1
|
Wu Y, De Asis-Cruz J, Limperopoulos C. Brain structural and functional outcomes in the offspring of women experiencing psychological distress during pregnancy. Mol Psychiatry 2024; 29:2223-2240. [PMID: 38418579 PMCID: PMC11408260 DOI: 10.1038/s41380-024-02449-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 03/01/2024]
Abstract
In-utero exposure to maternal psychological distress is increasingly linked with disrupted fetal and neonatal brain development and long-term neurobehavioral dysfunction in children and adults. Elevated maternal psychological distress is associated with changes in fetal brain structure and function, including reduced hippocampal and cerebellar volumes, increased cerebral cortical gyrification and sulcal depth, decreased brain metabolites (e.g., choline and creatine levels), and disrupted functional connectivity. After birth, reduced cerebral and cerebellar gray matter volumes, increased cerebral cortical gyrification, altered amygdala and hippocampal volumes, and disturbed brain microstructure and functional connectivity have been reported in the offspring months or even years after exposure to maternal distress during pregnancy. Additionally, adverse child neurodevelopment outcomes such as cognitive, language, learning, memory, social-emotional problems, and neuropsychiatric dysfunction are being increasingly reported after prenatal exposure to maternal distress. The mechanisms by which prenatal maternal psychological distress influences early brain development include but are not limited to impaired placental function, disrupted fetal epigenetic regulation, altered microbiome and inflammation, dysregulated hypothalamic pituitary adrenal axis, altered distribution of the fetal cardiac output to the brain, and disrupted maternal sleep and appetite. This review will appraise the available literature on the brain structural and functional outcomes and neurodevelopmental outcomes in the offspring of pregnant women experiencing elevated psychological distress. In addition, it will also provide an overview of the mechanistic underpinnings of brain development changes in stress response and discuss current treatments for elevated maternal psychological distress, including pharmacotherapy (e.g., selective serotonin reuptake inhibitors) and non-pharmacotherapy (e.g., cognitive-behavior therapy). Finally, it will end with a consideration of future directions in the field.
Collapse
Affiliation(s)
- Yao Wu
- Developing Brain Institute, Children's National Hospital, Washington, DC, 20010, USA
| | | | - Catherine Limperopoulos
- Developing Brain Institute, Children's National Hospital, Washington, DC, 20010, USA.
- Department of Diagnostic Imaging and Radiology, Children's National Hospital, Washington, DC, 20010, USA.
| |
Collapse
|
2
|
Harford EE, Holt LL, Abel TJ. Unveiling the development of human voice perception: Neurobiological mechanisms and pathophysiology. CURRENT RESEARCH IN NEUROBIOLOGY 2024; 6:100127. [PMID: 38511174 PMCID: PMC10950757 DOI: 10.1016/j.crneur.2024.100127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/22/2024] Open
Abstract
The human voice is a critical stimulus for the auditory system that promotes social connection, informs the listener about identity and emotion, and acts as the carrier for spoken language. Research on voice processing in adults has informed our understanding of the unique status of the human voice in the mature auditory cortex and provided potential explanations for mechanisms that underly voice selectivity and identity processing. There is evidence that voice perception undergoes developmental change starting in infancy and extending through early adolescence. While even young infants recognize the voice of their mother, there is an apparent protracted course of development to reach adult-like selectivity for human voice over other sound categories and recognition of other talkers by voice. Gaps in the literature do not allow for an exact mapping of this trajectory or an adequate description of how voice processing and its neural underpinnings abilities evolve. This review provides a comprehensive account of developmental voice processing research published to date and discusses how this evidence fits with and contributes to current theoretical models proposed in the adult literature. We discuss how factors such as cognitive development, neural plasticity, perceptual narrowing, and language acquisition may contribute to the development of voice processing and its investigation in children. We also review evidence of voice processing abilities in premature birth, autism spectrum disorder, and phonagnosia to examine where and how deviations from the typical trajectory of development may manifest.
Collapse
Affiliation(s)
- Emily E. Harford
- Department of Neurological Surgery, University of Pittsburgh, USA
| | - Lori L. Holt
- Department of Psychology, The University of Texas at Austin, USA
| | - Taylor J. Abel
- Department of Neurological Surgery, University of Pittsburgh, USA
- Department of Bioengineering, University of Pittsburgh, USA
| |
Collapse
|
3
|
Fuchino Y, Kato I, Htun Y, Takano Y, Konishi Y, Koyano K, Nakamura S, Tanaka N, Kusaka T, Konishi Y. Developmental changes in neonatal hemodynamics during tactile stimulation using whole-head functional near-infrared spectroscopy. Neuroimage 2023; 284:120465. [PMID: 37993003 DOI: 10.1016/j.neuroimage.2023.120465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/07/2023] [Accepted: 11/18/2023] [Indexed: 11/24/2023] Open
Abstract
Neural-activity-associated hemodynamic changes have been used to noninvasively measure brain function in the early developmental stages. However, the temporal changes in their hemodynamics are not always consistent with adults. Studies have not evaluated developmental changes for a long period using the same stimuli; therefore, this study examined the normalized relative changes in oxygenated hemoglobin (Δ[oxy-Hb]) in full-term infants and compared them with neonates up to 10 months of age during the administration of tactile vibration stimuli to their limbs using whole-head functional near-infrared spectroscopy. The time to peak of normalized Δ[oxy-Hb] was not affected by age. The amplitude of normalized Δ[oxy-Hb] showed an effect of age in broader areas, including sensorimotor-related but excluding supplementary motor area; the amplitude of normalized Δ[oxy-Hb] decreased the most in the 1-2-month-old group and later increased with development. We hypothesized that these results may reflect developmental changes in neural activity, vasculature, and blood oxygenation.
Collapse
Affiliation(s)
- Yutaka Fuchino
- Language Sciences, Department of Human Sciences, Graduate School of Humanities, Tokyo Metropolitan University, Hachioji, Tokyo, Japan; Research Center for Language, Brain and Genetics, Tokyo Metropolitan University, Hachioji, Tokyo, Japan.
| | - Ikuko Kato
- Department of Pediatrics, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Yinmon Htun
- Department of Pediatrics, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Yuji Takano
- Department of Psychology, Faculty of Human Environment, University of Human Environments, Okazaki, Japan
| | - Yukihiko Konishi
- Department of Pediatrics, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Kosuke Koyano
- Department of Pediatrics, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Shinji Nakamura
- Department of Pediatrics, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Naoki Tanaka
- Research Institute of Industrial Technology, Toyo University, Kawagoe, Saitama, Japan
| | - Takashi Kusaka
- Department of Pediatrics, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Yukuo Konishi
- Center for Baby Science, Doshisha University, Kizugawa, Kyoto, Japan
| |
Collapse
|
4
|
Piccirilli E, Marchetti C, Panara V, Celentano C, D'Antonio F, Sensi S, Righini A, Caulo M. Fetal MR Imaging Anatomy of the Transverse Temporal Gyrus (Heschl Gyrus). AJNR Am J Neuroradiol 2023; 44:1325-1331. [PMID: 37884303 PMCID: PMC10631540 DOI: 10.3174/ajnr.a8026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 08/30/2023] [Indexed: 10/28/2023]
Abstract
BACKGROUND AND PURPOSE The human auditory system develops early in fetal life. This retrospective MR imaging study describes the in vivo prenatal anatomic development of the transverse temporal gyrus (Heschl gyrus) site of the primary auditory cortex. MATERIALS AND METHODS Two hundred seventy-two MR imaging studies of the fetal brain (19-39 weeks' gestational age) acquired from a single institution's 1.5T scanner were retrospectively examined by 2 neuroradiologists. MR imaging with pathologic findings and extreme motion artifacts was excluded. Postnatal Heschl gyrus landmarks were used as a reference on T2-weighted ssFSE sequences in the 3 orthogonal planes. The frequency of the Heschl gyrus was reported for gestational age, hemisphere, and planes. Descriptive statistics and a McNemar test were performed. RESULTS Two hundred thirty MR imaging studies were finally included. Fetal brains were divided by gestational age (in weeks) into 8 groups (parentheses indicate the number of observations): 19-21 (29), 22-23 (32), 24-25 (21), 26-27 (18), 28-29 (35), 30-31 (30), 32-33 (33) and >34 (32). The Heschl gyrus appeared on MR imaging between 24 and 25 weeks' gestational age (14/21 fetuses, 67%) and was visible in all fetuses after the 28th week of gestation. By its appearance (24-28 weeks' gestational age), the sagittal plane was the most sensitive in its detectability. After 28-29 weeks' gestational age, the Heschl gyrus was evident in all acquisition planes and fetuses. Results did not differ between hemispheres. CONCLUSIONS The Heschl gyrus appears on MR imaging at 24-25 weeks' gestational age, paralleling the functional activation of the auditory system. We propose the Heschl gyrus as an early additional MR imaging marker of fetal brain development.
Collapse
Affiliation(s)
- Eleonora Piccirilli
- From the Department of Neuroscience (E.P., S.S., M.C.), Imaging and Clinical Sciences, University of Chieti, Chieti, Italy
- Neuro-Oncology Unit (E.P.), Department of Imaging, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
- ITAB-Institute of Advanced Biomedical Technologies, Department of Neuroscience, Imaging and Clinical Sciences (E.P., C.M., V.P., S.S., M.C.), University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Chiara Marchetti
- Radiology Unit (C.M.), San Pio Da Pietrelcina Hospital, Vasto, Chieti, Italy
- ITAB-Institute of Advanced Biomedical Technologies, Department of Neuroscience, Imaging and Clinical Sciences (E.P., C.M., V.P., S.S., M.C.), University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Valentina Panara
- Department of Radiology (V.P., M.C.), Santissima Annunziata Hospital, Chieti, Italy
- ITAB-Institute of Advanced Biomedical Technologies, Department of Neuroscience, Imaging and Clinical Sciences (E.P., C.M., V.P., S.S., M.C.), University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Claudio Celentano
- Obstetrics and Gynaecology Unit (C.C.), Santo Spirito Hospital, Pescara, Italy
| | - Francesco D'Antonio
- Center for Fetal Care and High-Risk Pregnancy (F.D.), Department of Obstetrics and Gynecology, University of Chieti, Chieti, Italy
| | - Stefano Sensi
- From the Department of Neuroscience (E.P., S.S., M.C.), Imaging and Clinical Sciences, University of Chieti, Chieti, Italy
- ITAB-Institute of Advanced Biomedical Technologies, Department of Neuroscience, Imaging and Clinical Sciences (E.P., C.M., V.P., S.S., M.C.), University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Andrea Righini
- Neuroradiology Unit (A.R.), Pediatric Radiology Department, Vittore Buzzi Children's Hospital, Milan, Italy
| | - Massimo Caulo
- From the Department of Neuroscience (E.P., S.S., M.C.), Imaging and Clinical Sciences, University of Chieti, Chieti, Italy
- Department of Radiology (V.P., M.C.), Santissima Annunziata Hospital, Chieti, Italy
- ITAB-Institute of Advanced Biomedical Technologies, Department of Neuroscience, Imaging and Clinical Sciences (E.P., C.M., V.P., S.S., M.C.), University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
5
|
Beck IH, Bilenberg N, Andersen HR, Trecca F, Bleses D, Jensen TK. Association between prenatal or early postnatal exposure to perfluoroalkyl substances and language development in 18 to 36-month-old children from the Odense Child Cohort. Environ Health 2023; 22:46. [PMID: 37254153 DOI: 10.1186/s12940-023-00993-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 04/30/2023] [Indexed: 06/01/2023]
Abstract
BACKGROUND Perfluoroalkyl substances (PFAS) are persistent chemicals used in everyday consumer products leading to ubiquitous human exposure. Findings of impaired neurodevelopment after prenatal exposure to PFAS are contradictory and few studies have assessed the impact of postnatal PFAS exposure. Language development is a good early marker of neurodevelopment but only few studies have investigated this outcome separately. We therefore investigated the association between prenatal and early postnatal PFAS exposure and delayed language development in 18 to 36-month-old Danish children. METHODS The Odense Child Cohort is a large prospective cohort. From 2010 to 2012 all newly pregnant women residing in the Municipality of Odense, Denmark was invited to participate. Concentration of perfluorooctane sulfonic acid (PFOS), perfluorooctanoic acid (PFOA), perfluorohexane sulfonic acid (PFHxS), perfluorononanoic acid (PFNA) and perfluorodecanoic acid (PFDA) were assessed in maternal serum collected in the 1st trimester of pregnancy and in child serum at 18 months. Parents responded to the Danish adaption of the MacArthur-Bates Communicative Development Inventories (MB-CDI) when their child was between 18 and 36 months. Language scores were converted into sex and age specific percentile scores and dichotomized to represent language scores above or below the 15th percentile. We applied Multiple Imputation by Chained Equation and conducted logistic regressions investigating the association between prenatal and early postnatal PFAS exposure and language development adjusting for maternal age, pre-pregnancy BMI, education and respectively fish intake in pregnancy or childhood and duration of breastfeeding in early postnatal PFAS exposure models. RESULTS We found no significant associations between neither prenatal nor early postnatal PFAS exposure and language development among 999 mother-child pairs. CONCLUSION In this low-exposed cohort the finding of no association between early postnatal PFAS exposure and language development should be interpreted with caution as we were unable to separate the potential adverse effect of PFAS exposure from the well documented positive effect of breastfeeding on neurodevelopment. We, therefore, recommend assessment of child serum PFAS at an older age as development of the brain proceeds through childhood and even a small impact of PFAS on neurodevelopment would be of public health concern at population level due to the ubiquitous human exposure.
Collapse
Affiliation(s)
- Iben Have Beck
- Department of Clinical Pharmacology, Pharmacy and Environmental Medicine, Institute of Public Health, University of Southern Denmark, J.B. Winsløwsvej 17A, 2, Odense, 5000, Denmark.
| | - Niels Bilenberg
- Department of Child and Adolescent Mental Health Odense, Mental Health Services in the Region of Southern Denmark, Odense, Denmark
| | - Helle Raun Andersen
- Department of Clinical Pharmacology, Pharmacy and Environmental Medicine, Institute of Public Health, University of Southern Denmark, J.B. Winsløwsvej 17A, 2, Odense, 5000, Denmark
| | - Fabio Trecca
- TrygFonden's Centre for Child Research and School of Communication and Culture, Aarhus, Denmark
| | - Dorthe Bleses
- TrygFonden's Centre for Child Research and School of Communication and Culture, Aarhus, Denmark
| | - Tina Kold Jensen
- Department of Clinical Pharmacology, Pharmacy and Environmental Medicine, Institute of Public Health, University of Southern Denmark, J.B. Winsløwsvej 17A, 2, Odense, 5000, Denmark
- Odense Patient data Explorative Network (OPEN), Odense, Denmark
- Hans Christian Andersen Children's Hospital, Odense University Hospital, Odense, Denmark
| |
Collapse
|
6
|
Spann MN, Rogers C. The Infant Brain: A Critical Antecedent of Psychiatric Risk. Biol Psychiatry 2023; 93:854-857. [PMID: 37121613 DOI: 10.1016/j.biopsych.2023.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/07/2023] [Accepted: 03/07/2023] [Indexed: 05/02/2023]
Affiliation(s)
- Marisa N Spann
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York; New York State Psychiatric Institute, New York, New York.
| | - Cynthia Rogers
- Departments of Psychiatry and Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, Missouri.
| |
Collapse
|
7
|
De Asis-Cruz J, Limperopoulos C. Harnessing the Power of Advanced Fetal Neuroimaging to Understand In Utero Footprints for Later Neuropsychiatric Disorders. Biol Psychiatry 2022; 93:867-879. [PMID: 36804195 DOI: 10.1016/j.biopsych.2022.11.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/03/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022]
Abstract
Adverse intrauterine events may profoundly impact fetal risk for future adult diseases. The mechanisms underlying this increased vulnerability are complex and remain poorly understood. Contemporary advances in fetal magnetic resonance imaging (MRI) have provided clinicians and scientists with unprecedented access to in vivo human fetal brain development to begin to identify emerging endophenotypes of neuropsychiatric disorders such as autism spectrum disorder, attention-deficit/hyperactivity disorder, and schizophrenia. In this review, we discuss salient findings of normal fetal neurodevelopment from studies using advanced, multimodal MRI that have provided unparalleled characterization of in utero prenatal brain morphology, metabolism, microstructure, and functional connectivity. We appraise the clinical utility of these normative data in identifying high-risk fetuses before birth. We highlight available studies that have investigated the predictive validity of advanced prenatal brain MRI findings and long-term neurodevelopmental outcomes. We then discuss how ex utero quantitative MRI findings can inform in utero investigations toward the pursuit of early biomarkers of risk. Lastly, we explore future opportunities to advance our understanding of the prenatal origins of neuropsychiatric disorders using precision fetal imaging.
Collapse
|
8
|
Ding S, Huang X, Li X, Shen Y, Yang L. Effects of maternal voice on painful procedures in preterm and full‐term infants: A systematic review and meta‐analysis. Nurs Crit Care 2022. [DOI: 10.1111/nicc.12811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Shenglan Ding
- Department of Pediatric Surgery Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and technology of China Chengdu China
| | - Xiuhua Huang
- Department of Pediatric Surgery Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and technology of China Chengdu China
| | - Xue Li
- Department of Pediatric Surgery Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and technology of China Chengdu China
| | - Yi Shen
- Department of Pediatric Surgery Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and technology of China Chengdu China
| | - Lili Yang
- Department of Pediatric Surgery Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and technology of China Chengdu China
| |
Collapse
|
9
|
Pollatou A, Filippi CA, Aydin E, Vaughn K, Thompson D, Korom M, Dufford AJ, Howell B, Zöllei L, Martino AD, Graham A, Scheinost D, Spann MN. An ode to fetal, infant, and toddler neuroimaging: Chronicling early clinical to research applications with MRI, and an introduction to an academic society connecting the field. Dev Cogn Neurosci 2022; 54:101083. [PMID: 35184026 PMCID: PMC8861425 DOI: 10.1016/j.dcn.2022.101083] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/17/2021] [Accepted: 02/04/2022] [Indexed: 12/14/2022] Open
Abstract
Fetal, infant, and toddler neuroimaging is commonly thought of as a development of modern times (last two decades). Yet, this field mobilized shortly after the discovery and implementation of MRI technology. Here, we provide a review of the parallel advancements in the fields of fetal, infant, and toddler neuroimaging, noting the shifts from clinical to research use, and the ongoing challenges in this fast-growing field. We chronicle the pioneering science of fetal, infant, and toddler neuroimaging, highlighting the early studies that set the stage for modern advances in imaging during this developmental period, and the large-scale multi-site efforts which ultimately led to the explosion of interest in the field today. Lastly, we consider the growing pains of the community and the need for an academic society that bridges expertise in developmental neuroscience, clinical science, as well as computational and biomedical engineering, to ensure special consideration of the vulnerable mother-offspring dyad (especially during pregnancy), data quality, and image processing tools that are created, rather than adapted, for the young brain.
Collapse
Affiliation(s)
- Angeliki Pollatou
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Courtney A Filippi
- Section on Development and Affective Neuroscience, National Institute of Mental Health, Bethesda, MD, USA; Department of Human Development and Quantitative Methodology, University of Maryland, College Park, MD, USA
| | - Ezra Aydin
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA; Department of Psychology, University of Cambridge, Cambridge, UK
| | - Kelly Vaughn
- Department of Pediatrics, University of Texas Health Sciences Center, Houston, TX, USA
| | - Deanne Thompson
- Clinical Sciences, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Marta Korom
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, USA
| | - Alexander J Dufford
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Brittany Howell
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, USA; Department of Human Development and Family Science, Virginia Tech, Blacksburg, VA, USA
| | - Lilla Zöllei
- Laboratory for Computational Neuroimaging, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | | | - Alice Graham
- Department of Psychiatry, Oregon Health and Science University, Portland, OR, USA
| | - Dustin Scheinost
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, USA; Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA; Yale Child Study Center, Yale School of Medicine, New Haven, CT, USA
| | - Marisa N Spann
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA; Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
10
|
Ghio M, Cara C, Tettamanti M. The prenatal brain readiness for speech processing: A review on foetal development of auditory and primordial language networks. Neurosci Biobehav Rev 2021; 128:709-719. [PMID: 34274405 DOI: 10.1016/j.neubiorev.2021.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 07/02/2021] [Accepted: 07/09/2021] [Indexed: 10/20/2022]
Abstract
Despite consolidated evidence for the prenatal ability to elaborate and respond to sounds and speech stimuli, the ontogenetic functional brain maturation of language responsiveness in the foetus is still poorly understood. Recent advances in in-vivo foetal neuroimaging have contributed to a finely detailed picture of the anatomo-functional hallmarks that define the prenatal neurodevelopment of auditory and language-related networks. Here, we first outline available evidence for the prenatal development of auditory and language-related brain structures and of their anatomical connections. Second, we focus on functional connectivity data showing the emergence of auditory and primordial language networks in the foetal brain. Third, we recapitulate functional neuroimaging studies assessing the prenatal readiness for sound processing, as a crucial prerequisite for the foetus to experientially respond to spoken language. In conclusion, we suggest that the state of the art has reached sufficient maturity to directly assess the neural mechanisms underlying the prenatal readiness for speech processing and to evaluate whether foetal neuromarkers can predict the postnatal development of language acquisition abilities and disabilities.
Collapse
Affiliation(s)
- Marta Ghio
- CIMeC - Center for Mind/Brain Sciences, University of Trento, Italy
| | - Cristina Cara
- CIMeC - Center for Mind/Brain Sciences, University of Trento, Italy
| | - Marco Tettamanti
- CIMeC - Center for Mind/Brain Sciences, University of Trento, Italy.
| |
Collapse
|
11
|
Adam-Darque A, Pittet MP, Grouiller F, Rihs TA, Leuchter RHV, Lazeyras F, Michel CM, Hüppi PS. Neural Correlates of Voice Perception in Newborns and the Influence of Preterm Birth. Cereb Cortex 2020; 30:5717-5730. [PMID: 32518940 DOI: 10.1093/cercor/bhaa144] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 05/01/2020] [Accepted: 05/01/2020] [Indexed: 12/30/2022] Open
Abstract
Maternal voice is a highly relevant stimulus for newborns. Adult voice processing occurs in specific brain regions. Voice-specific brain areas in newborns and the relevance of an early vocal exposure on these networks have not been defined. This study investigates voice perception in newborns and the impact of prematurity on the cerebral processes. Functional magnetic resonance imaging (fMRI) and high-density electroencephalography (EEG) were used to explore the brain responses to maternal and stranger female voices in full-term newborns and preterm infants at term-equivalent age (TEA). fMRI results and the EEG oddball paradigm showed enhanced processing for voices in preterms at TEA than in full-term infants. Preterm infants showed additional cortical regions involved in voice processing in fMRI and a late mismatch response for maternal voice, considered as a first trace of a recognition process based on memory representation. Full-term newborns showed increased cerebral activity to the stranger voice. Results from fMRI, oddball, and standard auditory EEG paradigms highlighted important change detection responses to novelty after birth. These findings suggest that the main components of the adult voice-processing networks emerge early in development. Moreover, an early postnatal exposure to voices in premature infants might enhance their capacity to process voices.
Collapse
Affiliation(s)
- Alexandra Adam-Darque
- Division of Development and Growth, Department of Pediatrics, Geneva University Hospitals, 1205 Geneva, Switzerland.,Laboratory of Cognitive Neurorehabilitation, Division of Neurorehabilitation, Department of Clinical Neuroscience, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Marie P Pittet
- Division of Development and Growth, Department of Pediatrics, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Frédéric Grouiller
- Department of Radiology and Medical Informatics, University of Geneva, 1205 Geneva, Switzerland.,Swiss Centre for Affective Sciences, University of Geneva, 1205 Geneva, Switzerland
| | - Tonia A Rihs
- Functional Brain Mapping Laboratory, Department of Neurosciences, University of Geneva, 1205 Geneva, Switzerland
| | - Russia Ha-Vinh Leuchter
- Division of Development and Growth, Department of Pediatrics, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - François Lazeyras
- Department of Radiology and Medical Informatics, University of Geneva, 1205 Geneva, Switzerland
| | - Christoph M Michel
- Functional Brain Mapping Laboratory, Department of Neurosciences, University of Geneva, 1205 Geneva, Switzerland
| | - Petra S Hüppi
- Division of Development and Growth, Department of Pediatrics, Geneva University Hospitals, 1205 Geneva, Switzerland
| |
Collapse
|