel
- Medical Imaging and Data Resource Center (MIDRC), USA
- Department of Radiology, Stanford University, USA
| | - Olivier Gevaert
- Medical Imaging and Data Resource Center (MIDRC), USA
- Department of Medicine and Department of Biomedical Data Science, Stanford University, USA
| | - Diane S. Lauderdale
- Medical Imaging and Data Resource Center (MIDRC), USA
- Department of Public Health Sciences, University of Chicago, USA
| | - Maryellen L. Giger
- Medical Imaging and Data Resource Center (MIDRC), USA
- Department of Radiology, University of Chicago, USA
| |
Collapse
|
5
|
Xi J, Sun D, Chang C, Zhou S, Huang Q. An omics-to-omics joint knowledge association subtensor model for radiogenomics cross-modal modules from genomics and ultrasonic images of breast cancers. Comput Biol Med 2023; 155:106672. [PMID: 36805226 DOI: 10.1016/j.compbiomed.2023.106672] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/06/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023]
Abstract
The radiogenomics analysis can provide the connections between genomics and radiomics, which can infer the genomic features of tumors from their radiogenomic associations through the low-cost and non-invasiveness screening ultrasonic images. Although there are a number of pioneer approaches exploring the connections between genomic aberrations and ultrasonic features, these studies mainly focus on the relationship between ultrasonic features and only the most popular cancer genes, confronting two difficulties: missing many-to-many relationships as omics-to-omics view, and confounding group-specific associations with whole sample associations. To overcome the difficulty of omics-to-omics view and the issue of tumor heterogeneity, we propose an omics-to-omics joint knowledge association subtensor model. Specifically, the subtensor factorization framework can successfully discover the joint cross-modal module via an omics-to-omics view, while the sparse weight sample indication strategy can mine sample subgroups from the multi-omic data with tumor heterogeneity. The experimental evaluation result shows the jointness of the discovered modules across omics, their association with tumorigenesis contribution, and their relation for cancer related functions. In summary, our proposed omics-to-omics joint knowledge association subtensor model can serve as an efficient tool for radiogenomic knowledge associations, promoting the cross-modal knowledge graph construction of in explainable artificial intelligence cancer diagnosis.
Collapse
Affiliation(s)
- Jianing Xi
- School of Artificial Intelligence, Optics and Electronics (iOPEN), Northwestern Polytechnical University, Xi'an, 710072, China.
| | - Donghui Sun
- School of Artificial Intelligence, Optics and Electronics (iOPEN), Northwestern Polytechnical University, Xi'an, 710072, China.
| | - Cai Chang
- Department of Ultrasound, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Shichong Zhou
- Department of Ultrasound, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Qinghua Huang
- School of Artificial Intelligence, Optics and Electronics (iOPEN), Northwestern Polytechnical University, Xi'an, 710072, China.
| |
Collapse
|
6
|
Ming W, Zhu Y, Bai Y, Gu W, Li F, Hu Z, Xia T, Dai Z, Yu X, Li H, Gu Y, Yuan S, Zhang R, Li H, Zhu W, Ding J, Sun X, Liu Y, Liu H, Liu X. Radiogenomics analysis reveals the associations of dynamic contrast-enhanced–MRI features with gene expression characteristics, PAM50 subtypes, and prognosis of breast cancer. Front Oncol 2022; 12:943326. [PMID: 35965527 PMCID: PMC9366134 DOI: 10.3389/fonc.2022.943326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/29/2022] [Indexed: 11/17/2022] Open
Abstract
Background To investigate reliable associations between dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) features and gene expression characteristics in breast cancer (BC) and to develop and validate classifiers for predicting PAM50 subtypes and prognosis from DCE-MRI non-invasively. Methods Two radiogenomics cohorts with paired DCE-MRI and RNA-sequencing (RNA-seq) data were collected from local and public databases and divided into discovery (n = 174) and validation cohorts (n = 72). Six external datasets (n = 1,443) were used for prognostic validation. Spatial–temporal features of DCE-MRI were extracted, normalized properly, and associated with gene expression to identify the imaging features that can indicate subtypes and prognosis. Results Expression of genes including RBP4, MYBL2, and LINC00993 correlated significantly with DCE-MRI features (q-value < 0.05). Importantly, genes in the cell cycle pathway exhibited a significant association with imaging features (p-value < 0.001). With eight imaging-associated genes (CHEK1, TTK, CDC45, BUB1B, PLK1, E2F1, CDC20, and CDC25A), we developed a radiogenomics prognostic signature that can distinguish BC outcomes in multiple datasets well. High expression of the signature indicated a poor prognosis (p-values < 0.01). Based on DCE-MRI features, we established classifiers to predict BC clinical receptors, PAM50 subtypes, and prognostic gene sets. The imaging-based machine learning classifiers performed well in the independent dataset (areas under the receiver operating characteristic curve (AUCs) of 0.8361, 0.809, 0.7742, and 0.7277 for estrogen receptor (ER), human epidermal growth factor receptor 2 (HER2)-enriched, basal-like, and obtained radiogenomics signature). Furthermore, we developed a prognostic model directly using DCE-MRI features (p-value < 0.0001). Conclusions Our results identified the DCE-MRI features that are robust and associated with the gene expression in BC and displayed the possibility of using the features to predict clinical receptors and PAM50 subtypes and to indicate BC prognosis.
Collapse
Affiliation(s)
- Wenlong Ming
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Yanhui Zhu
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yunfei Bai
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Wanjun Gu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
- Collaborative Innovation Center of Jiangsu Province of Cancer Prevention and Treatment of Chinese Medicine, School of Artificial Intelligence and Information Technology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Fuyu Li
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Zixi Hu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Tiansong Xia
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zuolei Dai
- Department of Information, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiafei Yu
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Huamei Li
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Yu Gu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Shaoxun Yuan
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Rongxin Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Haitao Li
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Wenyong Zhu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Jianing Ding
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Xiao Sun
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Yun Liu
- Department of Information, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Yun Liu, ; Hongde Liu, ; Xiaoan Liu,
| | - Hongde Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
- *Correspondence: Yun Liu, ; Hongde Liu, ; Xiaoan Liu,
| | - Xiaoan Liu
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Yun Liu, ; Hongde Liu, ; Xiaoan Liu,
| |
Collapse
|
7
|
Darvish L, Bahreyni-Toossi MT, Roozbeh N, Azimian H. The role of radiogenomics in the diagnosis of breast cancer: a systematic review. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2022. [DOI: 10.1186/s43042-022-00310-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
One of the most common cancers diagnosed worldwide is breast cancer (BC), which is the leading cause of cancer death among women. The radiogenomics method is more accurate for managing and inhibiting this disease, which takes individual diagnosis on genes, environments, and lifestyles of each person. The present study aims to highlight the current state-of-the-art, the current role and limitations, and future directions of radiogenomics in breast cancer.
Method
This systematic review article was searched from databases such as Embase, PubMed, Web of Science, Google Scholar, Scopus, and Cochrane Library without any date or language limitations of databases. Searches were performed using Boolean OR and AND operators between the main terms and keywords of particular topic of the subject under investigation. All retrospective, prospective, cohort, and pilot studies were included, which were provided with more details about the topic. Articles such as letter to the editor, review, and short communications were excluded because of lack of information, discussions, or use of radiogenomics method on other cancers. For quality assessment of articles, STROBE checklist was used.
Result
For the systematic review, 18 articles were approved after assessing the full text of selected articles. In this review, 3614 patients with BC of selected articles were evaluated, and all radiogenomics were associated with more power in classification, differential diagnosis, and prognosis of BC. Among the various modalities to predict genomic indicators and molecular subtypes, DCE-MRI has the higher performance and finally the highest amount of AUC value (0.956) belonged to PI3K gene.
Conclusion
This review shows that radiogenomics can help with the diagnosis and treatment of breast cancer in patients. It has shown that recognizing and specifying radiogenomic phenotypes in the genomic signatures can be helpful in treatment and diagnosis of disease. The molecular methods used in these articles are limited to miRNAs expression, gene expression, Ki67 proliferation index, next-generation RNA sequencing, whole RNA sequencing, and molecular histopathology that can be completed in future studies by other methods such as exosomal miRNAs, specific proteins expression, DNA repair capacity, and other biomarkers that have prognostic and predictive value for cancer treatment response. Studies with control group and large sample size for evaluation of radiogenomics in diagnosis and treatment recommended.
Collapse
|
8
|
Galati F, Rizzo V, Trimboli RM, Kripa E, Maroncelli R, Pediconi F. MRI as a biomarker for breast cancer diagnosis and prognosis. BJR Open 2022; 4:20220002. [PMID: 36105423 PMCID: PMC9459861 DOI: 10.1259/bjro.20220002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 05/01/2022] [Accepted: 05/04/2022] [Indexed: 11/05/2022] Open
Abstract
Breast cancer (BC) is the most frequently diagnosed female invasive cancer in Western countries and the leading cause of cancer-related death worldwide. Nowadays, tumor heterogeneity is a well-known characteristic of BC, since it includes several nosological entities characterized by different morphologic features, clinical course and response to treatment. Thus, with the spread of molecular biology technologies and the growing knowledge of the biological processes underlying the development of BC, the importance of imaging biomarkers as non-invasive information about tissue hallmarks has progressively grown. To date, breast magnetic resonance imaging (MRI) is considered indispensable in breast imaging practice, with widely recognized indications such as BC screening in females at increased risk, locoregional staging and neoadjuvant therapy (NAT) monitoring. Moreover, breast MRI is increasingly used to assess not only the morphologic features of the pathological process but also to characterize individual phenotypes for targeted therapies, building on developments in genomics and molecular biology features. The aim of this review is to explore the role of breast multiparametric MRI in providing imaging biomarkers, leading to an improved differentiation of benign and malignant breast lesions and to a customized management of BC patients in monitoring and predicting response to treatment. Finally, we discuss how breast MRI biomarkers offer one of the most fertile ground for artificial intelligence (AI) applications. In the era of personalized medicine, with the development of omics-technologies, machine learning and big data, the role of imaging biomarkers is embracing new opportunities for BC diagnosis and treatment.
Collapse
Affiliation(s)
- Francesca Galati
- Department of Radiological, Oncological and Pathological Sciences, “Sapienza” - University of Rome, Viale Regina Elena, Rome, Italy
| | - Veronica Rizzo
- Department of Radiological, Oncological and Pathological Sciences, “Sapienza” - University of Rome, Viale Regina Elena, Rome, Italy
| | | | - Endi Kripa
- Department of Radiological, Oncological and Pathological Sciences, “Sapienza” - University of Rome, Viale Regina Elena, Rome, Italy
| | - Roberto Maroncelli
- Department of Radiological, Oncological and Pathological Sciences, “Sapienza” - University of Rome, Viale Regina Elena, Rome, Italy
| | - Federica Pediconi
- Department of Radiological, Oncological and Pathological Sciences, “Sapienza” - University of Rome, Viale Regina Elena, Rome, Italy
| |
Collapse
|
9
|
Park GE, Kim SH, Lee EB, Nam Y, Sung W. Ipsilateral Recurrence of DCIS in Relation to Radiomics Features on Contrast Enhanced Breast MRI. Tomography 2022; 8:596-606. [PMID: 35314626 PMCID: PMC8938812 DOI: 10.3390/tomography8020049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/13/2022] [Accepted: 02/25/2022] [Indexed: 12/20/2022] Open
Abstract
The purpose of this retrospective study was to investigate the association between ipsilateral recurrence of ductal carcinoma in situ (DCIS) and radiomics features from DCIS and contralateral normal breast on contrast enhanced breast MR imaging. A total of 163 patients with DCIS who underwent preoperative MR imaging between January 2010 and December 2014 were included (training cohort; n = 117, validation cohort; n = 46). Radiomics features were extracted from whole tumor volume of DCIS on early dynamic T1-subtraction images and from the contralateral normal breast on precontrast T1 and early dynamic T1-subtraction images. After feature selection, a Rad-score was established by LASSO Cox regression model. Performance of Rad-score was evaluated by the receiver operating characteristic (ROC) curve and Kaplan Meier curve with log rank test. The Rad-score was significantly associated with ipsilateral recurrence free survival (RFS). The low-risk group with a low Rad-score showed higher ipsilateral RFS than the high-risk group with a high Rad-score in both training and validation cohorts (p < 0.01). The Rad-score based on radiomics features from DCIS and contralateral normal breast on breast MR imaging showed the potential for prediction of ipsilateral RFS of DCIS.
Collapse
Affiliation(s)
- Ga Eun Park
- Department of Radiology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (G.E.P.); (E.B.L.)
| | - Sung Hun Kim
- Department of Radiology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (G.E.P.); (E.B.L.)
- Correspondence: ; Tel.: +82-2-2258-6250
| | - Eun Byul Lee
- Department of Radiology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (G.E.P.); (E.B.L.)
| | - Yoonho Nam
- Division of Biomedical Engineering, Hankuk University of Foreign Studies, Yongin 17035, Korea;
| | - Wonmo Sung
- Department of Biomedical Engineering, Research Institute of Biomedical Engineering, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea;
| |
Collapse
|
10
|
Contrast-Enhanced Mammography and Radiomics Analysis for Noninvasive Breast Cancer Characterization: Initial Results. Mol Imaging Biol 2021; 22:780-787. [PMID: 31463822 DOI: 10.1007/s11307-019-01423-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
PURPOSE To investigate the potential of contrast-enhanced mammography (CEM) and radiomics analysis for the noninvasive differentiation of breast cancer invasiveness, hormone receptor status, and tumor grade. PROCEDURES This retrospective study included 100 patients with 103 breast cancers who underwent pretreatment CEM. Radiomics analysis was performed using MAZDA software. Lesions were manually segmented. Radiomic features were derived from first-order histogram (HIS), co-occurrence matrix (COM), run length matrix (RLM), absolute gradient, autoregressive model, the discrete Haar wavelet transform (WAV), and lesion geometry. Fisher, probability of error and average correlation (POE+ACC), and mutual information (MI) coefficients informed feature selection. Linear discriminant analysis followed by k-nearest neighbor classification (with leave-one-out cross-validation) was used for pairwise texture-based separation of tumor invasiveness and hormone receptor status using histopathology as the standard of reference. RESULTS Radiomics analysis achieved the highest accuracies of 87.4 % for differentiating invasive from noninvasive cancers based on COM+HIS/MI, 78.4 % for differentiating HR positive from HR negative cancers based on COM+HIS/Fisher, 97.2 % for differentiating human epidermal growth factor receptor 2 (HER2)-positive/HR-negative from HER2-negative/HR-positive cancers based on RLM+WAV/MI, 100 % for differentiating triple-negative from triple-positive breast cancers mainly based on COM+WAV+HIS/POE+ACC, and 82.1 % for differentiating triple-negative from HR-positive cancers mainly based on WAV+HIS/Fisher. Accuracies for differentiating grade 1 vs. grades 2 and 3 cancers were 90 % for invasive cancers (based on COM/MI) and 100 % for noninvasive cancers (almost entirely based on COM/MI). CONCLUSIONS Radiomics analysis with CEM has potential for noninvasive differentiation of tumors with different degrees of invasiveness, hormone receptor status, and tumor grade.
Collapse
|
11
|
Grimm LJ. Radiomics: A Primer for Breast Radiologists. JOURNAL OF BREAST IMAGING 2021; 3:276-287. [PMID: 38424774 DOI: 10.1093/jbi/wbab014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Indexed: 03/02/2024]
Abstract
Radiomics has a long-standing history in breast imaging with computer-aided detection (CAD) for screening mammography developed in the late 20th century. Although conventional CAD had widespread adoption, the clinical benefits for experienced breast radiologists were debatable due to high false-positive marks and subsequent increased recall rates. The dramatic growth in recent years of artificial intelligence-based analysis, including machine learning and deep learning, has provided numerous opportunities for improved modern radiomics work in breast imaging. There has been extensive radiomics work in mammography, digital breast tomosynthesis, MRI, ultrasound, PET-CT, and combined multimodality imaging. Specific radiomics outcomes of interest have been diverse, including CAD, prediction of response to neoadjuvant therapy, lesion classification, and survival, among other outcomes. Additionally, the radiogenomics subfield that correlates radiomics features with genetics has been very proliferative, in parallel with the clinical validation of breast cancer molecular subtypes and gene expression assays. Despite the promise of radiomics, there are important challenges related to image normalization, limited large unbiased data sets, and lack of external validation. Much of the radiomics work to date has been exploratory using single-institution retrospective series for analysis, but several promising lines of investigation have made the leap to clinical practice with commercially available products. As a result, breast radiologists will increasingly be incorporating radiomics-based tools into their daily practice in the near future. Therefore, breast radiologists must have a broad understanding of the scope, applications, and limitations of radiomics work.
Collapse
Affiliation(s)
- Lars J Grimm
- Duke University, Department of Radiology, Durham, NC, USA
| |
Collapse
|
12
|
Cheung HMC, Rubin D. Challenges and opportunities for artificial intelligence in oncological imaging. Clin Radiol 2021; 76:728-736. [PMID: 33902889 DOI: 10.1016/j.crad.2021.03.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/15/2021] [Indexed: 02/08/2023]
Abstract
Imaging plays a key role in oncology, including the diagnosis and detection of cancer, determining clinical management, assessing treatment response, and complications of treatment or disease. The current use of clinical oncology is predominantly qualitative in nature with some relatively crude size-based measurements of tumours for assessment of disease progression or treatment response; however, it is increasingly understood that there may be significantly more information about oncological disease that can be obtained from imaging that is not currently utilized. Artificial intelligence (AI) has the potential to harness quantitative techniques to improve oncological imaging. These may include improving the efficiency or accuracy of traditional roles of imaging such as diagnosis or detection. These may also include new roles for imaging such as risk-stratifying patients for different types of therapy or determining biological tumour subtypes. This review article outlines several major areas in oncological imaging where there may be opportunities for AI technology. These include (1) screening and detection of cancer, (2) diagnosis and risk stratification, (3) tumour segmentation, (4) precision oncology, and (5) predicting prognosis and assessing treatment response. This review will also address some of the potential barriers to AI research in oncological imaging.
Collapse
Affiliation(s)
- H M C Cheung
- Department of Medical Imaging, Sunnybrook Health Sciences Centre, University of Toronto, Canada
| | - D Rubin
- Department of Radiology, Stanford University, CA, USA.
| |
Collapse
|
13
|
Tam LT, Yeom KW, Wright JN, Jaju A, Radmanesh A, Han M, Toescu S, Maleki M, Chen E, Campion A, Lai HA, Eghbal AA, Oztekin O, Mankad K, Hargrave D, Jacques TS, Goetti R, Lober RM, Cheshier SH, Napel S, Said M, Aquilina K, Ho CY, Monje M, Vitanza NA, Mattonen SA. MRI-based radiomics for prognosis of pediatric diffuse intrinsic pontine glioma: an international study. Neurooncol Adv 2021; 3:vdab042. [PMID: 33977272 PMCID: PMC8095337 DOI: 10.1093/noajnl/vdab042] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background Diffuse intrinsic pontine gliomas (DIPGs) are lethal pediatric brain tumors. Presently, MRI is the mainstay of disease diagnosis and surveillance. We identify clinically significant computational features from MRI and create a prognostic machine learning model. Methods We isolated tumor volumes of T1-post-contrast (T1) and T2-weighted (T2) MRIs from 177 treatment-naïve DIPG patients from an international cohort for model training and testing. The Quantitative Image Feature Pipeline and PyRadiomics was used for feature extraction. Ten-fold cross-validation of least absolute shrinkage and selection operator Cox regression selected optimal features to predict overall survival in the training dataset and tested in the independent testing dataset. We analyzed model performance using clinical variables (age at diagnosis and sex) only, radiomics only, and radiomics plus clinical variables. Results All selected features were intensity and texture-based on the wavelet-filtered images (3 T1 gray-level co-occurrence matrix (GLCM) texture features, T2 GLCM texture feature, and T2 first-order mean). This multivariable Cox model demonstrated a concordance of 0.68 (95% CI: 0.61–0.74) in the training dataset, significantly outperforming the clinical-only model (C = 0.57 [95% CI: 0.49–0.64]). Adding clinical features to radiomics slightly improved performance (C = 0.70 [95% CI: 0.64–0.77]). The combined radiomics and clinical model was validated in the independent testing dataset (C = 0.59 [95% CI: 0.51–0.67], Noether’s test P = .02). Conclusions In this international study, we demonstrate the use of radiomic signatures to create a machine learning model for DIPG prognostication. Standardized, quantitative approaches that objectively measure DIPG changes, including computational MRI evaluation, could offer new approaches to assessing tumor phenotype and serve a future role for optimizing clinical trial eligibility and tumor surveillance.
Collapse
Affiliation(s)
- Lydia T Tam
- Stanford University School of Medicine, Stanford, California, USA.,Department of Radiology, Lucile Packard Children's Hospital, Stanford University School of Medicine, Stanford, California, USA
| | - Kristen W Yeom
- Stanford University School of Medicine, Stanford, California, USA.,Department of Radiology, Lucile Packard Children's Hospital, Stanford University School of Medicine, Stanford, California, USA
| | - Jason N Wright
- Department of Radiology, Seattle Children's Hospital, Seattle, Washington, USA.,Harborview Medical Center, Seattle, Washington, USA
| | - Alok Jaju
- Department of Medical Imaging, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
| | - Alireza Radmanesh
- Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Michelle Han
- Stanford University School of Medicine, Stanford, California, USA.,Department of Radiology, Lucile Packard Children's Hospital, Stanford University School of Medicine, Stanford, California, USA
| | - Sebastian Toescu
- University College London, Great Ormond Street Institute of Child Health, London, UK
| | - Maryam Maleki
- Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Eric Chen
- Departments of Clinical Radiology & Imaging Sciences, Riley Children's Hospital, Indiana University, Indianapolis, Indiana, USA
| | - Andrew Campion
- Department of Radiology, Lucile Packard Children's Hospital, Stanford University School of Medicine, Stanford, California, USA
| | - Hollie A Lai
- Department of Radiology, CHOC Children's Hospital, Orange, California, USA.,University of California, Irvine, California, USA
| | - Azam A Eghbal
- Department of Radiology, CHOC Children's Hospital, Orange, California, USA.,University of California, Irvine, California, USA
| | - Ozgur Oztekin
- Department of Neuroradiology, Bakircay University, Cigli Education and Research Hospital, Izmir, Turkey.,Department of Neuroradiology, Health Science University, Tepecik Education and Research Hospital, Izmir, Turkey
| | - Kshitij Mankad
- University College London, Great Ormond Street Institute of Child Health, London, UK.,Department of Radiology, Great Ormond Street Hospital for Children, London, UK
| | - Darren Hargrave
- University College London, Great Ormond Street Institute of Child Health, London, UK
| | - Thomas S Jacques
- University College London, Great Ormond Street Institute of Child Health, London, UK
| | - Robert Goetti
- Department of Medical Imaging, The Children's Hospital at Westmead, The University of Sydney, Westmead, Australia
| | - Robert M Lober
- Department of Neurosurgery, Dayton Children's Hospital, Wright State University Boonshoft School of Medicine, Dayton, Ohio, USA
| | - Samuel H Cheshier
- Department of Neurosurgery, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Sandy Napel
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Mourad Said
- Radiology Department Centre International Carthage Médicale, Monastir, Tunisia
| | - Kristian Aquilina
- University College London, Great Ormond Street Institute of Child Health, London, UK
| | - Chang Y Ho
- Departments of Clinical Radiology & Imaging Sciences, Riley Children's Hospital, Indiana University, Indianapolis, Indiana, USA
| | - Michelle Monje
- Stanford University School of Medicine, Stanford, California, USA.,Department of Neurology and Neurological Sciences, Stanford University, Stanford, California, USA
| | - Nicholas A Vitanza
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Seattle Children's Hospital, Seattle, Washington, USA.,Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Sarah A Mattonen
- Department of Medical Biophysics, Western University, London, Onatrio, Canada.,Department of Oncology, Western University, London, Ontario, Canada
| |
Collapse
|
14
|
Zhao R, Ma WJ, Tang J, Chen YZ, Zhang LN, Lu H, Liu PF. Heterogeneity of enhancement kinetics in dynamic contrast-enhanced MRI and implication of distant metastasis in invasive breast cancer. Clin Radiol 2020; 75:961.e25-961.e32. [PMID: 32859381 DOI: 10.1016/j.crad.2020.07.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 07/28/2020] [Indexed: 10/23/2022]
Abstract
AIM To investigate the heterogeneity of enhancement kinetics for breast tumour in order to demonstrate the predictive power of dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) features for distant metastasis (DM) in invasive breast cancer. MATERIALS AND METHODS Time-signal intensity curve (TIC) patterns from 128 patients with invasive breast cancer were analysed by a pixel-based DCE-MRI analysis. This MRI technique enabled pixels with varying TIC patterns (persistent, plateau, washout and non-enhancement) to be categorised semi-automatically and the percentage of different TIC patterns in each breast tumour to be calculated. The percentage of TIC patterns was compared between the DM and non-DM groups. DM-free survival was estimated using Kaplan-Meier survival analysis. RESULTS This study demonstrated a larger percentage of persistent TIC and non-enhancement TIC was associated with DM in invasive breast cancer. The cut-off values of persistent TIC and non-enhancement TIC were 22.5% and 2.5%. Combining TIC patterns and traditional predictors (tumour size and axillary lymph node status) can improve the prediction efficiency. The multivariable model yielded an area under the receiver operating characteristic curve (AUC) of 0.87 with 0.70 sensitivity and 0.87 specificity in leave-one-out cross-validation (LOOCV). These predictors showed significant differences in DM-free survival by Kaplan-Meier analysis. CONCLUSION This study shows that breast tumours with higher heterogeneity are more likely to metastasise, and pixel-based TIC analysis has utility in predicting distant metastasis of invasive breast cancer.
Collapse
Affiliation(s)
- R Zhao
- Department of Breast Imaging, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, PR China
| | - W J Ma
- Department of Breast Imaging, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, PR China
| | - J Tang
- Department of Radiology, TEDA International Cardiovascular Hospital, Tianjin, PR China
| | - Y Z Chen
- Department of Tumour Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, PR China
| | - L N Zhang
- The Second Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, PR China
| | - H Lu
- Department of Breast Imaging, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, PR China.
| | - P F Liu
- Department of Breast Imaging, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, PR China.
| |
Collapse
|
15
|
Wang H, Velden BH, Chan HSM, Loo CE, Viergever MA, Gilhuijs KG. Synchronous Breast Cancer: Phenotypic Similarities on MRI. J Magn Reson Imaging 2020; 51:1858-1867. [PMID: 31854487 PMCID: PMC7318126 DOI: 10.1002/jmri.27026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/29/2019] [Accepted: 12/02/2019] [Indexed: 11/24/2022] Open
Abstract
Background Previous studies have shown discrepancies between index and synchronous breast cancer in histology and molecular phenotype. It is yet unknown whether this observation also applies to the MRI phenotype. Purpose To investigate whether the appearance of breast cancer on MRI (i.e. phenotype) is different from that of additional breast cancer (i.e. synchronous cancer), and whether such a difference, if it exists, is associated with prognosis. Study Type Retrospective. Population In all, 464 consecutive patients with early‐stage ER+/HER2– breast cancer were included; 34/464 (7.3%) had 44 synchronous cancers in total (34 ipsilateral, 10 contralateral). Sequence 1.5T, contrast‐enhanced T1‐weighted. Assessment We assessed imaging phenotype using 50 quantitative features from each cancer and applied principal component analysis (PCA) to identify independent properties. The degree of phenotype difference was assessed. An association between phenotype differences and prognosis in terms of the Nottingham Prognostic Index (NPI) and PREDICT score were analyzed. Statistical Tests PCA; Wilcoxon rank sum test; Benjamini–Hochberg to control the false discovery rate. Results PCA identified eight components in patients with ipsilateral synchronous cancer. Six out of eight were significantly different between index and synchronous cancer. These components represented features describing texture (three components, P < 0.001, P < 0.001, P = 0.004), size (P < 0.001), smoothness (P < 0.001), and kinetics (P = 0.004). Phenotype differences in terms of the six components were split in tertiles. Larger phenotype differences in size, kinetics, and texture were associated with significantly worse prognosis in terms of NPI (P = 0.019, P = 0.045, P = 0.014), but not for the PREDICT score (P = 0.109, P = 0.479, P = 0.109). PCA identified six components in patients with contralateral synchronous cancer. None were significantly different from the index cancer (P = 0.178, P = 0.178, P = 0.178, P = 0.326, P = 0.739, P = 0.423). Data Conclusion The MRI phenotype of ER+/HER2– breast cancer was different from that of ipsilateral synchronous cancer and a large phenotype difference was associated with worse prognosis. No significant difference was found for synchronous contralateral cancer. Level of Evidence: 3 Technical Efficacy: Stage 4 J. Magn. Reson. Imaging 2020;51:1858–1867.
Collapse
Affiliation(s)
- Hui Wang
- Image Sciences Institute, University Medical Center Utrecht Utrecht Netherlands
| | - Bas H.M. Velden
- Image Sciences Institute, University Medical Center Utrecht Utrecht Netherlands
| | - Hui Shan M. Chan
- Image Sciences Institute, University Medical Center Utrecht Utrecht Netherlands
| | - Claudette E. Loo
- Department of RadiologyNetherlands Cancer Institute–Antoni van Leeuwenhoek Hospital Amsterdam Netherlands
| | - Max A. Viergever
- Image Sciences Institute, University Medical Center Utrecht Utrecht Netherlands
| | | |
Collapse
|
16
|
Liu Y, Jordan JT, Bredella MA, Erdin S, Walker JA, Vangel M, Harris GJ, Plotkin SR, Cai W. Correlation between NF1 genotype and imaging phenotype on whole-body MRI: NF1 radiogenomics. Neurology 2020; 94:e2521-e2531. [PMID: 32345730 DOI: 10.1212/wnl.0000000000009490] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 12/04/2019] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVE To investigate the genotype-phenotype correlation between neurofibromatosis 1 (NF1) germline mutations and imaging features of neurofibromas on whole-body MRI (WBMRI) by using radiomics image analysis techniques. MATERIALS AND METHODS Twenty-nine patients with NF1 who had known germline mutations determined by targeted next-generation sequencing were selected from a previous WBMRI study using coronal short tau inversion recovery sequence. Each tumor was segmented in WBMRI and a set of 59 imaging features was calculated using our in-house volumetric image analysis platform, 3DQI. A radiomics heatmap of 59 imaging features was analyzed to investigate the per-tumor and per-patient associations between the imaging features and mutation domains and mutation types. Linear mixed-effect models and one-way analysis of variance tests were performed to assess the similarity of tumor imaging features within mutation groups, between mutation groups, and between randomly selected groups. RESULTS A total of 218 neurofibromas (97 discrete neurofibromas and 121 plexiform neurofibromas) were identified in 19 of the 29 patients. The unsupervised hierarchical clustering in heatmap analysis revealed 6 major image feature patterns that were significantly correlated with gene mutation domains and types with strong to very strong associations of genotype-phenotype correlations in both per-tumor and per-patient studies (p < 0.05, Cramer V > 0.5), whereas tumor size and locations showed no correlations with imaging features (p = 0.79 and p = 0.42, respectively). The statistical analyses revealed that the number of significantly different features (SDFs) within mutation groups were significantly lower than those between mutation groups (mutation domains: 10.9 ± 9.5% vs 31.9 ± 23.8% and mutation types: 31.8 ± 30.7% vs 52.6 ± 29.3%). The first and second quartile p values of within-patient groups were more than 2 times higher than those between-patient groups. However, the numbers of SDFs between randomly selected groups were much lower (approximately 5.2%). CONCLUSION This preliminary study identified the NF1 radiogenomics linkage between NF1 causative mutations and MRI radiomic features, i.e., the correlation between NF1 genotype and imaging phenotype on WBMRI.
Collapse
Affiliation(s)
- Yunpeng Liu
- From the Department of Radiology (Y.L., M.A.B., M.V., G.J.H., W.C.), Department of Neurology and Cancer Center (J.T.J., S.R.P.), and Center for Genomic Medicine (S.E., J.A.W.), Massachusetts General Hospital and Harvard Medical School, Boston
| | - Justin T Jordan
- From the Department of Radiology (Y.L., M.A.B., M.V., G.J.H., W.C.), Department of Neurology and Cancer Center (J.T.J., S.R.P.), and Center for Genomic Medicine (S.E., J.A.W.), Massachusetts General Hospital and Harvard Medical School, Boston
| | - Miriam A Bredella
- From the Department of Radiology (Y.L., M.A.B., M.V., G.J.H., W.C.), Department of Neurology and Cancer Center (J.T.J., S.R.P.), and Center for Genomic Medicine (S.E., J.A.W.), Massachusetts General Hospital and Harvard Medical School, Boston
| | - Serkan Erdin
- From the Department of Radiology (Y.L., M.A.B., M.V., G.J.H., W.C.), Department of Neurology and Cancer Center (J.T.J., S.R.P.), and Center for Genomic Medicine (S.E., J.A.W.), Massachusetts General Hospital and Harvard Medical School, Boston
| | - James A Walker
- From the Department of Radiology (Y.L., M.A.B., M.V., G.J.H., W.C.), Department of Neurology and Cancer Center (J.T.J., S.R.P.), and Center for Genomic Medicine (S.E., J.A.W.), Massachusetts General Hospital and Harvard Medical School, Boston
| | - Mark Vangel
- From the Department of Radiology (Y.L., M.A.B., M.V., G.J.H., W.C.), Department of Neurology and Cancer Center (J.T.J., S.R.P.), and Center for Genomic Medicine (S.E., J.A.W.), Massachusetts General Hospital and Harvard Medical School, Boston
| | - Gordon J Harris
- From the Department of Radiology (Y.L., M.A.B., M.V., G.J.H., W.C.), Department of Neurology and Cancer Center (J.T.J., S.R.P.), and Center for Genomic Medicine (S.E., J.A.W.), Massachusetts General Hospital and Harvard Medical School, Boston
| | - Scott R Plotkin
- From the Department of Radiology (Y.L., M.A.B., M.V., G.J.H., W.C.), Department of Neurology and Cancer Center (J.T.J., S.R.P.), and Center for Genomic Medicine (S.E., J.A.W.), Massachusetts General Hospital and Harvard Medical School, Boston
| | - Wenli Cai
- From the Department of Radiology (Y.L., M.A.B., M.V., G.J.H., W.C.), Department of Neurology and Cancer Center (J.T.J., S.R.P.), and Center for Genomic Medicine (S.E., J.A.W.), Massachusetts General Hospital and Harvard Medical School, Boston.
| |
Collapse
|
17
|
Yang X, Wu L, Zhao K, Ye W, Liu W, Wang Y, Li J, Li H, Huang X, Zhang W, Huang Y, Chen X, Yao S, Liu Z, Liang C. Evaluation of human epidermal growth factor receptor 2 status of breast cancer using preoperative multidetector computed tomography with deep learning and handcrafted radiomics features. Chin J Cancer Res 2020; 32:175-185. [PMID: 32410795 PMCID: PMC7219093 DOI: 10.21147/j.issn.1000-9604.2020.02.05] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Objective To evaluate the human epidermal growth factor receptor 2 (HER2) status in patients with breast cancer using multidetector computed tomography (MDCT)-based handcrafted and deep radiomics features. Methods This retrospective study enrolled 339 female patients (primary cohort, n=177; validation cohort, n=162) with pathologically confirmed invasive breast cancer. Handcrafted and deep radiomics features were extracted from the MDCT images during the arterial phase. After the feature selection procedures, handcrafted and deep radiomics signatures and the combined model were built using multivariate logistic regression analysis. Performance was assessed by measures of discrimination, calibration, and clinical usefulness in the primary cohort and validated in the validation cohort. Results The handcrafted radiomics signature had a discriminative ability with a C-index of 0.739 [95% confidence interval (95% CI): 0.661−0.818] in the primary cohort and 0.695 (95% CI: 0.609−0.781) in the validation cohort. The deep radiomics signature also had a discriminative ability with a C-index of 0.760 (95% CI: 0.690−0.831) in the primary cohort and 0.777 (95% CI: 0.696−0.857) in the validation cohort. The combined model, which incorporated both the handcrafted and deep radiomics signatures, showed good discriminative ability with a C-index of 0.829 (95% CI: 0.767−0.890) in the primary cohort and 0.809 (95% CI: 0.740−0.879) in the validation cohort. Conclusions Handcrafted and deep radiomics features from MDCT images were associated with HER2 status in patients with breast cancer. Thus, these features could provide complementary aid for the radiological evaluation of HER2 status in breast cancer.
Collapse
Affiliation(s)
- Xiaojun Yang
- Department of Radiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China.,School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Lei Wu
- Department of Radiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China.,School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Ke Zhao
- Department of Radiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China.,School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Weitao Ye
- Department of Radiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Weixiao Liu
- Department of Radiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Yingyi Wang
- Department of Radiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Jiao Li
- Department of Radiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Hanxiao Li
- Department of Radiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China.,School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Xiaomei Huang
- Department of Radiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Wen Zhang
- Department of Radiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Yanqi Huang
- Department of Radiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Xin Chen
- Department of Radiology, Guangzhou First People's Hospital, Guangzhou 510180, China
| | - Su Yao
- Department of Pathology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Zaiyi Liu
- Department of Radiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China.,School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Changhong Liang
- Department of Radiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China.,School of Medicine, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
18
|
Zhao Q, Xie T, Fu C, Chen L, Bai Q, Grimm R, Peng W, Wang S. Differentiation between idiopathic granulomatous mastitis and invasive breast carcinoma, both presenting with non-mass enhancement without rim-enhanced masses: The value of whole-lesion histogram and texture analysis using apparent diffusion coefficient. Eur J Radiol 2019; 123:108782. [PMID: 31864142 DOI: 10.1016/j.ejrad.2019.108782] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 11/28/2019] [Accepted: 12/04/2019] [Indexed: 02/08/2023]
Abstract
PURPOSE The aim of this study was to investigate whether whole-lesion histogram and texture analysis using apparent diffusion coefficient can discriminate between idiopathic granulomatous mastitis (IGM) and invasive breast carcinoma (IBC), both of which appeared as non-mass enhancement lesions without rim-enhanced masses. METHOD This retrospective study included 58 pathology-proven female patients at two independent study sites (27 IGM patients and 31 IBC patients). Diffusion-weighted imaging (3b values, 50, 400 or 500, and 800 s/mm2) was performed using 1.5 T or 3 T MR scanners from the same vendor. Whole-lesions were segmented and 11 features were extracted. Univariate analysis and multivariate logistic regression analysis were performed to identify significant variables for differentiating IGM from IBC. Receiver operating characteristic curve was assessed. The interobserver reliability between two observers for the histogram and texture measurement was also reported. RESULTS The 5th percentile, difference entropy and entropy of apparent diffusion coefficient showed significant differences between the two groups. An area under the curve of 0.778 (95 % CI: 0.648, 0.908), accuracy of 79.3 %, and sensitivity of 87.1 % was achieved using these three significant features. No significant feature was found with the multivariate analysis. For the interobserver reliability, all apparent diffusion coefficient parameters except skewness and kurtosis indicated good or excellent agreement, while these two features showed moderate agreement. CONCLUSIONS Whole-lesion histogram and texture analysis using apparent diffusion coefficient provide a non-invasive analytical approach to the differentiation between IGM and IBC, both presenting with non-mass enhancement without rim-enhanced masses.
Collapse
Affiliation(s)
- Qiufeng Zhao
- Department of Radiology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tianwen Xie
- Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Caixia Fu
- MR Application Development, Siemens Shenzhen Magnetic Resonance, Shenzhen, China
| | - Ling Chen
- Department of Pathology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qianming Bai
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Robert Grimm
- MR Application Predevelopment, Siemens Healthcare, Erlangen, Germany
| | - Weijun Peng
- Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.
| | - Song Wang
- Department of Radiology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
19
|
Lei C, Wei W, Liu Z, Xiong Q, Yang C, Yang M, Zhang L, Zhu T, Zhuang X, Liu C, Liu Z, Tian J, Wang K. Mammography-based radiomic analysis for predicting benign BI-RADS category 4 calcifications. Eur J Radiol 2019; 121:108711. [PMID: 31677544 DOI: 10.1016/j.ejrad.2019.108711] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 10/11/2019] [Indexed: 02/05/2023]
Abstract
PURPOSE We developed and validated a radiomic model based on mammography and assessed its value for predicting the pathological diagnosis of Breast Imaging Reporting and Data System (BI-RADS) category 4 calcifications. MATERIALS AND METHODS Patients with a total of 212 eligible calcifications were recruited (159 cases in the primary cohort and 53 cases in the validation cohort). In total, 8286 radiomic features were extracted from the craniocaudal (CC) and mediolateral oblique (MLO) images. Machine learning was used to select features and build a radiomic signature. The clinical risk factors were selected from the independent clinical factors through logistic regression analyses. The radiomic nomogram incorporated the radiomic signature and an independent clinical risk factor. The diagnostic performance of the radiomic model and the radiologists' empirical prediction model was evaluated by the area under the receiver operating characteristic curve (AUC). The differences between the various AUCs were compared with DeLong's test. RESULTS Six radiomic features and the menopausal state were included in the radiomic nomogram, which discriminated benign calcifications from malignant calcifications with an AUC of 0.80 in the validation cohort. The difference between the classification results of the radiomic nomogram and that of radiologists was significant (p < 0.05). Particularly for patients with calcifications that are negative on ultrasounds but can be detected by mammography (MG+/US- calcifications), the identification ability of the radiomic nomogram was very strong. CONCLUSIONS The mammography-based radiomic nomogram is a potential tool to distinguish benign calcifications from malignant calcifications.
Collapse
Affiliation(s)
- Chuqian Lei
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China; Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, 510080, China
| | - Wei Wei
- School of Electronics and Information, Xi'an Polytechnic University, Xi'an, 710000, China; Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, 710126, China; CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhenyu Liu
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Qianqian Xiong
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China; Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, 510080, China
| | - Ciqiu Yang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Mei Yang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Liulu Zhang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Teng Zhu
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Xiaosheng Zhuang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China; Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Chunling Liu
- Department of Radiology, Guangdong Provincial People's Hospital, Guangzhou, 510080, China
| | - Zaiyi Liu
- Department of Radiology, Guangdong Provincial People's Hospital, Guangzhou, 510080, China
| | - Jie Tian
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, 710126, China; CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100190, China.
| | - Kun Wang
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, 510080, China; The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
20
|
Fan M, Liu Z, Xie S, Xu M, Wang S, Gao X, Li L. Integration of dynamic contrast-enhanced magnetic resonance imaging and T2-weighted imaging radiomic features by a canonical correlation analysis-based feature fusion method to predict histological grade in ductal breast carcinoma. Phys Med Biol 2019; 64:215001. [PMID: 31470420 DOI: 10.1088/1361-6560/ab3fd3] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Tumour histological grade has prognostic implications in breast cancer. Tumour features in dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and T2-weighted (T2W) imaging can provide related and complementary information in the analysis of breast lesions to improve MRI-based histological status prediction in breast cancer. A dataset of 167 patients with invasive ductal carcinoma (IDC) was assembled, consisting of 72 low/intermediate-grade and 95 high-grade cases with preoperative DCE-MRI and T2W images. The data cohort was separated into development (n = 111) and validation (n = 56) cohorts. Each tumour was segmented in the precontrast and the intermediate and last postcontrast DCE-MR images and was mapped to the tumour in the T2W images. Radiomic features, including texture, morphology, and histogram distribution features in the tumour image, were extracted for those image series. Features from the DCE-MR and T2W images were fused by a canonical correlation analysis (CCA)-based method. The support vector machine (SVM) classifiers were trained and tested on the development and validation cohorts, respectively. SVM-based recursive feature elimination (SVM-RFE) was adopted to identify the optimal features for prediction. The areas under the ROC curves (AUCs) for the T2W images and the DCE-MRI series of precontrast, intermediate and last postcontrast images were 0.750 ± 0.047, 0.749 ± 0.047, and 0.788 ± 0.045, respectively, for the development cohort and 0.715 ± 0.068, 0.704 ± 0.073, and 0.744 ± 0.067, respectively, for the validation cohort. After the CCA-based fusion of features from the DCE-MRI series and T2W images, the AUCs increased to 0.751 ± 0.065, 0.803 ± 0.0600 and 794 ± 0.060 in the validation cohort. Moreover, the method of fusing features between DCE-MRI and T2W images using CCA achieved better performance than the concatenation-based feature fusion or classifier fusion methods. Our results demonstrated that anatomical and functional MR images yield complementary information, and feature fusion of radiomic features by matrix transformation to optimize their correlations produced a classifier with improved performance for predicting the histological grade of IDC.
Collapse
Affiliation(s)
- Ming Fan
- Institute of Biomedical Engineering and Instrumentation, Hangzhou Dianzi University, Hangzhou, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
21
|
Marino MA, Avendano D, Zapata P, Riedl CC, Pinker K. Lymph Node Imaging in Patients with Primary Breast Cancer: Concurrent Diagnostic Tools. Oncologist 2019; 25:e231-e242. [PMID: 32043792 PMCID: PMC7011661 DOI: 10.1634/theoncologist.2019-0427] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 08/12/2019] [Indexed: 12/26/2022] Open
Abstract
The detection of lymph node metastasis affects the management of patients with primary breast cancer significantly in terms of staging, treatment, and prognosis. The main goal for the radiologist is to determine and detect the presence of metastatic disease in nonpalpable axillary lymph nodes with a positive predictive value that is high enough to initially select patients for upfront axillary lymph node dissection. Features that are suggestive of axillary adenopathy may be seen with different imaging modalities, but ultrasound is the method of choice for evaluating axillary lymph nodes and for performing image-guided lymph node interventions. This review aims to provide a comprehensive overview of the available imaging modalities for lymph node assessment in patients diagnosed with primary breast cancer. IMPLICATIONS FOR PRACTICE: The detection of lymph node metastasis affects the management of patients with primary breast cancer. The main goal for the radiologist is to detect lymph node metastasis in patients to allow for the selection of patients who should undergo upfront axillary lymph node dissection. Features that are suggestive of axillary adenopathy may be seen with mammography, computed tomography, and magnetic resonance imaging, but ultrasonography is the imaging modality of choice for evaluating axillary lymph nodes. A normal axillary lymph node is characterized by a reniform shape, a maximal cortical thickness of 3 mm without focal bulging, smooth margins, and, depending on size, a discernable central fatty hilum.
Collapse
Affiliation(s)
- Maria Adele Marino
- Department of Biomedical Sciences and Morphologic and Functional Imaging, Policlinico Universitario G. Martino, University of MessinaMessinaItaly
| | - Daly Avendano
- Department of Breast Imaging, Breast Cancer Center TecSalud, Instituto Tecnológico de Estudios Superiores (ITESM) MonterreyNuevo LeonMexico
| | - Pedro Zapata
- Department of Radiology, San Felipe de Jesus HospitalMonterreyNuevo LeonMexico
| | - Christopher C. Riedl
- Breast Imaging Service, Department of Radiology, Memorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
| | - Katja Pinker
- Breast Imaging Service, Department of Radiology, Memorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
- Molecular and Gender Imaging Service, Department of Biomedical Imaging and Image‐guided Therapy, Medical University of ViennaViennaAustria
| |
Collapse
|
22
|
Mann RM. Do We Need Optoacoustic Assessment of Hypoxia to Differentiate Molecular Subtypes of Breast Cancer? Radiology 2019; 292:573-574. [DOI: 10.1148/radiol.2019191263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ritse M. Mann
- From the Department of Radiology and Nuclear Medicine, Radboud University Medical Centre, Geert Grooteplein zuid 10, 6525 GA Nijmegen, the Netherlands; and Department of Radiology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| |
Collapse
|
23
|
Leithner D, Horvat JV, Ochoa-Albiztegui RE, Thakur S, Wengert G, Morris EA, Helbich TH, Pinker K. Imaging and the completion of the omics paradigm in breast cancer. Radiologe 2019; 58:7-13. [PMID: 29947931 PMCID: PMC6244523 DOI: 10.1007/s00117-018-0409-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Within the field of oncology, “omics” strategies—genomics, transcriptomics, proteomics, metabolomics—have many potential applications and may significantly improve our understanding of the underlying processes of cancer development and progression. Omics strategies aim to develop meaningful imaging biomarkers for breast cancer (BC) by rapid assessment of large datasets with different biological information. In BC the paradigm of omics technologies has always favored the integration of multiple layers of omics data to achieve a complete portrait of BC. Advances in medical imaging technologies, image analysis, and the development of high-throughput methods that can extract and correlate multiple imaging parameters with “omics” data have ushered in a new direction in medical research. Radiogenomics is a novel omics strategy that aims to correlate imaging characteristics (i. e., the imaging phenotype) with underlying gene expression patterns, gene mutations, and other genome-related characteristics. Radiogenomics not only represents the evolution in the radiology–pathology correlation from the anatomical–histological level to the molecular level, but it is also a pivotal step in the omics paradigm in BC in order to fully characterize BC. Armed with modern analytical software tools, radiogenomics leads to new discoveries of quantitative and qualitative imaging biomarkers that offer hitherto unprecedented insights into the complex tumor biology and facilitate a deeper understanding of cancer development and progression. The field of radiogenomics in breast cancer is rapidly evolving, and results from previous studies are encouraging. It can be expected that radiogenomics will play an important role in the future and has the potential to revolutionize the diagnosis, treatment, and prognosis of BC patients. This article aims to give an overview of breast radiogenomics, its current role, future applications, and challenges.
Collapse
Affiliation(s)
- D Leithner
- Department of Radiology, Breast Imaging Service, Memorial Sloan Kettering Cancer Center, 300 E 66th St, 7th Floor, 10065, New York, NY, USA
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt, Germany
| | - J V Horvat
- Department of Radiology, Breast Imaging Service, Memorial Sloan Kettering Cancer Center, 300 E 66th St, 7th Floor, 10065, New York, NY, USA
| | - R E Ochoa-Albiztegui
- Department of Radiology, Breast Imaging Service, Memorial Sloan Kettering Cancer Center, 300 E 66th St, 7th Floor, 10065, New York, NY, USA
| | - S Thakur
- Department of Radiology, Breast Imaging Service, Memorial Sloan Kettering Cancer Center, 300 E 66th St, 7th Floor, 10065, New York, NY, USA
| | - G Wengert
- Department of Biomedical Imaging and Image-guided Therapy, Division of Molecular and Gender Imaging, Medical University Vienna, Vienna, Austria
| | - E A Morris
- Department of Radiology, Breast Imaging Service, Memorial Sloan Kettering Cancer Center, 300 E 66th St, 7th Floor, 10065, New York, NY, USA
| | - T H Helbich
- Department of Biomedical Imaging and Image-guided Therapy, Division of Molecular and Gender Imaging, Medical University Vienna, Vienna, Austria
| | - K Pinker
- Department of Radiology, Breast Imaging Service, Memorial Sloan Kettering Cancer Center, 300 E 66th St, 7th Floor, 10065, New York, NY, USA.
- Department of Biomedical Imaging and Image-guided Therapy, Division of Molecular and Gender Imaging, Medical University Vienna, Vienna, Austria.
| |
Collapse
|
24
|
Xie T, Wang Z, Zhao Q, Bai Q, Zhou X, Gu Y, Peng W, Wang H. Machine Learning-Based Analysis of MR Multiparametric Radiomics for the Subtype Classification of Breast Cancer. Front Oncol 2019; 9:505. [PMID: 31259153 PMCID: PMC6587031 DOI: 10.3389/fonc.2019.00505] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 05/28/2019] [Indexed: 12/15/2022] Open
Abstract
Objective: To investigate whether machine learning analysis of multiparametric MR radiomics can help classify immunohistochemical (IHC) subtypes of breast cancer. Study design: One hundred and thirty-four consecutive patients with pathologically-proven invasive ductal carcinoma were retrospectively analyzed. A total of 2,498 features were extracted from the DCE and DWI images, together with the new calculated images, including DCE images changing over six time points (DCEsequential) and DWI images changing over three b-values (DWIsequential). We proposed a novel two-stage feature selection method combining traditional statistics and machine learning-based methods. The accuracies of the 4-IHC classification and triple negative (TN) vs. non-TN cancers were assessed. Results: For the 4-IHC classification task, the best accuracy of 72.4% was achieved based on linear discriminant analysis (LDA) or subspace discrimination of assembled learning in conjunction with 20 selected features, and only small dependent emphasis of Kendall-tau-b for sequential features, based on the DWIsequential with the LDA model, yielding an accuracy of 53.7%. The linear support vector machine (SVM) and medium k-nearest neighbor using eight features yielded the highest accuracy of 91.0% for comparing TN to non-TN cancers, and the maximum variance for DWIsequential alone, together with a linear SVM model, achieved an accuracy of 83.6%. Conclusions: Whole-tumor radiomics on MR multiparametric images, DCE images changing over time points, and DWI images changing over different b-values provide a non-invasive analytical approach for breast cancer subtype classification and TN cancer identification.
Collapse
Affiliation(s)
- Tianwen Xie
- Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Zhe Wang
- Human Phenome Institute, Fudan University, Shanghai, China.,Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, China
| | - Qiufeng Zhao
- Department of Radiology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qianming Bai
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Xiaoyan Zhou
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yajia Gu
- Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Weijun Peng
- Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - He Wang
- Human Phenome Institute, Fudan University, Shanghai, China.,Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| |
Collapse
|
25
|
Radiogenomics of rectal adenocarcinoma in the era of precision medicine: A pilot study of associations between qualitative and quantitative MRI imaging features and genetic mutations. Eur J Radiol 2019; 113:174-181. [PMID: 30927944 DOI: 10.1016/j.ejrad.2019.02.022] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/24/2019] [Accepted: 02/17/2019] [Indexed: 12/16/2022]
Abstract
OBJECTIVE To investigate associations between genetic mutations and qualitative as well as quantitative features on MRI in rectal adenocarcinoma at primary staging. METHODS In this retrospective study, patients with rectal adenocarcinoma, genome sequencing, and pretreatment rectal MRI were included. Statistical analysis was performed to evaluate associations between qualitative features obtained from subjective evaluation of rectal MRI and gene mutations as well as between quantitative textural features and gene mutations. For the qualitative evaluation, Fisher's Exact test was used to analyze categorical associations and Wilcoxon Rank Sum test was used for continuous clinical variables. For the quantitative evaluation, we performed manual segmentation of T2-weighted images for radiomics-based quantitative image analysis. Thirty-four texture features consisting of first order intensity histogram-based features (n = 4), second order Haralick textures (n = 5), and Gabor-edge based Haralick textures were computed at two different orientations. Consensus clustering was performed with 34 computed texture features using the K-means algorithm with Euclidean distance between the texture features. The clusters resulting from the algorithm were then used to enumerate the prevalence of gene mutations in those clusters. RESULTS In 65 patients, 45 genes were mutated in more than 3/65 patients (5%) and were included in the statistical analysis. Regarding qualitative imaging features, on univariate analysis, tumor location was significantly associated with APC (p = 0.032) and RASA1 mutation (p = 0.032); CRM status was significantly associated with ATM mutation (p = 0.021); and lymph node metastasis was significantly associated with BRCA2 (p = 0.046) mutation. However, these associations were not significant after adjusting for multiple comparisons. Regarding quantitative imaging features, Cluster C1 had tumors with higher mean Gabor edge intensity compared with cluster C2 (θ = 0°, p = 0.018; θ = 45°, p = 0.047; θ = 90°, p = 0.037; cluster C3 (θ = 0°, p = 0.18; θ = 45°, p = 0.1; θ = 90°, p = 0.052), and cluster C4 (θ = 0°, p = 0.016; θ = 45°, p = 0.033; θ = 90°, p = 0.014) suggesting that the cluster C1 had tumors with more distinct edges or heterogeneous appearance compared with other clusters. CONCLUSIONS Although this preliminary study showed promising associations between quantitative features and genetic mutations, it did not show any correlation between qualitative features and genetic mutations. Further studies with larger sample size are warranted to validate our preliminary data.
Collapse
|
26
|
|
27
|
Iv M, Zhou M, Shpanskaya K, Perreault S, Wang Z, Tranvinh E, Lanzman B, Vajapeyam S, Vitanza NA, Fisher PG, Cho YJ, Laughlin S, Ramaswamy V, Taylor MD, Cheshier SH, Grant GA, Young Poussaint T, Gevaert O, Yeom KW. MR Imaging-Based Radiomic Signatures of Distinct Molecular Subgroups of Medulloblastoma. AJNR Am J Neuroradiol 2018; 40:154-161. [PMID: 30523141 DOI: 10.3174/ajnr.a5899] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 10/06/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND PURPOSE Distinct molecular subgroups of pediatric medulloblastoma confer important differences in prognosis and therapy. Currently, tissue sampling is the only method to obtain information for classification. Our goal was to develop and validate radiomic and machine learning approaches for predicting molecular subgroups of pediatric medulloblastoma. MATERIALS AND METHODS In this multi-institutional retrospective study, we evaluated MR imaging datasets of 109 pediatric patients with medulloblastoma from 3 children's hospitals from January 2001 to January 2014. A computational framework was developed to extract MR imaging-based radiomic features from tumor segmentations, and we tested 2 predictive models: a double 10-fold cross-validation using a combined dataset consisting of all 3 patient cohorts and a 3-dataset cross-validation, in which training was performed on 2 cohorts and testing was performed on the third independent cohort. We used the Wilcoxon rank sum test for feature selection with assessment of area under the receiver operating characteristic curve to evaluate model performance. RESULTS Of 590 MR imaging-derived radiomic features, including intensity-based histograms, tumor edge-sharpness, Gabor features, and local area integral invariant features, extracted from imaging-derived tumor segmentations, tumor edge-sharpness was most useful for predicting sonic hedgehog and group 4 tumors. Receiver operating characteristic analysis revealed superior performance of the double 10-fold cross-validation model for predicting sonic hedgehog, group 3, and group 4 tumors when using combined T1- and T2-weighted images (area under the curve = 0.79, 0.70, and 0.83, respectively). With the independent 3-dataset cross-validation strategy, select radiomic features were predictive of sonic hedgehog (area under the curve = 0.70-0.73) and group 4 (area under the curve = 0.76-0.80) medulloblastoma. CONCLUSIONS This study provides proof-of-concept results for the application of radiomic and machine learning approaches to a multi-institutional dataset for the prediction of medulloblastoma subgroups.
Collapse
Affiliation(s)
- M Iv
- From the Department of Radiology (M.I., M.Z., K.S., E.T., B.L., K.W.Y.)
| | - M Zhou
- From the Department of Radiology (M.I., M.Z., K.S., E.T., B.L., K.W.Y.).,Stanford Center for Biomedical Informatics (M.Z., O.G., Z.W.)
| | - K Shpanskaya
- From the Department of Radiology (M.I., M.Z., K.S., E.T., B.L., K.W.Y.)
| | - S Perreault
- Department of Pediatrics (S.P.), Pediatric Neurology, Centre Hospitalier Universitaire Sainte Justine, University of Montréal, Montreal, Quebec, Canada
| | - Z Wang
- Stanford Center for Biomedical Informatics (M.Z., O.G., Z.W.)
| | - E Tranvinh
- From the Department of Radiology (M.I., M.Z., K.S., E.T., B.L., K.W.Y.)
| | - B Lanzman
- From the Department of Radiology (M.I., M.Z., K.S., E.T., B.L., K.W.Y.)
| | - S Vajapeyam
- Department of Radiology (S.V., T.Y.P.), Boston Children's Hospital, Harvard University, Boston, Massachusetts
| | - N A Vitanza
- Department Pediatrics Hematology-Oncology (N.A.V.), Seattle Children's Hospital, University of Washington, Seattle, Washington
| | - P G Fisher
- Department of Pediatrics (P.G.F.), Pediatric Neurology
| | - Y J Cho
- Department of Pediatrics (Y.J.C.), Pediatric Neurology, Oregon Health & Science University, Portland, Oregon
| | - S Laughlin
- Departments of Radiology, Neuro-Oncology, and Neurosurgery (S.L., V.R., M.D.T.), Hospital for Sick Children, Toronto, Ontario, Canada
| | - V Ramaswamy
- Departments of Radiology, Neuro-Oncology, and Neurosurgery (S.L., V.R., M.D.T.), Hospital for Sick Children, Toronto, Ontario, Canada
| | - M D Taylor
- Departments of Radiology, Neuro-Oncology, and Neurosurgery (S.L., V.R., M.D.T.), Hospital for Sick Children, Toronto, Ontario, Canada
| | - S H Cheshier
- Department of Neurosurgery (S.H.C.), Pediatric Neurosurgery, University of Utah, Salt Lake City, Utah
| | - G A Grant
- Department of Neurosurgery (G.A.G.), Pediatric Neurosurgery, Lucile Packard Children's Hospital, Stanford University, Palo Alto, California
| | - T Young Poussaint
- Department of Radiology (S.V., T.Y.P.), Boston Children's Hospital, Harvard University, Boston, Massachusetts
| | - O Gevaert
- Stanford Center for Biomedical Informatics (M.Z., O.G., Z.W.)
| | - K W Yeom
- From the Department of Radiology (M.I., M.Z., K.S., E.T., B.L., K.W.Y.) .,Department of Radiology (K.W.Y.), Artificial Intelligence in Medicine and Imaging, Stanford University, Stanford, California
| |
Collapse
|
28
|
Pinker K, Chin J, Melsaether AN, Morris EA, Moy L. Precision Medicine and Radiogenomics in Breast Cancer: New Approaches toward Diagnosis and Treatment. Radiology 2018; 287:732-747. [PMID: 29782246 DOI: 10.1148/radiol.2018172171] [Citation(s) in RCA: 176] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Precision medicine is medicine optimized to the genotypic and phenotypic characteristics of an individual and, when present, his or her disease. It has a host of targets, including genes and their transcripts, proteins, and metabolites. Studying precision medicine involves a systems biology approach that integrates mathematical modeling and biology genomics, transcriptomics, proteomics, and metabolomics. Moreover, precision medicine must consider not only the relatively static genetic codes of individuals, but also the dynamic and heterogeneous genetic codes of cancers. Thus, precision medicine relies not only on discovering identifiable targets for treatment and surveillance modification, but also on reliable, noninvasive methods of identifying changes in these targets over time. Imaging via radiomics and radiogenomics is poised for a central role. Radiomics, which extracts large volumes of quantitative data from digital images and amalgamates these together with clinical and patient data into searchable shared databases, potentiates radiogenomics, which is the combination of genetic and radiomic data. Radiogenomics may provide voxel-by-voxel genetic information for a complete, heterogeneous tumor or, in the setting of metastatic disease, set of tumors and thereby guide tailored therapy. Radiogenomics may also quantify lesion characteristics, to better differentiate between benign and malignant entities, and patient characteristics, to better stratify patients according to risk for disease, thereby allowing for more precise imaging and screening. This report provides an overview of precision medicine and discusses radiogenomics specifically in breast cancer. © RSNA, 2018.
Collapse
Affiliation(s)
- Katja Pinker
- From the Department of Radiology, Breast Imaging Service, Memorial Sloan-Kettering Cancer Center, New York, NY (K.P., J.C., E.A.M.); and Center for Advanced Imaging Innovation and Research, Laura and Isaac Perlmutter Cancer Center, New York University of Medicine, 160 E 34th St, New York, NY 10016 (A.N.M., L.M.)
| | - Joanne Chin
- From the Department of Radiology, Breast Imaging Service, Memorial Sloan-Kettering Cancer Center, New York, NY (K.P., J.C., E.A.M.); and Center for Advanced Imaging Innovation and Research, Laura and Isaac Perlmutter Cancer Center, New York University of Medicine, 160 E 34th St, New York, NY 10016 (A.N.M., L.M.)
| | - Amy N Melsaether
- From the Department of Radiology, Breast Imaging Service, Memorial Sloan-Kettering Cancer Center, New York, NY (K.P., J.C., E.A.M.); and Center for Advanced Imaging Innovation and Research, Laura and Isaac Perlmutter Cancer Center, New York University of Medicine, 160 E 34th St, New York, NY 10016 (A.N.M., L.M.)
| | - Elizabeth A Morris
- From the Department of Radiology, Breast Imaging Service, Memorial Sloan-Kettering Cancer Center, New York, NY (K.P., J.C., E.A.M.); and Center for Advanced Imaging Innovation and Research, Laura and Isaac Perlmutter Cancer Center, New York University of Medicine, 160 E 34th St, New York, NY 10016 (A.N.M., L.M.)
| | - Linda Moy
- From the Department of Radiology, Breast Imaging Service, Memorial Sloan-Kettering Cancer Center, New York, NY (K.P., J.C., E.A.M.); and Center for Advanced Imaging Innovation and Research, Laura and Isaac Perlmutter Cancer Center, New York University of Medicine, 160 E 34th St, New York, NY 10016 (A.N.M., L.M.)
| |
Collapse
|
29
|
Dregely I, Prezzi D, Kelly‐Morland C, Roccia E, Neji R, Goh V. Imaging biomarkers in oncology: Basics and application to MRI. J Magn Reson Imaging 2018; 48:13-26. [PMID: 29969192 PMCID: PMC6587121 DOI: 10.1002/jmri.26058] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 03/26/2018] [Indexed: 12/12/2022] Open
Abstract
Cancer remains a global killer alongside cardiovascular disease. A better understanding of cancer biology has transformed its management with an increasing emphasis on a personalized approach, so-called "precision cancer medicine." Imaging has a key role to play in the management of cancer patients. Imaging biomarkers that objectively inform on tumor biology, the tumor environment, and tumor changes in response to an intervention complement genomic and molecular diagnostics. In this review we describe the key principles for imaging biomarker development and discuss the current status with respect to magnetic resonance imaging (MRI). LEVEL OF EVIDENCE 5 TECHNICAL EFFICACY: Stage 5 J. Magn. Reson. Imaging 2018;48:13-26.
Collapse
Affiliation(s)
- Isabel Dregely
- Biomedical Engineering, School of Biomedical Engineering & Imaging SciencesKing's Health Partners, St Thomas' HospitalLondon, UK
| | - Davide Prezzi
- Cancer Imaging, School of Biomedical Engineering & Imaging Sciences King's College London, King's Health Partners, St Thomas' Hospital, LondonUK
- RadiologyGuy's & St Thomas' NHS Foundation TrustLondonUK
| | - Christian Kelly‐Morland
- Cancer Imaging, School of Biomedical Engineering & Imaging Sciences King's College London, King's Health Partners, St Thomas' Hospital, LondonUK
- RadiologyGuy's & St Thomas' NHS Foundation TrustLondonUK
| | - Elisa Roccia
- Biomedical Engineering, School of Biomedical Engineering & Imaging SciencesKing's Health Partners, St Thomas' HospitalLondon, UK
| | - Radhouene Neji
- Biomedical Engineering, School of Biomedical Engineering & Imaging SciencesKing's Health Partners, St Thomas' HospitalLondon, UK
- MR Research CollaborationsSiemens HealthcareFrimleyUK
| | - Vicky Goh
- Cancer Imaging, School of Biomedical Engineering & Imaging Sciences King's College London, King's Health Partners, St Thomas' Hospital, LondonUK
- RadiologyGuy's & St Thomas' NHS Foundation TrustLondonUK
| |
Collapse
|
30
|
Jansen RW, van Amstel P, Martens RM, Kooi IE, Wesseling P, de Langen AJ, Menke-Van der Houven van Oordt CW, Jansen BHE, Moll AC, Dorsman JC, Castelijns JA, de Graaf P, de Jong MC. Non-invasive tumor genotyping using radiogenomic biomarkers, a systematic review and oncology-wide pathway analysis. Oncotarget 2018; 9:20134-20155. [PMID: 29732009 PMCID: PMC5929452 DOI: 10.18632/oncotarget.24893] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 02/26/2018] [Indexed: 12/12/2022] Open
Abstract
With targeted treatments playing an increasing role in oncology, the need arises for fast non-invasive genotyping in clinical practice. Radiogenomics is a rapidly evolving field of research aimed at identifying imaging biomarkers useful for non-invasive genotyping. Radiogenomic genotyping has the advantage that it can capture tumor heterogeneity, can be performed repeatedly for treatment monitoring, and can be performed in malignancies for which biopsy is not available. In this systematic review of 187 included articles, we compiled a database of radiogenomic associations and unraveled networks of imaging groups and gene pathways oncology-wide. Results indicated that ill-defined tumor margins and tumor heterogeneity can potentially be used as imaging biomarkers for 1p/19q codeletion in glioma, relevant for prognosis and disease profiling. In non-small cell lung cancer, FDG-PET uptake and CT-ground-glass-opacity features were associated with treatment-informing traits including EGFR-mutations and ALK-rearrangements. Oncology-wide gene pathway analysis revealed an association between contrast enhancement (imaging) and the targetable VEGF-signalling pathway. Although the need of independent validation remains a concern, radiogenomic biomarkers showed potential for prognosis prediction and targeted treatment selection. Quantitative imaging enhanced the potential of multiparametric radiogenomic models. A wealth of data has been compiled for guiding future research towards robust non-invasive genomic profiling.
Collapse
Affiliation(s)
- Robin W Jansen
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Paul van Amstel
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Roland M Martens
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Irsan E Kooi
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands
| | - Pieter Wesseling
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands.,Department of Pathology, Princess Máxima Center for Pediatric Oncology and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Adrianus J de Langen
- Department of Respiratory Diseases, VU University Medical Center, Amsterdam, The Netherlands
| | | | - Bernard H E Jansen
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Annette C Moll
- Department of Ophthalmology, VU University Medical Center, Amsterdam, The Netherlands
| | - Josephine C Dorsman
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands
| | - Jonas A Castelijns
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Pim de Graaf
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Marcus C de Jong
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
31
|
Ramírez-Galván YA, Cardona-Huerta S, Elizondo-Riojas G, Álvarez-Villalobos NA. Apparent Diffusion Coefficient Value to Evaluate Tumor Response After Neoadjuvant Chemotherapy in Patients with Breast Cancer. Acad Radiol 2018; 25:179-187. [PMID: 29033147 DOI: 10.1016/j.acra.2017.08.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 08/10/2017] [Accepted: 08/28/2017] [Indexed: 12/11/2022]
Abstract
RATIONALE AND OBJECTIVES This study explored tumor behavior in patients with breast cancer during neoadjuvant chemotherapy (NAC) by sequential measurements of tumor apparent diffusion coefficient (ADC) after each chemotherapy cycle. The aim was to determine if the tumor ADC is useful to differentiate complete pathological response (cPR) from partial pathological response (pPR) during NAC. MATERIALS AND METHODS A total of 16 cases (in 14 patients) with diagnosis of breast cancer eligible to receive NAC were included. There were 70 magnetic resonance imaging examinations performed, 5 for each patient, during NAC cycles. Diffusion-weighted imaging was performed on a 1.5T system (b values of 0 and 700s/mm2). Four ADC ratios between the five MRI examinations were obtained to assess ADC changes during NAC. Absence of invasive breast cancer at surgical specimens (Miller-Payne 5) was considered as cPR and was used as reference for ADC cutoff ratios. RESULTS In this study, we were able to differentiate between cPR and pPR, after two cycles of NAC until the end of NAC before surgery (ADC ratios 2-4). The thresholds to differentiate between cPR and pPR of ADC ratios 2, 3, and 4, were 1.14 × 10-3mm2/s, 1.08 × 10-3mm2/s, and 1.25 × 10-3mm2/s, respectively, and have a cross-validated sensitivity and specificity of 79.2%, 79.7% (ADC ratio 2); 100%, 66.7% (ADC ratio 3); and 100%, 83.8% (ADC ratio 4), respectively. CONCLUSIONS The ADC ratios were useful to differentiate cPR from pPR in breast cancer tumors after NAC. Thus, it may be useful in tailoring treatment in these patients.
Collapse
|
32
|
Abstract
OBJECTIVE The goals of this review are to provide background information on the definitions and applications of the general term "biomarker" and to highlight the specific roles of breast imaging biomarkers in research and clinical breast cancer care. A search was conducted of the main electronic biomedical databases (PubMed, Cochrane, Embase, MEDLINE [Ovid], Scopus, and Web of Science). The search was focused on review literature in general radiology and biomedical sciences and on reviews and primary research articles on biomarkers in breast imaging over the 15 years ending in June 2017. The keywords included "biomarker," "trial endpoints," "breast imaging," "breast cancer," "radiomics," and "precision medicine" in the titles and abstracts of the papers. CONCLUSION Clinical breast care and breast cancer-related research rely on imaging biomarkers for decision support. In the era of precision medicine and big data, the practice of radiology is likely to change. A closer integration of breast imaging with related biomedical fields and the creation of large integrated and shareable databases of clinical, molecular, and imaging biomarkers should allow the field to continue guiding breast cancer care and research.
Collapse
|
33
|
Sutton EJ, Huang EP, Drukker K, Burnside ES, Li H, Net JM, Rao A, Whitman GJ, Zuley M, Ganott M, Bonaccio E, Giger ML, Morris EA. Breast MRI radiomics: comparison of computer- and human-extracted imaging phenotypes. Eur Radiol Exp 2017; 1:22. [PMID: 29708200 PMCID: PMC5909355 DOI: 10.1186/s41747-017-0025-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 09/19/2017] [Indexed: 01/18/2023] Open
Abstract
Background In this study, we sought to investigate if computer-extracted magnetic resonance imaging (MRI) phenotypes of breast cancer could replicate human-extracted size and Breast Imaging-Reporting and Data System (BI-RADS) imaging phenotypes using MRI data from The Cancer Genome Atlas (TCGA) project of the National Cancer Institute. Methods Our retrospective interpretation study involved analysis of Health Insurance Portability and Accountability Act-compliant breast MRI data from The Cancer Imaging Archive, an open-source database from the TCGA project. This study was exempt from institutional review board approval at Memorial Sloan Kettering Cancer Center and the need for informed consent was waived. Ninety-one pre-operative breast MRIs with verified invasive breast cancers were analysed. Three fellowship-trained breast radiologists evaluated the index cancer in each case according to size and the BI-RADS lexicon for shape, margin, and enhancement (human-extracted image phenotypes [HEIP]). Human inter-observer agreement was analysed by the intra-class correlation coefficient (ICC) for size and Krippendorff’s α for other measurements. Quantitative MRI radiomics of computerised three-dimensional segmentations of each cancer generated computer-extracted image phenotypes (CEIP). Spearman’s rank correlation coefficients were used to compare HEIP and CEIP. Results Inter-observer agreement for HEIP varied, with the highest agreement seen for size (ICC 0.679) and shape (ICC 0.527). The computer-extracted maximum linear size replicated the human measurement with p < 10−12. CEIP of shape, specifically sphericity and irregularity, replicated HEIP with both p values < 0.001. CEIP did not demonstrate agreement with HEIP of tumour margin or internal enhancement. Conclusions Quantitative radiomics of breast cancer may replicate human-extracted tumour size and BI-RADS imaging phenotypes, thus enabling precision medicine.
Collapse
Affiliation(s)
- Elizabeth J Sutton
- 1Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY 10065 USA
| | - Erich P Huang
- 2Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, 9609 Medical Center Drive, Rockville, MD 20892 USA
| | - Karen Drukker
- 3Department of Radiology, University of Chicago, 5841 South Maryland Avenue, MC 2026, Chicago, IL 60637 USA
| | - Elizabeth S Burnside
- 4Department of Radiology, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, Madison, WI 53792 USA
| | - Hui Li
- 3Department of Radiology, University of Chicago, 5841 South Maryland Avenue, MC 2026, Chicago, IL 60637 USA
| | - Jose M Net
- 5Miller School of Medicine, University of Miami, Miami, FL 33136 USA
| | - Arvind Rao
- 6Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77498 USA
| | - Gary J Whitman
- 7Department of Diagnostic Imaging, The University of Texas MD Anderson Cancer, Center, Houston, TX 77030 USA
| | - Margarita Zuley
- 8Department of Radiology, University of Pittsburgh, Pittsburgh, PA 15213 USA
| | - Marie Ganott
- 8Department of Radiology, University of Pittsburgh, Pittsburgh, PA 15213 USA
| | - Ermelinda Bonaccio
- 9Department of Radiology, Roswell Park Cancer Institute, Buffalo, NY 14263 USA
| | - Maryellen L Giger
- 3Department of Radiology, University of Chicago, 5841 South Maryland Avenue, MC 2026, Chicago, IL 60637 USA
| | - Elizabeth A Morris
- 1Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY 10065 USA.,300 East 66th Street, New York, NY 10065 USA
| | | |
Collapse
|
34
|
Pinker K, Shitano F, Sala E, Do RK, Young RJ, Wibmer AG, Hricak H, Sutton EJ, Morris EA. Background, current role, and potential applications of radiogenomics. J Magn Reson Imaging 2017; 47:604-620. [PMID: 29095543 DOI: 10.1002/jmri.25870] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 09/17/2017] [Accepted: 09/19/2017] [Indexed: 12/17/2022] Open
Abstract
With the genomic revolution in the early 1990s, medical research has been driven to study the basis of human disease on a genomic level and to devise precise cancer therapies tailored to the specific genetic makeup of a tumor. To match novel therapeutic concepts conceived in the era of precision medicine, diagnostic tests must be equally sufficient, multilayered, and complex to identify the relevant genetic alterations that render cancers susceptible to treatment. With significant advances in training and medical imaging techniques, image analysis and the development of high-throughput methods to extract and correlate multiple imaging parameters with genomic data, a new direction in medical research has emerged. This novel approach has been termed radiogenomics. Radiogenomics aims to correlate imaging characteristics (ie, the imaging phenotype) with gene expression patterns, gene mutations, and other genome-related characteristics and is designed to facilitate a deeper understanding of tumor biology and capture the intrinsic tumor heterogeneity. Ultimately, the goal of radiogenomics is to develop imaging biomarkers for outcome that incorporate both phenotypic and genotypic metrics. Due to the noninvasive nature of medical imaging and its ubiquitous use in clinical practice, the field of radiogenomics is rapidly evolving and initial results are encouraging. In this article, we briefly discuss the background and then summarize the current role and the potential of radiogenomics in brain, liver, prostate, gynecological, and breast tumors. LEVEL OF EVIDENCE 5 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2017;47:604-620.
Collapse
Affiliation(s)
- Katja Pinker
- Department of Radiology, Breast Imaging Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Department of Biomedical Imaging and Image-guided Therapy, Division of Molecular and Gender Imaging, Medical University of Vienna, Austria
| | - Fuki Shitano
- Department of Radiology, Body Imaging Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Evis Sala
- Department of Radiology, Body Imaging Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Richard K Do
- Department of Radiology, Body Imaging Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Robert J Young
- Department of Radiology, Neuroradiology Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Andreas G Wibmer
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Hedvig Hricak
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Elizabeth J Sutton
- Department of Radiology, Breast Imaging Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Elizabeth A Morris
- Department of Radiology, Breast Imaging Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
35
|
Iima M, Kataoka M, Kanao S, Onishi N, Kawai M, Ohashi A, Sakaguchi R, Toi M, Togashi K. Intravoxel Incoherent Motion and Quantitative Non-Gaussian Diffusion MR Imaging: Evaluation of the Diagnostic and Prognostic Value of Several Markers of Malignant and Benign Breast Lesions. Radiology 2017; 287:432-441. [PMID: 29095673 DOI: 10.1148/radiol.2017162853] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Purpose To investigate the performance of integrated approaches that combined intravoxel incoherent motion (IVIM) and non-Gaussian diffusion parameters compared with the Breast Imaging and Reporting Data System (BI-RADS) to establish multiparameter thresholds scores or probabilities by using Bayesian analysis to distinguish malignant from benign breast lesions and their correlation with molecular prognostic factors. Materials and Methods Between May 2013 and March 2015, 411 patients were prospectively enrolled and 199 patients (allocated to training [n = 99] and validation [n = 100] sets) were included in this study. IVIM parameters (flowing blood volume fraction [fIVIM] and pseudodiffusion coefficient [D*]) and non-Gaussian diffusion parameters (theoretical apparent diffusion coefficient [ADC] at b value of 0 sec/mm2 [ADC0] and kurtosis [K]) by using IVIM and kurtosis models were estimated from diffusion-weighted image series (16 b values up to 2500 sec/mm2), as well as a synthetic ADC (sADC) calculated by using b values of 200 and 1500 (sADC200-1500) and a standard ADC calculated by using b values of 0 and 800 sec/mm2 (ADC0-800). The performance of two diagnostic approaches (combined parameter thresholds and Bayesian analysis) combining IVIM and diffusion parameters was evaluated and compared with BI-RADS performance. The Mann-Whitney U test and a nonparametric multiple comparison test were used to compare their performance to determine benignity or malignancy and as molecular prognostic biomarkers and subtypes of breast cancer. Results Significant differences were found between malignant and benign breast lesions for IVIM and non-Gaussian diffusion parameters (ADC0, K, fIVIM, fIVIM · D*, sADC200-1500, and ADC0-800; P < .05). Sensitivity and specificity for the validation set by radiologists A and B were as follows: sensitivity, 94.7% and 89.5%, and specificity, 75.0% and 79.2% for sADC200-1500, respectively; sensitivity, 94.7% and 96.1%, and specificity, 75.0% and 66.7%, for the combined thresholds approach, respectively; sensitivity, 92.1% and 92.1%, and specificity, 83.3% and 66.7%, for Bayesian analysis, respectively; and sensitivity and specificity, 100% and 79.2%, for BI-RADS, respectively. The significant difference in values of sADC200-1500 in progesterone receptor status (P = .002) was noted. sADC200-1500 was significantly different between histologic subtypes (P = .006). Conclusion Approaches that combined various IVIM and non-Gaussian diffusion MR imaging parameters may provide BI-RADS-equivalent scores almost comparable to BI-RADS categories without the use of contrast agents. Non-Gaussian diffusion parameters also differed by biologic prognostic factors. © RSNA, 2017 Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Mami Iima
- From the Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin-kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan (M.I., M. Kataoka, S.K., N.O., M. Kawai, A.O., R.S., K.T.); Hakubi Center for Advanced Research, Kyoto University, Kyoto, Japan (M.I.); and Department of Breast Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan (M.T.)
| | - Masako Kataoka
- From the Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin-kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan (M.I., M. Kataoka, S.K., N.O., M. Kawai, A.O., R.S., K.T.); Hakubi Center for Advanced Research, Kyoto University, Kyoto, Japan (M.I.); and Department of Breast Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan (M.T.)
| | - Shotaro Kanao
- From the Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin-kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan (M.I., M. Kataoka, S.K., N.O., M. Kawai, A.O., R.S., K.T.); Hakubi Center for Advanced Research, Kyoto University, Kyoto, Japan (M.I.); and Department of Breast Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan (M.T.)
| | - Natsuko Onishi
- From the Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin-kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan (M.I., M. Kataoka, S.K., N.O., M. Kawai, A.O., R.S., K.T.); Hakubi Center for Advanced Research, Kyoto University, Kyoto, Japan (M.I.); and Department of Breast Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan (M.T.)
| | - Makiko Kawai
- From the Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin-kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan (M.I., M. Kataoka, S.K., N.O., M. Kawai, A.O., R.S., K.T.); Hakubi Center for Advanced Research, Kyoto University, Kyoto, Japan (M.I.); and Department of Breast Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan (M.T.)
| | - Akane Ohashi
- From the Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin-kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan (M.I., M. Kataoka, S.K., N.O., M. Kawai, A.O., R.S., K.T.); Hakubi Center for Advanced Research, Kyoto University, Kyoto, Japan (M.I.); and Department of Breast Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan (M.T.)
| | - Rena Sakaguchi
- From the Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin-kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan (M.I., M. Kataoka, S.K., N.O., M. Kawai, A.O., R.S., K.T.); Hakubi Center for Advanced Research, Kyoto University, Kyoto, Japan (M.I.); and Department of Breast Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan (M.T.)
| | - Masakazu Toi
- From the Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin-kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan (M.I., M. Kataoka, S.K., N.O., M. Kawai, A.O., R.S., K.T.); Hakubi Center for Advanced Research, Kyoto University, Kyoto, Japan (M.I.); and Department of Breast Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan (M.T.)
| | - Kaori Togashi
- From the Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin-kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan (M.I., M. Kataoka, S.K., N.O., M. Kawai, A.O., R.S., K.T.); Hakubi Center for Advanced Research, Kyoto University, Kyoto, Japan (M.I.); and Department of Breast Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan (M.T.)
| |
Collapse
|
36
|
Henderson S, Purdie C, Michie C, Evans A, Lerski R, Johnston M, Vinnicombe S, Thompson AM. Interim heterogeneity changes measured using entropy texture features on T2-weighted MRI at 3.0 T are associated with pathological response to neoadjuvant chemotherapy in primary breast cancer. Eur Radiol 2017; 27:4602-4611. [PMID: 28523352 PMCID: PMC5635097 DOI: 10.1007/s00330-017-4850-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 04/05/2017] [Accepted: 04/11/2017] [Indexed: 12/31/2022]
Abstract
OBJECTIVES To investigate whether interim changes in hetereogeneity (measured using entropy features) on MRI were associated with pathological residual cancer burden (RCB) at final surgery in patients receiving neoadjuvant chemotherapy (NAC) for primary breast cancer. METHODS This was a retrospective study of 88 consenting women (age: 30-79 years). Scanning was performed on a 3.0 T MRI scanner prior to NAC (baseline) and after 2-3 cycles of treatment (interim). Entropy was derived from the grey-level co-occurrence matrix, on slice-matched baseline/interim T2-weighted images. Response, assessed using RCB score on surgically resected specimens, was compared statistically with entropy/heterogeneity changes and ROC analysis performed. Association of pCR within each tumour immunophenotype was evaluated. RESULTS Mean entropy percent differences between examinations, by response category, were: pCR: 32.8%, RCB-I: 10.5%, RCB-II: 9.7% and RCB-III: 3.0%. Association of ultimate pCR with coarse entropy changes between baseline/interim MRI across all lesions yielded 85.2% accuracy (area under ROC curve: 0.845). Excellent sensitivity/specificity was obtained for pCR prediction within each immunophenotype: ER+: 100%/100%; HER2+: 83.3%/95.7%, TNBC: 87.5%/80.0%. CONCLUSIONS Lesion T2 heterogeneity changes are associated with response to NAC using RCB scores, particularly for pCR, and can be useful across all immunophenotypes with good diagnostic accuracy. KEY POINTS • Texture analysis provides a means of measuring lesion heterogeneity on MRI images. • Heterogeneity changes between baseline/interim MRI can be linked with ultimate pathological response. • Heterogeneity changes give good diagnostic accuracy of pCR response across all immunophenotypes. • Percentage reduction in heterogeneity is associated with pCR with good accuracy and NPV.
Collapse
Affiliation(s)
- Shelley Henderson
- Department of Medical Physics, Ninewells Hospital and Medical School, Dundee, UK, DD1 9SY.
| | - Colin Purdie
- Department of Pathology, Ninewells Hospital and Medical School, Dundee, UK, DD1 9SY
| | - Caroline Michie
- Department of Oncology, Ninewells Hospital and Medical School, Dundee, UK, DD1 9SY
| | - Andrew Evans
- Division of Imaging and Technology, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK, DD1 9SY
| | - Richard Lerski
- Department of Medical Physics, Ninewells Hospital and Medical School, Dundee, UK, DD1 9SY
| | - Marilyn Johnston
- Department of Clinical Radiology, Ninewells Hospital and Medical School, Dundee, UK, DD1 9SY
| | - Sarah Vinnicombe
- Division of Imaging and Technology, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK, DD1 9SY
| | - Alastair M Thompson
- Department of Breast Surgical Oncology, University of Texas MD Anderson Cancer Centre, Houston, TX, 77030, USA
| |
Collapse
|
37
|
MR imaging features associated with distant metastasis-free survival of patients with invasive breast cancer: a case–control study. Breast Cancer Res Treat 2017; 162:559-569. [DOI: 10.1007/s10549-017-4143-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 02/06/2017] [Indexed: 01/15/2023]
|
38
|
Fan M, Li H, Wang S, Zheng B, Zhang J, Li L. Radiomic analysis reveals DCE-MRI features for prediction of molecular subtypes of breast cancer. PLoS One 2017; 12:e0171683. [PMID: 28166261 PMCID: PMC5293281 DOI: 10.1371/journal.pone.0171683] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 01/24/2017] [Indexed: 12/15/2022] Open
Abstract
The purpose of this study was to investigate the role of features derived from breast dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and to incorporated clinical information to predict the molecular subtypes of breast cancer. In particular, 60 breast cancers with the following four molecular subtypes were analyzed: luminal A, luminal B, human epidermal growth factor receptor-2 (HER2)-over-expressing and basal-like. The breast region was segmented and the suspicious tumor was depicted on sequentially scanned MR images from each case. In total, 90 features were obtained, including 88 imaging features related to morphology and texture as well as dynamic features from tumor and background parenchymal enhancement (BPE) and 2 clinical information-based parameters, namely, age and menopausal status. An evolutionary algorithm was used to select an optimal subset of features for classification. Using these features, we trained a multi-class logistic regression classifier that calculated the area under the receiver operating characteristic curve (AUC). The results of a prediction model using 24 selected features showed high overall classification performance, with an AUC value of 0.869. The predictive model discriminated among the luminal A, luminal B, HER2 and basal-like subtypes, with AUC values of 0.867, 0.786, 0.888 and 0.923, respectively. An additional independent dataset with 36 patients was utilized to validate the results. A similar classification analysis of the validation dataset showed an AUC of 0.872 using 15 image features, 10 of which were identical to those from the first cohort. We identified clinical information and 3D imaging features from DCE-MRI as candidate biomarkers for discriminating among four molecular subtypes of breast cancer.
Collapse
Affiliation(s)
- Ming Fan
- Institute of Biomedical Engineering and Instrumentation, Hangzhou Dianzi University, Hangzhou, China
| | - Hui Li
- Institute of Biomedical Engineering and Instrumentation, Hangzhou Dianzi University, Hangzhou, China
| | - Shijian Wang
- Institute of Biomedical Engineering and Instrumentation, Hangzhou Dianzi University, Hangzhou, China
| | - Bin Zheng
- Institute of Biomedical Engineering and Instrumentation, Hangzhou Dianzi University, Hangzhou, China
- School of Electrical and Computer Engineering, University of Oklahoma, Norman, Oklahoma, United States of America
| | - Juan Zhang
- Zhejiang Cancer Hospital, Zhejiang Hangzhou, China
- * E-mail: (JZ); (LL)
| | - Lihua Li
- Institute of Biomedical Engineering and Instrumentation, Hangzhou Dianzi University, Hangzhou, China
- * E-mail: (JZ); (LL)
| |
Collapse
|