1
|
Hu Z, Berman AJL, Dong Z, Grissom WA, Reese TG, Wald LL, Wang F, Polimeni JR. Reduced physiology-induced temporal instability achieved with variable-flip-angle fast low-angle excitation echo-planar technique with multishot echo planar time-resolved imaging. Magn Reson Med 2025; 93:597-614. [PMID: 39323238 DOI: 10.1002/mrm.30301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/27/2024]
Abstract
PURPOSE Echo planar time-resolved imaging (EPTI) is a new imaging approach that addresses the limitations of EPI by providing high-resolution, distortion- and T2/T 2 * $$ {\mathrm{T}}_2^{\ast } $$ blurring-free imaging for functional MRI (fMRI). However, as in all multishot sequences, intershot phase variations induced by physiological processes can introduce temporal instabilities to the reconstructed time-series data. This study aims to reduce these instabilities in multishot EPTI. THEORY AND METHODS In conventional multishot EPTI, the time intervals between the shots comprising each slice can introduce intershot phase variations. Here, the fast low-angle excitation echo-planar technique (FLEET), in which all shots of each slice are acquired consecutively with minimal time delays, was combined with a variable flip angle (VFA) technique to improve intershot consistency and maximize signal. A recursive Shinnar-Le Roux RF pulse design algorithm was used to generate pulses for different shots to produce consistent slice profiles and signal intensities across shots. Blipped controlled aliasing in parallel imaging simultaneous multislice was also combined with the proposed VFA-FLEET EPTI to improve temporal resolution and increase spatial coverage. RESULTS The temporal stability of VFA-FLEET EPTI was compared with conventional EPTI at 7 T. The results demonstrated that VFA-FLEET can provide spatial-specific increase of temporal stability. We performed high-resolution task-fMRI experiments at 7 T using VFA-FLEET EPTI, and reliable BOLD responses to a visual stimulus were detected. CONCLUSION The intershot phase variations induced by physiological processes in multishot EPTI can manifest as specific spatial patterns of physiological noise enhancement and lead to reduced temporal stability. The VFA-FLEET technique can substantially reduce these physiology-induced instabilities in multishot EPTI acquisitions. The proposed method provides sufficient stability and sensitivity for high-resolution fMRI studies.
Collapse
Affiliation(s)
- Zhangxuan Hu
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Avery J L Berman
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
- Department of Physics, Carleton University, Ottawa, Ontario, Canada
- University of Ottawa Institute of Mental Health Research, Ottawa, Ontario, Canada
| | - Zijing Dong
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - William A Grissom
- Department of Biomedical Engineering, School of Medicine, Case School of Engineering, Cleveland, Ohio, USA
| | - Timothy G Reese
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Lawrence L Wald
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
- Harvard-MIT Program in Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Fuyixue Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Jonathan R Polimeni
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
- Harvard-MIT Program in Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
2
|
Meyer NK, In MH, Black DF, Campeau NG, Welker KM, Huston J, Halverson MA, Bernstein MA, Trzasko JD. Model-based iterative reconstruction for direct imaging with point spread function encoded echo planar MRI. Magn Reson Imaging 2024; 109:189-202. [PMID: 38490504 PMCID: PMC11075760 DOI: 10.1016/j.mri.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/08/2024] [Accepted: 03/08/2024] [Indexed: 03/17/2024]
Abstract
BACKGROUND Echo planar imaging (EPI) is a fast measurement technique commonly used in magnetic resonance imaging (MRI), but is highly sensitive to measurement non-idealities in reconstruction. Point spread function (PSF)-encoded EPI is a multi-shot strategy which alleviates distortion, but acquisition of encodings suitable for direct distortion-free imaging prolongs scan time. In this work, a model-based iterative reconstruction (MBIR) framework is introduced for direct imaging with PSF-EPI to improve image quality and acceleration potential. METHODS An MBIR platform was developed for accelerated PSF-EPI. The reconstruction utilizes a subspace representation, is regularized to promote local low-rankedness (LLR), and uses variable splitting for efficient iteration. Comparisons were made against standard reconstructions from prospectively accelerated PSF-EPI data and with retrospective subsampling. Exploring aggressive partial Fourier acceleration of the PSF-encoding dimension, additional comparisons were made against an extension of Homodyne to direct PSF-EPI in numerical experiments. A neuroradiologists' assessment was completed comparing images reconstructed with MBIR from retrospectively truncated data directly against images obtained with standard reconstructions from non-truncated datasets. RESULTS Image quality results were consistently superior for MBIR relative to standard and Homodyne reconstructions. As the MBIR signal model and reconstruction allow for arbitrary sampling of the PSF space, random sampling of the PSF-encoding dimension was also demonstrated, with quantitative assessments indicating best performance achieved through nonuniform PSF sampling combined with partial Fourier. With retrospective subsampling, MBIR reconstructs high-quality images from sub-minute scan datasets. MBIR was shown to be superior in a neuroradiologists' assessment with respect to three of five performance criteria, with equivalence for the remaining two. CONCLUSIONS A novel image reconstruction framework is introduced for direct imaging with PSF-EPI, enabling arbitrary PSF space sampling and reconstruction of diagnostic-quality images from highly accelerated PSF-encoded EPI data.
Collapse
Affiliation(s)
- Nolan K Meyer
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Myung-Ho In
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - David F Black
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Norbert G Campeau
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Kirk M Welker
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - John Huston
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Maria A Halverson
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Matt A Bernstein
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Joshua D Trzasko
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.
| |
Collapse
|
3
|
Yarach U, Chatnuntawech I, Setsompop K, Suwannasak A, Angkurawaranon S, Madla C, Hanprasertpong C, Sangpin P. Improved reconstruction for highly accelerated propeller diffusion 1.5 T clinical MRI. MAGMA (NEW YORK, N.Y.) 2024; 37:283-294. [PMID: 38386154 DOI: 10.1007/s10334-023-01142-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 02/23/2024]
Abstract
PURPOSE Propeller fast-spin-echo diffusion magnetic resonance imaging (FSE-dMRI) is essential for the diagnosis of Cholesteatoma. However, at clinical 1.5 T MRI, its signal-to-noise ratio (SNR) remains relatively low. To gain sufficient SNR, signal averaging (number of excitations, NEX) is usually used with the cost of prolonged scan time. In this work, we leveraged the benefits of Locally Low Rank (LLR) constrained reconstruction to enhance the SNR. Furthermore, we enhanced both the speed and SNR by employing Convolutional Neural Networks (CNNs) for the accelerated PROPELLER FSE-dMRI on a 1.5 T clinical scanner. METHODS Residual U-Net (RU-Net) was found to be efficient for propeller FSE-dMRI data. It was trained to predict 2-NEX images obtained by Locally Low Rank (LLR) constrained reconstruction and used 1-NEX images obtained via simplified reconstruction as the inputs. The brain scans from healthy volunteers and patients with cholesteatoma were performed for model training and testing. The performance of trained networks was evaluated with normalized root-mean-square-error (NRMSE), structural similarity index measure (SSIM), and peak SNR (PSNR). RESULTS For 4 × under-sampled with 7 blades data, online reconstruction appears to provide suboptimal images-some small details are missing due to high noise interferences. Offline LLR enables suppression of noises and discovering some small structures. RU-Net demonstrated further improvement compared to LLR by increasing 18.87% of PSNR, 2.11% of SSIM, and reducing 53.84% of NRMSE. Moreover, RU-Net is about 1500 × faster than LLR (0.03 vs. 47.59 s/slice). CONCLUSION The LLR remarkably enhances the SNR compared to online reconstruction. Moreover, RU-Net improves propeller FSE-dMRI as reflected in PSNR, SSIM, and NRMSE. It requires only 1-NEX data, which allows a 2 × scan time reduction. In addition, its speed is approximately 1500 times faster than that of LLR-constrained reconstruction.
Collapse
Affiliation(s)
- Uten Yarach
- Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand.
| | - Itthi Chatnuntawech
- National Nanotechnology Center, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Kawin Setsompop
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Atita Suwannasak
- Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Salita Angkurawaranon
- Department of Radiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Chakri Madla
- Department of Radiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Charuk Hanprasertpong
- Department of Otolaryngology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | | |
Collapse
|
4
|
Bardwell Speltz LJ, Shu Y, Watson RE, Trzasko JD, In MH, Gray EM, Halverson MA, Tarasek MR, Hua Y, Huston J, Cogswell PM, Foo TKF, Bernstein MA. Evaluation of a compact 3 T MRI scanner for patients with implanted devices. Magn Reson Imaging 2023; 103:109-118. [PMID: 37468020 PMCID: PMC10528046 DOI: 10.1016/j.mri.2023.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/14/2023] [Accepted: 07/14/2023] [Indexed: 07/21/2023]
Abstract
Access to high-quality MR exams is severely limited for patients with some implanted devices due to labeled MR safety conditions, but small-bore systems can overcome this limitation. For example, a compact 3 T MR scanner (C3T) with high-performance gradients can acquire exams of the head, extremities, and infants. Because of its reduced bore size and the patient being advanced only partially into the bore, the associated electromagnetic (EM) fields drop off rapidly caudal to the head, compared to whole-body systems. Therefore, some patients with MR conditional implanted devices can safely receive 3 T brain exams on the C3T using its strong gradients and a multiple-channel receive coil, while a corresponding exam on whole-body MR is precluded. The purpose of this study is to evaluate the performance of a small-bore scanner for subjects with MR conditional spinal or sacral nerve stimulators, or abandoned cardiac implantable electronic device (CIED) leads. The spatial dependence of specific absorption rate (SAR) on the C3T was compared to whole-body scanners. A device assessment tool was developed and applied to evaluate MR safety individually on the C3T for 12 subjects with implanted devices or abandoned CIED leads. Once MR safety was established, the subjects received a C3T brain exam along with their clinical, 1.5 T exam. The resulting images were graded by three board-certified neuroradiologists. The C3T exams were well-tolerated with no adverse events, and significantly outperformed the whole-body 1.5 T exams in terms of overall image quality.
Collapse
Affiliation(s)
- Lydia J Bardwell Speltz
- Department of Radiology, Mayo Clinic, Rochester, MN, United States; Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, United States
| | - Yunhong Shu
- Department of Radiology, Mayo Clinic, Rochester, MN, United States
| | - Robert E Watson
- Department of Radiology, Mayo Clinic, Rochester, MN, United States
| | - Joshua D Trzasko
- Department of Radiology, Mayo Clinic, Rochester, MN, United States
| | - Myung-Ho In
- Department of Radiology, Mayo Clinic, Rochester, MN, United States
| | - Erin M Gray
- Department of Radiology, Mayo Clinic, Rochester, MN, United States
| | | | | | - Yihe Hua
- GE Research, Niskayuna, NY, United States
| | - John Huston
- Department of Radiology, Mayo Clinic, Rochester, MN, United States
| | | | | | - Matt A Bernstein
- Department of Radiology, Mayo Clinic, Rochester, MN, United States.
| |
Collapse
|
5
|
Ojeda Valencia G, Gregg NM, Huang H, Lundstrom BN, Brinkmann BH, Pal Attia T, Van Gompel JJ, Bernstein MA, In MH, Huston J, Worrell GA, Miller KJ, Hermes D. Signatures of Electrical Stimulation Driven Network Interactions in the Human Limbic System. J Neurosci 2023; 43:6697-6711. [PMID: 37620159 PMCID: PMC10538586 DOI: 10.1523/jneurosci.2201-22.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 08/04/2023] [Accepted: 08/08/2023] [Indexed: 08/26/2023] Open
Abstract
Stimulation-evoked signals are starting to be used as biomarkers to indicate the state and health of brain networks. The human limbic network, often targeted for brain stimulation therapy, is involved in emotion and memory processing. Previous anatomic, neurophysiological, and functional studies suggest distinct subsystems within the limbic network (Rolls, 2015). Studies using intracranial electrical stimulation, however, have emphasized the similarities of the evoked waveforms across the limbic network. We test whether these subsystems have distinct stimulation-driven signatures. In eight patients (four male, four female) with drug-resistant epilepsy, we stimulated the limbic system with single-pulse electrical stimulation. Reliable corticocortical evoked potentials (CCEPs) were measured between hippocampus and the posterior cingulate cortex (PCC) and between the amygdala and the anterior cingulate cortex (ACC). However, the CCEP waveform in the PCC after hippocampal stimulation showed a unique and reliable morphology, which we term the "limbic Hippocampus-Anterior nucleus of the thalamus-Posterior cingulate, HAP-wave." This limbic HAP-wave was visually distinct and separately decoded from the CCEP waveform in ACC after amygdala stimulation. Diffusion MRI data show that the measured end points in the PCC overlap with the end points of the parolfactory cingulum bundle rather than the parahippocampal cingulum, suggesting that the limbic HAP-wave may travel through fornix, mammillary bodies, and the anterior nucleus of the thalamus (ANT). This was further confirmed by stimulating the ANT, which evoked the same limbic HAP-wave but with an earlier latency. Limbic subsystems have unique stimulation-evoked signatures that may be used in the future to help network pathology diagnosis.SIGNIFICANCE STATEMENT The limbic system is often compromised in diverse clinical conditions, such as epilepsy or Alzheimer's disease, and characterizing its typical circuit responses may provide diagnostic insight. Stimulation-evoked waveforms have been used in the motor system to diagnose circuit pathology. We translate this framework to limbic subsystems using human intracranial stereo EEG (sEEG) recordings that measure deeper brain areas. Our sEEG recordings describe a stimulation-evoked waveform characteristic to the memory and spatial subsystem of the limbic network that we term the "limbic HAP-wave." The limbic HAP-wave follows anatomic white matter pathways from hippocampus to thalamus to the posterior cingulum and shows promise as a distinct biomarker of signaling in the human brain memory and spatial limbic network.
Collapse
Affiliation(s)
- Gabriela Ojeda Valencia
- Department of Physiology and Biomedical Engineering, Mayo Clinic Rochester, Rochester, Minnesota 55902
| | - Nicholas M Gregg
- Department of Neurology, Mayo Clinic Rochester, Rochester, Minnesota 55902
| | - Harvey Huang
- Mayo Clinic Medical Scientist Training Program, Mayo Clinic Rochester, Rochester, Minnesota 55902
| | - Brian N Lundstrom
- Department of Neurology, Mayo Clinic Rochester, Rochester, Minnesota 55902
| | | | - Tal Pal Attia
- Department of Physiology and Biomedical Engineering, Mayo Clinic Rochester, Rochester, Minnesota 55902
| | - Jamie J Van Gompel
- Department of Neurologic Surgery, Mayo Clinic Rochester, Rochester, Minnesota 55902
| | - Matt A Bernstein
- Department of Radiology, Mayo Clinic Rochester, Rochester, Minnesota 55902
| | - Myung-Ho In
- Department of Radiology, Mayo Clinic Rochester, Rochester, Minnesota 55902
| | - John Huston
- Department of Radiology, Mayo Clinic Rochester, Rochester, Minnesota 55902
| | - Gregory A Worrell
- Department of Physiology and Biomedical Engineering, Mayo Clinic Rochester, Rochester, Minnesota 55902
- Department of Neurology, Mayo Clinic Rochester, Rochester, Minnesota 55902
| | - Kai J Miller
- Department of Physiology and Biomedical Engineering, Mayo Clinic Rochester, Rochester, Minnesota 55902
- Department of Neurologic Surgery, Mayo Clinic Rochester, Rochester, Minnesota 55902
| | - Dora Hermes
- Department of Physiology and Biomedical Engineering, Mayo Clinic Rochester, Rochester, Minnesota 55902
| |
Collapse
|
6
|
Kim SY, Yeh PH, Ollinger JM, Morris HD, Hood MN, Ho VB, Choi KH. Military-related mild traumatic brain injury: clinical characteristics, advanced neuroimaging, and molecular mechanisms. Transl Psychiatry 2023; 13:289. [PMID: 37652994 PMCID: PMC10471788 DOI: 10.1038/s41398-023-02569-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 07/18/2023] [Accepted: 07/24/2023] [Indexed: 09/02/2023] Open
Abstract
Mild traumatic brain injury (mTBI) is a significant health burden among military service members. Although mTBI was once considered relatively benign compared to more severe TBIs, a growing body of evidence has demonstrated the devastating neurological consequences of mTBI, including chronic post-concussion symptoms and deficits in cognition, memory, sleep, vision, and hearing. The discovery of reliable biomarkers for mTBI has been challenging due to under-reporting and heterogeneity of military-related mTBI, unpredictability of pathological changes, and delay of post-injury clinical evaluations. Moreover, compared to more severe TBI, mTBI is especially difficult to diagnose due to the lack of overt clinical neuroimaging findings. Yet, advanced neuroimaging techniques using magnetic resonance imaging (MRI) hold promise in detecting microstructural aberrations following mTBI. Using different pulse sequences, MRI enables the evaluation of different tissue characteristics without risks associated with ionizing radiation inherent to other imaging modalities, such as X-ray-based studies or computerized tomography (CT). Accordingly, considering the high morbidity of mTBI in military populations, debilitating post-injury symptoms, and lack of robust neuroimaging biomarkers, this review (1) summarizes the nature and mechanisms of mTBI in military settings, (2) describes clinical characteristics of military-related mTBI and associated comorbidities, such as post-traumatic stress disorder (PTSD), (3) highlights advanced neuroimaging techniques used to study mTBI and the molecular mechanisms that can be inferred, and (4) discusses emerging frontiers in advanced neuroimaging for mTBI. We encourage multi-modal approaches combining neuropsychiatric, blood-based, and genetic data as well as the discovery and employment of new imaging techniques with big data analytics that enable accurate detection of post-injury pathologic aberrations related to tissue microstructure, glymphatic function, and neurodegeneration. Ultimately, this review provides a foundational overview of military-related mTBI and advanced neuroimaging techniques that merit further study for mTBI diagnosis, prognosis, and treatment monitoring.
Collapse
Affiliation(s)
- Sharon Y Kim
- School of Medicine, Uniformed Services University, Bethesda, MD, USA
- Program in Neuroscience, Uniformed Services University, Bethesda, MD, USA
| | - Ping-Hong Yeh
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - John M Ollinger
- Program in Neuroscience, Uniformed Services University, Bethesda, MD, USA
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Herman D Morris
- Department of Radiology and Radiological Sciences, Uniformed Services University, Bethesda, MD, USA
- Department of Radiology, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Maureen N Hood
- Department of Radiology and Radiological Sciences, Uniformed Services University, Bethesda, MD, USA
- Department of Radiology, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Vincent B Ho
- Department of Radiology and Radiological Sciences, Uniformed Services University, Bethesda, MD, USA
- Department of Radiology, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Kwang H Choi
- Program in Neuroscience, Uniformed Services University, Bethesda, MD, USA.
- Center for the Study of Traumatic Stress, Uniformed Services University, Bethesda, MD, USA.
- Department of Psychiatry, Uniformed Services University, Bethesda, MD, USA.
| |
Collapse
|
7
|
Navarro de Lara LI, Stockmann JP, Meng Q, Keil B, Mareyam A, Uluç I, Daneshzand M, Makarov S, Wald LL, Nummenmaa A. A novel whole-head RF coil design tailored for concurrent multichannel brain stimulation and imaging at 3T. Brain Stimul 2023; 16:1021-1031. [PMID: 37307872 PMCID: PMC10499022 DOI: 10.1016/j.brs.2023.05.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 04/27/2023] [Accepted: 05/30/2023] [Indexed: 06/14/2023] Open
Abstract
PURPOSE Multichannel Transcranial Magnetic Stimulation (mTMS) [1] is a novel non-invasive brain stimulation technique allowing multiple sites to be stimulated simultaneously or sequentially under electronic control without movement of the coils. To enable simultaneous mTMS and MR imaging, we have designed and constructed a whole-head 28-channel receive-only RF coil at 3T. METHODS A helmet-shaped structure was designed considering a specific layout for a mTMS system with holes for positioning the TMS units next to the scalp. Diameter of the TMS units defined the diameter of RF loops. The placement of the preamplifiers was designed to minimize possible interactions and to allow straightforward positioning of the mTMS units around the RF coil. Interactions between TMS-MRI were analyzed for the whole-head system extending the results presented in previous publications [2]. Both SNR- and g-factors maps were obtained to compare the imaging performance of the coil with commercial head coils. RESULTS Sensitivity losses for the RF elements containing TMS units show a well-defined spatial pattern. Simulations indicate that the losses are predominantly caused by eddy currents on the coil wire windings. The average SNR performance of the TMSMR 28-channel coil is about 66% and 86% of the SNR of the 32/20-channel head coil respectively. The g-factor values of the TMSMR 28-channel coil are similar to the 32-channel coil and significantly better than the 20-channel coil. CONCLUSION We present the TMSMR 28-channel coil, a head RF coil array to be integrated with a multichannel 3-axisTMS coil system, a novel tool that will enable causal mapping of human brain function.
Collapse
Affiliation(s)
- Lucia I Navarro de Lara
- Athinoula A. Martinos Center for Biomedical Imaging, Dept. of Radiology, Massachusetts General Hospital, Charlestown, MA, 02129, USA; Harvard Medical School, Boston, MA, 02115, USA.
| | - Jason P Stockmann
- Athinoula A. Martinos Center for Biomedical Imaging, Dept. of Radiology, Massachusetts General Hospital, Charlestown, MA, 02129, USA; Harvard Medical School, Boston, MA, 02115, USA
| | - Qinglei Meng
- Athinoula A. Martinos Center for Biomedical Imaging, Dept. of Radiology, Massachusetts General Hospital, Charlestown, MA, 02129, USA; Harvard Medical School, Boston, MA, 02115, USA
| | - Boris Keil
- Institute of Medical Physics and Radiation Protection, Department of Life Science Engineering, TH Mittelhessen University of Applied Sciences, Giessen, Germany; Department of Diagnostic and Interventional Radiology, University Hospital Marburg, Phillipps University of Marburg, Marburg, Germany
| | - Azma Mareyam
- Athinoula A. Martinos Center for Biomedical Imaging, Dept. of Radiology, Massachusetts General Hospital, Charlestown, MA, 02129, USA
| | - Işıl Uluç
- Athinoula A. Martinos Center for Biomedical Imaging, Dept. of Radiology, Massachusetts General Hospital, Charlestown, MA, 02129, USA; Harvard Medical School, Boston, MA, 02115, USA
| | - Mohammad Daneshzand
- Athinoula A. Martinos Center for Biomedical Imaging, Dept. of Radiology, Massachusetts General Hospital, Charlestown, MA, 02129, USA; Harvard Medical School, Boston, MA, 02115, USA
| | - Sergey Makarov
- Athinoula A. Martinos Center for Biomedical Imaging, Dept. of Radiology, Massachusetts General Hospital, Charlestown, MA, 02129, USA; Harvard Medical School, Boston, MA, 02115, USA; Department of Electrical and Computer Engineering at the Worcester Polytechnic Institute, Worcester, MA, 01609, USA
| | - Lawrence L Wald
- Athinoula A. Martinos Center for Biomedical Imaging, Dept. of Radiology, Massachusetts General Hospital, Charlestown, MA, 02129, USA; Harvard Medical School, Boston, MA, 02115, USA
| | - Aapo Nummenmaa
- Athinoula A. Martinos Center for Biomedical Imaging, Dept. of Radiology, Massachusetts General Hospital, Charlestown, MA, 02129, USA; Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
8
|
Kang D, In MH, Jo HJ, Halverson MA, Meyer NK, Ahmed Z, Gray EM, Madhavan R, Foo TK, Fernandez B, Black DF, Welker KM, Trzasko JD, Huston J, Bernstein MA, Shu Y. Improved Resting-State Functional MRI Using Multi-Echo Echo-Planar Imaging on a Compact 3T MRI Scanner with High-Performance Gradients. SENSORS (BASEL, SWITZERLAND) 2023; 23:4329. [PMID: 37177534 PMCID: PMC10181561 DOI: 10.3390/s23094329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023]
Abstract
In blood-oxygen-level-dependent (BOLD)-based resting-state functional (RS-fMRI) studies, usage of multi-echo echo-planar-imaging (ME-EPI) is limited due to unacceptable late echo times when high spatial resolution is used. Equipped with high-performance gradients, the compact 3T MRI system (C3T) enables a three-echo whole-brain ME-EPI protocol with smaller than 2.5 mm isotropic voxel and shorter than 1 s repetition time, as required in landmark fMRI studies. The performance of the ME-EPI was comprehensively evaluated with signal variance reduction and region-of-interest-, seed- and independent-component-analysis-based functional connectivity analyses and compared with a counterpart of single-echo EPI with the shortest TR possible. Through the multi-echo combination, the thermal noise level is reduced. Functional connectivity, as well as signal intensity, are recovered in the medial orbital sulcus and anterior transverse collateral sulcus in ME-EPI. It is demonstrated that ME-EPI provides superior sensitivity and accuracy for detecting functional connectivity and/or brain networks in comparison with single-echo EPI. In conclusion, the high-performance gradient enabled high-spatial-temporal resolution ME-EPI would be the method of choice for RS-fMRI study on the C3T.
Collapse
Affiliation(s)
- Daehun Kang
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA; (D.K.)
| | - Myung-Ho In
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA; (D.K.)
| | - Hang Joon Jo
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA; (D.K.)
- Department of Physiology, Hanyang University, Seoul 04763, Republic of Korea
| | | | - Nolan K. Meyer
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA; (D.K.)
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Zaki Ahmed
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA; (D.K.)
| | - Erin M. Gray
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA; (D.K.)
| | | | | | | | - David F. Black
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA; (D.K.)
| | - Kirk M. Welker
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA; (D.K.)
| | - Joshua D. Trzasko
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA; (D.K.)
| | - John Huston
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA; (D.K.)
| | - Matt A. Bernstein
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA; (D.K.)
| | - Yunhong Shu
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA; (D.K.)
| |
Collapse
|
9
|
Ye X, Wang P, Li S, Zhang J, Lian Y, Zhang Y, Lu J, Guo H. Simultaneous superresolution reconstruction and distortion correction for single-shot EPI DWI using deep learning. Magn Reson Med 2023; 89:2456-2470. [PMID: 36705077 DOI: 10.1002/mrm.29601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 12/07/2022] [Accepted: 01/12/2023] [Indexed: 01/28/2023]
Abstract
PURPOSE Single-shot (SS) EPI is widely used for clinical DWI. This study aims to develop an end-to-end deep learning-based method with a novel loss function in an improved network structure to simultaneously increase the resolution and correct distortions for SS-EPI DWI. THEORY AND METHODS Point-spread-function (PSF)-encoded EPI can provide high-resolution, distortion-free DWI images. A distorted image from SS-EPI can be described as the convolution between a PSF function with a distortion-free image. The deconvolution process to recover the distortion-free image can be achieved with a convolution neural network, which also learns the mapping function between low-resolution SS-EPI and high-resolution reference PSF-EPI to achieve superresolution. To suppress the oversmoothing effect, we proposed a modified generative adversarial network structure, in which a dense net with gradient map guidance and a multilevel fusion block was used as the generator. A fractional anisotropy loss was proposed to utilize the diffusion anisotropy information among diffusion directions. In vivo brain DWI data were used to test the proposed method. RESULTS The results show that distortion-corrected high-resolution DWI images with restored structural details can be obtained from low-resolution SS-EPI images by taking advantage of the high-resolution anatomical images. Additionally, the proposed network can improve the quantitative accuracy of diffusion metrics compared with previously reported networks. CONCLUSION Using high-resolution, distortion-free EPI-DWI images as references, a deep learning-based method to simultaneously increase the perceived resolution and correct distortions for low-resolution SS-EPI was proposed. The results show that DWI image quality and diffusion metrics can be improved.
Collapse
Affiliation(s)
- Xinyu Ye
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Peipei Wang
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Sisi Li
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Jieying Zhang
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Yuan Lian
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Yajing Zhang
- MR Clinical Science, Philips Healthcare, Suzhou, China
| | - Jie Lu
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Hua Guo
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
10
|
Tung YH, In MH, Ahn S, Speck O. Rapid Geometry-Corrected Echo-Planar Diffusion Imaging at Ultrahigh Field: Fusing View Angle Tilting and Point-Spread Function Mapping. Magn Reson Med 2022; 88:2074-2087. [PMID: 35762910 DOI: 10.1002/mrm.29360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/25/2022] [Accepted: 05/24/2022] [Indexed: 11/10/2022]
Abstract
PURPOSE Severe geometric distortions induced by tissue susceptibility, water-fat chemical shift, and eddy currents pose a substantial obstacle in single-shot EPI, especially for high-resolution imaging at ultrahigh field. View angle tilting (VAT)-EPI can mitigate in-plane distortion. However, the accompanied strong image blurring prevented its widespread applications. On the other hand, point-spread function mapping (PSF)-EPI can correct distortion and blurring accurately but requires prolonged scan time. We present fused VAT-PSF-EPI and possibilities for acceleration. METHODS MR signal equations were explicitly derived to quantify image blurring in VAT-EPI and the maximum acceleration capacity in VAT-PSF-EPI. To validate the theoretical prediction, phantom measurements with varying in-plane parallel imaging factors, slice thicknesses, and RF pulses were conducted at 7 Tesla. In addition, in vivo human brain scans were acquired with T2 and diffusion weighting to assess distortion and blurring correction. RESULTS VAT can effectively suppress distortion, and the introduced image blurring is corrected through PSF encoding. Up to fourfold acceleration (only 5 shots) in VAT-PSF-EPI was achieved compared with standard PSF-EPI without VAT. VAT-induced signal loss was mitigated by adjusting the sequence parameters and EPI resolution. In vivo T2 -weighted EPI data with 1.4 mm3 resolution demonstrate immunity to water-fat chemical shift-induced distortion. Very high-spatial resolution diffusion-weighted EPI (0.7 × 0.7 × 2.8 mm3 and 1.2 mm3 ) demonstrates the immunity to eddy current-induced distortion. CONCLUSION VAT-PSF-EPI is a novel spin-echo EPI-based sequence for fast high-resolution diffusion imaging at ultrahigh field.
Collapse
Affiliation(s)
- Yi-Hang Tung
- Department of Biomedical Magnetic Resonance, Institute for Physics, Otto-von-Guericke University, Magdeburg, Germany
| | - Myung-Ho In
- Department of Radiology, Mayo Clinic, Rochester, Minnesota
| | - Sinyeob Ahn
- Siemens Healthineers, San Francisco, California
| | - Oliver Speck
- Department of Biomedical Magnetic Resonance, Institute for Physics, Otto-von-Guericke University, Magdeburg, Germany.,German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany.,Leibniz Institute for Neurobiology (LIN), Magdeburg, Germany.,Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| |
Collapse
|
11
|
High-fidelity diffusion tensor imaging of the cervical spinal cord using point-spread-function encoded EPI. Neuroimage 2021; 236:118043. [PMID: 33857617 DOI: 10.1016/j.neuroimage.2021.118043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/16/2021] [Accepted: 03/31/2021] [Indexed: 01/21/2023] Open
Abstract
Diffusion tensor imaging (DTI) of the spinal cord is technically challenging due to the size of its structure and susceptibility-induced field inhomogeneity, which impedes clinical applications. This study aimed to achieve high-fidelity spinal cord DTI with reasonable SNR and practical acquisition efficiency. Particularly, a distortion-free multi-shot EPI technique, namely point-spread-function encoded EPI (PSF-EPI), was adopted for diffusion imaging of the cervical spinal cord (CSC). The shot number can be reduced to six for sagittal scans through titled-CAIPI acceleration and partial Fourier undersampling, consequently rendering this technique beneficial in clinics. Fifteen healthy volunteers and seven patients with metallic implants underwent sagittal scans using tilted-CAIPI PSF-EPI at 3T. Unsuppressed fat signals were further removed by retrospective water/fat separation using the intrinsic chemical-shift encoded signals. Compared with multi-shot interleaved EPI method, highly accelerated PSF-EPI method provided evidently improved distortion reduction and higher consistency with anatomical references even with metallic implants. Additionally, axial DTI scans using PSF-EPI were also evaluated quantitatively, and the measured DTI metrics are similar to those obtained from the zonal oblique multi-slice EPI (ZOOM-EPI) method and reported values. The high anatomical consistency, practical scan time and quantitative reliability indicate PSF-EPI's clinical potential for CSC diffusion imaging.
Collapse
|
12
|
Kang D, Jo HJ, In MH, Yarach U, Meyer NK, Bardwell Speltz LJ, Gray EM, Trzasko JD, Huston Iii J, Bernstein MA, Shu Y. The benefit of high-performance gradients on echo planar imaging for BOLD-based resting-state functional MRI. Phys Med Biol 2020; 65:235024. [PMID: 33245051 DOI: 10.1088/1361-6560/abb2ec] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Improved gradient performance in an MRI system reduces distortion in echo planar imaging (EPI), which has been a key imaging method for functional studies. A lightweight, low-cryogen compact 3T MRI scanner (C3T) is capable of achieving 80 mT m-1 gradient amplitude with 700 T m-1 s-1 slew rate, in comparison with a conventional whole-body 3T MRI scanner (WB3T, 50 mT m-1 with 200 T m-1 s-1). We investigated benefits of the high-performance gradients in a high-spatial-resolution (1.5 mm isotropic) functional MRI study. Reduced echo spacing in the EPI pulse sequence inherently leads to less severe geometric distortion, which provided higher accuracy than with WB3T for registration between EPI and anatomical images. The cortical coverage of C3T datasets was improved by more accurate signal depiction (i.e. less dropout or pile-up). Resting-state functional analysis results showed that greater magnitude and extent in functional connectivity (FC) for the C3T than the WB3T when the selected seed region is susceptible to distortions, while the FC matrix for well-known brain networks showed little difference between the two scanners. This shows that the improved quality in EPI is particularly valuable for studying certain brain regions typically obscured by severe distortion.
Collapse
Affiliation(s)
- Daehun Kang
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, United States of America. Co-first/equal authorship - these authors contributed equally to this work
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
In MH, Shu Y, Trzasko JD, Yarach U, Kang D, Gray EM, Huston J, Bernstein MA. Reducing PNS with minimal performance penalties via simple pulse sequence modifications on a high-performance compact 3T scanner. Phys Med Biol 2020; 65:15NT02. [PMID: 32503007 DOI: 10.1088/1361-6560/ab99e2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
One of the major concerns associated with high-performance gradients is peripheral nerve stimulation (PNS) of the subject during MRI exams. Since the installation, more than 680 volunteer subjects (patients and controls) have been scanned on a compact 3 T MRI system with high-performance gradients, capable of 80 mT m-1 gradient amplitude and 700 T m-1 s-1 slew rate simultaneously. Despite PNS concerns associated with the high-performance gradients, due to the smaller physical dimensions of the gradient coils, minimal or no PNS sensation was reported with most pulse sequences. The exception was PNS reported by only five of 252 subjects (about 2%) scanned with a specific 3D fast spin echo pulse sequence (3DFLAIR). Rather than derating the entire system performance across all pulse sequences and all gradient lobes, we addressed reported PNS effect with a simple and specific modification to the targeted lobes of the problematic pulse sequence. in addition, the PNS convolutional model was adapted to predict sequence-specific PNS threshold level and its reduction after derating. The effectiveness of the targeted pulse sequence modification was demonstrated by successfully re-scanning four of the subjects who previously reported PNS sensations without further reported PNS. The pulse sequence modification did not result in noticeable degradation of image quality or substantial increase in scan time. The results demonstrated that PNS was rarely reported on the compact 3 T, and when it was, utilizing a specific modification of the gradient waveform causing PNS was an effective strategy, rather than derating the performance of the entire gradient system.
Collapse
Affiliation(s)
- Myung-Ho In
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, United States of America. Author to whom any correspondence should be addressed
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Kang D, Yarach U, In MH, Gray EM, Trzasko JD, Jo HJ, Shu Y, Huston J, Bernstein MA. The effect of spiral trajectory correction on pseudo-continuous arterial spin labeling with high-performance gradients on a compact 3T scanner. Magn Reson Med 2020; 84:192-205. [PMID: 31799747 PMCID: PMC7083700 DOI: 10.1002/mrm.28110] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 12/15/2022]
Abstract
PURPOSE To demonstrate the feasibility of pseudo-continuous arterial-spin-labeled (pCASL) imaging with 3D fast-spin-echo stack-of-spirals on a compact 3T scanner (C3T), to perform trajectory correction for eddy-current-induced deviations in the spiral readout of pCASL imaging, and to assess the correction effect on perfusion-related images with high-performance gradients (80 mT/m, 700T/m/s) of the C3T. METHODS To track eddy-current-induced artifacts with Archimedean spiral readout, the spiral readout in pCASL imaging was performed with 5 different peak gradient slew rate (Smax ) values ranging from 70 to 500 T/m/s. The trajectory for each Smax was measured using a dynamic field camera and applied in a density-compensated gridding image reconstruction in addition to the nominal trajectory. The effect of the trajectory correction was assessed with perfusion-weighted (ΔM) images and proton-density-weighted images as well as cerebral blood flow (CBF) maps, obtained from 10 healthy volunteers. RESULTS Blurring artifact on ΔM images was mitigated by the trajectory correction. CBF values on the left and right calcarine cortices showed no significant difference after correction. Also, the signal-to-noise ratio of ΔM images improved, on average, by 7.6% after correction (P < .001). The greatest improvement of 12.1% on ΔM images was achieved with a spiral readout using Smax of 300~400 T/m/s. CONCLUSION Eddy currents can cause spiral trajectory deviation, which leads to deformation of the CBF map even in cases of low value Smax . The trajectory correction for spiral-readout-based pCASL produces more reliable results for perfusion imaging. These results suggest that pCASL is feasible on C3T with high-performance gradients.
Collapse
Affiliation(s)
- Daehun Kang
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Uten Yarach
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
- Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Myung-Ho In
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Erin M. Gray
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Hang Joon Jo
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
- Department of Physiology, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Yunhong Shu
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - John Huston
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | | |
Collapse
|