1
|
Mei T, Chen Y, Gao Y, Zhao H, Lyu X, Lin J, Niu T, Han H, Tong Z. Formaldehyde initiates memory and motor impairments under weightlessness condition. NPJ Microgravity 2024; 10:100. [PMID: 39468074 PMCID: PMC11519943 DOI: 10.1038/s41526-024-00441-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 10/21/2024] [Indexed: 10/30/2024] Open
Abstract
During space flight, prolonged weightlessness stress exerts a range of detrimental impacts on the physiology and psychology of astronauts. These manifestations encompass depressive symptoms, anxiety, and impairments in both short-term memory and motor functions, albeit the precise underlying mechanisms remain elusive. Recent studies have revealed that hindlimb unloading (HU) animal models, which simulate space weightlessness, exhibited a disorder in memory and motor function associated with endogenous formaldehyde (FA) accumulation in the hippocampus and cerebellum, disruption of brain extracellular space (ECS), and blockage of interstitial fluid (ISF) drainage. Notably, the impairment of the blood-brain barrier (BBB) caused by space weightlessness elicits the infiltration of albumin and hemoglobin from the blood vessels into the brain ECS. However, excessive FA has the potential to form cross-links between these two proteins and amyloid-beta (Aβ), thereby obstructing ECS and inducing neuron death. Moreover, FA can inhibit N-methyl-D-aspartate (NMDA) currents by crosslinking NR1 and NR2B subunits, thus impairing memory. Additionally, FA has the ability to modulate the levels of certain microRNAs (miRNAs) such as miRNA-29b, which can affect the expression of aquaporin-4 (AQP4) so as to regulate ECS structure and ISF drainage. Especially, the accumulation of FA may inactivate the ataxia telangiectasia-mutated (ATM) protein kinase by forming cross-linking, a process that is associated with ataxia. Hence, this review presents that weightlessness stress-derived FA may potentially serve as a crucial catalyst in the deterioration of memory and motor abilities in the context of microgravity.
Collapse
Affiliation(s)
- Tianhao Mei
- Beijing Geriatric Hospital, Beijing, China
- Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ying Chen
- Beijing Geriatric Hospital, Beijing, China
- Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yajuan Gao
- Department of Radiology, Peking University Third Hospital, Beijing, China. Key Laboratory of Magnetic Resonance Imaging Equipment and Technique, Beijing, China
- NMPA key Laboratory for Evaluation of Medical Imaging Equipment and Technique, Beijing, China
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
| | - Hang Zhao
- Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xingzhou Lyu
- Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jing Lin
- Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Tianye Niu
- Shenzhen Bay Laboratory, Shenzhen, China.
- University of Science and Technology of China, Anhui, China.
| | - Hongbin Han
- Department of Radiology, Peking University Third Hospital, Beijing, China. Key Laboratory of Magnetic Resonance Imaging Equipment and Technique, Beijing, China.
- NMPA key Laboratory for Evaluation of Medical Imaging Equipment and Technique, Beijing, China.
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China.
| | - Zhiqian Tong
- Beijing Geriatric Hospital, Beijing, China.
- Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
2
|
Tian Z, Huang K, Yang W, Chen Y, Lyv W, Zhu B, Yang X, Ma P, Tong Z. Exogenous and endogenous formaldehyde-induced DNA damage in the aging brain: mechanisms and implications for brain diseases. Cell Biol Toxicol 2024; 40:83. [PMID: 39367211 PMCID: PMC11452425 DOI: 10.1007/s10565-024-09926-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 10/02/2024] [Indexed: 10/06/2024]
Abstract
Exogenous gaseous formaldehyde (FA) is recognized as a significant indoor air pollutant due to its chemical reactivity and documented mutagenic and carcinogenic properties, particularly in its capacity to damage DNA and impact human health. Despite increasing attention on the adverse effects of exogenous FA on human health, the potential detrimental effects of endogenous FA in the brain have been largely neglected in current research. Endogenous FA have been observed to accumulate in the aging brain due to dysregulation in the expression and activity of enzymes involved in FA metabolism. Surprisingly, excessive FA have been implicated in the development of neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), and brain cancers. Notably, FA has the ability to not only initiate DNA double strand breaks but also induce the formation of crosslinks of DNA-DNA, DNA-RNA, and DNA-protein, which further exacerbate the progression of these brain diseases. However, recent research has identified that FA-resistant gene exonuclease-1 (EXO1) and FA scavengers can potentially mitigate FA toxicity, offering a promising strategy for mitigating or repairing FA-induced DNA damage. The present review offers novel insights into the impact of FA metabolism on brain ageing and the contribution of FA-damaged DNA to the progression of neurological disorders.
Collapse
Affiliation(s)
- Zixi Tian
- Beijing Geriatric Hospital, Beijing, 100049, China
- Zhejiang Provincial Clinical Research Center for Mental Disorders, School of Mental Health, The Affiliated Wenzhou Kangning Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Kai Huang
- Beijing Geriatric Hospital, Beijing, 100049, China
- Zhejiang Provincial Clinical Research Center for Mental Disorders, School of Mental Health, The Affiliated Wenzhou Kangning Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Wanting Yang
- Beijing Geriatric Hospital, Beijing, 100049, China
- Zhejiang Provincial Clinical Research Center for Mental Disorders, School of Mental Health, The Affiliated Wenzhou Kangning Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Ying Chen
- Beijing Geriatric Hospital, Beijing, 100049, China
- Zhejiang Provincial Clinical Research Center for Mental Disorders, School of Mental Health, The Affiliated Wenzhou Kangning Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Wanjia Lyv
- Key Laboratory of Environmental Related Diseases and One Health, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, China
| | - Beilei Zhu
- Beijing Geriatric Hospital, Beijing, 100049, China
- Zhejiang Provincial Clinical Research Center for Mental Disorders, School of Mental Health, The Affiliated Wenzhou Kangning Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Xu Yang
- Key Laboratory of Environmental Related Diseases and One Health, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, China
| | - Ping Ma
- Beijing Geriatric Hospital, Beijing, 100049, China.
- Zhejiang Provincial Clinical Research Center for Mental Disorders, School of Mental Health, The Affiliated Wenzhou Kangning Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China.
- Key Laboratory of Environmental Related Diseases and One Health, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, China.
| | - Zhiqian Tong
- Beijing Geriatric Hospital, Beijing, 100049, China.
- Zhejiang Provincial Clinical Research Center for Mental Disorders, School of Mental Health, The Affiliated Wenzhou Kangning Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China.
| |
Collapse
|
3
|
Ye R, Zhao H, Wang X, Xue Y. Technological advancements in deciphering RNA-RNA interactions. Mol Cell 2024; 84:3722-3736. [PMID: 39047724 DOI: 10.1016/j.molcel.2024.06.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/11/2024] [Accepted: 06/28/2024] [Indexed: 07/27/2024]
Abstract
RNA-RNA interactions (RRIs) can dictate RNA molecules to form intricate higher-order structures and bind their RNA substrates in diverse biological processes. To elucidate the function, binding specificity, and regulatory mechanisms of various RNA molecules, especially the vast repertoire of non-coding RNAs, advanced technologies and methods that globally map RRIs are extremely valuable. In the past decades, many state-of-the-art technologies have been developed for this purpose. This review focuses on those high-throughput technologies for the global mapping of RRIs. We summarize the key concepts and the pros and cons of different technologies. In addition, we highlight the novel biological insights uncovered by these RRI mapping methods and discuss the future challenges for appreciating the crucial roles of RRIs in gene regulation across bacteria, viruses, archaea, and mammals.
Collapse
Affiliation(s)
- Rong Ye
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Hailian Zhao
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xi Wang
- State Key Laboratory of Female Fertility Promotion, Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing 100191, China
| | - Yuanchao Xue
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
4
|
Xu B, Gao X, Li X, Li F, Zhang Z. Crosslinking intensity modulates the reliability and sensitivity of chromatin conformation detection at different structural levels. Commun Biol 2024; 7:1216. [PMID: 39349577 PMCID: PMC11442689 DOI: 10.1038/s42003-024-06904-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 09/16/2024] [Indexed: 10/04/2024] Open
Abstract
Formaldehyde (FA) is a chemical that facilitates crosslinking between DNA and proteins. It is widely used in various biochemical assays, such as chromosome conformation capture (3C) and Chromatin Immunoprecipitation (ChIP). While the concentration and temperature of FA treatment are recognized as crucial factors in crosslinking, their quantitative effects have largely remained unexplored. In this study, we employed 3C as a model system to systematically assess the impacts of these two factors on crosslinking. Our findings indicate that the strength of crosslinking significantly influences chromatin conformation detection at nearly all known structural levels. Specifically, a delicate balance between sensitivity and reliability is required when detecting higher-level structures, such as chromosome compartments. Conversely, intense crosslinking is preferred when targeting lower-level structures, such as topologically associated domains (TADs) or chromatin loops. Based on our data, we propose a conceptual molecular thermal motion model to elucidate the roles of these two factors in restricting FA crosslinking. Our results not only shed light on the previously overlooked confounding factor in FA crosslinking but also highlight the need for caution in new technology developments that rely on FA crosslinking.
Collapse
Affiliation(s)
- Bingxiang Xu
- Key Laboratory of Hebei Province for Molecular Biophysics, Institute of Biophysics, School of Health Science & Biomedical Engineering, Hebei University of Technology, Tianjin, 300130, China.
- School of Exercise and Health, Shanghai University of Sport, Shanghai, 200438, China.
- China National Center for Bioinformation, Beijing, China.
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.
| | - Xiaomeng Gao
- China National Center for Bioinformation, Beijing, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- School of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoli Li
- Department of Cell Biology and Genetics, Core Facility of Developmental Biology, Chongqing Medical University, Chongqing, 400016, China
| | - Feifei Li
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006, China.
| | - Zhihua Zhang
- China National Center for Bioinformation, Beijing, China.
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.
- School of Life Science, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
5
|
Rosario M, Zhang J, Kaleem MI, Chandra N, Yan Y, Moran D, Wood M, Ray WZ, MacEwan M. A method for quantitative spatial analysis of immunolabeled fibers at regenerative electrode interfaces. J Neurosci Methods 2024; 412:110295. [PMID: 39321988 DOI: 10.1016/j.jneumeth.2024.110295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/10/2024] [Accepted: 09/22/2024] [Indexed: 09/27/2024]
Abstract
BACKGROUND Regenerative electrodes are being explored as robust peripheral nerve interfaces for neuro-prosthetic control and sensory feedback. Current designs differ in electrode number, spatial arrangement, and porosity which impacts the regeneration, activation, and spatial distribution of fibers at the device interface. Knowledge of sensory and motor fiber distributions are important in optimizing selective fiber activation and recording. NEW METHOD We use confocal microscopy and immunofluorescence methods to conduct spatial analysis of immunolabeled fibers across whole nerve cross sections. RESULTS This protocol was implemented to characterize motor fiber distribution within 3 macro-sieve electrode regenerated (MSE), 3 silicone-conduit regenerated, and 3 unmanipulated control rodent sciatic nerves. Total motor fiber counts were 1485 [SD: +/- 50.11], 1899 [SD: +/- 359], and 5732 [SD: +/- 1410] for control, MSE, and conduit nerves respectively. MSE motor fiber distributions exhibited evidence of deviation from complete spatial randomness and evidence of dispersion and clustering tendencies at varying scales. Notably, MSE motor fibers exhibited clustering within the central portion of the cross section, whereas conduit regenerated motor fibers exhibited clustering along the periphery. COMPARISON WITH EXISTING METHODS Prior exploration of fiber distributions at regenerative interfaces was limited to either quadrant-based density analysis of randomly sampled subregions or qualitative description. This method extends existing sample preparation and microscopy techniques to quantitatively assess immunolabeled fiber distributions within whole nerve cross-sections. CONCLUSIONS This approach is an effective way to examine the spatial organization of fiber subsets at regenerative electrode interfaces, enabling robust assessment of fiber distributions relative to electrode arrangement.
Collapse
Affiliation(s)
- Michael Rosario
- Washington University School of Medicine in Saint Louis, Saint Louis, MO, USA
| | - Jingyuan Zhang
- Department of Neurological Surgery, Washington University School of Medicine in Saint Louis, Saint Louis, MO, USA
| | - Muhammad Irfan Kaleem
- Department of Neurological Surgery, Washington University School of Medicine in Saint Louis, Saint Louis, MO, USA
| | - Nikhil Chandra
- Department of Neurological Surgery, Washington University School of Medicine in Saint Louis, Saint Louis, MO, USA
| | - Ying Yan
- Department of Neurological Surgery, Washington University School of Medicine in Saint Louis, Saint Louis, MO, USA
| | - Daniel Moran
- McKelvey School of Biomedical Engineering, Washington University in Saint Louis, Saint Louis, MO, USA
| | - Matthew Wood
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine in Saint Louis, St. Louis, MO 63110, USA
| | - Wilson Z Ray
- Department of Neurological Surgery, Washington University School of Medicine in Saint Louis, Saint Louis, MO, USA; McKelvey School of Biomedical Engineering, Washington University in Saint Louis, Saint Louis, MO, USA
| | - Matthew MacEwan
- Department of Neurological Surgery, Washington University School of Medicine in Saint Louis, Saint Louis, MO, USA; McKelvey School of Biomedical Engineering, Washington University in Saint Louis, Saint Louis, MO, USA.
| |
Collapse
|
6
|
Mansikkala T, Kangas SM, Miinalainen I, Angervaniva P, Darin N, Blomqvist M, Hinttala R, Huttula M, Uusimaa J, Patanen M. Soft X-ray spectromicroscopy of human fibroblasts with impaired sialin function. RSC Adv 2024; 14:28797-28806. [PMID: 39257666 PMCID: PMC11385984 DOI: 10.1039/d4ra05520a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 08/27/2024] [Indexed: 09/12/2024] Open
Abstract
Salla disease (SD) is a lysosomal storage disease where free sialic acid (SA) accumulates in lysosomes due to the impaired function of a membrane protein, sialin. Synchrotron radiation-based scanning transmission soft X-ray spectromicroscopy (STXM) was used to analyze both SD patients' fibroblasts and normal human dermal fibroblasts (NHDF) from healthy controls. Both cell lines were also cultured with N-acetyl-d-mannosamine monohydrate (ManNAc) to see if it increased SA concentration in the cells. The STXM technique was chosen to simultaneously observe the morphological and chemical changes in cells. It was observed that free SA did not remain in the lysosomes during the sample processing, leaving empty vacuoles to the fibroblasts. The total cytosol and entire cell spectra, however, showed systematic differences between the SD and NHDF samples, indicating changes in the relative macromolecular concentrations of the cells. The NHDF cell lines contained a higher relative protein concentration compared to the SD cell lines, and the addition of ManNAc increased the relative protein concentration in both cell lines. In this study, two sample preparation methods were compared, resin-embedded thin sections and cells grown directly on sample analysis grids. While the samples grown on the grids exhibited clean, well-resolved spectra not masked by embedding resin, the low penetration depth of soft X-rays hindered the analysis to only the thin region of the microfilaments away from the thick nucleus.
Collapse
Affiliation(s)
- Tuomas Mansikkala
- Nano and Molecular Systems Research Unit, 90014 University of Oulu PO Box 3000 Finland
- Biocenter Oulu, 90014 University of Oulu PO Box 5000 Finland
| | - Salla M Kangas
- Research Unit of Clinical Medicine and Medical Research Center, Oulu University Hospital and University of Oulu 90014 Oulu Finland
| | | | - Pia Angervaniva
- Research Unit of Clinical Medicine and Medical Research Center, Oulu University Hospital and University of Oulu 90014 Oulu Finland
| | - Niklas Darin
- Department of Pediatrics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg 40530 Gothenburg Sweden
| | - Maria Blomqvist
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Sweden and Department of Clinical Chemistry, Sahlgrenska University Hospital 41345 Gothenburg Sweden
| | - Reetta Hinttala
- Biocenter Oulu, 90014 University of Oulu PO Box 5000 Finland
- Research Unit of Clinical Medicine and Medical Research Center, Oulu University Hospital and University of Oulu 90014 Oulu Finland
| | - Marko Huttula
- Nano and Molecular Systems Research Unit, 90014 University of Oulu PO Box 3000 Finland
| | - Johanna Uusimaa
- Research Unit of Clinical Medicine and Medical Research Center, Oulu University Hospital and University of Oulu 90014 Oulu Finland
- Department of Paediatrics and Adolescent Medicine, Paediatric Neurology Unit, Oulu University Hospital 90029 Oulu Finland
| | - Minna Patanen
- Nano and Molecular Systems Research Unit, 90014 University of Oulu PO Box 3000 Finland
- Biocenter Oulu, 90014 University of Oulu PO Box 5000 Finland
| |
Collapse
|
7
|
Cabral G, Moss WJ, Brown KM. Proteomic approaches for protein kinase substrate identification in Apicomplexa. Mol Biochem Parasitol 2024; 259:111633. [PMID: 38821187 PMCID: PMC11194964 DOI: 10.1016/j.molbiopara.2024.111633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/10/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
Apicomplexa is a phylum of protist parasites, notable for causing life-threatening diseases including malaria, toxoplasmosis, cryptosporidiosis, and babesiosis. Apicomplexan pathogenesis is generally a function of lytic replication, dissemination, persistence, host cell modification, and immune subversion. Decades of research have revealed essential roles for apicomplexan protein kinases in establishing infections and promoting pathogenesis. Protein kinases modify their substrates by phosphorylating serine, threonine, tyrosine, or other residues, resulting in rapid functional changes in the target protein. Post-translational modification by phosphorylation can activate or inhibit a substrate, alter its localization, or promote interactions with other proteins or ligands. Deciphering direct kinase substrates is crucial to understand mechanisms of kinase signaling, yet can be challenging due to the transient nature of kinase phosphorylation and potential for downstream indirect phosphorylation events. However, with recent advances in proteomic approaches, our understanding of kinase function in Apicomplexa has improved dramatically. Here, we discuss methods that have been used to identify kinase substrates in apicomplexan parasites, classifying them into three main categories: i) kinase interactome, ii) indirect phosphoproteomics and iii) direct labeling. We briefly discuss each approach, including their advantages and limitations, and highlight representative examples from the Apicomplexa literature. Finally, we conclude each main category by introducing prospective approaches from other fields that would benefit kinase substrate identification in Apicomplexa.
Collapse
Affiliation(s)
- Gabriel Cabral
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - William J Moss
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Kevin M Brown
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
8
|
Benedict B, Kristensen SM, Duxin JP. What are the DNA lesions underlying formaldehyde toxicity? DNA Repair (Amst) 2024; 138:103667. [PMID: 38554505 DOI: 10.1016/j.dnarep.2024.103667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/22/2024] [Accepted: 03/01/2024] [Indexed: 04/01/2024]
Abstract
Formaldehyde is a highly reactive organic compound. Humans can be exposed to exogenous sources of formaldehyde, but formaldehyde is also produced endogenously as a byproduct of cellular metabolism. Because formaldehyde can react with DNA, it is considered a major endogenous source of DNA damage. However, the nature of the lesions underlying formaldehyde toxicity in cells remains vastly unknown. Here, we review the current knowledge of the different types of nucleic acid lesions that are induced by formaldehyde and describe the repair pathways known to counteract formaldehyde toxicity. Taking this knowledge together, we discuss and speculate on the predominant lesions generated by formaldehyde, which underly its natural toxicity.
Collapse
Affiliation(s)
- Bente Benedict
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Stella Munkholm Kristensen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Julien P Duxin
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark.
| |
Collapse
|
9
|
Liu C, Mentzelopoulou A, Hatzianestis IH, Tzagkarakis E, Skaltsogiannis V, Ma X, Michalopoulou VA, Romero-Campero FJ, Romero-Losada AB, Sarris PF, Marhavy P, Bölter B, Kanterakis A, Gutierrez-Beltran E, Moschou PN. A proxitome-RNA-capture approach reveals that processing bodies repress coregulated hub genes. THE PLANT CELL 2024; 36:559-584. [PMID: 37971938 PMCID: PMC10896293 DOI: 10.1093/plcell/koad288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/18/2023] [Accepted: 10/18/2023] [Indexed: 11/19/2023]
Abstract
Cellular condensates are usually ribonucleoprotein assemblies with liquid- or solid-like properties. Because these subcellular structures lack a delineating membrane, determining their compositions is difficult. Here we describe a proximity-biotinylation approach for capturing the RNAs of the condensates known as processing bodies (PBs) in Arabidopsis (Arabidopsis thaliana). By combining this approach with RNA detection, in silico, and high-resolution imaging approaches, we studied PBs under normal conditions and heat stress. PBs showed a much more dynamic RNA composition than the total transcriptome. RNAs involved in cell wall development and regeneration, plant hormonal signaling, secondary metabolism/defense, and RNA metabolism were enriched in PBs. RNA-binding proteins and the liquidity of PBs modulated RNA recruitment, while RNAs were frequently recruited together with their encoded proteins. In PBs, RNAs follow distinct fates: in small liquid-like PBs, RNAs get degraded while in more solid-like larger ones, they are stored. PB properties can be regulated by the actin-polymerizing SCAR (suppressor of the cyclic AMP)-WAVE (WASP family verprolin homologous) complex. SCAR/WAVE modulates the shuttling of RNAs between PBs and the translational machinery, thereby adjusting ethylene signaling. In summary, we provide an approach to identify RNAs in condensates that allowed us to reveal a mechanism for regulating RNA fate.
Collapse
Affiliation(s)
- Chen Liu
- Department of Biology, University of Crete, Heraklion 70013, Greece
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala 75007, Sweden
| | - Andriani Mentzelopoulou
- Department of Biology, University of Crete, Heraklion 70013, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 70013, Greece
| | - Ioannis H Hatzianestis
- Department of Biology, University of Crete, Heraklion 70013, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 70013, Greece
| | | | - Vasileios Skaltsogiannis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 70013, Greece
| | - Xuemin Ma
- Umeå Plant Science Centre (UPSC), Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences (SLU), Umeå, Sweden
| | - Vassiliki A Michalopoulou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 70013, Greece
| | - Francisco J Romero-Campero
- Department of Computer Science and Artificial Intelligence, Universidad de Sevilla, Avenida Reina Mercedes s/n, Seville 41012, Spain
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and Consejo Superior de Investigaciones Científicas (CSIC), Seville, Spain
| | - Ana B Romero-Losada
- Department of Computer Science and Artificial Intelligence, Universidad de Sevilla, Avenida Reina Mercedes s/n, Seville 41012, Spain
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and Consejo Superior de Investigaciones Científicas (CSIC), Seville, Spain
| | - Panagiotis F Sarris
- Department of Biology, University of Crete, Heraklion 70013, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 70013, Greece
- Biosciences, University of Exeter, Exeter, UK
| | - Peter Marhavy
- Umeå Plant Science Centre (UPSC), Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences (SLU), Umeå, Sweden
| | - Bettina Bölter
- Ludwig Maximilians University Munich, Plant Biochemistry, Großhadernerstr. 2-4, Planegg-Martinsried 82152, Germany
| | - Alexandros Kanterakis
- Institute of Computer Science, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Emilio Gutierrez-Beltran
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and Consejo Superior de Investigaciones Científicas (CSIC), Seville, Spain
- Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - Panagiotis N Moschou
- Department of Biology, University of Crete, Heraklion 70013, Greece
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala 75007, Sweden
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 70013, Greece
| |
Collapse
|
10
|
de Silva N, Lacko LA, Jamies EA, Evans T, Hurtado R. Atacama Clear for Complex 3D Imaging of Organs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.22.576689. [PMID: 38328217 PMCID: PMC10849539 DOI: 10.1101/2024.01.22.576689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
3D reconstructive imaging is a powerful strategy to interrogate the global architecture of tissues. We developed Atacama Clear (ATC), a novel method that increases 3D imaging signal-to-noise ratios (SNRs) while simultaneously increasing the capacity of tissue to be cleared. ATC potentiated the clearing capacity of all tested chemical reagents currently used for optical clearing by an average of 68%, and more than doubled SNRs. This increased imaging efficacy enabled multiplex interrogation of tough fibrous tissue and specimens that naturally exhibit high levels of background noise, including the heart, kidney, and human biopsies. Indeed, ATC facilitated visualization of previously undocumented adjacent nephron segments that exhibit notoriously high autofluorescence, elements of the cardiac conduction system, and the distinct human glomerular tissue layers, at single cell resolution. Moreover, ATC was validated to be compatible with fluorescent reporter proteins in murine, zebrafish, and 3D stem cell model systems. These data establish ATC for 3D imaging studies of challenging tissue types.
Collapse
Affiliation(s)
| | - Lauretta A. Lacko
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Human Therapeutic Organoid Core Facility, Weill Cornell Medicine, New York, NY USA
| | - Edgar A. Jamies
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Todd Evans
- Department of Surgery, Weill Cornell Medicine, New York, NY, USA
- Weill Cornell Center for Genomic Health
| | - Romulo Hurtado
- Department of Surgery, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
11
|
Hayek H, Gross L, Alghoul F, Martin F, Eriani G, Allmang C. Immunoprecipitation Methods to Isolate Messenger Ribonucleoprotein Complexes (mRNP). ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 3234:1-15. [PMID: 38507196 DOI: 10.1007/978-3-031-52193-5_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Throughout their life cycle, messenger RNAs (mRNAs) associate with proteins to form ribonucleoproteins (mRNPs). Each mRNA is part of multiple successive mRNP complexes that participate in their biogenesis, cellular localization, translation and decay. The dynamic composition of mRNP complexes and their structural remodelling play crucial roles in the control of gene expression. Studying the endogenous composition of different mRNP complexes is a major challenge. In this chapter, we describe the variety of protein-centric immunoprecipitation methods available for the identification of mRNP complexes and the requirements for their experimental settings.
Collapse
Affiliation(s)
- Hassan Hayek
- Architecture et Réactivité de l'ARN, Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, Strasbourg, France
| | - Lauriane Gross
- Architecture et Réactivité de l'ARN, Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, Strasbourg, France
| | - Fatima Alghoul
- Architecture et Réactivité de l'ARN, Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, Strasbourg, France
| | - Franck Martin
- Architecture et Réactivité de l'ARN, Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, Strasbourg, France
| | - Gilbert Eriani
- Architecture et Réactivité de l'ARN, Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, Strasbourg, France
| | - Christine Allmang
- Architecture et Réactivité de l'ARN, Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, Strasbourg, France.
| |
Collapse
|
12
|
Moro CF, Nogueira FCS, Almeida CGM, Real-Guerra R, Dalberto PF, Bizarro CV, Ligabue-Braun R, Carlini CR. One enzyme, many faces: urease is also canatoxin. J Biomol Struct Dyn 2023; 41:10750-10761. [PMID: 36546698 DOI: 10.1080/07391102.2022.2158938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022]
Abstract
Ureases catalyze the hydrolysis of urea into carbamate and ammonia. Well-conserved proteins, most plant ureases are hexamers of a single chain subunit, like the most abundant isoform of the jack bean (Canavalia ensiformis) urease (JBU). Canatoxin (CNTX) was originally isolated from these seeds as a neurotoxic protein, and later characterized as an isoform of JBU with lower molecular mass and enzyme activity. Inactive CNTX oligomers form upon storage and stabilization of CNTX was achieved by treatment with low concentration of formaldehyde, avoiding its oligomerization. Here, nano-LC-MS/MS-based peptide analysis of CNTX revealed 804 amino acids identical to those of JBU's sequence (840 amino acids). De novo sequencing of CNTX revealed 15 different peptides containing substitution of amino acid residues, denoting CNTX as a product of a paralog gene of JBU. The MS/MS analysis of formaldehyde-treated CNTX showed that amino acid residues located at the trimer-trimer interface of JBU's hexamer were modified. The data confirmed that CNTX is an isoform of JBU and elucidated that stabilization by formaldehyde treatment occurs by modification of amino acids at the protein's surface that prevents the formation of the hexamer and of higher molecular mass inactive aggregates. HIGHLIGHTSCanatoxin (CNTX) is an isoform of jack bean urease (JBU, hexamer of 90 kDa chains)MS/MS sequencing of CNTX showed 804 amino acids identical in JBU (840 residues)Formaldehyde treatment of CNTX stabilizes its toxicity and avoids oligomerizationModified amino acid residues in CNTX are at the trimer-trimer interface of JBUCommunicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Carlo Frederico Moro
- Graduate Program in Medicine and Health Sciences, Pontificia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Fábio C S Nogueira
- Proteomics Unit, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Carlos Gabriel Moreira Almeida
- Graduate Program in Medicine and Health Sciences, Pontificia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Rafael Real-Guerra
- Interdisciplinary Department, Universidade Federal do Rio Grande do Sul, Tramandaí, RS, Brazil
| | - Pedro Ferrari Dalberto
- Graduate Program in Cellular and Molecular Biology, Pontificia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Cristiano V Bizarro
- Graduate Program in Cellular and Molecular Biology, Pontificia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
- National Institute of Science and Technology in Tuberculosis (INCT-TB), Centro de Pesquisas em Biologia Molecular e Funcional (CPBMF), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Rodrigo Ligabue-Braun
- Department of Pharmacosciences, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Celia R Carlini
- Brain Institute-Instituto do Cérebro do Rio Grande do Sul (INSCER), Porto Alegre, RS, Brazil
- National Institute of Science and Technology in Brain Diseases, Excitotoxity and Neuroprotection (INCT-EN), Porto Alegre, RS, Brazil
| |
Collapse
|
13
|
Röth D, Molina-Franky J, Williams JC, Kalkum M. Mass Spectrometric Detection of Formaldehyde-Crosslinked PBMC Proteins in Cell-Free DNA Blood Collection Tubes. Molecules 2023; 28:7880. [PMID: 38067609 PMCID: PMC10708122 DOI: 10.3390/molecules28237880] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
Streck tubes are commonly used to collect blood samples to preserve cell-free circulating DNA. They contain imidazolidinyl urea as a formaldehyde-releasing agent to stabilize cells. We investigated whether the released formaldehyde leads to crosslinking of intracellular proteins. Therefore, we employed a shotgun proteomics experiment on human peripheral blood mononuclear cells (PBMCs) that were isolated from blood collected in Streck tubes, EDTA tubes, EDTA tubes containing formaldehyde, or EDTA tubes containing allantoin. The identified crosslinks were validated in parallel reaction monitoring LC/MS experiments. In total, we identified and validated 45 formaldehyde crosslinks in PBMCs from Streck tubes, which were also found in PBMCs from formaldehyde-treated blood, but not in EDTA- or allantoin-treated samples. Most were derived from cytoskeletal proteins and histones, indicating the ability of Streck tubes to fix cells. In addition, we confirm a previous observation that formaldehyde crosslinking of proteins induces a +24 Da mass shift more frequently than a +12 Da shift. The crosslinking capacity of Streck tubes needs to be considered when selecting blood-collection tubes for mass-spectrometry-based proteomics or metabolomic experiments.
Collapse
Affiliation(s)
- Daniel Röth
- Department of Immunology and Theranostics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA (J.M.-F.)
| | - Jessica Molina-Franky
- Department of Immunology and Theranostics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA (J.M.-F.)
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá 112111, Colombia
- Biotechnology Institute Department, Faculty of Sciences, Universidad Nacional de Colombia, Bogotá 111321, Colombia
| | - John C. Williams
- Department of Cancer Biology and Molecular Medicine, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Markus Kalkum
- Department of Immunology and Theranostics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA (J.M.-F.)
| |
Collapse
|
14
|
Zhang Z, Fan H, Richardson W, Gao BZ, Ye T. Management of autofluorescence in formaldehyde-fixed myocardium: choosing the right treatment. Eur J Histochem 2023; 67:3812. [PMID: 37781779 PMCID: PMC10614721 DOI: 10.4081/ejh.2023.3812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/28/2023] [Indexed: 10/03/2023] Open
Abstract
Autofluorescence (AF) poses challenges for detecting proteins of interest in situ when employing immunofluorescence (IF) microscopy. This interference is particularly pronounced in strongly autofluorescent tissues such as myocardium, where tissue AF can be comparable to IF. Although various histochemical methods have been developed to achieve effective AF suppression in different types of tissue, their applications on myocardial samples have not been well validated. Due to inconsistency across different autofluorescent structures in sometypes of tissue, it is unclear if these methods can effectively suppress AF across all autofluorescent structures within the myocardium. Here, we quantitatively evaluated the performance of several commonly used quenching treatments on formaldehyde-fixed myocardial samples, including 0.3 M glycine, 0.3% Sudan Black B (SBB), 0.1% and 1% sodium borohydride (NaBH4), TrueVIEW® and TrueBlack®. We further assessed their quenching performance by employing the pre-treatment and post-treatment protocols, designed to cover two common IF staining scenarios where buffers contained detergents or not. The results suggest that SBB and TrueBlack® outperform other reagents in AF suppression on formaldehyde-fixed myocardial samples in both protocols. Furthermore, we inspected the quenching performance of SBB and TrueBlack® on major autofluorescent myocardial structures and evaluated their influence on IF imaging. The results suggest that SBB outperforms TrueBlack® in quenching major autofluorescent structures, while TrueBlack® excels in preserving IF labeling signal. Surprisingly, we found the treatment of NaBH4 increased AF signal and enhanced the AF contrast of major autofluorescent structures. This finding suggests that NaBH4 has the potential to act as an AF enhancer and may facilitate the interpretation of myocardial structures without the need for counterstaining.
Collapse
Affiliation(s)
- Zhao Zhang
- Department of Bioengineering, Clemson University, Clemson, SC.
| | - Hongming Fan
- Department of Bioengineering, Clemson University, Clemson, SC.
| | - William Richardson
- Department of Chemical Engineering, University of Arkansas, Fayetteville, AR.
| | - Bruce Z Gao
- Department of Bioengineering, Clemson University, Clemson, SC.
| | - Tong Ye
- Department of Bioengineering, Clemson University, Clemson, SC; Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC.
| |
Collapse
|
15
|
Barman P, Kaja A, Chakraborty P, Bhaumik SR. Chromatin and non-chromatin immunoprecipitations to capture protein-protein and protein-nucleic acid interactions in living cells. Methods 2023; 218:158-166. [PMID: 37611837 PMCID: PMC10528071 DOI: 10.1016/j.ymeth.2023.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/18/2023] [Accepted: 08/19/2023] [Indexed: 08/25/2023] Open
Abstract
Proteins are expressed from genes via sequential biological processes of transcription, mRNA processing, export and translation, and play their roles in maintaining cellular functions via interactions with proteins, DNAs or RNAs. Thus, it is important to study the protein interactions during biological processes in living cells towards understanding their mechanisms-of-action in real time. Methodologies have been developed over the years to study protein interactions in vivo. One state-of-the-art approach is formaldehyde crosslinking-based immuno- or chemi-precipitation to analyze selective as well as genome/proteome-wide interactions in living cells. It is a popular and widely used methodology for cellular analysis of the protein-protein and protein-nucleic acid interactions. Here, we describe this approach to analyze protein-protein/nucleic acid interactions in vivo.
Collapse
Affiliation(s)
- Priyanka Barman
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Amala Kaja
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Pritam Chakraborty
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Sukesh R Bhaumik
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA.
| |
Collapse
|
16
|
Broglia L, Le Rhun A, Charpentier E. Methodologies for bacterial ribonuclease characterization using RNA-seq. FEMS Microbiol Rev 2023; 47:fuad049. [PMID: 37656885 PMCID: PMC10503654 DOI: 10.1093/femsre/fuad049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/06/2023] [Accepted: 08/23/2023] [Indexed: 09/03/2023] Open
Abstract
Bacteria adjust gene expression at the post-transcriptional level through an intricate network of small regulatory RNAs and RNA-binding proteins, including ribonucleases (RNases). RNases play an essential role in RNA metabolism, regulating RNA stability, decay, and activation. These enzymes exhibit species-specific effects on gene expression, bacterial physiology, and different strategies of target recognition. Recent advances in high-throughput RNA sequencing (RNA-seq) approaches have provided a better understanding of the roles and modes of action of bacterial RNases. Global studies aiming to identify direct targets of RNases have highlighted the diversity of RNase activity and RNA-based mechanisms of gene expression regulation. Here, we review recent RNA-seq approaches used to study bacterial RNases, with a focus on the methods for identifying direct RNase targets.
Collapse
Affiliation(s)
- Laura Broglia
- Max Planck Unit for the Science of Pathogens, D-10117 Berlin, Germany
- Center for Human Technologies, Istituto Italiano di Tecnologia, 16152 Genova, Italy
| | - Anaïs Le Rhun
- Max Planck Unit for the Science of Pathogens, D-10117 Berlin, Germany
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, F-33000 Bordeaux, France
| | - Emmanuelle Charpentier
- Max Planck Unit for the Science of Pathogens, D-10117 Berlin, Germany
- Institute for Biology, Humboldt University, D-10115 Berlin, Germany
| |
Collapse
|
17
|
Murvai N, Gellen G, Micsonai A, Schlosser G, Kardos J. Cross-Linked α-Synuclein as Inhibitor of Amyloid Formation. Int J Mol Sci 2023; 24:13403. [PMID: 37686208 PMCID: PMC10487470 DOI: 10.3390/ijms241713403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
The aggregation and amyloid formation of α-synuclein is associated with Parkinson's disease and other synucleinopathies. In its native, monomeric form α-synuclein is an intrinsically disordered protein represented by highly dynamic conformational ensembles. Inhibition of α-synuclein aggregation using small molecules, peptides, or proteins has been at the center of interest in recent years. Our aim was to explore the effects of cross-linking on the structure and aggregation/amyloid formation properties of α-synuclein. Comparative analysis of available high-resolution amyloid structures and representative structural models and MD trajectory of monomeric α-synuclein revealed that potential cross-links in the monomeric protein are mostly incompatible with the amyloid forms and thus might inhibit fibrillation. Monomeric α-synuclein has been intramolecularly chemically cross-linked under various conditions using different cross-linkers. We determined the location of cross-links and their frequency using mass spectrometry and found that most of them cannot be realized in the amyloid structures. The inhibitory potential of cross-linked proteins has been experimentally investigated using various methods, including thioflavin-T fluorescence and transmission electron microscopy. We found that conformational constraints applied by cross-linking fully blocked α-synuclein amyloid formation. Moreover, DTSSP-cross-linked molecules exhibited an inhibitory effect on the aggregation of unmodified α-synuclein as well.
Collapse
Affiliation(s)
- Nikoletta Murvai
- Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, H-1117 Budapest, Hungary
- ELTE—Functional Nucleic Acid Motifs Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, H-1117 Budapest, Hungary
| | - Gabriella Gellen
- MTA-ELTE Lendület Ion Mobility Mass Spectrometry Research Group, Department of Analytical Chemistry, Institute of Chemistry, ELTE Eötvös Loránd University, H-1117 Budapest, Hungary
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
| | - András Micsonai
- Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, H-1117 Budapest, Hungary
- ELTE—Functional Nucleic Acid Motifs Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, H-1117 Budapest, Hungary
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, H-1117 Budapest, Hungary
| | - Gitta Schlosser
- MTA-ELTE Lendület Ion Mobility Mass Spectrometry Research Group, Department of Analytical Chemistry, Institute of Chemistry, ELTE Eötvös Loránd University, H-1117 Budapest, Hungary
| | - József Kardos
- Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, H-1117 Budapest, Hungary
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, H-1117 Budapest, Hungary
| |
Collapse
|
18
|
Chen Y, Zhou W, Xia Y, Zhang W, Zhao Q, Li X, Gao H, Liang Z, Ma G, Yang K, Zhang L, Zhang Y. Targeted cross-linker delivery for the in situ mapping of protein conformations and interactions in mitochondria. Nat Commun 2023; 14:3882. [PMID: 37391416 PMCID: PMC10313818 DOI: 10.1038/s41467-023-39485-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 06/15/2023] [Indexed: 07/02/2023] Open
Abstract
Current methods for intracellular protein analysis mostly require the separation of specific organelles or changes to the intracellular environment. However, the functions of proteins are determined by their native microenvironment as they usually form complexes with ions, nucleic acids, and other proteins. Here, we show a method for in situ cross-linking and analysis of mitochondrial proteins in living cells. By using the poly(lactic-co-glycolic acid) (PLGA) nanoparticles functionalized with dimethyldioctadecylammonium bromide (DDAB) to deliver protein cross-linkers into mitochondria, we subsequently analyze the cross-linked proteins using mass spectrometry. With this method, we identify a total of 74 pairs of protein-protein interactions that do not exist in the STRING database. Interestingly, our data on mitochondrial respiratory chain proteins ( ~ 94%) are also consistent with the experimental or predicted structural analysis of these proteins. Thus, we provide a promising technology platform for in situ defining protein analysis in cellular organelles under their native microenvironment.
Collapse
Affiliation(s)
- Yuwan Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wen Zhou
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yufei Xia
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Weijie Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qun Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Xinwei Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Hang Gao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhen Liang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Kaiguang Yang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| | - Lihua Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| | - Yukui Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
19
|
Kim A, Martinez-Valbuena I, Li J, Lang AE, Kovacs GG. Disease-Specific α-Synuclein Seeding in Lewy Body Disease and Multiple System Atrophy Are Preserved in Formaldehyde-Fixed Paraffin-Embedded Human Brain. Biomolecules 2023; 13:936. [PMID: 37371515 DOI: 10.3390/biom13060936] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Recent studies have been able to detect α-synuclein (αSyn) seeding in formaldehyde-fixed paraffin-embedded (FFPE) tissues from patients with synucleinopathies using seed amplification assays (SAAs), but with relatively low sensitivity due to limited protein extraction efficiency. With the aim of introducing an alternative option to frozen tissues, we developed a streamlined protein extraction protocol for evaluating disease-specific seeding in FFPE human brain. We evaluated the protein extraction efficiency of different tissue preparations, deparaffinizations, and protein extraction buffers using formaldehyde-fixed and FFPE tissue of a single Lewy body disease (LBD) subject. Alternatively, we incorporated heat-induced antigen retrieval and dissociation using a commercially available kit. Our novel protein extraction protocol has been optimized to work with 10 sections of 4.5-µm-thickness or 2-mm-diameter micro-punch of FFPE tissue that can be used to seed SAAs. We demonstrated that extracted proteins from FFPE still preserve seeding potential and further show disease-specific seeding in LBD and multiple system atrophy. To the best of our knowledge, our study is the first to recapitulate disease-specific αSyn seeding behaviour in FFPE human brain. Our findings open new perspectives in re-evaluating archived human brain tissue, extending the disease-specific seeding assays to larger cohorts to facilitate molecular subtyping of synucleinopathies.
Collapse
Affiliation(s)
- Ain Kim
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON M5T 0S8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Ivan Martinez-Valbuena
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON M5T 0S8, Canada
- Krembil Brain Institute, University Health Network, Toronto, ON M5T 0S8, Canada
| | - Jun Li
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON M5T 0S8, Canada
| | - Anthony E Lang
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON M5T 0S8, Canada
- Krembil Brain Institute, University Health Network, Toronto, ON M5T 0S8, Canada
- Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, ON M5T 2S6, Canada
| | - Gabor G Kovacs
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON M5T 0S8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Krembil Brain Institute, University Health Network, Toronto, ON M5T 0S8, Canada
- Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, ON M5T 2S6, Canada
- Laboratory Medicine Program, University Health Network, Toronto, ON M5G 2C4, Canada
| |
Collapse
|
20
|
Whitworth IT, Henke KB, Yang B, Scalf M, Frey BL, Jarrard DF, Smith LM. Elucidating the RNA-Protein Interactomes of Target RNAs in Tissue. Anal Chem 2023; 95:7087-7092. [PMID: 37093976 PMCID: PMC10234431 DOI: 10.1021/acs.analchem.2c05635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
RNA-protein interactions are key to many aspects of cellular homeostasis and their identification is important to understanding cellular function. Multiple strategies have been developed for the RNA-centric characterization of RNA-protein complexes. However, these studies have all been done in immortalized cell lines that do not capture the complexity of heterogeneous tissue samples. Here, we develop hybridization purification of RNA-protein complexes followed by mass spectrometry (HyPR-MS) for use in tissue samples. We isolated both polyadenylated RNA and the specific long noncoding RNA MALAT1 and characterized their protein interactomes. These results demonstrate the feasibility of HyPR-MS in tissue for the multiplexed characterization of specific RNA-protein complexes.
Collapse
Affiliation(s)
- Isabella T Whitworth
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Katherine B Henke
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Bing Yang
- Department of Urology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin 53705, United States
| | - Mark Scalf
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Brian L Frey
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - David F Jarrard
- Department of Urology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin 53705, United States
- Carbone Comprehensive Cancer Center, University of Wisconsin, Madison, Wisconsin 53705, United States
- Molecular and Environmental Toxicology Program, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Lloyd M Smith
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, United States
| |
Collapse
|
21
|
Liu J, Duan Q, Shao Z, Chen K, Zhu Y, Li J, Tan W. Formaldehyde Cross-Linking-Assisted Phase Separation for Protein Aptamer Selection. Anal Chem 2023; 95:6700-6708. [PMID: 37052573 DOI: 10.1021/acs.analchem.3c00434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
With the merits of easy synthesis, strong modifiability, and high affinity, aptamers have been broadly applied for protein targeting in bioanalysis, diagnosis, and therapeutics. The selection of protein-targeted aptamers is currently largely dependent on solid-liquid separation by using different types of nano- or micro-beads. However, the use of beads inescapably introduces unwanted nonspecific binding and thus affects selection efficiency. In order to sidestep this obstacle, we herein report an integrated technique to facilitate the discovery and development of protein-targeting aptamers by incorporating formaldehyde cross-linking with phase separation (FCPS). The feasibility and universality of FCPS were confirmed by the successful selection of two aptamers that could target various antibodies. Unlike traditional approaches, the proposed technique avoids the use of beads and enables the rapid generation of aptamers after only one to three rounds of selection. The as-selected aptamers were further used to regulate and control antibody activity, showing potential applications in biomedicine.
Collapse
Affiliation(s)
- Jia Liu
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qiao Duan
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhentao Shao
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Kaiming Chen
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yingdi Zhu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Juan Li
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Weihong Tan
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| |
Collapse
|
22
|
Schubert C, Kim NY, Unden G, Kim OB. C4-dicarboxylate metabolons: interaction of C4-dicarboxylate transporters of Escherichia coli with cytosolic enzymes. FEMS Microbiol Lett 2022; 369:6679557. [PMID: 36044995 DOI: 10.1093/femsle/fnac078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/02/2022] [Accepted: 08/16/2022] [Indexed: 11/13/2022] Open
Abstract
Metabolons represent the structural organization of proteins for metabolic or regulatory pathways. Here the interaction of fumarase FumB, aspartase AspA, and L-tartrate dehydratase TtdAB with the C4-dicarboxylate (C4-DC) transporters DcuA, DcuB, DcuC, and the L-tartrate transporter TtdT of Escherichia coli was tested by a bacterial two-hybrid (BACTH) assay in situ, or by co-chromatography using mSPINE (membrane Streptavidin protein interaction experiment). From the general C4-DC transporters, DcuB interacted with FumB and AspA, DcuA with AspA, whereas DcuC interacted with neither FumB nor AspA. Moreover, TtdT did not interact with TtdAB. The fumB-dcuB, the dcuA-aspA, and the ttdAB-ttdT genes encoding the respective proteins co-localize on the genome and each pair of genes forms co-transcripts whereas the dcuC gene lies alone. The data suggest the formation of DcuB/FumB and DcuB/AspA metabolons for the uptake of L-malate, or L-aspartate, and their conversion to fumarate for fumarate respiration and excretion of the product succinate. The DcuA/AspA metabolon catalyzes uptake and conversion of L-Asp to fumarate coupled to succinate excretion. The DcuA/AspA metabolon provides ammonia at the same time for nitrogen assimilation (ammonia shuttle). On the other hand, TtdT and TtdAB are not organized in a metabolon. Reasons for the formation (DcuA/AspA, DcuB/FumB, DcuB/AspA) or non-formation (DcuC, TtdT and TtdAB) of metabolons are discussed based on their metabolic roles.
Collapse
Affiliation(s)
- Christopher Schubert
- Institute for Molecular Physiology, Johannes Gutenberg-University, Mainz, Germany
| | - Nam Yeun Kim
- Department of Life Science, Ewha Womans University, Seoul, Korea
| | - Gottfried Unden
- Institute for Molecular Physiology, Johannes Gutenberg-University, Mainz, Germany
| | - Ok Bin Kim
- Department of Life Science, Ewha Womans University, Seoul, Korea
| |
Collapse
|
23
|
Bhimwal R, Rustandi RR, Payne A, Dawod M. Recent advances in capillary gel electrophoresis for the analysis of proteins. J Chromatogr A 2022; 1682:463453. [DOI: 10.1016/j.chroma.2022.463453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022]
|
24
|
Ribonomics Approaches to Identify RBPome in Plants and Other Eukaryotes: Current Progress and Future Prospects. Int J Mol Sci 2022; 23:ijms23115923. [PMID: 35682602 PMCID: PMC9180120 DOI: 10.3390/ijms23115923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/16/2022] [Accepted: 05/20/2022] [Indexed: 02/01/2023] Open
Abstract
RNA-binding proteins (RBPs) form complex interactions with RNA to regulate the cell’s activities including cell development and disease resistance. RNA-binding proteome (RBPome) aims to profile and characterize the RNAs and proteins that interact with each other to carry out biological functions. Generally, RNA-centric and protein-centric ribonomic approaches have been successfully developed to profile RBPome in different organisms including plants and animals. Further, more and more novel methods that were firstly devised and applied in mammalians have shown great potential to unravel RBPome in plants such as RNA-interactome capture (RIC) and orthogonal organic phase separation (OOPS). Despise the development of various robust and state-of-the-art ribonomics techniques, genome-wide RBP identifications and characterizations in plants are relatively fewer than those in other eukaryotes, indicating that ribonomics techniques have great opportunities in unraveling and characterizing the RNA–protein interactions in plant species. Here, we review all the available approaches for analyzing RBPs in living organisms. Additionally, we summarize the transcriptome-wide approaches to characterize both the coding and non-coding RBPs in plants and the promising use of RBPome for booming agriculture.
Collapse
|
25
|
Cao H, Wang Y, Zhang N, Xia S, Tian P, Lu L, Du J, Du Y. Progress of CRISPR-Cas13 Mediated Live-Cell RNA Imaging and Detection of RNA-Protein Interactions. Front Cell Dev Biol 2022; 10:866820. [PMID: 35356276 PMCID: PMC8959342 DOI: 10.3389/fcell.2022.866820] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/21/2022] [Indexed: 12/26/2022] Open
Abstract
Ribonucleic acid (RNA) and proteins play critical roles in gene expression and regulation. The relevant study increases the understanding of various life processes and contributes to the diagnosis and treatment of different diseases. RNA imaging and mapping RNA-protein interactions expand the understanding of RNA biology. However, the existing methods have some limitations. Recently, precise RNA targeting of CRISPR-Cas13 in cells has been reported, which is considered a new promising platform for RNA imaging in living cells and recognition of RNA-protein interactions. In this review, we first described the current findings on Cas13. Furthermore, we introduced current tools of RNA real-time imaging and mapping RNA-protein interactions and highlighted the latest advances in Cas13-mediated tools. Finally, we discussed the advantages and disadvantages of Cas13-based methods, providing a set of new ideas for the optimization of Cas13-mediated methods.
Collapse
Affiliation(s)
- Huake Cao
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- First School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Yuechen Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Second School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Ning Zhang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- First School of Clinical Medicine, Anhui Medical University, Hefei, China
- First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Siyuan Xia
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Second School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Pengfei Tian
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- First School of Clinical Medicine, Anhui Medical University, Hefei, China
- First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Li Lu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Juan Du
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, China
- Longgang District People’s Hospital of Shenzhen & The Second Affiliated Hospital, The Chinese University of Hong Kong, Shenzhen, China
- *Correspondence: Yinan Du, ; Juan Du,
| | - Yinan Du
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- *Correspondence: Yinan Du, ; Juan Du,
| |
Collapse
|
26
|
Irgen-Gioro S, Yoshida S, Walling V, Chong S. Fixation can change the appearance of phase separation in living cells. eLife 2022; 11:79903. [PMID: 36444977 PMCID: PMC9817179 DOI: 10.7554/elife.79903] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 11/28/2022] [Indexed: 11/30/2022] Open
Abstract
Fixing cells with paraformaldehyde (PFA) is an essential step in numerous biological techniques as it is thought to preserve a snapshot of biomolecular transactions in living cells. Fixed-cell imaging techniques such as immunofluorescence have been widely used to detect liquid-liquid phase separation (LLPS) in vivo. Here, we compared images, before and after fixation, of cells expressing intrinsically disordered proteins that are able to undergo LLPS. Surprisingly, we found that PFA fixation can both enhance and diminish putative LLPS behaviors. For specific proteins, fixation can even cause their droplet-like puncta to artificially appear in cells that do not have any detectable puncta in the live condition. Fixing cells in the presence of glycine, a molecule that modulates fixation rates, can reverse the fixation effect from enhancing to diminishing LLPS appearance. We further established a kinetic model of fixation in the context of dynamic protein-protein interactions. Simulations based on the model suggest that protein localization in fixed cells depends on an intricate balance of protein-protein interaction dynamics, the overall rate of fixation, and notably, the difference between fixation rates of different proteins. Consistent with simulations, live-cell single-molecule imaging experiments showed that a fast overall rate of fixation relative to protein-protein interaction dynamics can minimize fixation artifacts. Our work reveals that PFA fixation changes the appearance of LLPS from living cells, presents a caveat in studying LLPS using fixation-based methods, and suggests a mechanism underlying the fixation artifact.
Collapse
Affiliation(s)
- Shawn Irgen-Gioro
- Division of Chemistry and Chemical Engineering, California Institute of TechnologyPasadenaUnited States
| | - Shawn Yoshida
- Division of Chemistry and Chemical Engineering, California Institute of TechnologyPasadenaUnited States,Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
| | - Victoria Walling
- Division of Chemistry and Chemical Engineering, California Institute of TechnologyPasadenaUnited States
| | - Shasha Chong
- Division of Chemistry and Chemical Engineering, California Institute of TechnologyPasadenaUnited States
| |
Collapse
|
27
|
Vishnu US, Estève PO, Chin HG, Pradhan S. One-pot universal NicE-seq: all enzymatic downstream processing of 4% formaldehyde crosslinked cells for chromatin accessibility genomics. Epigenetics Chromatin 2021; 14:53. [PMID: 34895293 PMCID: PMC8665596 DOI: 10.1186/s13072-021-00427-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/16/2021] [Indexed: 11/20/2022] Open
Abstract
Background Accessible chromatin landscape allows binding of transcription factors, and remodeling of promoter and enhancer elements during development. Chromatin accessibility along with integrated multiomics approaches have been used for determining molecular subtypes of cancer in patient samples. Results One-pot Universal NicE-seq (One-pot UniNicE-seq) is an improved accessible chromatin profiling method that negate DNA purification and incorporate sonication free enzymatic fragmentation before library preparation and is suited to a variety of mammalian cells. One-pot UniNicE-seq is versatile, capable of profiling 4% formaldehyde fixed chromatin in as low as 25 fixed cells. Accessible chromatin profile is more efficient on formaldehyde-fixed cells using one-pot UniNicE-seq compared to Tn5 transposon mediated methods, demonstrating its versatility. Conclusion One-pot UniNicE-seq allows the entire process of accessible chromatin labeling and enrichment in one pot at 4% formaldehyde cross-linking conditions. It doesn’t require enzyme titration, compared to other technologies, since accessible chromatin is labelled with 5mC incorporation and deter degradation by nicking enzyme, thus opening the possibility for automation. Supplementary Information The online version contains supplementary material available at 10.1186/s13072-021-00427-2.
Collapse
Affiliation(s)
| | | | - Hang Gyeong Chin
- Genome Biology Division, New England Biolabs, Inc., Ipswich, MA, 01983, USA
| | - Sriharsa Pradhan
- Genome Biology Division, New England Biolabs, Inc., Ipswich, MA, 01983, USA.
| |
Collapse
|
28
|
Zhao D, Wang C, Yan S, Chen R. Advances in the identification of long non-coding RNA binding proteins. Anal Biochem 2021; 639:114520. [PMID: 34896376 DOI: 10.1016/j.ab.2021.114520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 12/04/2021] [Accepted: 12/04/2021] [Indexed: 02/06/2023]
Abstract
Long non-coding RNAs (lncRNAs) are transcripts longer than 200 nt without evident protein coding function. They play important regulatory roles in many biological processes, e.g., gene regulation, chromatin remodeling, and cell fate determination during development. Dysregulation of lncRNAs has been observed in various diseases including cancer. Interacting with proteins is a crucial way for lncRNAs to play their biological roles. Therefore, the characterization of lncRNA binding proteins is important to understand their functions and to delineate the underlying molecular mechanism. Large-scale studies based on mass spectrometry have characterized over a thousand new RNA binding proteins without known RNA-binding domains, thus revealing the complexity and diversity of RNA-protein interactions. In addition, several methods have been developed to identify the binding proteins for particular RNAs of interest. Here we review the progress of the RNA-centric methods for the identification of RNA-protein interactions, focusing on the studies involving lncRNAs, and discuss their strengths and limitations.
Collapse
Affiliation(s)
- Dongqing Zhao
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Chunqing Wang
- The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250014, China
| | - Shuai Yan
- Peking University First Hospital, Peking University Health Science Center, Beijing, 100191, China
| | - Ruibing Chen
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
29
|
Piersimoni L, Kastritis PL, Arlt C, Sinz A. Cross-Linking Mass Spectrometry for Investigating Protein Conformations and Protein-Protein Interactions─A Method for All Seasons. Chem Rev 2021; 122:7500-7531. [PMID: 34797068 DOI: 10.1021/acs.chemrev.1c00786] [Citation(s) in RCA: 110] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mass spectrometry (MS) has become one of the key technologies of structural biology. In this review, the contributions of chemical cross-linking combined with mass spectrometry (XL-MS) for studying three-dimensional structures of proteins and for investigating protein-protein interactions are outlined. We summarize the most important cross-linking reagents, software tools, and XL-MS workflows and highlight prominent examples for characterizing proteins, their assemblies, and interaction networks in vitro and in vivo. Computational modeling plays a crucial role in deriving 3D-structural information from XL-MS data. Integrating XL-MS with other techniques of structural biology, such as cryo-electron microscopy, has been successful in addressing biological questions that to date could not be answered. XL-MS is therefore expected to play an increasingly important role in structural biology in the future.
Collapse
Affiliation(s)
- Lolita Piersimoni
- Department of Pharmaceutical Chemistry & Bioanalytics, Institute of Pharmacy, Kurt-Mothes-Strasse 3, D-06120 Halle (Saale), Germany.,Center for Structural Mass Spectrometry, Kurt-Mothes-Strasse 3, D-06120 Halle (Saale), Germany
| | - Panagiotis L Kastritis
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Kurt-Mothes-Strasse 3a, D-06120 Halle (Saale), Germany.,Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Strasse 3, D-06120 Halle (Saale), Germany.,Biozentrum, Weinbergweg 22, D-06120 Halle (Saale), Germany
| | - Christian Arlt
- Department of Pharmaceutical Chemistry & Bioanalytics, Institute of Pharmacy, Kurt-Mothes-Strasse 3, D-06120 Halle (Saale), Germany.,Center for Structural Mass Spectrometry, Kurt-Mothes-Strasse 3, D-06120 Halle (Saale), Germany
| | - Andrea Sinz
- Department of Pharmaceutical Chemistry & Bioanalytics, Institute of Pharmacy, Kurt-Mothes-Strasse 3, D-06120 Halle (Saale), Germany.,Center for Structural Mass Spectrometry, Kurt-Mothes-Strasse 3, D-06120 Halle (Saale), Germany
| |
Collapse
|
30
|
Smirnova EV, Rakitina TV, Ziganshin RH, Arapidi GP, Saratov GA, Kudriaeva AA, Belogurov AA. Comprehensive Atlas of the Myelin Basic Protein Interaction Landscape. Biomolecules 2021; 11:1628. [PMID: 34827627 PMCID: PMC8615356 DOI: 10.3390/biom11111628] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 12/22/2022] Open
Abstract
Intrinsically disordered myelin basic protein (MBP) is one of the key autoantigens in autoimmune neurodegeneration and multiple sclerosis particularly. MBP is highly positively charged and lacks distinct structure in solution and therefore its intracellular partners are still mostly enigmatic. Here we used combination of formaldehyde-induced cross-linking followed by immunoprecipitation and liquid chromatography-tandem mass spectrometry (LC-MS/MS) to elucidate the interaction network of MBP in mammalian cells and provide the list of potential MBP interacting proteins. Our data suggest that the largest group of MBP-interacting proteins belongs to cellular proteins involved in the protein translation machinery, as well as in the spatial and temporal regulation of translation. MBP interacts with core ribosomal proteins, RNA helicase Ddx28 and RNA-binding proteins STAU1, TDP-43, ADAR-1 and hnRNP A0, which are involved in various stages of RNA biogenesis and processing, including specific maintaining MBP-coding mRNA. Among MBP partners we identified CTNND1, which has previously been shown to be necessary for myelinating Schwann cells for cell-cell interactions and the formation of a normal myelin sheath. MBP binds proteins MAGEB2/D2 associated with neurotrophin receptor p75NTR, involved in pathways that promote neuronal survival and neuronal death. Finally, we observed that MBP interacts with RNF40-a component of heterotetrameric Rnf40/Rnf20 E3 ligase complex, recruited by Egr2, which is the central transcriptional regulator of peripheral myelination. Concluding, our data suggest that MBP may be more actively involved in myelination not only as a main building block but also as a self-regulating element.
Collapse
Affiliation(s)
- Evgeniya V. Smirnova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (E.V.S.); (T.V.R.); (R.H.Z.); (G.P.A.); (G.A.S.); (A.A.K.)
| | - Tatiana V. Rakitina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (E.V.S.); (T.V.R.); (R.H.Z.); (G.P.A.); (G.A.S.); (A.A.K.)
| | - Rustam H. Ziganshin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (E.V.S.); (T.V.R.); (R.H.Z.); (G.P.A.); (G.A.S.); (A.A.K.)
| | - Georgij P. Arapidi
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (E.V.S.); (T.V.R.); (R.H.Z.); (G.P.A.); (G.A.S.); (A.A.K.)
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
- Moscow Institute of Physics and Technology, National Research University, 141701 Dolgoprudny, Moscow Region, Russia
| | - George A. Saratov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (E.V.S.); (T.V.R.); (R.H.Z.); (G.P.A.); (G.A.S.); (A.A.K.)
- Moscow Institute of Physics and Technology, National Research University, 141701 Dolgoprudny, Moscow Region, Russia
| | - Anna A. Kudriaeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (E.V.S.); (T.V.R.); (R.H.Z.); (G.P.A.); (G.A.S.); (A.A.K.)
| | - Alexey A. Belogurov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (E.V.S.); (T.V.R.); (R.H.Z.); (G.P.A.); (G.A.S.); (A.A.K.)
- Department of Fundamental Medicine, Lomonosov Moscow State University, 117192 Moscow, Russia
| |
Collapse
|
31
|
Xiang Y, Yan H, Zheng B, Faheem A, Guo A, Hu C, Hu Y. Light-Regulated Natural Fluorescence of the PCC 6803@ZIF-8 Composite as an Encoded Microsphere for the Detection of Multiple Biomarkers. ACS Sens 2021; 6:2574-2583. [PMID: 34156832 DOI: 10.1021/acssensors.1c00104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The use of color-encoded microspheres for a bead-based assay has attracted increasing attention for high-throughput multiplexed bioassays. A fluorescent PCC 6803@ZIF-8 composite was prepared as a bead-based assay platform by a self-assembled zeolitic imidazolate framework (ZIF-8) on the surface of inactivated PCC 6803 cells. The composite fluorescence owing to the presence of pigment proteins in PCC 6803 could be gradually bleached with the prolongation of the ultraviolet light irradiation time. The composites with different fluorescence intensities were therefore obtained as encoded microspheres for the multiplexed assay. ZIF-8 provides a stable, rigid shell and a large specific surface area for composites, which prevent the composites from breakage during use and storage, simplify the protein immobilization procedure, reduce non-specific adsorption, and enhance the detection sensitivity. The encoded composites were successfully used to detect multiple DNA insertion sequences of Mycobacterium tuberculosis. The presented strategy offers an innovative color-encoding method for high-throughput multiplexed bioassays without the need of using chemically synthesized fluorescent materials.
Collapse
Affiliation(s)
- Yuqiang Xiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Huaduo Yan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Bingjie Zheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Aroosha Faheem
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Aizhen Guo
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Changmin Hu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Yonggang Hu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
32
|
Stott RT, Kritsky O, Tsai LH. Profiling DNA break sites and transcriptional changes in response to contextual fear learning. PLoS One 2021; 16:e0249691. [PMID: 34197463 PMCID: PMC8248687 DOI: 10.1371/journal.pone.0249691] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/27/2021] [Indexed: 12/12/2022] Open
Abstract
Neuronal activity generates DNA double-strand breaks (DSBs) at specific loci in vitro and this facilitates the rapid transcriptional induction of early response genes (ERGs). Physiological neuronal activity, including exposure of mice to learning behaviors, also cause the formation of DSBs, yet the distribution of these breaks and their relation to brain function remains unclear. Here, following contextual fear conditioning (CFC) in mice, we profiled the locations of DSBs genome-wide in the medial prefrontal cortex and hippocampus using γH2AX ChIP-Seq. Remarkably, we found that DSB formation is widespread in the brain compared to cultured primary neurons and they are predominately involved in synaptic processes. We observed increased DNA breaks at genes induced by CFC in neuronal and non-neuronal nuclei. Activity-regulated and proteostasis-related transcription factors appear to govern some of these gene expression changes across cell types. Finally, we find that glia but not neurons have a robust transcriptional response to glucocorticoids, and many of these genes are sites of DSBs. Our results indicate that learning behaviors cause widespread DSB formation in the brain that are associated with experience-driven transcriptional changes across both neuronal and glial cells.
Collapse
Affiliation(s)
- Ryan T. Stott
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, United States of America
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| | - Oleg Kritsky
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, United States of America
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| | - Li-Huei Tsai
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, United States of America
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| |
Collapse
|
33
|
Sap KA, Guler AT, Bury A, Dekkers D, Demmers JAA, Reits EA. Identification of Full-Length Wild-Type and Mutant Huntingtin Interacting Proteins by Crosslinking Immunoprecipitation in Mice Brain Cortex. J Huntingtons Dis 2021; 10:335-347. [PMID: 34151850 PMCID: PMC8609692 DOI: 10.3233/jhd-210476] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: Huntington’s disease is a neurodegenerative disorder caused by a CAG expansion in the huntingtin gene, resulting in a polyglutamine expansion in the ubiquitously expressed mutant huntingtin protein. Objective: Here we set out to identify proteins interacting with the full-length wild-type and mutant huntingtin protein in the mice cortex brain region to understand affected biological processes in Huntington’s disease pathology. Methods: Full-length huntingtin with 20 and 140 polyQ repeats were formaldehyde-crosslinked and isolated via their N-terminal Flag-tag from 2-month-old mice brain cortex. Interacting proteins were identified and quantified by label-free liquid chromatography-mass spectrometry (LC-MS/MS). Results: We identified 30 interactors specific for wild-type huntingtin, 14 interactors specific for mutant huntingtin and 14 shared interactors that interacted with both wild-type and mutant huntingtin, including known interactors such as F8a1/Hap40. Syt1, Ykt6, and Snap47, involved in vesicle transport and exocytosis, were among the proteins that interacted specifically with wild-type huntingtin. Various other proteins involved in energy metabolism and mitochondria were also found to associate predominantly with wild-type huntingtin, whereas mutant huntingtin interacted with proteins involved in translation including Mapk3, Eif3h and Eef1a2. Conclusion: Here we identified both shared and specific interactors of wild-type and mutant huntingtin, which are involved in different biological processes including exocytosis, vesicle transport, translation and metabolism. These findings contribute to the understanding of the roles that wild-type and mutant huntingtin play in a variety of cellular processes both in healthy conditions and Huntington’s disease pathology.
Collapse
Affiliation(s)
- Karen A Sap
- Department of Medical Biology, Amsterdam UMC, location AMC, Amsterdam, The Netherlands
| | - Arzu Tugce Guler
- Department of Medical Biology, Amsterdam UMC, location AMC, Amsterdam, The Netherlands
| | - Aleksandra Bury
- Department of Medical Biology, Amsterdam UMC, location AMC, Amsterdam, The Netherlands
| | - Dick Dekkers
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jeroen A A Demmers
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Eric A Reits
- Department of Medical Biology, Amsterdam UMC, location AMC, Amsterdam, The Netherlands
| |
Collapse
|
34
|
Xiang Y, Yan H, Zheng B, Faheem A, Chen W, Hu Y. E. coli@UiO-67 composites as a recyclable adsorbent for bisphenol A removal. CHEMOSPHERE 2021; 270:128672. [PMID: 33109363 DOI: 10.1016/j.chemosphere.2020.128672] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 10/11/2020] [Accepted: 10/16/2020] [Indexed: 06/11/2023]
Abstract
E. coli@UiO-67 composites were obtained using an effective and simple self-assembly method. The composites showed unique properties as a remarkable and recyclable adsorbent for the efficient removal of bisphenol A (BPA) from water with a high adsorption capacity (402.930 mg g-1). The increase in pore size is a key factor why E. coli@UiO-67 composites maintained high capacity. The reason might be due to that the composites with large pore sizes and defects could effectively improve mass transport and active molecular metal sites. The adsorption of BPA is a chemisorption process due to the Zr-OH groups in UiO-67 exhibit affinity toward BPA molecules, π-π interaction, and electrostatic attraction. The adsorption efficiency remained at 82.5% after 15 cycles without any remarkable changes in the PXRD patterns of E. coli@UiO-67. Moreover, the use of microorganism-loading MOFs could reduce the cost to at least 50% and minimize secondary pollution through nanoscale MOFs usage reduction. The developed composites have advantages, including low-cost, high adsorption capacity, easy to be separated and regenerated from aqueous solution, a large number of cycles, short adsorption equilibrium time, and stability, showing excellent application prospects. The presented strategy would be a potentially promising way to produce novel MOFs-based adsorbents with high-performance to control environmental pollution from wastewater.
Collapse
Affiliation(s)
- Yuqiang Xiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Huaduo Yan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bingjie Zheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Aroosha Faheem
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenli Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Yonggang Hu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
35
|
Kalathiya U, Padariya M, Faktor J, Coyaud E, Alfaro JA, Fahraeus R, Hupp TR, Goodlett DR. Interfaces with Structure Dynamics of the Workhorses from Cells Revealed through Cross-Linking Mass Spectrometry (CLMS). Biomolecules 2021; 11:382. [PMID: 33806612 PMCID: PMC8001575 DOI: 10.3390/biom11030382] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 12/28/2022] Open
Abstract
The fundamentals of how protein-protein/RNA/DNA interactions influence the structures and functions of the workhorses from the cells have been well documented in the 20th century. A diverse set of methods exist to determine such interactions between different components, particularly, the mass spectrometry (MS) methods, with its advanced instrumentation, has become a significant approach to analyze a diverse range of biomolecules, as well as bring insights to their biomolecular processes. This review highlights the principal role of chemistry in MS-based structural proteomics approaches, with a particular focus on the chemical cross-linking of protein-protein/DNA/RNA complexes. In addition, we discuss different methods to prepare the cross-linked samples for MS analysis and tools to identify cross-linked peptides. Cross-linking mass spectrometry (CLMS) holds promise to identify interaction sites in larger and more complex biological systems. The typical CLMS workflow allows for the measurement of the proximity in three-dimensional space of amino acids, identifying proteins in direct contact with DNA or RNA, and it provides information on the folds of proteins as well as their topology in the complexes. Principal CLMS applications, its notable successes, as well as common pipelines that bridge proteomics, molecular biology, structural systems biology, and interactomics are outlined.
Collapse
Affiliation(s)
- Umesh Kalathiya
- International Centre for Cancer Vaccine Science, University of Gdansk, ul. Kładki 24, 80-822 Gdansk, Poland; (M.P.); (J.F.); (J.A.A.); (R.F.); (T.R.H.)
| | - Monikaben Padariya
- International Centre for Cancer Vaccine Science, University of Gdansk, ul. Kładki 24, 80-822 Gdansk, Poland; (M.P.); (J.F.); (J.A.A.); (R.F.); (T.R.H.)
| | - Jakub Faktor
- International Centre for Cancer Vaccine Science, University of Gdansk, ul. Kładki 24, 80-822 Gdansk, Poland; (M.P.); (J.F.); (J.A.A.); (R.F.); (T.R.H.)
| | - Etienne Coyaud
- Protéomique Réponse Inflammatoire Spectrométrie de Mass—PRISM, Inserm U1192, University Lille, CHU Lille, F-59000 Lille, France;
| | - Javier A. Alfaro
- International Centre for Cancer Vaccine Science, University of Gdansk, ul. Kładki 24, 80-822 Gdansk, Poland; (M.P.); (J.F.); (J.A.A.); (R.F.); (T.R.H.)
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, Scotland EH4 2XR, UK
| | - Robin Fahraeus
- International Centre for Cancer Vaccine Science, University of Gdansk, ul. Kładki 24, 80-822 Gdansk, Poland; (M.P.); (J.F.); (J.A.A.); (R.F.); (T.R.H.)
| | - Ted R. Hupp
- International Centre for Cancer Vaccine Science, University of Gdansk, ul. Kładki 24, 80-822 Gdansk, Poland; (M.P.); (J.F.); (J.A.A.); (R.F.); (T.R.H.)
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, Scotland EH4 2XR, UK
| | - David R. Goodlett
- International Centre for Cancer Vaccine Science, University of Gdansk, ul. Kładki 24, 80-822 Gdansk, Poland; (M.P.); (J.F.); (J.A.A.); (R.F.); (T.R.H.)
- Department of Biochemistry & Microbiology, University of Victoria, Victoria, BC V8Z 7X8, Canada
- Genome BC Proteome Centre, University of Victoria, Victoria, BC V8Z 5N3, Canada
| |
Collapse
|
36
|
Folylpoly-ɣ-glutamate synthetase association to the cytoskeleton: Implications to folate metabolon compartmentalization. J Proteomics 2021; 239:104169. [PMID: 33676037 DOI: 10.1016/j.jprot.2021.104169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/03/2021] [Accepted: 02/19/2021] [Indexed: 11/23/2022]
Abstract
Folates are essential for nucleotide biosynthesis, amino acid metabolism and cellular proliferation. Following carrier-mediated uptake, folates are polyglutamylated by folylpoly-ɣ-glutamate synthetase (FPGS), resulting in their intracellular retention. FPGS appears as a long isoform, directed to mitochondria via a leader sequence, and a short isoform reported as a soluble cytosolic protein (cFPGS). However, since folates are labile and folate metabolism is compartmentalized, we herein hypothesized that cFPGS is associated with the cytoskeleton, to couple folate uptake and polyglutamylation and channel folate polyglutamates to metabolon compartments. We show that cFPGS is a cytoskeleton-microtubule associated protein: Western blot analysis revealed that endogenous cFPGS is associated with the insoluble cellular fraction, i.e., cytoskeleton and membranes, but not with the cytosol. Mass spectrometry analysis identified the putative cFPGS interactome primarily consisting of microtubule subunits and cytoskeletal motor proteins. Consistently, immunofluorescence microscopy with cytosol-depleted cells demonstrated the association of cFPGS with the cytoskeleton and unconventional myosin-1c. Furthermore, since anti-microtubule, anti-actin cytoskeleton, and coatomer dissociation-inducing agents yielded perinuclear pausing of cFPGS, we propose an actin- and microtubule-dependent transport of cFPGS between the ER-Golgi and the plasma membrane. These novel findings support the coupling of folate transport with polyglutamylation and folate channeling to intracellular metabolon compartments. SIGNIFICANCE: FPGS, an essential enzyme catalyzing intracellular folate polyglutamylation and efficient retention, was described as a soluble cytosolic enzyme in the past 40 years. However, based on the lability of folates and the compartmentalization of folate metabolism and nucleotide biosynthesis, we herein hypothesized that cytoplasmic FPGS is associated with the cytoskeleton, to couple folate transport and polyglutamylation as well as channel folate polyglutamates to biosynthetic metabolon compartments. Indeed, using complementary techniques including Mass-spectrometry proteomics and fluorescence microscopy, we show that cytoplasmic FPGS is associated with the cytoskeleton and unconventional myosin-1c. This novel cytoskeletal localization of cytoplasmic FPGS supports the dynamic channeling of polyglutamylated folates to metabolon compartments to avoid oxidation and intracellular dilution of folates, while enhancing folate-dependent de novo biosynthesis of nucleotides and DNA/protein methylation.
Collapse
|
37
|
Abstract
Recent advancements in detection methods have made protein condensates, also called granules, a major area of study, but tools to characterize these assemblies need continued development to keep up with evolving paradigms. We have optimized a protocol to separate condensates from cells using chemical cross-linking followed by size-exclusion chromatography (SEC). After SEC fractionation, the samples can be characterized by a variety of approaches including enzyme-linked immunosorbent assay, dynamic light scattering, electron microscopy, and mass spectrometry. The protocol described here has been optimized for cultured mammalian cells and E. coli expressing recombinant proteins. Since the lysates are fractionated by size, this protocol can be modified to study other large protein assemblies, including the nuclear pore complex, and for other tissues or organisms. © 2021 Wiley Periodicals LLC. Basic Protocol 1: SEC separation of cross-linked mammalian cell lysates Alternate Protocol: Preparation of non-crosslinked mammalian cells Basic Protocol 2: SEC separation of E. coli lysate Support Protocol 1: Detecting protein of interest by ELISA Support Protocol 2: TCA precipitation of SEC fractions.
Collapse
Affiliation(s)
- Rachel A. Victor
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85745, USA
| | - Valery F. Thompson
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85745, USA
| | - Jacob C. Schwartz
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85745, USA
| |
Collapse
|
38
|
Bolognesi MM, Mascadri F, Furia L, Faretta M, Bosisio FM, Cattoretti G. Antibodies validated for routinely processed tissues stain frozen sections unpredictably. Biotechniques 2021; 70:137-148. [PMID: 33541132 DOI: 10.2144/btn-2020-0149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background: Antibody validation for tissue staining is required for reproducibility; criteria to ensure validity have been published recently. The majority of these recommendations imply the use of routinely processed (formalin-fixed, paraffin-embedded) tissue. Materials & methods: We applied to lightly fixed frozen sections a panel of 126 antibodies validated for formalin-fixed, paraffin-embedded tissue with extended criteria. Results: Less than 30% of the antibodies performed as expected with all fixations. 35% preferred one fixation over another, 13% gave nonspecific staining and 23% did not stain at all. Conclusion: Individual antibody variability of the paratope's fitness for the fixed antigen may be the cause. Revalidation of established antibody panels is required when they are applied to sections whose fixation and processing are different from the tissue where they were initially validated.
Collapse
Affiliation(s)
- Maddalena M Bolognesi
- Pathology, Department of Medicine & Surgery, Università di Milano-Bicocca, Via Cadore 48, Monza 20900, Italy
| | - Francesco Mascadri
- Pathology, Department of Medicine & Surgery, Università di Milano-Bicocca, Via Cadore 48, Monza 20900, Italy
| | - Laura Furia
- Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, Milan 20139, Italy
| | - Mario Faretta
- Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, Milan 20139, Italy
| | - Francesca M Bosisio
- Laboratory of Translational Cell & Tissue Research, KU Leuven, Herestraat 49, Leuven 3000, Belgium
| | - Giorgio Cattoretti
- Pathology, Department of Medicine & Surgery, Università di Milano-Bicocca, Via Cadore 48, Monza 20900, Italy.,Department of Pathology, Ospedale San Gerardo, ASST-Monza, Via Pergolesi 33, Monza 20900, Italy
| |
Collapse
|
39
|
Feng C, Lotti T, Canziani R, Lin Y, Tagliabue C, Malpei F. Extracellular biopolymers recovered as raw biomaterials from waste granular sludge and potential applications: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 753:142051. [PMID: 33207449 DOI: 10.1016/j.scitotenv.2020.142051] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 06/11/2023]
Abstract
Granular sludge (GS) is a special self-aggregation biofilm. Extracellular polymeric substances (EPS) are mainly associated with the architectural structure, rheological behaviour and functional stability of fine granules, given that their significance to the physicochemical features of the biomass catalysing the biological purification process. This review targets the EPS excretion from GS and introduces newly identified EPS components, EPS distribution in different granules, how to effectively extract and recover EPS from granules, key parameters affecting EPS production, and the potential applications of EPS-based biomaterials. GS-based EPS components are highly diverse and a series of new contents are highlighted. Due to high diversity, emerging extraction standards are proposed and recovery process is capturing particular attention. The major components of EPS are found to be polysaccharides and proteins, which manifest a larger diversity of relative abundance, structures, physical and chemical characteristics, leading to the possibility to sustainably recover raw materials. EPS-based biomaterials not only act as alternatives to synthetic polymers in several applications but also figure in innovative industrial/environmental applications, including gel-forming materials for paper industry, biosorbents, cement curing materials, and flame retardant materials. In the upcoming years, it is foreseen that productions of EPS-based biomaterials from renewable origins would make a significant contribution to the advancement of the circular economy.
Collapse
Affiliation(s)
- Cuijie Feng
- Department of Civil and Environmental Engineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy.
| | - Tommaso Lotti
- Department of Civil and Environmental Engineering, University of Florence, Via di Santa Marta 3, 50139 Florence, Italy
| | - Roberto Canziani
- Department of Civil and Environmental Engineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Yuemei Lin
- Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, the Netherlands
| | - Camilla Tagliabue
- Department of Civil and Environmental Engineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Francesca Malpei
- Department of Civil and Environmental Engineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| |
Collapse
|
40
|
Welicky RL, Rolfe T, Leazer K, Maslenikov KP, Tornabene L, Holtgrieve GW, Wood CL. Fluid-preserved fishes are one solution for assessing historical change in fish trophic level. Ecol Evol 2021; 11:415-426. [PMID: 33437439 PMCID: PMC7790622 DOI: 10.1002/ece3.7061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 11/08/2022] Open
Abstract
There are few resources available for assessing historical change in fish trophic dynamics, but specimens held in natural history collections could serve as this resource. In contemporary trophic ecology studies, trophic and source information can be obtained from compound-specific stable isotope analysis of amino acids of nitrogen (CSIA-AA-N).We subjected whole Sebastes ruberrimus and Clupea pallasii to formalin fixation and 70% ethanol preservation. We extracted tissue samples from each fish pre-fixation, after each chemical change, and then in doubling time for 32-64 days once placed in the final preservative. All samples were subjected to CSIA-AA-N, and their glutamic acid and phenylalanine profiles and associated trophic position were examined for differences over time by species.Glutamic acid and phenylalanine values were inconsistent in direction and magnitude, particularly during formalin fixation, but stabilized similarly (in 70% ethanol) among conspecifics. In some cases, the amino acid values of our final samples were significantly different than our initial pre-preservation samples. Nonetheless, significant differences in glutamic acid, phenylalanine, and estimated trophic position were not detected among samples that were in 70% ethanol for >24 hr.Our results suggest that the relative trophic position of fluid-preserved specimens can be estimated using CSIA-AA-N, and CSIA-AA-N estimates for fluid-preserved specimens should only be reported as relative differences. Timelines of trophic position change can be developed by comparing specimens collected at different points in time, revealing trophic information of the past and cryptic ecosystem responses.
Collapse
Affiliation(s)
- Rachel L. Welicky
- School of Aquatic and Fishery SciencesUniversity of WashingtonSeattleWAUSA
- Unit for Environmental Sciences and ManagementNorth–West UniversityPotchefstroomSouth Africa
| | - Terry Rolfe
- School of OceanographyUniversity of WashingtonSeattleWAUSA
| | - Karrin Leazer
- School of Aquatic and Fishery SciencesUniversity of WashingtonSeattleWAUSA
| | - Katherine P. Maslenikov
- School of Aquatic and Fishery SciencesUniversity of WashingtonSeattleWAUSA
- Burke Museum of Natural History and CultureUniversity of WashingtonSeattleWAUSA
| | - Luke Tornabene
- School of Aquatic and Fishery SciencesUniversity of WashingtonSeattleWAUSA
- Burke Museum of Natural History and CultureUniversity of WashingtonSeattleWAUSA
| | | | - Chelsea L. Wood
- School of Aquatic and Fishery SciencesUniversity of WashingtonSeattleWAUSA
| |
Collapse
|
41
|
Lee D, Rubakhin SS, Kusmartseva I, Wasserfall C, Atkinson MA, Sweedler JV. Removing Formaldehyde‐Induced Peptidyl Crosslinks Enables Mass Spectrometry Imaging of Peptide Hormone Distributions from Formalin‐Fixed Paraffin‐Embedded Tissues. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Dong‐Kyu Lee
- Department of Chemistry and Beckman institute for Advanced Science and Technology University of Illinois at Urbana-Champaign 405 S. Mathews Ave. Urbana IL 61801 USA
| | - Stanislav S. Rubakhin
- Department of Chemistry and Beckman institute for Advanced Science and Technology University of Illinois at Urbana-Champaign 405 S. Mathews Ave. Urbana IL 61801 USA
| | - Irina Kusmartseva
- Department of Pathology, Immunology and Laboratory Medicine College of Medicine University of Florida Gainesville FL 32610 USA
| | - Clive Wasserfall
- Department of Pathology, Immunology and Laboratory Medicine College of Medicine University of Florida Gainesville FL 32610 USA
| | - Mark A. Atkinson
- Department of Pathology, Immunology and Laboratory Medicine College of Medicine University of Florida Gainesville FL 32610 USA
| | - Jonathan V. Sweedler
- Department of Chemistry and Beckman institute for Advanced Science and Technology University of Illinois at Urbana-Champaign 405 S. Mathews Ave. Urbana IL 61801 USA
| |
Collapse
|
42
|
Subelzu N, Schöneich C. Near UV and Visible Light Induce Iron-Dependent Photodegradation Reactions in Pharmaceutical Buffers: Mechanistic and Product Studies. Mol Pharm 2020; 17:4163-4179. [PMID: 32986444 DOI: 10.1021/acs.molpharmaceut.0c00639] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Near UV (λ = 320-400 nm) and visible light (λ = 400-800 nm) can lead to the oxidation of pharmaceutical proteins, which can affect efficiency and promote immunogenicity. However, no concise mechanism has been established for the photo-oxidation of pharmaceutical proteins under near UV and visible light. Here, we show that carboxylic acid buffer-Fe3+ complexes can function as photosensitizers, causing peptide degradation via the formation of various radicals and oxidants. Three pharmaceutical relevant carboxylic acid buffers (citrate, acetate, and succinate) were tested under near UV and visible light. Oxidation reactions were monitored for model peptides containing readily oxidizable amino acids, such as methionine- or leucine-enkephalin and proctolin peptide. Oxidation products were evaluated by RP-HPLC coupled to UV or fluorescent detection and RP-HPLC-MS/MS. Specifically for citrate buffer, the light-induced formation of H2O2, •OH, •CO2-, and formaldehyde was demonstrated. The peptides displayed oxidation of Met, hydroxylation of Tyr and Phe, as well as the formation of novel products from Tyr. Experiments with 18O2 resulted in the incorporation of 18O into various reaction products, consistent with a metal-catalyzed activation of O2 into reactive oxygen species. The addition of EDTA and DTPA did not prevent the oxidation of the peptides and, in some cases, enhanced the oxidation. Our results demonstrate that pharmaceutical buffer-Fe3+ complexes, exposed to UV and visible light, can promote various pathways of oxidation reactions in pharmaceutical formulations.
Collapse
Affiliation(s)
- Natalia Subelzu
- Department of Pharmaceutical Chemistry, University of Kansas, 2095 Constant Avenue, Lawrence, Kansas 66047, United States
| | - Christian Schöneich
- Department of Pharmaceutical Chemistry, University of Kansas, 2095 Constant Avenue, Lawrence, Kansas 66047, United States
| |
Collapse
|
43
|
Lee DK, Rubakhin SS, Kusmartseva I, Wasserfall C, Atkinson MA, Sweedler JV. Removing Formaldehyde-Induced Peptidyl Crosslinks Enables Mass Spectrometry Imaging of Peptide Hormone Distributions from Formalin-Fixed Paraffin-Embedded Tissues. Angew Chem Int Ed Engl 2020; 59:22584-22590. [PMID: 32762062 DOI: 10.1002/anie.202008847] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/05/2020] [Indexed: 12/14/2022]
Abstract
Linking molecular and chemical changes to human disease states depends on the availability of appropriate clinical samples, mostly preserved as formalin-fixed paraffin-embedded (FFPE) specimens stored in tissue banks. Mass spectrometry imaging (MSI) enables the visualization of the spatiotemporal distribution of molecules in biological samples. However, MSI is not effective for imaging FFPE tissues because of the chemical modifications of analytes, including complex crosslinking between nucleophilic moieties. Here we used an MS-compatible inorganic nucleophile, hydroxylamine hydrochloride, to chemically reverse inter- and intra-crosslinks from endogenous molecules. The analyte restoration appears specific for formaldehyde-reactive amino acids. This approach enabled the MSI-assisted localization of pancreatic peptides expressed in the alpha, beta, and gamma cells. Pancreatic islet-like distributions of islet hormones were observed in human FFPE tissues preserved for more than five years, demonstrating that samples from biobanks can effectively be investigated with MSI.
Collapse
Affiliation(s)
- Dong-Kyu Lee
- Department of Chemistry and Beckman institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 S. Mathews Ave., Urbana, IL, 61801, USA
| | - Stanislav S Rubakhin
- Department of Chemistry and Beckman institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 S. Mathews Ave., Urbana, IL, 61801, USA
| | - Irina Kusmartseva
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Clive Wasserfall
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Mark A Atkinson
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Jonathan V Sweedler
- Department of Chemistry and Beckman institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 S. Mathews Ave., Urbana, IL, 61801, USA
| |
Collapse
|
44
|
Patton RD, Sanjeev M, Woodward LA, Mabin JW, Bundschuh R, Singh G. Chemical crosslinking enhances RNA immunoprecipitation for efficient identification of binding sites of proteins that photo-crosslink poorly with RNA. RNA (NEW YORK, N.Y.) 2020; 26:1216-1233. [PMID: 32467309 PMCID: PMC7430673 DOI: 10.1261/rna.074856.120] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 05/17/2020] [Indexed: 05/14/2023]
Abstract
In eukaryotic cells, proteins that associate with RNA regulate its activity to control cellular function. To fully illuminate the basis of RNA function, it is essential to identify such RNA-associated proteins, their mode of action on RNA, and their preferred RNA targets and binding sites. By analyzing catalogs of human RNA-associated proteins defined by ultraviolet light (UV)-dependent and -independent approaches, we classify these proteins into two major groups: (i) the widely recognized RNA binding proteins (RBPs), which bind RNA directly and UV-crosslink efficiently to RNA, and (ii) a new group of RBP-associated factors (RAFs), which bind RNA indirectly via RBPs and UV-crosslink poorly to RNA. As the UV crosslinking and immunoprecipitation followed by sequencing (CLIP-seq) approach will be unsuitable to identify binding sites of RAFs, we show that formaldehyde crosslinking stabilizes RAFs within ribonucleoproteins to allow for their immunoprecipitation under stringent conditions. Using an RBP (CASC3) and an RAF (RNPS1) within the exon junction complex (EJC) as examples, we show that formaldehyde crosslinking combined with RNA immunoprecipitation in tandem followed by sequencing (xRIPiT-seq) far exceeds CLIP-seq to identify binding sites of RNPS1. xRIPiT-seq reveals that RNPS1 occupancy is increased on exons immediately upstream of strong recursively spliced exons, which depend on the EJC for their inclusion.
Collapse
Affiliation(s)
- Robert D Patton
- Department of Physics, The Ohio State University, Columbus, Ohio 43210, USA
- Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Manu Sanjeev
- Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio 43210, USA
| | - Lauren A Woodward
- Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio 43210, USA
| | - Justin W Mabin
- Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio 43210, USA
| | - Ralf Bundschuh
- Department of Physics, The Ohio State University, Columbus, Ohio 43210, USA
- Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio 43210, USA
| | - Guramrit Singh
- Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
45
|
Single and Combined Methods to Specifically or Bulk-Purify RNA-Protein Complexes. Biomolecules 2020; 10:biom10081160. [PMID: 32784769 PMCID: PMC7464009 DOI: 10.3390/biom10081160] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/31/2020] [Accepted: 08/06/2020] [Indexed: 12/12/2022] Open
Abstract
The ribonome interconnects the proteome and the transcriptome. Specific biology is situated at this interface, which can be studied in bulk using omics approaches or specifically by targeting an individual protein or RNA species. In this review, we focus on both RNA- and ribonucleoprotein-(RNP) centric methods. These methods can be used to study the dynamics of the ribonome in response to a stimulus or to identify the proteins that interact with a specific RNA species. The purpose of this review is to provide and discuss an overview of strategies to cross-link RNA to proteins and the currently available RNA- and RNP-centric approaches to study RNPs. We elaborate on some major challenges common to most methods, involving RNP yield, purity and experimental cost. We identify the origin of these difficulties and propose to combine existing approaches to overcome these challenges. The solutions provided build on the recently developed organic phase separation protocols, such as Cross-Linked RNA eXtraction (XRNAX), orthogonal organic phase separation (OOPS) and Phenol-Toluol extraction (PTex).
Collapse
|
46
|
Xiang Y, Yan H, Zheng B, Faheem A, Hu Y. Microorganism@UiO-66-NH 2 Composites for the Detection of Multiple Colorectal Cancer-Related microRNAs with Flow Cytometry. Anal Chem 2020; 92:12338-12346. [PMID: 32657574 DOI: 10.1021/acs.analchem.0c02017] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
High-throughput analyses of multitarget markers can facilitate rapid and accurate clinical diagnosis. Suspension array assays, a flow cytometry-based analysis technology, are among some of the most promising multicomponent analysis methods for clinical diagnostics and research purposes. These assays are appropriate for examining low-volume, complex samples having trace amounts of analytes due to superior elimination of background. Physical shape is an important and promising code system, which uses a set of visually distinct patterns to identify different assay particles. Here, we presented a morphology recognizable suspension arrays based on the microorganisms with different morphologies. In this study, UiO-66-NH2 (UiO stands for University of Oslo) metal-organic frameworks (MOFs), was wrapped on the microorganism surface to form an innovative class of microorganism@UiO-66-NH2 composites for suspension array assays. The use of microorganisms endowed composites barcoding ability with their different morphology and size. Meanwhile, the UiO-66-NH2 provided a stable rigid shell, large specific surface area, and metal(IV) ions with multiple binding sites, which could simplify the protein immobilization procedure and enhance detection sensitivity. With this method, simultaneous detection of three colorectal cancer-related microRNA (miRNA), including miRNA-21, miRNA-17, and miRNA-182, could be easily achieved with femtomolar sensitivity by using a commercial flow cytometer. The synergy between microorganisms and MOFs make the composites a prospective barcoding candidate with excellent characteristics for multicomponent analysis, offering great potential for the development of high throughput and accurate diagnostics.
Collapse
Affiliation(s)
- Yuqiang Xiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.,College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Huaduo Yan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.,College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Bingjie Zheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.,College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Aroosha Faheem
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.,College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yonggang Hu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.,College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
47
|
Firmino AAP, Gorka M, Graf A, Skirycz A, Martinez-Seidel F, Zander K, Kopka J, Beine-Golovchuk O. Separation and Paired Proteome Profiling of Plant Chloroplast and Cytoplasmic Ribosomes. PLANTS (BASEL, SWITZERLAND) 2020; 9:E892. [PMID: 32674508 PMCID: PMC7411607 DOI: 10.3390/plants9070892] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/24/2020] [Accepted: 07/09/2020] [Indexed: 12/14/2022]
Abstract
Conventional preparation methods of plant ribosomes fail to resolve non-translating chloroplast or cytoplasmic ribosome subunits from translating fractions. We established preparation of these ribosome complexes from Arabidopsis thaliana leaf, root, and seed tissues by optimized sucrose density gradient centrifugation of protease protected plant extracts. The method co-purified non-translating 30S and 40S ribosome subunits separated non-translating 50S from 60S subunits, and resolved assembled monosomes from low oligomeric polysomes. Combining ribosome fractionation with microfluidic rRNA analysis and proteomics, we characterized the rRNA and ribosomal protein (RP) composition. The identity of cytoplasmic and chloroplast ribosome complexes and the presence of ribosome biogenesis factors in the 60S-80S sedimentation interval were verified. In vivo cross-linking of leaf tissue stabilized ribosome biogenesis complexes, but induced polysome run-off. Omitting cross-linking, the established paired fractionation and proteome analysis monitored relative abundances of plant chloroplast and cytoplasmic ribosome fractions and enabled analysis of RP composition and ribosome associated proteins including transiently associated biogenesis factors.
Collapse
Affiliation(s)
- Alexandre Augusto Pereira Firmino
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany; (M.G.); (A.G.); (A.S.); (F.M.-S.); (K.Z.); (J.K.); (O.B.-G.)
| | - Michal Gorka
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany; (M.G.); (A.G.); (A.S.); (F.M.-S.); (K.Z.); (J.K.); (O.B.-G.)
| | - Alexander Graf
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany; (M.G.); (A.G.); (A.S.); (F.M.-S.); (K.Z.); (J.K.); (O.B.-G.)
| | - Aleksandra Skirycz
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany; (M.G.); (A.G.); (A.S.); (F.M.-S.); (K.Z.); (J.K.); (O.B.-G.)
| | - Federico Martinez-Seidel
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany; (M.G.); (A.G.); (A.S.); (F.M.-S.); (K.Z.); (J.K.); (O.B.-G.)
- School of BioSciences, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Kerstin Zander
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany; (M.G.); (A.G.); (A.S.); (F.M.-S.); (K.Z.); (J.K.); (O.B.-G.)
| | - Joachim Kopka
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany; (M.G.); (A.G.); (A.S.); (F.M.-S.); (K.Z.); (J.K.); (O.B.-G.)
| | - Olga Beine-Golovchuk
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany; (M.G.); (A.G.); (A.S.); (F.M.-S.); (K.Z.); (J.K.); (O.B.-G.)
- Heidelberg University, Biochemie-Zentrum, Nuclear Pore Complex and Ribosome Assembly, 69120 Heidelberg, Germany
| |
Collapse
|
48
|
de Jonge WJ, Brok M, Kemmeren P, Holstege FCP. An Optimized Chromatin Immunoprecipitation Protocol for Quantification of Protein-DNA Interactions. STAR Protoc 2020; 1:100020. [PMID: 32685929 PMCID: PMC7357673 DOI: 10.1016/j.xpro.2020.100020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Transcription factors are important regulators of cell fate and function. Knowledge about where transcription factors are bound in the genome is crucial for understanding their function. A common method to study protein-DNA interactions is chromatin immunoprecipitation (ChIP). Here, we present a revised ChIP protocol to determine protein-DNA interactions for the yeast Saccharomyces cerevisiae. We optimized several aspects of the procedure, including cross-linking and quenching, cell lysis, and immunoprecipitation steps. This protocol facilitates sensitive and reproducible quantitation of protein-DNA interactions. For complete details on the use and execution of this protocol, please refer to (de Jonge et al., 2019). Chromatin immunoprecipitation protocol to quantify protein-DNA interactions Optimized for sensitivity and robustness Optimized for quantitative comparisons between experiments, e.g., in time series Highlights common ChIP pitfalls, variable steps, and how to increase reproducibility
Collapse
Affiliation(s)
- Wim J de Jonge
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands
| | - Mariël Brok
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands
| | - Patrick Kemmeren
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands
| | - Frank C P Holstege
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands
| |
Collapse
|
49
|
Liao J, Huang H. Review on Magnetic Natural Polymer Constructed Hydrogels as Vehicles for Drug Delivery. Biomacromolecules 2020; 21:2574-2594. [DOI: 10.1021/acs.biomac.0c00566] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jing Liao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Huihua Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
50
|
Zhu H, Sun Y, Yi T, Wang S, Mi J, Meng Q. Tough synthetic spider-silk fibers obtained by titanium dioxide incorporation and formaldehyde cross-linking in a simple wet-spinning process. Biochimie 2020; 175:77-84. [PMID: 32417459 DOI: 10.1016/j.biochi.2020.05.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/01/2020] [Accepted: 05/04/2020] [Indexed: 11/18/2022]
Abstract
Due to its unique mechanical properties, spider silk shows great promise as a strong super-thin fiber in many fields. Although progress has been made in the field of synthesizing spider-silk fiber from recombinant spidroin (spider silk protein) in the last few decades, methods to obtain synthetic spider-silk fibers as tough as natural silk from small-sized recombinant protein with a simple spinning process have eluded scientists. In this paper, a recombinant spidroin (MW: 93.4 kDa) was used to spin tough synthetic spider-silk fibers with a simple wet-spinning process. Titanium oxide incorporation and formaldehyde cross-linking were used to improve the mechanical properties of synthetic spider-silk fibers. Fibers treated with incorporation or/and cross-linking varied in microstructure, strength and extensibility while all exhibited enhanced strength and toughness. In particular, one fiber possessed a toughness of 249 ± 22 MJ/m3. This paper presents a new method to successfully spin tough spider-silk fibers in a simple way.
Collapse
Affiliation(s)
- Hongnian Zhu
- Institute of Biological Sciences and Biotechnology, Donghua University, Shanghai 201620, China
| | - Yuan Sun
- Institute of Biological Sciences and Biotechnology, Donghua University, Shanghai 201620, China
| | - Tuo Yi
- Institute of Biological Sciences and Biotechnology, Donghua University, Shanghai 201620, China
| | - Suyang Wang
- Institute of Biological Sciences and Biotechnology, Donghua University, Shanghai 201620, China
| | - Junpeng Mi
- Institute of Biological Sciences and Biotechnology, Donghua University, Shanghai 201620, China
| | - Qing Meng
- Institute of Biological Sciences and Biotechnology, Donghua University, Shanghai 201620, China.
| |
Collapse
|