1
|
Yuan K, Liu Q, Luo P, Wang C, Zhou Y, Qi F, Zhang Q, Huang X, Qiu B. Association of proton-density fat fraction with osteoporosis: a systematic review and meta-analysis. Osteoporos Int 2024:10.1007/s00198-024-07220-3. [PMID: 39129009 DOI: 10.1007/s00198-024-07220-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/29/2024] [Indexed: 08/13/2024]
Abstract
This study aimed to evaluate the correlation between measuring proton-density fat fraction (PDFF) in bone marrow using multi-echo chemical shift-encoded MRI and osteoporosis, assessing its effectiveness as a biomarker for osteoporosis. A systematic review was conducted by two independent researchers using Cochrane, PubMed, EMBASE, and Web of Science databases up to December 2023. Quality assessments were evaluated using the Cochrane risk of bias tool and the Agency for Healthcare Research and Quality (AHRQ) checklist. Fourteen studies involving 1495 patients were analyzed. The meta-analysis revealed a significant difference in PDFF values between the osteoporosis/osteopenia group and the normal control group, with a mean difference of 11.04 (95% CI: 9.17 to 12.92, Z=11.52, P < 0.00001). Measuring PDFF via MRI shows potential as an osteoporosis biomarker and may serve as a risk factor for osteoporosis. This insight opens new avenues for future diagnostic and therapeutic strategies, potentially improving osteoporosis management and patient care. OBJECTIVE This study aims to assess the correlation between measuring proton-density fat fraction (PDFF) in bone marrow using multi-echo chemical shift-encoded MRI and osteoporosis, evaluating its effectiveness as a biomarker for osteoporosis. MATERIALS AND METHODS This systematic review was carried out by two independent researchers using Cochrane, PubMed, EMBASE, and Web of Science databases up to December 2023. Quality assessments were evaluated using the Cochrane risk of bias tool and the Agency for Healthcare Research and Quality (AHRQ) checklist. RESULTS Fourteen studies involving 1495 patients were analyzed. The meta-analysis revealed a significant difference in PDFF values between the osteoporosis/osteopenia group and the normal control group, with a (MD = 11.04, 95% CI: 9.17 to 12.92, Z = 11.52, P < 0.00001). Subgroup analyses indicated that diagnostic methods, gender, and echo length did not significantly impact the PDFF-osteoporosis association. CONCLUSION PDFF measurement via MRI shows potential as an osteoporosis biomarker and may serve as a risk factor for osteoporosis. This insight opens new avenues for future diagnostic and therapeutic strategies, potentially improving osteoporosis management and patient care.
Collapse
Affiliation(s)
- Kecheng Yuan
- Medical Imaging Center, Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, China
| | - Qingyun Liu
- Medical Imaging Center, Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, China
| | - Penghui Luo
- Medical Imaging Center, Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, China
| | - Changliang Wang
- Medical Imaging Center, Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, China
| | - Yufu Zhou
- Anhui Fuqing Medical Equipment Co., Ltd., Hefei, China
| | - Fulang Qi
- Medical Imaging Center, Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, China
| | - Qing Zhang
- Medical Imaging Center, Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, China
| | - Xiaoyan Huang
- Anhui Fuqing Medical Equipment Co., Ltd., Hefei, China
| | - Bensheng Qiu
- Medical Imaging Center, Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
2
|
Sun M, Wang L, Wang C, Ma J, Wang W, Lin L, Ren C, Zhang Y, Cheng J. Quantitative Analysis of Whole-Body MRI for Accessing the Degree of Diffuse Infiltration Patterns and Identifying High Risk Cases of Newly Diagnosed Multiple Myeloma. J Magn Reson Imaging 2024; 59:2035-2045. [PMID: 37675995 DOI: 10.1002/jmri.28962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 09/08/2023] Open
Abstract
BACKGROUND Accurate identification of high-risk multiple myeloma (HRMM) is important for prognostication. The degree of diffuse infiltration patterns on magnetic resonance imaging (MRI) is associated with patient prognosis in multiple myeloma. However, objective indexes to determine the degree of diffuse infiltration patterns are unavailable. PURPOSE To investigate whether qualitative and quantitative evaluations of diffuse infiltration patterns on MRI could identify HRMM. STUDY TYPE Retrospective. SUBJECTS Totally, 180 patients (79 HRMM and 101 standard-risk MM) were assessed. The presence of del(17p), t(4;14), t(14;16), t(14;20), gain 1q, and/or p53 mutations was considered to indicate HRMM. FIELD STRENGTH/SEQUENCE 3.0 T/diffusion-weighted whole-body imaging with background body signal suppression (DWIBS), modified Dixon chemical-shift imaging Quant (mDIXON Quant), and short TI inversion recovery (STIR). ASSESSMENT Qualitative analysis involved assessing the degree of diffuse marrow infiltration (mild, moderate, or severe), and quantitative analysis involved evaluating apparent diffusion coefficient (ADC), fat fraction (FF), and T2* values. Clinical data such as sex, age, hemoglobin, serum albumin, serum calcium, serum creatinine, serum lactate dehydrogenase, β2-microglobulin, and bone marrow plasma cells (BMPCs) were also included. STATISTICAL TESTS Univariate and multivariate analyses, receiver operating characteristic (ROC) curve. P < 0.05 was considered statistically significant. RESULTS The high-risk group had significantly higher ADC and T2* and lower FF compared with the standard-risk group. Multivariate analysis indicated BMPCs as a significant independent risk factor for HRMM (odds ratio (OR) = 1.019, 95% CI 1.004-1.033), while FF was a significant independent protective factor associated with HRMM (OR = 0.972, 95% CI 0.946-0.999). The combination of BMPCs and FF achieved the highest areas under the curve (AUC) of 0.732, with sensitivity and specificity of 70.9% and 68.3%, respectively. DATA CONCLUSION Compared with qualitative analysis, FF value was independently associated with HRMM. The quantitative features of diffuse marrow infiltration on MRI scans are more effective in detecting HRMM. LEVEL OF EVIDENCE 3 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Mengtian Sun
- Department of Magnetic Resonance, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Linlin Wang
- Department of Magnetic Resonance, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chong Wang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jie Ma
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Weimin Wang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Liangjie Lin
- Clinical and Technical Support, Philips Healthcare, Beijing, China
| | - Cuiping Ren
- Department of Magnetic Resonance, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yong Zhang
- Department of Magnetic Resonance, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jingliang Cheng
- Department of Magnetic Resonance, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
3
|
Hewitt-Dedman CL, Kershaw LE, Schwarz T, Del-Pozo J, Duncan J, Daniel CR, Cillán-García E, Pressanto MC, Taylor SE. Preliminary study of proton magnetic resonance spectroscopy to assess bone marrow adiposity in the third metacarpus or metatarsus in Thoroughbred racehorses. Equine Vet J 2024. [PMID: 38699829 DOI: 10.1111/evj.14086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 03/07/2024] [Indexed: 05/05/2024]
Abstract
BACKGROUND Magnetic resonance spectroscopy (MRS) has been used to investigate metabolic changes within human bone. It may be possible to use MRS to investigate bone metabolism and fracture risk in the distal third metacarpal/tarsal bone (MC/MTIII) in racehorses. OBJECTIVES To determine the feasibility of using MRS as a quantitative imaging technique in equine bone by using the 1H spectra for the MC/MTIII to calculate fat content (FC). STUDY DESIGN Observational cross-sectional study. METHODS Limbs from Thoroughbred racehorses were collected from horses that died or were subjected to euthanasia on racecourses. Each limb underwent magnetic resonance imaging (MRI) at 3 T followed by single-voxel MRS at three regions of interest (ROI) within MC/MTIII (lateral condyle, medial condyle, proximal bone marrow [PBM]). Percentage FC was calculated at each ROI. Each limb underwent computed tomography (CT) and bone mineral density (BMD) was calculated for the same ROIs. All MR and CT images were graded for sclerosis. Histology slides were graded for sclerosis and proximal marrow space was calculated. Pearson or Spearman correlations were used to assess the relationship between BMD, FC and marrow space. Kruskal-Wallis tests were used to check for differences between sclerosis groups for BMD or FC. RESULTS Eighteen limbs from 10 horses were included. A negative correlation was identified for mean BMD and FC for the lateral condyle (correlation coefficient = -0.60, p = 0.01) and PBM (correlation coefficient = -0.5, p = 0.04). There was a significant difference between median BMD for different sclerosis grades in the condyles on both MRI and CT. A significant difference in FC was identified between sclerosis groups in the lateral condyle on MRI and CT. MAIN LIMITATIONS Small sample size. CONCLUSIONS 1H Proton MRS is feasible in the equine MC/MTIII. Further work is required to evaluate the use of this technique to predict fracture risk in racehorses.
Collapse
Affiliation(s)
- Charlotte L Hewitt-Dedman
- Royal (Dick) School of Veterinary Studies and Roslin Institute, The University of Edinburgh, Roslin, UK
| | - Lucy E Kershaw
- BHF Centre for Cardiovascular Science and Edinburgh Imaging, University of Edinburgh, Edinburgh, UK
| | - Tobias Schwarz
- Royal (Dick) School of Veterinary Studies and Roslin Institute, The University of Edinburgh, Roslin, UK
| | - Jorge Del-Pozo
- Royal (Dick) School of Veterinary Studies and Roslin Institute, The University of Edinburgh, Roslin, UK
| | - Juliet Duncan
- Royal (Dick) School of Veterinary Studies and Roslin Institute, The University of Edinburgh, Roslin, UK
| | - Carola R Daniel
- Royal (Dick) School of Veterinary Studies and Roslin Institute, The University of Edinburgh, Roslin, UK
| | - Eugenio Cillán-García
- Royal (Dick) School of Veterinary Studies and Roslin Institute, The University of Edinburgh, Roslin, UK
| | - Maria Chiara Pressanto
- Royal (Dick) School of Veterinary Studies and Roslin Institute, The University of Edinburgh, Roslin, UK
| | - Sarah E Taylor
- Royal (Dick) School of Veterinary Studies and Roslin Institute, The University of Edinburgh, Roslin, UK
| |
Collapse
|
4
|
Misaka T, Hashimoto Y, Ashikaga R, Ishida T. Chemical shift-encoded MRI with compressed sensing combined with parallel imaging for proton density fat fraction measurement of the lumbar vertebral bone marrow. Medicine (Baltimore) 2024; 103:e37748. [PMID: 38608106 PMCID: PMC11018235 DOI: 10.1097/md.0000000000037748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 03/07/2024] [Indexed: 04/14/2024] Open
Abstract
We aimed to investigate the accuracy of proton density fat fraction (PDFF) measurement of the lumbar vertebral bone marrow using chemical shift-encoded magnetic resonance imaging (CSE-MRI) with compressed sensing combined with parallel imaging (CSPI). This study recruited a commercially available phantom, and 43 patients. Fully sampled data without CSPI and under-sampled data with CSPI acceleration factors of 2.4, 3.6, and 4.8 were acquired using a 1.5T imaging system. The relationships between PDFF measurements obtained with the no-CSPI acquisition and those obtained with each CSPI acquisition were assessed using Pearson correlation coefficient (r), linear regression analyses, and Bland-Altman analysis. The intra- and inter-observer variabilities of the PDFF measurements were evaluated using the intraclass correlation coefficient. PDFF measurements obtained with all acquisitions showed a significant correlation and strong agreement with the reference PDFF measurement of the phantom. PDFF measurements obtained using CSE-MRI with and without CSPI were positively correlated (all acquisitions: r = 0.99; P < .001). The mean bias was -0.31% to -0.17% with 95% limits of agreement within ±2.02%. The intra- and inter-observer agreements were excellent (intraclass correlation coefficient: 0.988 and 0.981, respectively). A strong agreement and positive correlation were observed between the PDFF measurements obtained using CSE-MRI with and without CSPI. PDFF measurement of the lumbar vertebral bone marrow using CSE-MRI with CSPI can be acquired with a maximum reduction of approximately 75% in the acquisition time compared with a fully sampled acquisition.
Collapse
Affiliation(s)
- Tomofumi Misaka
- Department of Radiology, Kindai University Nara Hospital, Ikoma, Japan
- Department of Medical Physics and Engineering, Graduate School of Medicine, Osaka University, Suita, Japan
| | | | | | - Takayuki Ishida
- Department of Medical Physics and Engineering, Graduate School of Medicine, Osaka University, Suita, Japan
| |
Collapse
|
5
|
Li YX, Liang XL, Liu J, Ma YJ. Assessment of Osteoporosis at the Lumbar Spine Using Ultrashort Echo Time Magnetization Transfer (UTE-MT) MRI. J Magn Reson Imaging 2024; 59:1285-1298. [PMID: 37470693 PMCID: PMC10799192 DOI: 10.1002/jmri.28910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/21/2023] Open
Abstract
BACKGROUND Bone collagen-matrix contributes to the mechanical properties of bone by imparting tensile strength and elasticity, which can be indirectly quantified by ultrashort echo time magnetization transfer ratio (UTE-MTR) to assess osteoporosis. PURPOSE To evaluate osteoporosis at the human lumbar spine using UTE-MTR. STUDY TYPE Prospective. POPULATION One hundred forty-eight-volunteers (age-range, 50-85; females, N = 90), including 81-normal bone density, 35-osteopenic, and 32-osteoporotic subjects. Ten additional healthy volunteers were recruited to study the intrasession reproducibility of the UTE-MT. FIELD STRENGTH/SEQUENCE 3T/UTE-MT, short repetition-time adiabatic inversion recovery prepared UTE (STAIR-UTE), and iterative decomposition of water-and-fat with echo-asymmetry and least-squares estimation (IDEAL-IQ). ASSESSMENT Fracture risk was calculated using Fracture-Risk-Assessment-Tool (FRAX). Region-of-interests (ROIs) were delineated on the trabecular area in the maps of bone-mineral-density, UTE-MTR, collagen-bound water proton-fraction (CBWPF), and bone-marrow fat fraction (BMFF). STATISTICAL TESTS Linear-regression and Bland-Altman analysis were performed to assess the reproducibility of UTE-MTR measurements in the different scans. UTE-MTR and BMFF were correlated with bone-mineral-density using Pearson's regression and with FRAX scores using nonlinear regression. The abilities of UTE-MTR, CBWPF, and BMFF to discriminate between the three patient subgroups were evaluated using receiver-operator-characteristic (ROC) analysis and area-under-the-curve (AUC). Decision-curve-analysis (DCA) and clinical-impact curves were used to evaluate the value of UTE-MTR in clinical diagnosis. The DeLong test was used to compare the ROC curves. P-value <0.05 was considered statistically significant. RESULTS Excellent reproducibility was obtained for the UTE-MT measurements. UTE-MTR strongly correlated with bone-mineral-density (r = 0.76) and FRAX scores (r = -0.77). UTE-MTR exhibited higher AUCs (≥0.723) than BMFF, indicating its superior ability to distinguish between the three patient subgroups. The DCA and clinical-impact curves confirmed the diagnostic value of UTE-MTR. UTE-MTR and CBWPF showed similar performance in correlation with bone-mineral-density and cohort classification. DATA CONCLUSION UTE-MTR strongly correlates with bone-mineral-density and FRAX and shows great potential in distinguishing between normal, osteopenic, and osteoporotic subjects. EVIDENCE LEVEL 1 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Yu-Xuan Li
- Shanxi Medical University, Taiyuan, China
| | - Xiao-Ling Liang
- Department of Radiology, University of California San Diego, 9452 Medical Center Drive, La Jolla, CA 92037, USA
| | - Jin Liu
- Department of Radiology, University of California San Diego, 9452 Medical Center Drive, La Jolla, CA 92037, USA
| | - Ya-Jun Ma
- Department of Radiology, University of California San Diego, 9452 Medical Center Drive, La Jolla, CA 92037, USA
| |
Collapse
|
6
|
Misaka T, Hashimoto Y, Ashikaga R, Ishida T. Chemical Shift-Encoded MRI of the Lumbar Vertebral Bone Marrow for Detecting Osteoporosis With Low Trabecular Bone Quality in Patients With Breast Cancer Receiving Aromatase Inhibitors. J Magn Reson Imaging 2024. [PMID: 38174771 DOI: 10.1002/jmri.29219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/20/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Osteoporosis with low trabecular bone quality (OLB) in patients with breast cancer receiving aromatase inhibitor (AI) therapy is associated with an increased risk of vertebral fractures. The capability of chemical shift-encoded MRI (CSE-MRI) in detecting OLB needs to be investigated. PURPOSE To assess the diagnostic performance of proton density fat fraction (PDFF) and R2* measurements from CSE-MRI for detecting OLB in postmenopausal women with breast cancer undergoing AI therapy. STUDY TYPE Prospective. POPULATION 126 postmenopausal females (mean age: 69.5 ± 8.8 years) receiving AIs (average period: 41.6 ± 26.5 months) after breast cancer surgery. FIELD STRENGTH/SEQUENCE 1.5-T, three-dimensional CSE-MRI (six echoes), T1-weighted Dixon, short tau inversion recovery, and diffusion-weighted images. ASSESSMENT Both CSE-MRI and dual-energy x-ray absorptiometry were performed on the same day. Measurements included averaged PDFF, R2*, bone mineral density (BMD), and trabecular bone score (TBS) from L1 to L4 vertebrae. A T-score ≤ -2.5 from BMD measurements indicated osteoporosis, whereas T-scores of ≤ - 2.5 plus TBS ≤-3.7 indicated OLB. The diagnostic performance of PDFF, R2*, and the combination of PDFF and R2* for identifying osteoporosis or OLB was assessed. STATISTICAL TESTS Student's t-test; Mann-Whitney U test; χ2 or Fisher exact tests; Pearson correlation; multivariate analysis; Receiver operating characteristic (ROC) analysis with the area under the curve (AUC); logistic regression model; intraclass correlation coefficient. A P-value <0.05 was considered statistically significant. RESULTS For detecting osteoporosis, AUC values were 0.59 (PDFF), 0.66 (R2*), and 0.65 (combined PDFF and R2*). Significant mean differences were noted between patients with and without OLB for PDFF (66.11 ± 5.36 vs. 57.49 ± 6.43) and R2* (46.62 ± 9.24 vs. 63.36 ± 12.44). AUC values for detecting OLB were 0.75 (PDFF), 0.82 (R2*), and 0.84 (combined PDFF and R2*). DATA CONCLUSION R2* may perform better than PDFF for identifying OLB in patients with breast cancer receiving AIs. LEVEL OF EVIDENCE 2 TECHNICAL EFFICACY: Stage 4.
Collapse
Affiliation(s)
- Tomofumi Misaka
- Department of Radiology, Kindai University Nara Hospital, Ikoma, Nara, Japan
- Department of Medical Physics and Engineering, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | | | - Ryuichiro Ashikaga
- Department of Radiology, Kindai University Nara Hospital, Ikoma, Nara, Japan
| | - Takayuki Ishida
- Department of Medical Physics and Engineering, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
7
|
Ju Y, Wang Y, Luo RN, Wang N, Wang JZ, Lin LJ, Song QW, Liu AL. Evaluation of renal function in chronic kidney disease (CKD) by mDIXON-Quant and Amide Proton Transfer weighted (APTw) imaging. Magn Reson Imaging 2023; 103:102-108. [PMID: 37451519 DOI: 10.1016/j.mri.2023.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/08/2023] [Accepted: 07/09/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Chronic kidney disease (CKD) is a long-term condition that affects >10% of the adult population worldwide. Noninvasive assessment of renal function has important clinical significance for disease diagnosis and prognosis evaluation. OBJECTIVE To explore the value of mDIXON-Quant combined with amide proton transfer weighted (APTw) imaging for accessing renal function in chronic kidney disease (CKD). MATERIALS AND METHODS Twenty-two healthy volunteers (HVs) and 30 CKD patients were included in this study, and the CKD patients were divided into the mild CKD (mCKD) group (14 cases) and moderate-to-severe CKD (msCKD) group (16 cases) according to glomerular filtration rate (eGFR). The cortex APT (cAPT), medulla APT (mAPT), cortex R2⁎ (cR2⁎), medulla R2⁎ (mR2⁎), cortex FF (cFF) and medulla FF (mFF) values of the right renal were independently measured by two radiologists. Intra-group correlation coefficient (ICC) test was used to test the inter-observer consistency. The analysis of variance (ANOVA) was used to compare the difference among three groups. Mann-Whitney U test was used to analyze the differences of R2⁎, FF and APT values among the patient and HV groups. Area under the receiver operating characteristic (ROC) curve (AUC) was used to analyze the diagnostic efficiency. The corresponding threshold, sensitivity, and specificity were obtained according to the maximum approximate index. The combined diagnostic efficacy of R2⁎, FF, and APT values was analyzed by binary Logistic regression, and the AUC of combined diagnosis was compared with the AUC of the single parameter by the Delong test. RESULTS The cAPT value of the HV, mCKD and msCKD groups increased gradually. The mAPT value and cR2⁎ values of the mCKD and msCKD groups were higher than those of the HV group, while the mFF value of the mCKD group was lower than HV group (all P < 0.05). The cAPT and mAPT values showed good diagnostic efficacy in evaluating different degrees of renal damage, while cR2⁎ and mFF values showed moderate diagnostic efficacy. When combining the APT, R2⁎, and FF values, the diagnostic efficiency was significantly improved. CONCLUSION mDIXON-Quant combined APTw imaging can be used for improved diagnosis of CKD.
Collapse
Affiliation(s)
- Y Ju
- Department of Radiology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning, PR China
| | - Y Wang
- Department of Radiology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning, PR China
| | - R N Luo
- Department of Radiology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning, PR China; Department of Nephrology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning, PR China
| | - N Wang
- Department of Radiology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning, PR China
| | - J Z Wang
- Clinical & Technical Support, Philips Healthcare, 100016 Beijing, PR China
| | - L J Lin
- Clinical & Technical Support, Philips Healthcare, 100016 Beijing, PR China
| | - Q W Song
- Department of Radiology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning, PR China
| | - A L Liu
- Department of Radiology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning, PR China; Dalian Medical Imaging Artificial Intelligence Engineering Technology Research Center, Dalian 116011, Liaoning, PR China.
| |
Collapse
|
8
|
Zhou F, Sheng B, Lv F. Quantitative analysis of vertebral fat fraction and R2 * in osteoporosis using IDEAL-IQ sequence. BMC Musculoskelet Disord 2023; 24:721. [PMID: 37697287 PMCID: PMC10494397 DOI: 10.1186/s12891-023-06846-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 08/30/2023] [Indexed: 09/13/2023] Open
Abstract
OBJECTIVE To investigate the correlation between FF, R2* value of IDEAL-IQ sequence and bone mineral density, and to explore their application value in the osteoporosis. METHODS We recruited 105 women and 69 men aged over 30 years who voluntarily underwent DXA and MRI examination of lumbar spine at the same day. Participants were divided into normal, osteopenia and osteoporosis group based on T-score and BMD value of DXA examination. One-way ANOVA was adopted to compare the quantitative parameters among the three groups. Independent samples t-test was utilized to compare FF and R2* value between men and women.Pearson correlation analysis was used to research the correlation between FF, R2* value and BMD. RESULTS Age, height, weight, BMD and FF value were significantly different among three groups (p < 0.05). No significant difference was found in FF value between male and female group, while R2* value were significantly different. Vertebral FF was moderately negatively correlated with aBMD, especially in women (r = -0.638, p < 0.001). R2* was mildly to moderately positively correlated with aBMD in men (r = 0.350, p = 0.003), but not in women. Moreover, FF was positively correlated with age, R2* was negatively correlated with age in men, and BMD was negatively correlated with age. CONCLUSIONS The vertebral FF value of IDEAL-IQ sequence has the potential to be a new biological marker for the assessment of osteoporosis. Vertebral FF is moderately negatively correlated with aBMD, especially in women, allowing accuratly quantify the bone marrow fat. R2* value is mildly to moderately correlated with BMD in men and can be served as a complementary tool in the assessment of osteoporosis.
Collapse
Affiliation(s)
- Feng Zhou
- Department of Radiology, the First Affiliated Hospital of Chongqing Medical University, Yuzhong District, 1 Youyi Road, Chongqing, 400016 China
| | - Bo Sheng
- Department of Radiology, the First Affiliated Hospital of Chongqing Medical University, Yuzhong District, 1 Youyi Road, Chongqing, 400016 China
| | - Furong Lv
- Department of Radiology, the First Affiliated Hospital of Chongqing Medical University, Yuzhong District, 1 Youyi Road, Chongqing, 400016 China
| |
Collapse
|
9
|
Wang Y, Ju Y, An Q, Lin L, Liu AL. mDIXON-Quant for differentiation of renal damage degree in patients with chronic kidney disease. Front Endocrinol (Lausanne) 2023; 14:1187042. [PMID: 37547308 PMCID: PMC10402729 DOI: 10.3389/fendo.2023.1187042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/04/2023] [Indexed: 08/08/2023] Open
Abstract
Background Chronic kidney disease (CKD) is a complex syndrome with high morbidity and slow progression. Early stages of CKD are asymptomatic and lack of awareness at this stage allows CKD to progress through to advanced stages. Early detection of CKD is critical for the early intervention and prognosis improvement. Purpose To assess the capability of mDIXON-Quant imaging to detect early CKD and evaluate the degree of renal damage in patients with CKD. Study type Retrospective. Population 35 patients with CKD: 18 cases were classifified as the mild renal damage group (group A) and 17 cases were classifified as the moderate to severe renal damage group (group B). 22 healthy volunteers (group C). Field strength/sequence A 3.0 T/T1WI, T2WI and mDIXON-Quant sequences. Assessment Transverse relaxation rate (R2*) values and fat fraction (FF) values derived from the mDIXON-Quant were calculated and compared among the three groups. Statistical tests The intra-class correlation (ICC) test; Chi-square test or Fisher's exact test; Shapiro-Wilk test; Kruskal Wallis test with adjustments for multiplicity (Bonferroni test); Area under the receiver operating characteristic (ROC) curve (AUC). The significance threshold was set at P < 0.05. Results Cortex FF values and cortex R2* values were significantly different among the three groups (P=0.028, <0.001), while medulla R2* values and medulla FF values were not (P=0.110, 0.139). Cortex FF values of group B was significantly higher than that of group A (Bonferroni adjusted P = 0.027). Cortex R2* values of group A and group B were both significantly higher than that of group C (Bonferroni adjusted P = 0.012, 0.001). The AUC of cortex FF values in distinguishing group A and group B was 0.766. The diagnostic efficiency of cortex R2* values in distinguishing group A vs. group C and group B vs. group C were 0.788 and 0.829. Conclusion The mDIXON-Quant imaging had a potential clinical value in early diagnosis of CKD and assessing the degree of renal damage in CKD patients.
Collapse
Affiliation(s)
- Yue Wang
- First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Ye Ju
- First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Qi An
- First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Liangjie Lin
- Clinical and Technical Support, Philips Healthcare, Beijing, China
| | - Ai Lian Liu
- First Affiliated Hospital, Dalian Medical University, Dalian, China
| |
Collapse
|
10
|
Wang X, Li B, Tong X, Fan Y, Wang S, Liu Y, Fang X, Liu L. Diagnostic Accuracy of Dual-Energy CT Material Decomposition Technique for Assessing Bone Status Compared with Quantitative Computed Tomography. Diagnostics (Basel) 2023; 13:diagnostics13101751. [PMID: 37238235 DOI: 10.3390/diagnostics13101751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/28/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
PURPOSE The purpose of this study was to evaluate the diagnostic accuracy when using various base material pairs (BMPs) in dual-energy computed tomography (DECT), and to establish corresponding diagnostic standards for assessing bone status through comparison with quantitative computed tomography (QCT). METHODS This prospective study enrolled a total of 469 patients who underwent both non-enhanced chest CT scans under conventional kVp and abdominal DECT. The bone densities of hydroxyapatite (water), hydroxyapatite (fat), hydroxyapatite (blood), calcium (water), and calcium (fat) (DHAP (water), DHAP (fat), DHAP (blood), DCa (water), and DCa (fat)) in the trabecular bone of vertebral bodies (T11-L1) were measured, along with bone mineral density (BMD) via QCT. Intraclass correlation coefficient (ICC) analysis was used to assess the agreement of the measurements. Spearman's correlation test was performed to analyze the relationship between the DECT- and QCT-derived BMD. Receiver operator characteristic (ROC) curves were generated to determine the optimal diagnostic thresholds of various BMPs for diagnosing osteopenia and osteoporosis. RESULTS A total of 1371 vertebral bodies were measured, and QCT identified 393 with osteoporosis and 442 with osteopenia. Strong correlations were observed between DHAP (water), DHAP (fat), DHAP (blood), DCa (water), and DCa (fat) and the QCT-derived BMD. DHAP (water) showed the best predictive capability for osteopenia and osteoporosis. The area under the ROC curve, sensitivity, and specificity for identifying osteopenia were 0.956, 86.88%, and 88.91% with DHAP (water) ≤ 107.4 mg/cm3, respectively. The corresponding values for identifying osteoporosis were 0.999, 99.24%, and 99.53% with DHAP (water) ≤ 89.62 mg/cm3, respectively. CONCLUSIONS Bone density measurement using various BMPs in DECT enables the quantification of vertebral BMD and the diagnosis of osteoporosis, with DHAP (water) having the highest diagnostic accuracy.
Collapse
Affiliation(s)
- Xu Wang
- Department of Radiology, First Affiliated Hospital of Dalian Medical University, Dalian 116014, China
| | - Beibei Li
- Department of Radiology, First Affiliated Hospital of Dalian Medical University, Dalian 116014, China
| | - Xiaoyu Tong
- Department of Radiology, First Affiliated Hospital of Dalian Medical University, Dalian 116014, China
| | - Yong Fan
- Department of Radiology, First Affiliated Hospital of Dalian Medical University, Dalian 116014, China
| | - Shigeng Wang
- Department of Radiology, First Affiliated Hospital of Dalian Medical University, Dalian 116014, China
| | - Yijun Liu
- Department of Radiology, First Affiliated Hospital of Dalian Medical University, Dalian 116014, China
| | - Xin Fang
- Department of Radiology, First Affiliated Hospital of Dalian Medical University, Dalian 116014, China
| | - Lei Liu
- Department of Radiology, First Affiliated Hospital of Dalian Medical University, Dalian 116014, China
| |
Collapse
|
11
|
Dimai HP. New Horizons: Artificial Intelligence Tools for Managing Osteoporosis. J Clin Endocrinol Metab 2023; 108:775-783. [PMID: 36477337 PMCID: PMC9999362 DOI: 10.1210/clinem/dgac702] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022]
Abstract
Osteoporosis is a disease characterized by low bone mass and microarchitectural deterioration leading to increased bone fragility and fracture risk. Typically, osteoporotic fractures occur at the spine, hip, distal forearm, and proximal humerus, but other skeletal sites may be affected as well. One of the major challenges in the management of osteoporosis lies in the fact that although the operational diagnosis is based on bone mineral density (BMD) as measured by dual x-ray absorptiometry, the majority of fractures occur at nonosteoporotic BMD values. Furthermore, osteoporosis often remains undiagnosed regardless of the low severity of the underlying trauma. Also, there is only weak consensus among the major guidelines worldwide, when to treat, whom to treat, and which drug to use. Against this background, increasing efforts have been undertaken in the past few years by artificial intelligence (AI) developers to support and improve the management of this disease. The performance of many of these newly developed AI algorithms have been shown to be at least comparable to that of physician experts, or even superior. However, even if study results appear promising at a first glance, they should always be interpreted with caution. Use of inadequate reference standards or selection of variables that are of little or no value in clinical practice are limitations not infrequently found. Consequently, there is a clear need for high-quality clinical research in this field of AI. This could, eg, be achieved by establishing an internationally consented "best practice framework" that considers all relevant stakeholders.
Collapse
Affiliation(s)
- Hans Peter Dimai
- Correspondence: Hans Peter Dimai, MD, Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, A-8036 Graz, Austria.
| |
Collapse
|
12
|
Tang R, Tang G, Hua T, Tu Y, Ji R, Zhu J. mDIXON-Quant technique diagnostic accuracy for assessing bone mineral density in male adult population. BMC Musculoskelet Disord 2023; 24:125. [PMID: 36788513 PMCID: PMC9926741 DOI: 10.1186/s12891-023-06225-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 02/06/2023] [Indexed: 02/16/2023] Open
Abstract
BACKGROUND To investigate the diagnostic efficacy of mDIXON-Quant technique for prediction of bone loss in male adults. METHODS One hundred thirty-eight male adults were divided into normal, osteopenia, and osteoporosis groups based on DXA and QCT for the lumbar spine. Differences in mDIXON-Quant parameters [fat fraction (FF) and T2* value] among three groups, as well as the correlation of mDIXON-Quant parameters and bone mineral density (BMD) were analyzed. The areas under the curves (AUCs) for mDIXON-Quant parameters for prediction of low bone mass were calculated. RESULTS According to DXA standard, FF and T2* value were significantly increased in osteoporosis group compared with normal group (P = 0.012 and P < 0.001). According to QCT standard, FF was significantly increased in osteopenia and osteoporosis groups compared with normal group (both P < 0.001). T2* values were significantly different among three groups (all P < 0.05). After correction for age and body mass index, FF was negatively correlated with areal BMD and volumetric BMD (r = -0.205 and -0.604, respectively; both P < 0.05), and so was T2* value (r = -0.324 and -0.444, respectively; both P < 0.05). The AUCs for predicting low bone mass according to DXA and QCT standards were 0.642 and 0.898 for FF, 0.648 and 0.740 for T2* value, and 0.677 and 0.920 for both combined, respectively. CONCLUSIONS FF combined with T2* value has a better diagnostic efficacy than FF or T2* value alone in prediction of low bone mass in male adults, which is expected to be a promising MRI method for the screening of bone quality. TRIAL REGISTRATION ChiCTR1900024511 (Registered 13-07-2019).
Collapse
Affiliation(s)
- Rui Tang
- grid.412538.90000 0004 0527 0050Department of Radiology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Shanghai, 200072 China
| | - Guangyu Tang
- grid.412538.90000 0004 0527 0050Department of Radiology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Shanghai, 200072 China
| | - Ting Hua
- grid.412538.90000 0004 0527 0050Department of Radiology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Shanghai, 200072 China
| | - Yun Tu
- grid.412538.90000 0004 0527 0050Department of Radiology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Shanghai, 200072 China
| | - Rui Ji
- grid.412538.90000 0004 0527 0050Department of Radiology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Shanghai, 200072 China
| | - Jingqi Zhu
- Department of Radiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Shanghai, 200072, China.
| |
Collapse
|
13
|
Age and gender differences in vertebral bone marrow adipose tissue and bone mineral density, based on MRI and quantitative CT. Eur J Radiol 2023; 159:110669. [PMID: 36608598 DOI: 10.1016/j.ejrad.2022.110669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/25/2022]
Abstract
PURPOSE To investigate the age and gender differences in vertebral bone marrow adipose tissue (BMAT) and volumetric bone mineral density (vBMD). METHOD A total of 427 healthy adults, including 175 males (41 %) and 252 females (59 %) with an age range of 21-82 years, underwent MRI and quantitative CT examinations of the lumbar spine (L2-L4), and the corresponding BMAT and vBMD values were measured. The age-related progressions of BMAT and vBMD in men and women were evaluated and compared. RESULTS In males, vertebral BMAT rose gradually throughout life, while in females, BMAT increased sharply between 41 and 60 years of age. In participants aged < 40 years, BMAT was greater in males compared to females (p ≤ 0.01), while after the age of 60, BMAT was higher in females (p < 0.05). In males, vBMD decreased gradually with age, while in females, there was a sharp decrease in vBMD after the age of 40 years. At age of 31-40 years, vBMD was higher in females (P < 0.002), while at age > 60 years, vBMD was higher in males (61-70 years, P < 0.01; > 70 years, P = 0.02). CONCLUSIONS We found significant age and gender differences in lumbar BMAT and vBMD. These findings will help to improve our understanding of the interaction between bone marrow fat content and bone mineral density in the ageing process.
Collapse
|
14
|
Predicting Lumbar Vertebral Osteopenia Using LvOPI Scores and Logistic Regression Models in an Exploratory Study of Premenopausal Taiwanese Women. J Med Biol Eng 2022. [DOI: 10.1007/s40846-022-00746-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Abstract
Purpose
To propose hybrid predicting models integrating clinical and magnetic resonance imaging (MRI) features to diagnose lumbar vertebral osteopenia (LvOPI) in premenopausal women.
Methods
This prospective study enrolled 101 Taiwanese women, including 53 before and 48 women after menopause. Clinical information, including age, body height, body weight and body mass index (BMI), were recorded. Bone mineral density (BMD) was measured by the dual-energy X-ray absorptiometry. Lumbar vertebral fat fraction (LvFF) was measured by MRI. LvOPI scores (LvOPISs) comprising different clinical features and LvFF were constructed to diagnose LvOPI. Statistical analyses included normality tests, linear regression analyses, logistic regression analyses, group comparisons, and diagnostic performance. A P value less than 0.05 was considered as statistically significant.
Results
The post-menopausal women had higher age, body weight, BMI, LvFF and lower BMD than the pre-menopausal women (all P < 0.05). The lumbar vertebral osteoporosis group had significantly higher age, longer MMI, and higher LvFF than the LvOPI group (all P < 0.05) and normal group (all P < 0.005). LvOPISs (AUC, 0.843 to 0.864) outperformed body weight (0.747; P = 0.0566), BMI (0.737; P < 0.05), age (0.649; P < 0.05), and body height (0.5; P < 0.05) in diagnosing LvOPI in the premenopausal women. Hybrid predicting models using logistic regression analysis (0.894 to 0.9) further outperformed all single predictors in diagnosing LvOPI in the premenopausal women (P < 0.05).
Conclusion
The diagnostic accuracy of the LvOPI can be improved by using our proposed hybrid predicting models in Taiwanese premenopausal women.
Collapse
|
15
|
Li X, Zhang Y, Xie Y, Lu R, Tao H, Chen S. Correlation Between Bone Mineral Density (BMD) and Paraspinal Muscle Fat Infiltration Based on QCT: A Cross-Sectional Study. Calcif Tissue Int 2022; 110:666-673. [PMID: 35006307 DOI: 10.1007/s00223-022-00944-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 01/04/2022] [Indexed: 12/18/2022]
Abstract
To investigate the correlation between fatty infiltration of the paraspinal muscle and bone mineral density (BMD). In total, 367 subjects (182 men and 185 women) who underwent quantitative computed tomography (QCT) examination were enrolled in this study. A QCT Pro workstation was used to obtain the mean BMD of the lower lumbar spine (L3, L4, L5) and fat fraction (FF) of the paraspinal muscle (psoas and erector spinae) at the corresponding levels. The patient's age, sex, body mass index, number of previous vertebral fractures, physical activity level, and visual analog scale (VAS) score for lower back pain were recorded. For categorical variables, one-way ANOVA and independent-samples t tests were performed. Spearman and Pearson correlation coefficients were used to analyze the correlations among continuous variables. Influential factors were analyzed by multivariate linear regression analysis. Regarding the mean paraspinal muscle FF, there were significant differences between the different vertebral fracture groups (P < 0.05). Age and VAS score showed a positive correlation with the mean paraspinal muscle FF (r = 0.389, 0.454). BMD showed a negative correlation with the mean paraspinal muscle FF (r = - 0.721). The multiple linear regression analysis showed that vertebral fracture (β = 0.851, P = 0.021) and BMD (β = - 4.341, P = 0.004) were independent factors of the mean paraspinal muscle FF. This study demonstrated that an advanced age, a greater VAS score, a higher number of vertebral fractures, and a lower BMD may be associated with more severe fatty infiltration of the paraspinal muscle.
Collapse
Affiliation(s)
- Xiangwen Li
- Department of Radiology & Institute of Medical Functional and Molecular Imaging, Huashan Hospital, Fudan University, Shanghai, China
| | - Yuyang Zhang
- Department of Radiology & Institute of Medical Functional and Molecular Imaging, Huashan Hospital, Fudan University, Shanghai, China
| | - Yuxue Xie
- Department of Radiology & Institute of Medical Functional and Molecular Imaging, Huashan Hospital, Fudan University, Shanghai, China
| | - Rong Lu
- Department of Radiology & Institute of Medical Functional and Molecular Imaging, Huashan Hospital, Fudan University, Shanghai, China
| | - Hongyue Tao
- Department of Radiology & Institute of Medical Functional and Molecular Imaging, Huashan Hospital, Fudan University, Shanghai, China
| | - Shuang Chen
- Department of Radiology & Institute of Medical Functional and Molecular Imaging, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
16
|
Sollmann N, Kirschke JS, Kronthaler S, Boehm C, Dieckmeyer M, Vogele D, Kloth C, Lisson CG, Carballido-Gamio J, Link TM, Karampinos DC, Karupppasamy S, Beer M, Krug R, Baum T. Imaging of the Osteoporotic Spine - Quantitative Approaches in Diagnostics and for the Prediction of the Individual Fracture Risk. ROFO-FORTSCHR RONTG 2022; 194:1088-1099. [PMID: 35545103 DOI: 10.1055/a-1770-4626] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Osteoporosis is a highly prevalent systemic skeletal disease that is characterized by low bone mass and microarchitectural bone deterioration. It predisposes to fragility fractures that can occur at various sites of the skeleton, but vertebral fractures (VFs) have been shown to be particularly common. Prevention strategies and timely intervention depend on reliable diagnosis and prediction of the individual fracture risk, and dual-energy X-ray absorptiometry (DXA) has been the reference standard for decades. Yet, DXA has its inherent limitations, and other techniques have shown potential as viable add-on or even stand-alone options. Specifically, three-dimensional (3 D) imaging modalities, such as computed tomography (CT) and magnetic resonance imaging (MRI), are playing an increasing role. For CT, recent advances in medical image analysis now allow automatic vertebral segmentation and value extraction from single vertebral bodies using a deep-learning-based architecture that can be implemented in clinical practice. Regarding MRI, a variety of methods have been developed over recent years, including magnetic resonance spectroscopy (MRS) and chemical shift encoding-based water-fat MRI (CSE-MRI) that enable the extraction of a vertebral body's proton density fat fraction (PDFF) as a promising surrogate biomarker of bone health. Yet, imaging data from CT or MRI may be more efficiently used when combined with advanced analysis techniques such as texture analysis (TA; to provide spatially resolved assessments of vertebral body composition) or finite element analysis (FEA; to provide estimates of bone strength) to further improve fracture prediction. However, distinct and experimentally validated diagnostic criteria for osteoporosis based on CT- and MRI-derived measures have not yet been achieved, limiting broad transfer to clinical practice for these novel approaches. KEY POINTS:: · DXA is the reference standard for diagnosis and fracture prediction in osteoporosis, but it has important limitations.. · CT- and MRI-based methods are increasingly used as (opportunistic) approaches.. · For CT, particularly deep-learning-based automatic vertebral segmentation and value extraction seem promising.. · For MRI, multiple techniques including spectroscopy and chemical shift imaging are available to extract fat fractions.. · Texture and finite element analyses can provide additional measures for vertebral body composition and bone strength.. CITATION FORMAT: · Sollmann N, Kirschke JS, Kronthaler S et al. Imaging of the Osteoporotic Spine - Quantitative Approaches in Diagnostics and for the Prediction of the Individual Fracture Risk. Fortschr Röntgenstr 2022; DOI: 10.1055/a-1770-4626.
Collapse
Affiliation(s)
- Nico Sollmann
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany.,Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States.,Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Jan Stefan Kirschke
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Sophia Kronthaler
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Christof Boehm
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Michael Dieckmeyer
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Daniel Vogele
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany
| | - Christopher Kloth
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany
| | | | - Julio Carballido-Gamio
- Department of Radiology, University of Colorado - Anschutz Medical Campus, Aurora, CO, United States
| | - Thomas Marc Link
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States
| | - Dimitrios Charalampos Karampinos
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Subburaj Karupppasamy
- Engineering Product Development (EPD) Pillar, Singapore University of Technology and Design, Singapore.,Sobey School of Business, Saint Mary's University, Halifax, NS, Canada
| | - Meinrad Beer
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany
| | - Roland Krug
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States
| | - Thomas Baum
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| |
Collapse
|
17
|
Sun M, Cheng J, Ren C, Zhang Y, Li Y, Wang L, Zhang S, Lin L. Evaluation of Diffuse Bone Marrow Infiltration Pattern in Monoclonal Plasma Cell Diseases by Quantitative Whole-body Magnetic Resonance Imaging. Acad Radiol 2022; 29:490-500. [PMID: 34362664 DOI: 10.1016/j.acra.2021.06.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/18/2021] [Accepted: 06/13/2021] [Indexed: 11/01/2022]
Abstract
RATIONALE AND OBJECTIVES To analyze diffuse infiltration pattern in monoclonal plasma cell diseases by diffusion-weighted whole-body imaging with background body signal suppression (DWIBS) and quantitative chemical-shift encoded MRI. MATERIALS AND METHODS Ninety-nine patients with monoclonal plasma cell diseases and 15 healthy control subjects were retrospectively analyzed. All patients underwent whole-body MRI (including DWIBS and mDIXON Quant) and were divided into three groups: monoclonal gammopathy of undetermined significance (MGUS), smoldering multiple myeloma (SMM), and multiple myeloma (MM). Apparent diffusion coefficient (ADC), fat fraction (FF), and T2* values for each group were calculated then analyzed by one-way ANOVA and receiver operating characteristic curve. Correlations of ADC, FF, and T2* with clinical indices were analyzed with Spearman correlation test. RESULTS The ADC and T2* values of MM were significantly higher than those of the healthy control, MGUS and SMM (ADC: p = 0.003, p = 0.003, and p = 0.042; T2*: all with p < 0.001). The FF values of MM were significantly lower than those of the healthy control, MGUS and SMM (p < 0.001, p < 0.001 and p = 0.034). The ADC, FF, and T2* thresholds for recognizing MM and MGUS+SMM were 0.51 × 10-3 mm2/s, 31.14%, and 10.53 ms, respectively. The ADC, FF, and T2* values were identified to be significantly associated with bone marrow plasma cells and hemoglobin in patients (all with p < 0.001). CONCLUSION ADC, FF, and T2* were significantly correlated with clinical indices related to monoclonal plasma cell diseases. MM with the diffuse infiltration pattern can be distinguished more objectively from MGUS and SMM by quantitative functional MRI parameters.
Collapse
|
18
|
Zhao Y, Zhao T, Chen S, Zhang X, Serrano Sosa M, Liu J, Mo X, Chen X, Huang M, Li S, Zhang X, Huang C. Fully automated radiomic screening pipeline for osteoporosis and abnormal bone density with a deep learning-based segmentation using a short lumbar mDixon sequence. Quant Imaging Med Surg 2022; 12:1198-1213. [PMID: 35111616 DOI: 10.21037/qims-21-587] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 09/16/2021] [Indexed: 11/06/2022]
Abstract
BACKGROUND Although lumbar bone marrow fat fraction (BMFF) has been demonstrated to be predictive of osteoporosis, its utility is limited by the requirement of manual segmentation. Additionally, quantitative features beyond simple BMFF average remain to be explored. In this study, we developed a fully automated radiomic pipeline using deep learning-based segmentation to detect osteoporosis and abnormal bone density (ABD) using a <20 s modified Dixon (mDixon) sequence. METHODS In total, 222 subjects underwent quantitative computed tomography (QCT) and lower back magnetic resonance imaging (MRI). Bone mineral density (BMD) were extracted from L1-L3 using QCT as the reference standard; 206 subjects (48.8±14.9 years old, 140 females) were included in the final analysis, and were divided temporally into the training/validation set (142/64 subjects). A deep-learning network was developed to perform automated segmentation. Radiomic models were built using the same training set to predict ABD and osteoporosis using the mDixon maps. The performance was evaluated using the temporal validation set comprised of 64 subjects, along with the automated segmentation. Additional 25 subjects (56.1±8.8 years, 14 females) from another site and a different scanner vendor was included as independent validation to evaluate the performance of the pipeline. RESULTS The automated segmentation achieved an outstanding mean dice coefficient of 0.912±0.062 compared to manual in the temporal validation. Task-based evaluation was performed in the temporal validation set, for predicting ABD and osteoporosis, the area under the curve, sensitivity, specificity, and accuracy were 0.925/0.899, 0.923/0.667, 0.789/0.873, 0.844/0.844, respectively. These values were comparable to that of manual segmentation. External validation (cross-vendor) was also performed; the area under the curve, sensitivity, specificity, and accuracy were 0.688/0.913, 0.786/0.857, 0.545/0.944, 0.680/0.920 for ABD and osteoporosis prediction, respectively. CONCLUSIONS Our work is the first attempt using radiomics to predict osteoporosis with BMFF map, and the deep-learning based segmentation will further facilitate the clinical utility of the pipeline as a screening tool for early detection of ABD.
Collapse
Affiliation(s)
- Yinxia Zhao
- Department of Radiology, The Third Affiliated Hospital of Southern Medical University (Orthopaedic Hospital of Guangdong Province), Guangzhou, China
| | - Tianyun Zhao
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
| | - Shenglan Chen
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Xintao Zhang
- Department of Radiology, The Third Affiliated Hospital of Southern Medical University (Orthopaedic Hospital of Guangdong Province), Guangzhou, China
| | - Mario Serrano Sosa
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
| | - Jin Liu
- Department of Radiology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Xianfu Mo
- Department of Radiology, The Third Affiliated Hospital of Southern Medical University (Orthopaedic Hospital of Guangdong Province), Guangzhou, China
| | - Xiaojun Chen
- Department of Radiology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Mingqian Huang
- Department of Radiology, The Mount Sinai Hospital, New York, NY, USA
| | - Shaolin Li
- Department of Radiology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Xiaodong Zhang
- Department of Radiology, The Third Affiliated Hospital of Southern Medical University (Orthopaedic Hospital of Guangdong Province), Guangzhou, China
| | - Chuan Huang
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA.,Department of Radiology, Stony Brook Medicine, Stony Brook, NY, USA
| |
Collapse
|
19
|
Identification of abnormal BMD and osteoporosis in postmenopausal women with T2*-corrected Q-Dixon and reduced-FOV IVIM: correlation with QCT. Eur Radiol 2022; 32:4707-4717. [DOI: 10.1007/s00330-021-08531-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 12/13/2021] [Accepted: 12/20/2021] [Indexed: 02/07/2023]
|
20
|
Leonhardt Y, Ketschau J, Ruschke S, Gassert FT, Glanz L, Feuerriegel GC, Gassert FG, Baum T, Kirschke JS, Braren RF, Schwaiger BJ, Makowski MR, Karampinos DC, Gersing AS. Associations of incidental vertebral fractures and longitudinal changes of MR-based proton density fat fraction and T2* measurements of vertebral bone marrow. Front Endocrinol (Lausanne) 2022; 13:1046547. [PMID: 36465625 PMCID: PMC9713243 DOI: 10.3389/fendo.2022.1046547] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/02/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Quantitative magnetic resonance imaging (MRI) techniques such as chemical shift encoding-based water-fat separation techniques (CSE-MRI) are increasingly applied as noninvasive biomarkers to assess the biochemical composition of vertebrae. This study aims to investigate the longitudinal change of proton density fat fraction (PDFF) and T2* derived from CSE-MRI of the thoracolumbar vertebral bone marrow in patients that develop incidental vertebral compression fractures (VCFs), and whether PDFF and T2* enable the prediction of an incidental VCF. METHODS In this study we included 48 patients with CT-derived bone mineral density (BMD) measurements at baseline. Patients that presented an incidental VCF at follow up (N=12, mean age 70.5 ± 7.4 years, 5 female) were compared to controls without incidental VCF at follow up (N=36, mean age 71.1 ± 8.6 years, 15 females). All patients underwent 3T MRI, containing a significant part of the thoracolumbar spine (Th11-L4), at baseline, 6-month and 12 month follow up, including a gradient echo sequence for chemical shift encoding-based water-fat separation, from which PDFF and T2* maps were obtained. Associations between changes in PDFF, T2* and BMD measurements over 12 months and the group (incidental VCF vs. no VCF) were assessed using multivariable regression models. Mixed-effect regression models were used to test if there is a difference in the rate of change in PDFF, T2* and BMD between patients with and without incidental VCF. RESULTS Prior to the occurrence of an incidental VCF, PDFF in vertebrae increased in the VCF group (ΔPDFF=6.3 ± 3.1%) and was significantly higher than the change of PDFF in the group without VCF (ΔPDFF=2.1 ± 2.5%, P=0.03). There was no significant change in T2* (ΔT2*=1.7 ± 1.1ms vs. ΔT2*=1.1 ± 1.3ms, P=0.31) and BMD (ΔBMD=-1.2 ± 11.3mg/cm3 vs. ΔBMD=-11.4 ± 24.1mg/cm3, P= 0.37) between the two groups over 12 months. At baseline, no significant differences were detected in the average PDFF, T2* and BMD of all measured vertebrae (Th11-L4) between the VCF group and the group without VCF (P=0.66, P=0.35 and P= 0.21, respectively). When assessing the differences in rates of change, there was a significant change in slope for PDFF (2.32 per 6 months, 95% confidence interval (CI) 0.31-4.32; P=0.03) but not for T2* (0.02 per 6 months, CI -0.98-0.95; P=0.90) or BMD (-4.84 per 6 months, CI -23.4-13.7; P=0.60). CONCLUSIONS In our study population, the average change of PDFF over 12 months is significantly higher in patients that develop incidental fractures at 12-month follow up compared to patients without incidental VCF, while T2* and BMD show no significant changes prior to the occurrence of the incidental vertebral fractures. Therefore, a longitudinal increase in bone marrow PDFF may be predictive for vertebral compression fractures.
Collapse
Affiliation(s)
- Yannik Leonhardt
- Department of Radiology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
- *Correspondence: Yannik Leonhardt,
| | - Jannik Ketschau
- Department of Radiology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Stefan Ruschke
- Department of Radiology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Florian T. Gassert
- Department of Radiology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Leander Glanz
- Department of Radiology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Georg C. Feuerriegel
- Department of Radiology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Felix G. Gassert
- Department of Radiology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Thomas Baum
- Department on Neuroradiology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Jan S. Kirschke
- Department on Neuroradiology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Rickmer F. Braren
- Department of Radiology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Benedikt J. Schwaiger
- Department on Neuroradiology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Marcus R. Makowski
- Department of Radiology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Dimitrios C. Karampinos
- Department of Radiology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Alexandra S. Gersing
- Department of Radiology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
- Department of Neuroradiology, University Hospital of Munich (LMU), Munich, Germany
| |
Collapse
|
21
|
Li X, Xie Y, Lu R, Zhang Y, Li Q, Kober T, Hilbert T, Tao H, Chen S. Q-Dixon and GRAPPATINI T2 Mapping Parameters: A Whole Spinal Assessment of the Relationship Between Osteoporosis and Intervertebral Disc Degeneration. J Magn Reson Imaging 2021; 55:1536-1546. [PMID: 34664744 DOI: 10.1002/jmri.27959] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/02/2021] [Accepted: 10/04/2021] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND The relationship between osteoporosis and intervertebral disc (IVD) degeneration remains controversial. Novel quantitative Dixon (Q-Dixon) and GRAPPATINI T2 mapping techniques have shown potential for evaluating the biochemical components of the spine. PURPOSE To investigate the correlation of osteoporosis with IVD degeneration in postmenopausal women. STUDY TYPE Prospective. SUBJECTS A total of 105 postmenopausal females (mean age, 65 years; mean body mass index, 26 kg/m2 ). FIELD STRENGTH/SEQUENCE 3 T; sagittal; 6-echo Q-Dixon, multiecho spin-echo GRAPPATINI T2 mapping, turbo spin echo (TSE) T1-weighted and TSE T2-weighted sequences. ASSESSMENT The subjects were divided into normal (N = 47), osteopenia (N = 28), and osteoporosis (N = 30) groups according to quantitative computed tomography examination. The Pfirrmann grade of each IVD was obtained. Region of interest analysis was performed separately by two radiologists (X.L., with 10 years of experience, and S.C., with 20 years of experience) on a fat fraction map and T2 map to calculate the bone marrow fat fraction (BMFF) from the L1 to L5 vertebrae and the T2 values of each adjacent IVD separately. STATISTICAL TESTS One-way analysis of variance, post-hoc comparisons, and Kruskal-Wallis H tests were performed to evaluate the differences in the magnetic resonance imaging parameters between the groups. The relationships between BMFF and the IVD features were analyzed using the Spearman correlation analysis and linear regression models. RESULTS There were significant differences in BMFF among the three groups. The osteoporosis group had higher BMFF values (64.5 ± 5.9%). No significant correlation was found between BMFF and Pfirrmann grade (r = 0.251, P = 0.06). BMFF was significantly negatively correlated with the T2 of the adjacent IVD from L1 to L3 (r = -0.731; r = -0.637; r = -0.547), while significant weak correlations were found at the L4 to L5 levels (r = -0.337; r = -0.278). DATA CONCLUSION This study demonstrated that osteoporosis is associated with IVD degeneration. LEVEL OF EVIDENCE 2 TECHNICAL EFFICACY: Stage 4.
Collapse
Affiliation(s)
- Xiangwen Li
- Department of Radiology and Institute of Medical Functional and Molecular Imaging, Huashan Hospital, Fudan University, Shanghai, China
| | - Yuxue Xie
- Department of Radiology and Institute of Medical Functional and Molecular Imaging, Huashan Hospital, Fudan University, Shanghai, China
| | - Rong Lu
- Department of Radiology and Institute of Medical Functional and Molecular Imaging, Huashan Hospital, Fudan University, Shanghai, China
| | - Yuyang Zhang
- Department of Radiology and Institute of Medical Functional and Molecular Imaging, Huashan Hospital, Fudan University, Shanghai, China
| | - Qing Li
- MR Collaborations, Siemens Healthineers Ltd., Shanghai, China
| | - Tobias Kober
- Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland.,Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.,LTS5, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Tom Hilbert
- Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland.,Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.,LTS5, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Hongyue Tao
- Department of Radiology and Institute of Medical Functional and Molecular Imaging, Huashan Hospital, Fudan University, Shanghai, China
| | - Shuang Chen
- Department of Radiology and Institute of Medical Functional and Molecular Imaging, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
22
|
Wang J, Yi P, Huang Y, Yu Q, Mei Y, Chen J, Feng Y, Zhang X. Quantitative evaluation of bone marrow fat content and unsaturated fatty index in young male soccer players using proton magnetic resonance spectroscopy ( 1H-MRS): a preliminary study. Quant Imaging Med Surg 2021; 11:4275-4286. [PMID: 34603983 DOI: 10.21037/qims-21-64] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 05/08/2021] [Indexed: 12/17/2022]
Abstract
Background Marrow fat exists as a distinct adipose tissue and plays a critical role in affecting both the quantity and quality of bone. However, the effect of soccer training on marrow fat has been rarely reported. This study aims to evaluate and characterize the marrow fat content and composition in different bone areas of soccer players and age-matched healthy subjects using proton magnetic resonance spectroscopy (1H-MRS). Methods Between May 2020 and June 2020, 20 professional soccer players (20.7±0.9 years) and 20 age-matched healthy subjects (21.2±0.8 years) were enrolled in this cross-sectional study. The 1H-MRS were acquired from the 3rd lumbar vertebrae, bilateral femoral necks, and distal tibias of all subjects using a single-voxel point-resolved spatially localized spectroscopy (PRESS) sequence. Four soccer players underwent a second magnetic resonance (MR) examination within a 30-minute interval after the initial scan to evaluate test-retest reproducibility. Inter- and intra-observer measurement reliabilities were assessed using 10 randomly selected spectra from the soccer players group. All spectra were processed using the jMRUI software package (http://www.jmrui.eu/). Quantified water and lipid signals were used to calculate fat content (FC) and the unsaturated fatty index (UI). Results Compared with healthy subjects, we found that soccer players had a lower FC in L3 and bilateral femoral necks and higher UI in the left femoral neck (P<0.05). All FC and UI values of the bilateral distal tibias showed no significant differences between the two groups (P>0.05). The UI values of the right femoral neck or distal tibia were markedly higher than the left side in both inactive subjects and soccer players (P<0.05, except for the femoral neck in players), and there were notable ΔUI differences in the lower limbs between the soccer players and the healthy subjects (P<0.05). Conclusions Soccer practice can be considered a positive sport that contributes to decreasing FC in lumbar vertebrae and femoral necks and increasing the UI in femoral necks. Quantitative MRS provides an ideal modality to predict marrow fat metabolism caused by mechanical stimulation.
Collapse
Affiliation(s)
- Jian Wang
- Department of Medical Imaging, The Third Affiliated Hospital of Southern Medical University (Academy of Orthopedics Guangdong Province), Guangzhou, China
| | - Peiwei Yi
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, China
| | - Yaobin Huang
- Department of Medical Imaging, The Third Affiliated Hospital of Southern Medical University (Academy of Orthopedics Guangdong Province), Guangzhou, China
| | - Qinqin Yu
- Department of Medical Imaging, Shanghai General Hospital, Shanghai, China
| | - Yingjie Mei
- China International Center, Philips Healthcare, Guangzhou, China
| | - Jialing Chen
- Department of Medical Imaging, The Third Affiliated Hospital of Southern Medical University (Academy of Orthopedics Guangdong Province), Guangzhou, China
| | - Yanqiu Feng
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, China
| | - Xiaodong Zhang
- Department of Medical Imaging, The Third Affiliated Hospital of Southern Medical University (Academy of Orthopedics Guangdong Province), Guangzhou, China
| |
Collapse
|
23
|
Yang H, Cui X, Zheng X, Li J, Yao Q, Li X, Qin J. Preliminary quantitative analysis of vertebral microenvironment changes in type 2 diabetes mellitus using FOCUS IVIM-DWI and IDEAL-IQ sequences. Magn Reson Imaging 2021; 84:84-91. [PMID: 34560231 DOI: 10.1016/j.mri.2021.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 09/10/2021] [Accepted: 09/16/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE To explore the application of intravoxel incoherent motion diffusion-weighted imaging(IVIM-DWI) on account of field-of-view optimized and constrained undistorted single shot (FOCUS) and iteraterative decomposition of water and fat with echo asymmetry and least-squares estimation quantitation(IDEAL-IQ) sequences in evaluating the vertebral microenvironment changes of type 2 diabetes mellitus(T2DM) patients and the correlation with bone mineral density(BMD). METHOD 128 T2DM patients (mean age 63.4 ± 5.28 years) underwent both dual-energy X-ray absorptiometry (DEXA) and spine MRI. The FOCUS IVIM-DWI and IDEAL-IQ derived parameters of the vertebral body(L1, L2, L3, L4)were measured on corresponding maps of the lumbar spine. The subjects were divided into 3 groups according to T-scores as follows: normal (n = 37), osteopenia (n = 43), and osteoporosis(n = 48) group.One-way analysis of variance (ANOVA) were used to compare the vertebral parameters(ADCslow, ADCfast, f, FF, R2*) among three BMD cohorts.Receiver operating characteristic (ROC) analyses and Spearman's rank correlation were performed to test the diagnostic performance and the correlation between them respectively. RESULTS There were significant differences in vertebral ADCslow, ADCfast, FF and R2* between the three groups (P < 0.05).Statistically, BMD was moderately negatively correlated with FF (r = -0.584, P < 0.001) and weakly positively with ADCslow (r = 0.334, P < 0.001), meanwhile moderately positively correlated with R2*(r = 0.509, P < 0.001) and ADCfast(0.545, P < 0.001).ADCfast was moderately negatively correlated with FF (r = -0.417, P < 0.001), weakly positively correlated with R2*(0.359, P < 0.001).Compared with the area under the curve (AUC) of ADCslow, ADCfast, FF and R2*, the AUC of ADCfast was higher in identifying between normal and abnormal(osteopenia and osteoporosis), normal from osteopenia, while the AUC of FF was higher in identifying osteopenia from osteoporosis. CONCLUSIONS FOCUS IVIM-DWI and IDEAL-IQ of lumbar spine might be useful to evaluate the vertebral microenvironment changes of T2DM patients.
Collapse
Affiliation(s)
- Hui Yang
- Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, Tai'an 271000, Shandong, China
| | - Xiaojie Cui
- Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, Tai'an 271000, Shandong, China
| | - Xiuzhu Zheng
- Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, Tai'an 271000, Shandong, China
| | - Jiang Li
- Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, Tai'an 271000, Shandong, China
| | - Qianqian Yao
- Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, Tai'an 271000, Shandong, China
| | - Xiaoqian Li
- Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, Tai'an 271000, Shandong, China
| | - Jian Qin
- Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, Tai'an 271000, Shandong, China.
| |
Collapse
|
24
|
Leonhardt Y, Gassert FT, Feuerriegel G, Gassert FG, Kronthaler S, Boehm C, Kufner A, Ruschke S, Baum T, Schwaiger BJ, Makowski MR, Karampinos DC, Gersing AS. Vertebral bone marrow T2* mapping using chemical shift encoding-based water-fat separation in the quantitative analysis of lumbar osteoporosis and osteoporotic fractures. Quant Imaging Med Surg 2021; 11:3715-3725. [PMID: 34341744 PMCID: PMC8245952 DOI: 10.21037/qims-20-1373] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 04/07/2021] [Indexed: 11/06/2022]
Abstract
BACKGROUND Chemical shift encoding-based water-fat separation techniques have been used for fat quantification [proton density fat fraction (PDFF)], but they also enable the assessment of bone marrow T2*, which has previously been reported to be a potential biomarker for osteoporosis and may give insight into the cause of vertebral fractures (i.e., osteoporotic vs. traumatic) and the microstructure of the bone when applied to vertebral bone marrow. METHODS The 32 patients (78.1% with low-energy osteopenic/osteoporotic fractures, mean age 72.3±9.8 years, 76% women; 21.9% with high-energy traumatic fractures, 47.3±12.8 years, no women) were frequency-matched for age and sex to subjects without vertebral fractures (n=20). All study patients underwent 3T-MRI of the lumbar spine including sagittally acquired spoiled gradient echo sequences for chemical shift encoding-based water-fat separation, from which T2* values were obtained. Volumetric trabecular bone mineral density (BMD) and trabecular bone parameters describing the three-dimensional structural integrity of trabecular bone were derived from quantitative CT. Associations between T2* measurements, fracture status and trabecular bone parameters were assessed using multivariable linear regression models. RESULTS Mean T2* values of non fractured vertebrae in all patients showed a significant correlation with BMD (r=-0.65, P<0.001), trabecular number (TbN) (r=-0.56, P<0.001) and trabecular spacing (TbSp) (r=0.61, P<0.001); patients with low-energy osteoporotic vertebral fractures showed significantly higher mean T2* values than those with traumatic fractures (13.6±4.3 vs. 8.4±2.2 ms, P=0.01) as well as a significantly lower TbN (0.69±0.08 vs. 0.93±0.03 mm-1, P<0.01) and a significantly larger trabecular spacing (1.06±0.16 vs. 0.56±0.08 mm, P<0.01). Mean T2* values of osteoporotic patients with and without vertebral fracture showed no significant difference (13.5±3.4 vs. 15.6±3.5 ms, P=0.40). When comparing the mean T2* of the fractured vertebrae, no significant difference could be detected between low-energy osteoporotic fractures and high-energy traumatic fractures (12.6±5.4 vs. 8.1±2.4 ms, P=0.10). CONCLUSIONS T2* mapping of vertebral bone marrow using using chemical shift encoding-based water-fat separation allows for assessing osteoporosis as well as the trabecular microstructure and enables a radiation-free differentiation between patients with low-energy osteoporotic and high-energy traumatic vertebral fractures, suggesting its potential as a biomarker for bone fragility.
Collapse
Affiliation(s)
- Yannik Leonhardt
- Department of Radiology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Florian T. Gassert
- Department of Radiology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Georg Feuerriegel
- Department of Radiology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Felix G. Gassert
- Department of Radiology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Sophia Kronthaler
- Department of Radiology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Christof Boehm
- Department of Radiology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Alexander Kufner
- Department of Radiology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Stefan Ruschke
- Department of Radiology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Thomas Baum
- Department of Neuroradiology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Benedikt J. Schwaiger
- Department of Neuroradiology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Marcus R. Makowski
- Department of Radiology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Dimitrios C. Karampinos
- Department of Radiology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Alexandra S. Gersing
- Department of Radiology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
- Department of Neuroradiology, University Hospital of Munich (LMU), Munich, Germany
| |
Collapse
|
25
|
Liu Y, He Y, He B, Kong L. The anti-osteoporosis effects of Vitamin K in postmenopausal women. Curr Stem Cell Res Ther 2021; 17:186-192. [PMID: 33982655 DOI: 10.2174/1574888x16666210512020103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 12/12/2020] [Accepted: 12/29/2020] [Indexed: 11/22/2022]
Abstract
As a common systemically muscular-skeleton disorder in aging, osteoporosis is characterized by the uninterrupted deconstruction in osseous microarchitecture. Osteoporosis can consequently lead to a significantly high risk of osteoporotic fractures, such as osteoporotic vertebral compressive fractures [OVCF] in the spine and osteoporotic femoral neck fractures, which can significantly increase the numbers of mortality and morbidity in aging people, especially in postmenopausal women. In addition, vitamin K has been demonstrated to play a key role in inhibiting osteoporotic fractures among postmenopausal women, but its long-term benefits, potential harms, and effects of the combination between vitamin K and other anti-osteoporosis medicines such as bisphosphonates or teriparatide were just extensively studied. Therefore, the present review aimed to systematically reviewed published literature on the role of vitamin K in the treatment of osteoporosis. We currently, via multiple queries strategy, searched the relevant literature in Cochrane and PubMed from January 2010 to December 2019. Subsequently, we conducteda systematic review according to the standard guideline of Preferred Reporting Item for Systematic Reviews and Meta-Analyses [PRISMA]. Finally, ten relevant works of literature met our current criteria for inclusion, and then we followed the PRISMA guideline and systematically reviewed each study by the categorized data sources and analytical approaches in each study, meanwhile set up variables and defined each study outcomes.
Collapse
Affiliation(s)
- Yuan Liu
- Honghui Hospital Affiliated to Xi Spine surgery, China
| | | | - Baorong He
- Honghui Hospital Affiliated to Xi Spine surgery, China
| | - Lingbo Kong
- Honghui Hospital Affiliated to Xi Spine surgery, China
| |
Collapse
|
26
|
Soldati E, Rossi F, Vicente J, Guenoun D, Pithioux M, Iotti S, Malucelli E, Bendahan D. Survey of MRI Usefulness for the Clinical Assessment of Bone Microstructure. Int J Mol Sci 2021; 22:2509. [PMID: 33801539 PMCID: PMC7958958 DOI: 10.3390/ijms22052509] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/21/2021] [Accepted: 02/25/2021] [Indexed: 12/12/2022] Open
Abstract
Bone microarchitecture has been shown to provide useful information regarding the evaluation of skeleton quality with an added value to areal bone mineral density, which can be used for the diagnosis of several bone diseases. Bone mineral density estimated from dual-energy X-ray absorptiometry (DXA) has shown to be a limited tool to identify patients' risk stratification and therapy delivery. Magnetic resonance imaging (MRI) has been proposed as another technique to assess bone quality and fracture risk by evaluating the bone structure and microarchitecture. To date, MRI is the only completely non-invasive and non-ionizing imaging modality that can assess both cortical and trabecular bone in vivo. In this review article, we reported a survey regarding the clinically relevant information MRI could provide for the assessment of the inner trabecular morphology of different bone segments. The last section will be devoted to the upcoming MRI applications (MR spectroscopy and chemical shift encoding MRI, solid state MRI and quantitative susceptibility mapping), which could provide additional biomarkers for the assessment of bone microarchitecture.
Collapse
Affiliation(s)
- Enrico Soldati
- CRMBM, CNRS, Aix Marseille University, 13385 Marseille, France;
- IUSTI, CNRS, Aix Marseille University, 13013 Marseille, France;
- ISM, CNRS, Aix Marseille University, 13288 Marseille, France; (D.G.); (M.P.)
| | - Francesca Rossi
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy; (F.R.); (S.I.); (E.M.)
| | - Jerome Vicente
- IUSTI, CNRS, Aix Marseille University, 13013 Marseille, France;
| | - Daphne Guenoun
- ISM, CNRS, Aix Marseille University, 13288 Marseille, France; (D.G.); (M.P.)
- Department of Radiology, Institute for Locomotion, Saint-Marguerite Hospital, ISM, CNRS, APHM, Aix Marseille University, 13274 Marseille, France
| | - Martine Pithioux
- ISM, CNRS, Aix Marseille University, 13288 Marseille, France; (D.G.); (M.P.)
- Department of Orthopedics and Traumatology, Institute for Locomotion, Saint-Marguerite Hospital, ISM, CNRS, APHM, Aix Marseille University, 13274 Marseille, France
| | - Stefano Iotti
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy; (F.R.); (S.I.); (E.M.)
- National Institute of Biostructures and Biosystems, 00136 Rome, Italy
| | - Emil Malucelli
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy; (F.R.); (S.I.); (E.M.)
| | - David Bendahan
- CRMBM, CNRS, Aix Marseille University, 13385 Marseille, France;
| |
Collapse
|
27
|
Sollmann N, Becherucci EA, Boehm C, Husseini ME, Ruschke S, Burian E, Kirschke JS, Link TM, Subburaj K, Karampinos DC, Krug R, Baum T, Dieckmeyer M. Texture Analysis Using CT and Chemical Shift Encoding-Based Water-Fat MRI Can Improve Differentiation Between Patients With and Without Osteoporotic Vertebral Fractures. Front Endocrinol (Lausanne) 2021; 12:778537. [PMID: 35058878 PMCID: PMC8763669 DOI: 10.3389/fendo.2021.778537] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 12/06/2021] [Indexed: 11/13/2022] Open
Abstract
PURPOSE Osteoporosis is a highly prevalent skeletal disease that frequently entails vertebral fractures. Areal bone mineral density (BMD) derived from dual-energy X-ray absorptiometry (DXA) is the reference standard, but has well-known limitations. Texture analysis can provide surrogate markers of tissue microstructure based on computed tomography (CT) or magnetic resonance imaging (MRI) data of the spine, thus potentially improving fracture risk estimation beyond areal BMD. However, it is largely unknown whether MRI-derived texture analysis can predict volumetric BMD (vBMD), or whether a model incorporating texture analysis based on CT and MRI may be capable of differentiating between patients with and without osteoporotic vertebral fractures. MATERIALS AND METHODS Twenty-six patients (15 females, median age: 73 years, 11 patients showing at least one osteoporotic vertebral fracture) who had CT and 3-Tesla chemical shift encoding-based water-fat MRI (CSE-MRI) available were analyzed. In total, 171 vertebral bodies of the thoracolumbar spine were segmented using an automatic convolutional neural network (CNN)-based framework, followed by extraction of integral and trabecular vBMD using CT data. For CSE-MRI, manual segmentation of vertebral bodies and consecutive extraction of the mean proton density fat fraction (PDFF) and T2* was performed. First-order, second-order, and higher-order texture features were derived from texture analysis using CT and CSE-MRI data. Stepwise multivariate linear regression models were computed using integral vBMD and fracture status as dependent variables. RESULTS Patients with osteoporotic vertebral fractures showed significantly lower integral and trabecular vBMD when compared to patients without fractures (p<0.001). For the model with integral vBMD as the dependent variable, T2* combined with three PDFF-based texture features explained 40% of the variance (adjusted R2[Ra2] = 0.40; p<0.001). Furthermore, regarding the differentiation between patients with and without osteoporotic vertebral fractures, a model including texture features from CT and CSE-MRI data showed better performance than a model based on integral vBMD and PDFF only ( Ra2 = 0.47 vs. Ra2 = 0.81; included texture features in the final model: integral vBMD, CT_Short-run_emphasis, CT_Varianceglobal, and PDFF_Variance). CONCLUSION Using texture analysis for spine CT and CSE-MRI can facilitate the differentiation between patients with and without osteoporotic vertebral fractures, implicating that future fracture prediction in osteoporosis may be improved.
Collapse
Affiliation(s)
- Nico Sollmann
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- *Correspondence: Nico Sollmann,
| | - Edoardo A. Becherucci
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Christof Boehm
- Department of Diagnostic and Interventional Radiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Malek El Husseini
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Stefan Ruschke
- Department of Diagnostic and Interventional Radiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Egon Burian
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Jan S. Kirschke
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Thomas M. Link
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States
| | - Karupppasamy Subburaj
- Engineering Product Development (EPD) Pillar, Singapore University of Technology and Design (SUTD), Singapore, Singapore
- Changi General Hospital, Singapore, Singapore
| | - Dimitrios C. Karampinos
- Department of Diagnostic and Interventional Radiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Roland Krug
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States
| | - Thomas Baum
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Michael Dieckmeyer
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| |
Collapse
|
28
|
Sollmann N, Löffler MT, Kronthaler S, Böhm C, Dieckmeyer M, Ruschke S, Kirschke JS, Carballido-Gamio J, Karampinos DC, Krug R, Baum T. MRI-Based Quantitative Osteoporosis Imaging at the Spine and Femur. J Magn Reson Imaging 2020; 54:12-35. [PMID: 32584496 DOI: 10.1002/jmri.27260] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 05/31/2020] [Accepted: 06/01/2020] [Indexed: 12/27/2022] Open
Abstract
Osteoporosis is a systemic skeletal disease with a high prevalence worldwide, characterized by low bone mass and microarchitectural deterioration, predisposing an individual to fragility fractures. Dual-energy X-ray absorptiometry (DXA) has been the clinical reference standard for diagnosing osteoporosis and for assessing fracture risk for decades. However, other imaging modalities are of increasing importance to investigate the etiology, treatment, and fracture risk. The purpose of this work is to review the available literature on quantitative magnetic resonance imaging (MRI) methods and related findings in osteoporosis at the spine and proximal femur as the clinically most important fracture sites. Trabecular bone microstructure analysis at the proximal femur based on high-resolution MRI allows for a better prediction of osteoporotic fracture risk than DXA-based bone mineral density (BMD) alone. In the 1990s, T2 * mapping was shown to correlate with the density and orientation of the trabecular bone. Recently, quantitative susceptibility mapping (QSM), which overcomes some of the limitations of T2 * mapping, has been applied for trabecular bone quantifications at the spine, whereas ultrashort echo time (UTE) imaging provides valuable surrogate markers of cortical bone quantity and quality. Magnetic resonance spectroscopy (MRS) and chemical shift encoding-based water-fat MRI (CSE-MRI) enable the quantitative assessment of the nonmineralized bone compartment through extraction of the bone marrow fat fraction (BMFF). Furthermore, CSE-MRI allows for the differentiation of osteoporotic vs. pathologic fractures, which is of high clinical relevance. Lastly, advanced postprocessing and image analysis tools, particularly considering statistical parametric mapping and region-specific BMFF distributions, have high potential to further improve MRI-based fracture risk assessments at the spine and hip. LEVEL OF EVIDENCE: 5 TECHNICAL EFFICACY STAGE: 2.
Collapse
Affiliation(s)
- Nico Sollmann
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,TUM-Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Maximilian T Löffler
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Sophia Kronthaler
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Christof Böhm
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Michael Dieckmeyer
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Stefan Ruschke
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Jan S Kirschke
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,TUM-Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Julio Carballido-Gamio
- Department of Radiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Dimitrios C Karampinos
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Roland Krug
- Department of Radiology and Biomedical Imaging, School of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Thomas Baum
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| |
Collapse
|
29
|
Takasu M, Kondo S, Akiyama Y, Takahashi Y, Maeda S, Baba Y, Kawase T, Ichinohe T, Awai K. Assessment of early treatment response on MRI in multiple myeloma: Comparative study of whole-body diffusion-weighted and lumbar spinal MRI. PLoS One 2020; 15:e0229607. [PMID: 32106239 PMCID: PMC7046272 DOI: 10.1371/journal.pone.0229607] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 02/10/2020] [Indexed: 12/17/2022] Open
Abstract
Objectives To compare remission status at completion of chemotherapy for multiple myeloma (MM) with changes in total diffusion volume (tDV) calculated from whole-body diffusion-weighted imaging (WB-DWI) and fat fraction (FF) of lumbar bone marrow (BM) by modified Dixon Quant (mDixon Quant) soon after induction of chemotherapy, and to assess the predictive value of MRI. Methods Fifty patients (mean age, 66.9 ± 10.5 years) with symptomatic myeloma were examined before and after two cycles of chemotherapy. From WB-DWI data, tDV was obtained with the threshold for positive BM involvement. Mean FF was calculated from lumbar BM using the mDixon Quant sequence. At the completion of chemotherapy, patients were categorized into a CR/very good PR (VGPR) group (n = 15; mean age, 67.6 ± 10.3 years) and a PR, SD or PD group (n = 35; mean age, 69.1 ± 8.6 years). ROC curves were plotted to assess performance in predicting achievement of CR/VGPR. Results At second examination, serum M protein, β2-microglobulin, and tDV were significantly decreased and hemoglobin, mean ADC, and FF were significantly increased in the CR/VGPR group and serum M protein was significantly increased in the PR/SD/PD group. The general linear model demonstrated that percentage changes in FF and M protein contributed significantly to achieving CR/VGPR (P = 0.02, P = 0.04, respectively). AUCs of ROC curves were 0.964 for FF and 0.847 for M protein. Conclusions Early change in FF of lumbar BM and serum M protein soon after induction of chemotherapy contributed significantly to prediction of CR/VGPR.
Collapse
Affiliation(s)
- Miyuki Takasu
- Department of Diagnostic Radiology, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
- * E-mail:
| | - Shota Kondo
- Department of Diagnostic Radiology, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
| | - Yuji Akiyama
- Department of Diagnostic Radiology, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
| | - Yuji Takahashi
- Department of Diagnostic Radiology, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
| | - Shogo Maeda
- Department of Diagnostic Radiology, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
| | - Yasutaka Baba
- Department of Diagnostic Radiology, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
| | - Takakazu Kawase
- Department of Hematology and Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Tatsuo Ichinohe
- Department of Hematology and Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Kazuo Awai
- Department of Diagnostic Radiology, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
30
|
van Vucht N, Santiago R, Lottmann B, Pressney I, Harder D, Sheikh A, Saifuddin A. The Dixon technique for MRI of the bone marrow. Skeletal Radiol 2019; 48:1861-1874. [PMID: 31309243 DOI: 10.1007/s00256-019-03271-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/25/2019] [Accepted: 06/27/2019] [Indexed: 02/02/2023]
Abstract
Dixon sequences are established as a reliable MRI technique that can be used for problem-solving in the assessment of bone marrow lesions. Unlike other fat suppression methods, Dixon techniques rely on the difference in resonance frequency between fat and water and in a single acquisition, fat only, water only, in-phase and out-of-phase images are acquired. This gives Dixon techniques the unique ability to quantify the amount of fat within a bone lesion, allowing discrimination between marrow-infiltrating and non-marrow-infiltrating lesions such as focal nodular marrow hyperplasia. Dixon can be used with gradient echo and spin echo techniques, both two-dimensional and three-dimensional imaging. Another advantage is its rapid acquisition time, especially when using traditional two-point Dixon gradient echo sequences. Overall, Dixon is a robust fat suppression method that can also be used with intravenous contrast agents. After reviewing the available literature, we would like to advocate the implementation of additional Dixon sequences as a problem-solving tool during the assessment of bone marrow pathology.
Collapse
Affiliation(s)
- Niels van Vucht
- Department of Medical Imaging, Royal National Orthopaedic Hospital, Brockley Hill, Stanmore, HA7 4LP, UK.
| | - Rodney Santiago
- Department of Medical Imaging, Royal National Orthopaedic Hospital, Brockley Hill, Stanmore, HA7 4LP, UK
| | - Bianca Lottmann
- Department of Medical Imaging, Royal National Orthopaedic Hospital, Brockley Hill, Stanmore, HA7 4LP, UK
| | - Ian Pressney
- Department of Medical Imaging, Royal National Orthopaedic Hospital, Brockley Hill, Stanmore, HA7 4LP, UK
| | - Dorothee Harder
- Clinic of Radiology and Nuclear Medicine, University Hospital Basel, University of Basel, Petersgraben 4, 4031, Basel, Switzerland
| | - Adnan Sheikh
- Department of Medical Imaging, The Ottawa Hospital, Civic Campus, 1053 Carling Avenue, Ottawa, Ontario, K1Y 4E9, Canada
| | - Asif Saifuddin
- Department of Medical Imaging, Royal National Orthopaedic Hospital, Brockley Hill, Stanmore, HA7 4LP, UK
| |
Collapse
|
31
|
Fatty infiltration of paraspinal muscles is associated with bone mineral density of the lumbar spine. Arch Osteoporos 2019; 14:99. [PMID: 31617017 DOI: 10.1007/s11657-019-0639-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 07/31/2019] [Indexed: 02/03/2023]
Abstract
UNLABELLED A total of 88 subjects were enrolled to investigate the relationship between paraspinal muscle fatty infiltration and lumbar bone mineral density (BMD) using chemical shift encoding-based water-fat MRI and quantitative computed tomography (QCT), respectively. A moderate inverse correlation between paraspinal muscle proton density fat fraction and lumbar QCT-BMD was found with age, sex, and BMI controlled. PURPOSE To investigate the relationship between paraspinal muscle fatty infiltration and lumbar bone mineral density (BMD). METHODS A total of 88 subjects were enrolled in this study (52 females, 36 males; age, 46.6 ± 14.2 years old; BMI, 23.2 ± 3.49 kg/m2). Proton density fat fractions (PDFF) of paraspinal muscles (erector spinae, multifidus, and psoas) were measured at L2/3, L3/4, and L4/5 levels using chemical shift encoding-based water-fat MRI. Quantitative computed tomography (QCT) was used to assess BMD of L1, L2, and L3. The differences in paraspinal muscle PDFF among subjects with normal bone density, osteopenia, and osteoporosis were tested using one-way ANOVA. The relationship between paraspinal muscle PDFF and QCT-BMD was analyzed using linear regression with age, sex, and BMI variables. RESULTS PDFF of the erector spinae, multifidus, and psoas of subjects with normal bone density were all significantly less than those with osteopenia and those with osteoporosis (all p < 0.001). There was an inverse correlation between paraspinal muscle PDFF and BMD after controlling for age, sex, and BMI (standardized beta coefficient, - 0.21~- 0.29; all p < 0.05). CONCLUSIONS Paraspinal muscle fatty infiltration increased while lumbar BMD decreased after adjusting for age, sex, and BMI. Paraspinal muscles and vertebrae are interacting tissues. Paraspinal muscle fatty infiltration may be a marker of low lumbar BMD. Chemical shift imaging is an efficient and fast quantitative method and can be easily added to the clinical protocol to measure paraspinal muscle PDFF when the patient underwent the routine lumbar MRI with low-back pain.
Collapse
|
32
|
Tu SJ, Wang SP, Cheng FC, Chen YJ. Extraction of gray-scale intensity distributions from micro computed tomography imaging for femoral cortical bone differentiation between low-magnesium and normal diets in a laboratory mouse model. Sci Rep 2019; 9:8135. [PMID: 31148574 PMCID: PMC6544618 DOI: 10.1038/s41598-019-44610-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 05/13/2019] [Indexed: 02/01/2023] Open
Abstract
Previous studies have shown that the geometric development of femoral trabecular bone is affected by insufficient dietary intake of magnesium. However, it is not clear whether the development of femoral cortical bone can be quantitatively evaluated according to a diet with inadequate magnesium supplementation. Therefore, we used a micro computed tomography (CT) imaging approach with a laboratory mouse model to explore the potential application of texture analysis for the quantitative assessment of femoral cortical bones. C57BL/6J male mice were divided into two groups, where one group was fed a normal diet and the other group was fed a low-magnesium diet. We used a micro CT scanner for image acquisition, and the subsequent development of cortical bone was examined by texture analysis based on the statistical distribution of gray-scale intensities in which seven essential parameters were extracted from the micro CT images. Our calculations showed that the mean intensity increased by 7.20% (p = 0.000134), sigma decreased by 29.18% (p = 1.98E-12), skewness decreased by 19.52% (p = 0.0000205), kurtosis increased by 9.62% (p = 0.0877), energy increased by 24.19% (p = 3.32E-09), entropy decreased by 6.14% (p = 3.00E-10), and the Nakagami parameter increased by 104.32% (p = 4.13E-12) in the low-magnesium group when compared to the normal group. We found that the statistical parameters extracted from the gray-scale intensity distribution were able to differentiate between femoral cortical bone developments in the two different diet groups.
Collapse
Affiliation(s)
- Shu-Ju Tu
- Department of Medical Imaging and Radiological Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan.,Department of Medical Imaging and Intervention, Linkou Chang Gung Memorial Hospital, Tao-Yuan, Taiwan
| | - Shun-Ping Wang
- Department of Orthopedics, Taichung Veterans General Hospital, Taichung, Taiwan.,College of Science, Tunghai University, Taichung, Taiwan
| | - Fu-Chou Cheng
- Stem Cell Center, Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Ying-Ju Chen
- Department of Food and Nutrition, Providence University, Taichung, Taiwan.
| |
Collapse
|