1
|
Gosset-Erard C, Aubriet F, Leize-Wagner E, François YN, Chaimbault P. Hyphenation of Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) with separation methods: The art of compromises and the possible - A review. Talanta 2023; 257:124324. [PMID: 36780779 DOI: 10.1016/j.talanta.2023.124324] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/05/2023]
Abstract
This review provides an overview of the online hyphenation of Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR MS) with separation methods to date. The online coupling between separation techniques (gas and liquid chromatography, capillary electrophoresis) and FT-ICR MS essentially raises questions of compromise and is not look as straightforward as hyphenation with other analyzers (QTOF-MS for instance). FT-ICR MS requires time to reach its highest resolving power and accuracy in mass measurement capabilities whereas chromatographic and electrophoretic peaks are transient. In many applications, the strengths and the weaknesses of each technique are balanced by their hyphenation. Untargeted "Omics" (e.g. proteomics, metabolomics, petroleomics, …) is one of the main areas of application for FT-ICR MS hyphenated to online separation techniques because of the complexity of the sample. FT-ICR MS achieves the required high mass measurement accuracy to determine accurate molecular formulae and resolution for isobar distinction. Meanwhile separation techniques highlight isomers and reduce the ion suppression effects extending the dynamic range. Even if the implementation of FT-ICR MS hyphenated with online separation methods is a little trickier (the art of compromise), this review shows that it provides unparalleled results to the scientific community (the art of the possible), along with raising the issue of its future in the field with the relentless technological progress.
Collapse
Affiliation(s)
- Clarisse Gosset-Erard
- Université de Lorraine, LCP-A2MC, F-57000, Metz, France; Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS) UMR 7140 (Unistra-CNRS), Université de, Strasbourg, France.
| | | | - Emmanuelle Leize-Wagner
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS) UMR 7140 (Unistra-CNRS), Université de, Strasbourg, France.
| | - Yannis-Nicolas François
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS) UMR 7140 (Unistra-CNRS), Université de, Strasbourg, France.
| | | |
Collapse
|
2
|
Borgert SR, Henke S, Witzgall F, Schmelz S, Zur Lage S, Hotop SK, Stephen S, Lübken D, Krüger J, Gomez NO, van Ham M, Jänsch L, Kalesse M, Pich A, Brönstrup M, Häussler S, Blankenfeldt W. Moonlighting chaperone activity of the enzyme PqsE contributes to RhlR-controlled virulence of Pseudomonas aeruginosa. Nat Commun 2022; 13:7402. [PMID: 36456567 PMCID: PMC9715718 DOI: 10.1038/s41467-022-35030-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 11/14/2022] [Indexed: 12/05/2022] Open
Abstract
Pseudomonas aeruginosa is a major cause of nosocomial infections and also leads to severe exacerbations in cystic fibrosis or chronic obstructive pulmonary disease. Three intertwined quorum sensing systems control virulence of P. aeruginosa, with the rhl circuit playing the leading role in late and chronic infections. The majority of traits controlled by rhl transcription factor RhlR depend on PqsE, a dispensable thioesterase in Pseudomonas Quinolone Signal (PQS) biosynthesis that interferes with RhlR through an enigmatic mechanism likely involving direct interaction of both proteins. Here we show that PqsE and RhlR form a 2:2 protein complex that, together with RhlR agonist N-butanoyl-L-homoserine lactone (C4-HSL), solubilizes RhlR and thereby renders the otherwise insoluble transcription factor active. We determine crystal structures of the complex and identify residues essential for the interaction. To corroborate the chaperone-like activity of PqsE, we design stability-optimized variants of RhlR that bypass the need for C4-HSL and PqsE in activating PqsE/RhlR-controlled processes of P. aeruginosa. Together, our data provide insight into the unique regulatory role of PqsE and lay groundwork for developing new P. aeruginosa-specific pharmaceuticals.
Collapse
Affiliation(s)
- Sebastian Roman Borgert
- Department Structure and Function of Proteins, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Steffi Henke
- Department Structure and Function of Proteins, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Florian Witzgall
- Department Structure and Function of Proteins, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Stefan Schmelz
- Department Structure and Function of Proteins, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Susanne Zur Lage
- Department Structure and Function of Proteins, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Sven-Kevin Hotop
- Department Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Steffi Stephen
- Department Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Dennis Lübken
- Institute of Organic Chemistry, Leibniz University Hannover, Schneiderberg 1B, 30167, Hannover, Germany
| | - Jonas Krüger
- Department Molecular Bacteriology, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Nicolas Oswaldo Gomez
- Department Molecular Bacteriology, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Marco van Ham
- Cellular Proteomics, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Lothar Jänsch
- Cellular Proteomics, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Markus Kalesse
- Institute of Organic Chemistry, Leibniz University Hannover, Schneiderberg 1B, 30167, Hannover, Germany
| | - Andreas Pich
- Institute for Toxicology, Core Facility Proteomics, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Mark Brönstrup
- Department Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Susanne Häussler
- Department Molecular Bacteriology, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Wulf Blankenfeldt
- Department Structure and Function of Proteins, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany.
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany.
| |
Collapse
|
3
|
Basu K, Kharkwal AC, Varma A. Pseudomonas as Biocontrol Agent for Fungal Disease Management in Rice Crop. Fungal Biol 2022. [DOI: 10.1007/978-3-031-04805-0_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
4
|
Acyl-Homoserine Lactone from Plant-Associated Pseudomonas sp. Influences Solanum lycopersicum Germination and Root Growth. J Chem Ecol 2020; 46:699-706. [DOI: 10.1007/s10886-020-01186-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/29/2020] [Accepted: 05/22/2020] [Indexed: 12/15/2022]
|
5
|
Readel E, Portillo A, Talebi M, Armstrong DW. Enantiomeric separation of quorum sensing autoinducer homoserine lactones using GC-MS and LC-MS. Anal Bioanal Chem 2020; 412:2927-2937. [DOI: 10.1007/s00216-020-02534-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/12/2020] [Accepted: 02/18/2020] [Indexed: 10/24/2022]
|
6
|
SprI/SprR Quorum Sensing System of Serratia proteamaculans 94. BIOMED RESEARCH INTERNATIONAL 2019; 2019:3865780. [PMID: 31915691 PMCID: PMC6930789 DOI: 10.1155/2019/3865780] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 10/01/2019] [Accepted: 11/12/2019] [Indexed: 12/16/2022]
Abstract
In this study, we investigated the quorum sensing (QS) regulatory system of the psychrotrophic strain Serratia proteamaculans 94 isolated from spoiled refrigerated meat. The strain produced several N-acyl-L-homoserine-lactone (AHL) QS signal molecules, with N-(3-oxo-hexanoyl)-L-homoserine lactone and N-(3-hydroxy-hexanoyl)-L-homoserine lactone as two main types. The sprI and sprR genes encoding an AHL synthase and a receptor regulatory protein, respectively, were cloned and sequenced. Analysis of their nucleotide sequence showed that these genes were transcribed convergently and that their reading frames partly overlapped by 23 bp in the terminal regions. The genes were highly similar to the luxI/luxR-type QS genes of other Gram-negative bacteria. An spr-box (analog of the lux-box) was identified upstream of the sprR gene and found to be overlapped with the sequence of -10 sequence site in the promoter region of this gene. Inactivation of the sprI gene led to the absence of AHL synthesis, chitinolytic activity, and swimming motility; decrease of extracellular proteolytic activity; affected the cellular fatty acid composition; and reduced suppression of the fungal plant pathogen mycelium growth by volatile compounds emitted by strain S. proteamaculans 94. The data obtained demonstrated the important role of the QS system in the regulation of cellular processes in S. proteamaculans 94.
Collapse
|
7
|
Bianco G, Pascale R, Carbone CF, Acquavia MA, Cataldi TRI, Schmitt-Kopplin P, Buchicchio A, Russo D, Milella L. Determination of soyasaponins in Fagioli di Sarconi beans (Phaseolus vulgaris L.) by LC-ESI-FTICR-MS and evaluation of their hypoglycemic activity. Anal Bioanal Chem 2017; 410:1561-1569. [PMID: 29270658 DOI: 10.1007/s00216-017-0806-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/26/2017] [Accepted: 12/06/2017] [Indexed: 11/25/2022]
Abstract
Soyasaponins are oleanene-type triterpenoid saponins, naturally occurring in many edible plants that have attracted a great deal of attention for their role in preventing chronic diseases. The aim of this study was to establish the distribution and the content of soyasaponins in 21 ecotypes of Fagioli di Sarconi beans (Phaseolus vulgaris, Leguminosae). High-performance reversed-phase liquid chromatography (RPLC) with positive electrospray ionization (ESI(+)) and Fourier transform ion cyclotron resonance (FTICR) mass spectrometry (MS) in conjunction with infrared multiphoton dissociation (IRMPD) was applied for the unambiguous identification of soyasaponins Ba (m/z 959.5213, [C48H79O19]+), Bb (m/z 943.5273, [C48H79O18]+), Bd (m/z 957.5122, [C48H77O19]+), and Be (m/z 941.5166, [C48H77O18]+), which are the only commercially available reference standards. In addition, the several diagnostic product ions generated by IRMPD in the ICR-MS cell allowed us the putative identification of soyasaponins Bb' (m/z 797.4680, [C42H69O14]+), αg (m/z 1085.5544, [C54H85O22]+), βg (m/z 1069.5600, [C54H85O21]+), and γg (m/z 923.5009, [C48H75O17]+), establishing thus their membership in the soyasaponin group. Quantitative and semiquantitative analysis of identified soyasaponins were also performed by RPLC-ESI(+) FTICR-MS; the total concentration levels were found ranging from 83.6 ± 9.3 to 767 ± 37 mg/kg. In vitro hypoglycemic outcomes of four soyasaponin standards were evaluated; significant inhibitory activities were obtained with IC50 values ranging from 1.5 ± 0.1 to 2.3 ± 0.2 μg/mL and 12.0 ± 1.1 to 29.4 ± 1.4 μg/mL for α-glucosidase and α-amylase, respectively. This study represents the first detailed investigation on the antidiabetic activity of bioactive constituents found in Fagioli di Sarconi beans. Graphical abstract The first detailed RPLC-ESI(+) FTICR-MS investigation of the qualitative and semiquantitative profile of soyasaponins, occurring in 21 ecotypes of Fagioli di Sarconi beans (P. vulgaris L.).
Collapse
Affiliation(s)
- Giuliana Bianco
- Dipartimento di Scienze, Università degli Studi della Basilicata, via dell'Ateneo Lucano, 10-85100, Potenza, Italy.
| | - Raffaella Pascale
- Scuola di Ingegneria, Università degli Studi della Basilicata, via dell'Ateneo Lucano, 10-85100, Potenza, Italy
| | - Cecilia F Carbone
- Dipartimento di Scienze, Università degli Studi della Basilicata, via dell'Ateneo Lucano, 10-85100, Potenza, Italy
| | - Maria A Acquavia
- Dipartimento di Scienze, Università degli Studi della Basilicata, via dell'Ateneo Lucano, 10-85100, Potenza, Italy
| | - Tommaso R I Cataldi
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via E. Orabona, 4, 70126, Bari, Italy
| | - Philippe Schmitt-Kopplin
- Helmholtz Zentrum Munchen, Analytical BioGeoChemistry, 85764, Neuherberg, Germany
- Technische Universität Muenchen, Chair of Analytical Food Chemistry, Freising-Weihenstephan, Germany
| | - Alessandro Buchicchio
- Scuola di Ingegneria, Università degli Studi della Basilicata, via dell'Ateneo Lucano, 10-85100, Potenza, Italy
| | - Daniela Russo
- Dipartimento di Scienze, Università degli Studi della Basilicata, via dell'Ateneo Lucano, 10-85100, Potenza, Italy
| | - Luigi Milella
- Dipartimento di Scienze, Università degli Studi della Basilicata, via dell'Ateneo Lucano, 10-85100, Potenza, Italy
| |
Collapse
|
8
|
Yasmin S, Hafeez FY, Mirza MS, Rasul M, Arshad HMI, Zubair M, Iqbal M. Biocontrol of Bacterial Leaf Blight of Rice and Profiling of Secondary Metabolites Produced by Rhizospheric Pseudomonas aeruginosa BRp3. Front Microbiol 2017; 8:1895. [PMID: 29018437 PMCID: PMC5622989 DOI: 10.3389/fmicb.2017.01895] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 09/15/2017] [Indexed: 01/28/2023] Open
Abstract
Xanthomonas oryzae pv. oryzae (Xoo) is widely prevalent and causes Bacterial Leaf Blight (BLB) in Basmati rice grown in different areas of Pakistan. There is a need to use environmentally safe approaches to overcome the loss of grain yield in rice due to this disease. The present study aimed to develop inocula, based on native antagonistic bacteria for biocontrol of BLB and to increase the yield of Super Basmati rice variety. Out of 512 bacteria isolated from the rice rhizosphere and screened for plant growth promoting determinants, the isolate BRp3 was found to be the best as it solubilized 97 μg/ mL phosphorus, produced 30 μg/mL phytohormone indole acetic acid and 15 mg/ L siderophores in vitro. The isolate BRp3 was found to be a Pseudomonas aeruginosa based on 16S rRNA gene sequencing (accession no. HQ840693). This bacterium showed antagonism in vitro against different phytopathogens including Xoo and Fusarium spp. Strain BRp3 showed consistent pathogen suppression of different strains of BLB pathogen in rice. Mass spectrometric analysis detected the production of siderophores (1-hydroxy-phenazine, pyocyanin, and pyochellin), rhamnolipids and a series of already characterized 4-hydroxy-2-alkylquinolines (HAQs) as well as novel 2,3,4-trihydroxy-2-alkylquinolines and 1,2,3,4-tetrahydroxy-2-alkylquinolines in crude extract of BRp3. These secondary metabolites might be responsible for the profound antibacterial activity of BRp3 against Xoo pathogen. Another contributing factor toward the suppression of the pathogen was the induction of defense related enzymes in the rice plant by the inoculated strain BRp3. When used as an inoculant in a field trial, this strain enhanced the grain and straw yields by 51 and 55%, respectively, over non-inoculated control. Confocal Laser Scanning Microscopy (CLSM) used in combination with immunofluorescence marker confirmed P. aeruginosa BRp3 in the rice rhizosphere under sterilized as well as field conditions. The results provide evidence that novel secondary metabolites produced by BRp3 may contribute to its activity as a biological control agent against Xoo and its potential to promote the growth and yield of Super Basmati rice.
Collapse
Affiliation(s)
- Sumera Yasmin
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Fauzia Y Hafeez
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan.,Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, Pakistan
| | - Muhammad S Mirza
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Maria Rasul
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Hafiz M I Arshad
- Plant Protection Division, Nuclear Institute of Agriculture and Biology, Faisalabad, Pakistan
| | - Muhammad Zubair
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Mazhar Iqbal
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| |
Collapse
|
9
|
Pascale R, Bianco G, Cataldi TRI, Kopplin PS, Bosco F, Vignola L, Uhl J, Lucio M, Milella L. Mass spectrometry-based phytochemical screening for hypoglycemic activity of Fagioli di Sarconi beans (Phaseolus vulgaris L.). Food Chem 2017; 242:497-504. [PMID: 29037720 DOI: 10.1016/j.foodchem.2017.09.091] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 08/08/2017] [Accepted: 09/18/2017] [Indexed: 02/08/2023]
Abstract
The present study deals with the evaluation of antidiabetic activities of Fagioli di Sarconi beans (Phaseolus vulgaris), including 21 ecotypes protected by the European Union with the mark PGI (i.e., Protected Geographical Indication), and cultivated in Basilicata (southern Italy). For this purpose, α-glucosidase and α-amylase assays were assessed; among all bean ecotypes, the tight green seed colour of Verdolino extracts exhibited the highest α-glucosidase and α-amylase inhibitory activity with IC50=1.1±0.1μg/ml and IC50=19.3±1.1μg/ml, respectively. Phytochemical compound screening of all Fagioli di Sarconi beans performed by flow injection-electrospray ionization-ultrahigh resolution mass spectrometry (uHRMS) and based on the calculation of elemental formulas from accurate m/z values, was helpful to annotate specific compounds, such as alkaloids, saponins, flavonoids, and terpenoids, which are most likely responsible for their biological activity.
Collapse
Affiliation(s)
- Raffaella Pascale
- Scuola di Ingegneria, Università degli Studi della Basilicata, via dell'Ateneo Lucano, 10, 85100 Potenza, Italy
| | - Giuliana Bianco
- Dipartimento di Scienze, Università degli Studi della Basilicata, via dell'Ateneo Lucano, 10, 85100 Potenza, Italy.
| | - Tommaso R I Cataldi
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via E. Orabona, 4, 70126 Bari, Italy
| | - Philippe-Schmitt Kopplin
- Helmholtz Zentrum Muenchen, Analytical BioGeoChemistry, Ingolstaedter Landstr. 1, D-85764 Neuherberg, Germany; Technische Universität Muenchen, Chair of Analytical Food Chemistry, Alte Akademie 10, D-85354 Weihenstephan/Freising, Germany
| | - Federica Bosco
- Dipartimento di Scienze, Università degli Studi della Basilicata, via dell'Ateneo Lucano, 10, 85100 Potenza, Italy
| | - Lisiana Vignola
- Dipartimento di Scienze, Università degli Studi della Basilicata, via dell'Ateneo Lucano, 10, 85100 Potenza, Italy
| | - Jenny Uhl
- Helmholtz Zentrum Muenchen, Analytical BioGeoChemistry, Ingolstaedter Landstr. 1, D-85764 Neuherberg, Germany
| | - Marianna Lucio
- Helmholtz Zentrum Muenchen, Analytical BioGeoChemistry, Ingolstaedter Landstr. 1, D-85764 Neuherberg, Germany
| | - Luigi Milella
- Dipartimento di Scienze, Università degli Studi della Basilicata, via dell'Ateneo Lucano, 10, 85100 Potenza, Italy
| |
Collapse
|
10
|
Baicalin inhibits biofilm formation, attenuates the quorum sensing-controlled virulence and enhances Pseudomonas aeruginosa clearance in a mouse peritoneal implant infection model. PLoS One 2017; 12:e0176883. [PMID: 28453568 PMCID: PMC5409170 DOI: 10.1371/journal.pone.0176883] [Citation(s) in RCA: 180] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 04/18/2017] [Indexed: 11/19/2022] Open
Abstract
The quorum sensing (QS) circuit plays a role in the precise regulation of genes controlling virulence factors and biofilm formation in Pseudomonas aeruginosa. QS-controlled biofilm formation by Pseudomonas aeruginosa in clinical settings has remained controversial due to emerging drug resistance; therefore, screening diverse compounds for anti-biofilm or anti-QS activities is important. This study demonstrates the ability of sub-minimum inhibitory concentrations (sub-MICs) of baicalin, an active natural compound extracted from the traditional Chinese medicinal Scutellaria baicalensis, to inhibit the formation of Pseudomonas aeruginosa biofilms and enhance the bactericidal effects of various conventional antibiotics in vitro. In addition, baicalin exerted dose-dependent inhibitory effects on virulence phenotypes (LasA protease, LasB elastase, pyocyanin, rhamnolipid, motilities and exotoxin A) regulated by QS in Pseudomonas aeruginosa. Moreover, the expression levels of QS-regulatory genes, including lasI, lasR, rhlI, rhlR, pqsR and pqsA, were repressed after sub-MIC baicalin treatment, resulting in significant decreases in the QS signaling molecules 3-oxo-C12-HSL and C4-HSL, confirming the ability of baicalin-mediated QS inhibition to alter gene and protein expression. In vivo experiments indicated that baicalin treatment reduces Pseudomonas aeruginosa pathogenicity in Caenorhabditis elegans. Greater worm survival in the baicalin-treated group manifested as an increase in the LT50 from 24 to 96 h. In a mouse peritoneal implant infection model, baicalin treatment enhanced the clearance of Pseudomonas aeruginosa from the implants of mice infected with Pseudomonas aeruginosa compared with the control group. Moreover, the combination of baicalin and antibiotics significantly reduced the numbers of colony-forming units in the implants to a significantly greater degree than antibiotic treatment alone. Pathological and histological analyses revealed mitigation of the inflammatory response and reduced cell infiltration in the peritoneal tissue surrounding the implants after baicalin treatment. Measurement of the cytokine levels in the peritoneal lavage fluid of mice in the baicalin treatment group revealed a decrease in IL-4, an increase in interferon γ (IFN-γ), and a reversed IFN-γ/IL-4 ratio compared with the control group, indicating that baicalin treatment activated the Th1-induced immune response to expedite bacterial load clearance. Based on these results, baicalin might be a potent QS inhibitor and anti-biofilm agent for combating Pseudomonas aeruginosa biofilm-related infections.
Collapse
|
11
|
Ruysbergh E, Stevens CV, De Kimpe N, Mangelinckx S. Synthesis and analysis of stable isotope-labelled N-acyl homoserine lactones. RSC Adv 2016. [DOI: 10.1039/c6ra17797b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
An easy, reliable manner to make suitable, deuterated standards of AHL-molecules belonging to all three important classes of AHLs is presented, starting from a cheap and commercially available deuterium source.
Collapse
Affiliation(s)
- Ewout Ruysbergh
- Department of Sustainable Organic Chemistry and Technology
- Faculty of Bioscience Engineering
- Ghent University
- B-9000 Ghent
- Belgium
| | - Christian V. Stevens
- Department of Sustainable Organic Chemistry and Technology
- Faculty of Bioscience Engineering
- Ghent University
- B-9000 Ghent
- Belgium
| | - Norbert De Kimpe
- Department of Sustainable Organic Chemistry and Technology
- Faculty of Bioscience Engineering
- Ghent University
- B-9000 Ghent
- Belgium
| | - Sven Mangelinckx
- Department of Sustainable Organic Chemistry and Technology
- Faculty of Bioscience Engineering
- Ghent University
- B-9000 Ghent
- Belgium
| |
Collapse
|
12
|
Kumar JS, Umesha S, Prasad KS, Niranjana P. Detection of Quorum Sensing Molecules and Biofilm Formation in Ralstonia solanacearum. Curr Microbiol 2015; 72:297-305. [PMID: 26620535 DOI: 10.1007/s00284-015-0953-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Accepted: 10/21/2015] [Indexed: 01/25/2023]
|
13
|
Rapid metabolic profiling of developing Pseudomonas aeruginosa biofilms by high-resolution mass spectrometry fingerprinting. ANN MICROBIOL 2015. [DOI: 10.1007/s13213-014-0930-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
14
|
Kim YW, Sung C, Lee S, Kim KJ, Yang YH, Kim BG, Lee YK, Ryu HW, Kim YG. MALDI-MS-Based Quantitative Analysis for Ketone Containing Homoserine Lactones in Pseudomonas aeruginosa. Anal Chem 2015; 87:858-63. [DOI: 10.1021/ac5039362] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Yoon-Woo Kim
- Department
of Chemical Engineering, Soongsil University, Seoul 156-743, Korea
| | - Changmin Sung
- School
of Chemical and Biological Engineering, Seoul National University, Seoul 151-742, Korea
| | - Seulee Lee
- Department
of Chemical Engineering, Soongsil University, Seoul 156-743, Korea
| | - Kyoung-Jin Kim
- Department
of Chemical Engineering, Soongsil University, Seoul 156-743, Korea
| | - Yung-Hun Yang
- Department
of Microbial Engineering, College of Engineering, Konkuk University, Seoul 143-701, Korea
| | - Byung-Gee Kim
- School
of Chemical and Biological Engineering, Seoul National University, Seoul 151-742, Korea
| | - Yoo Kyung Lee
- Arctic Research
Center, Korea Polar Research Institute, Incheon 406-840, Korea
| | - Hee Wook Ryu
- Department
of Chemical Engineering, Soongsil University, Seoul 156-743, Korea
| | - Yun-Gon Kim
- Department
of Chemical Engineering, Soongsil University, Seoul 156-743, Korea
| |
Collapse
|
15
|
Purohit AA, Johansen JA, Hansen H, Leiros HKS, Kashulin A, Karlsen C, Smalås A, Haugen P, Willassen NP. Presence of acyl-homoserine lactones in 57 members of the Vibrionaceae family. J Appl Microbiol 2013; 115:835-47. [PMID: 23725044 PMCID: PMC3910146 DOI: 10.1111/jam.12264] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 05/10/2013] [Accepted: 05/25/2013] [Indexed: 12/27/2022]
Abstract
AIMS The aim of this study was to use a sensitive method to screen and quantify 57 Vibrionaceae strains for the production of acyl-homoserine lactones (AHLs) and map the resulting AHL profiles onto a host phylogeny. METHODS AND RESULTS We used a high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) protocol to measure AHLs in spent media after bacterial growth. First, the presence/absence of AHLs (qualitative analysis) was measured to choose internal standard for subsequent quantitative AHL measurements. We screened 57 strains from three genera (Aliivibrio, Photobacterium and Vibrio) of the same family (i.e. Vibrionaceae). Our results show that about half of the isolates produced multiple AHLs, typically at 25-5000 nmol l(-1) . CONCLUSIONS This work shows that production of AHL quorum sensing signals is found widespread among Vibrionaceae bacteria and that closely related strains typically produce similar AHL profiles. SIGNIFICANCE AND IMPACT OF THE STUDY The AHL detection protocol presented in this study can be applied to a broad range of bacterial samples and may contribute to a wider mapping of AHL production in bacteria, for example, in clinically relevant strains.
Collapse
Affiliation(s)
- A A Purohit
- The Norwegian Structural Biology Centre, University of Tromsø, Tromsø, Norway
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Zhao ZG, Yan SS, Yu YM, Mi N, Zhang LX, Liu J, Li XL, Liu F, Xu JF, Yang WQ, Li GM. An aqueous extract of Yunnan Baiyao inhibits the quorum-sensing-related virulence of Pseudomonas aeruginosa. J Microbiol 2013; 51:207-12. [PMID: 23625222 DOI: 10.1007/s12275-013-2595-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 12/30/2012] [Indexed: 11/29/2022]
Abstract
Yunnan Baiyao is a famous Chinese medicine that has long been directly applied to wounds to reduce bleeding, pain, and swelling without causing infection. However, little is known about its ability to prevent infection. The present study aimed to assess in vitro the anti-virulence activity of an aqueous extract of Yunnan Baiyao (YBX) using Pseudomonas aeruginosa as a pathogenic model. We found that a sub-MIC (2.5 mg/ml) of YBX can efficiently interfere with the quorum-sensing (QS) signaling circuit. Real-time polymerase chain reaction analysis showed that a sub-MIC of YBX down-regulated the transcriptions of lasR, lasI, rhlR, and rhlI, which resulted in global attenuation of QS-regulated virulence activities, such as biofilm formation, and secretion of LasA protease, LasB elastase and pyocyanin. Further, YBX reduced the motility of P. aeruginosa related to QS, and impaired the formation of biofilms. These results suggest that YBX may possess global inhibitory activity against the virulence of P. aeruginosa and that YBX may also exhibit antimicrobial activity in vivo. The present study suggests that Yunnan Baiyao represents a potential source for isolating novel, safe, and efficacious antimicrobial agents.
Collapse
Affiliation(s)
- Zu-Guo Zhao
- Department of Microbiology and Immunology, Guangdong Medical College, Zhanjiang 524023, P. R. China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Gene PA2449 is essential for glycine metabolism and pyocyanin biosynthesis in Pseudomonas aeruginosa PAO1. J Bacteriol 2013; 195:2087-100. [PMID: 23457254 DOI: 10.1128/jb.02205-12] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many pseudomonads produce redox active compounds called phenazines that function in a variety of biological processes. Phenazines are well known for their toxicity against non-phenazine-producing organisms, which allows them to serve as crucial biocontrol agents and virulence factors during infection. As for other secondary metabolites, conditions of nutritional stress or limitation stimulate the production of phenazines, but little is known of the molecular details underlying this phenomenon. Using a combination of microarray and metabolite analyses, we demonstrate that the assimilation of glycine as a carbon source and the biosynthesis of pyocyanin in Pseudomonas aeruginosa PAO1 are both dependent on the PA2449 gene. The inactivation of the PA2449 gene was found to influence the transcription of a core set of genes encoding a glycine cleavage system, serine hydroxymethyltransferase, and serine dehydratase. PA2449 also affected the transcription of several genes that are integral in cell signaling and pyocyanin biosynthesis in P. aeruginosa PAO1. This study sheds light on the unexpected relationship between the utilization of an unfavorable carbon source and the production of pyocyanin. PA2449 is conserved among pseudomonads and might be universally involved in the assimilation of glycine among this metabolically diverse group of bacteria.
Collapse
|
18
|
Bianco G, Labella C, Pepe A, Cataldi TRI. Scrambling of autoinducing precursor peptides investigated by infrared multiphoton dissociation with electrospray ionization and Fourier transform ion cyclotron resonance mass spectrometry. Anal Bioanal Chem 2012. [PMID: 23208287 DOI: 10.1007/s00216-012-6583-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Two synthetic precursor peptides, H(2)N-CVGIW and H(2)N-LVMCCVGIW, involved in the quorum sensing of Lactobacillus plantarum WCFS1, were characterized by mass spectrometry (MS) with electrospray ionization and 7-T Fourier transform ion cyclotron resonance (ESI-FTICR) instrument. Cell-free bacterial supernatant solutions were analyzed by reversed-phase liquid chromatography with ESI-FTICR MS to verify the occurrence of both pentapeptide and nonapeptide in the bacterial broth. The structural characterization of both protonated peptides was performed by infrared multiphoton dissociation using a continuous CO(2) laser source at a wavelength of 10.6 μm. As their fragmentation behavior cannot be directly derived from the primary peptide structure, all anomalous fragments were interpreted as neutral loss of amino acids from the interior of both peptides, i.e., loss of V, G, VG and M, MC, V, CC, from H(2)N-CVGIW and H(2)N-LVMCCVGIW, respectively. Mechanisms of this scrambling are proposed. FTICR MS provides accurate masses of all fragment ions with very low absolute mass errors (<1.6 ppm), which facilitated the reliable assignment of their elemental compositions. The resolving power was more than sufficient to resolve closely isobaric product ions with routine subparts per million mass accuracies. Only the occurrence of pentapeptide was found in the cell-free culture of L. plantarum, grown in Waymouth's medium broth, with a low content of 5.2 ± 2.6 μM by external calibration. Most of it was present as oxidized H(2)N-CVGIW, that is, the soluble disulfide pentapeptide with a level tenfold higher (i.e., 50 ± 4 μM, n = 3).
Collapse
Affiliation(s)
- Giuliana Bianco
- Dipartimento di Scienze, Università degli Studi della Basilicata, Potenza, Italy
| | | | | | | |
Collapse
|
19
|
Cataldi TRI, Bianco G, Fonseca J, Schmitt-Kopplin P. Perceiving the chemical language of Gram-negative bacteria: listening by high-resolution mass spectrometry. Anal Bioanal Chem 2012; 405:493-507. [PMID: 22986985 DOI: 10.1007/s00216-012-6371-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 08/06/2012] [Accepted: 08/17/2012] [Indexed: 01/27/2023]
Abstract
Gram-negative bacteria use N-acylhomoserine lactones (AHLs) as their command language to coordinate population behavior during invasion and colonization of higher organisms. Although many different bacterial bioreporters are available for AHLs monitoring, in which a phenotypic response, e.g. bioluminescence, violacin production, and β-galactosidase activity, is exploited, mass spectrometry (MS) is the most versatile detector for rapid analysis of AHLs in complex microbial samples, with or without prior separation steps. In this paper we critically review recent advances in the application of high-resolution MS to analysis of the quorum sensing (QS) signaling molecules used by Gram-negative bacteria, with much emphasis on AHLs. A critical review of the use of bioreporters in the study of AHLs is followed by a short methodological survey of the capabilities of high-resolution mass spectrometry (HRMS), including Fourier-transform ion cyclotron resonance (FTICR) MS and quadrupole time-of-flight (qTOF) MS. Use of infusion electrospray ultrahigh-resolution FTICR MS (12 Tesla) enables accurate mass measurements for determination of the elemental formulas of AHLs in Acidovorax sp. N35 and Burkholderia ubonensis AB030584. Results obtained by coupling liquid chromatography with a hybrid quadrupole linear ion trap-FTICR mass spectrometer (LC-LTQ-FTICRMS, 7-T) for characterization of acylated homoserine lactones in the human pathogen Pseudomonas aeruginosa are presented. UPLC-ESI-qTOF MS has also proved to be suitable for identification of 3O-C(10)HSL in Pseudomonas putida IsoF cell culture supernatant. Aspects of sample preparation and the avoidance of analytical pitfalls are also emphasized.
Collapse
Affiliation(s)
- Tommaso R I Cataldi
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Bari, Italy.
| | | | | | | |
Collapse
|
20
|
Zhang G, Zhang F, Ding G, Li J, Guo X, Zhu J, Zhou L, Cai S, Liu X, Luo Y, Zhang G, Shi W, Dong X. Acyl homoserine lactone-based quorum sensing in a methanogenic archaeon. ISME JOURNAL 2012; 6:1336-44. [PMID: 22237544 DOI: 10.1038/ismej.2011.203] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Acyl homoserine lactone (AHL)-based quorum sensing commonly refers to cell density-dependent regulatory mechanisms found in bacteria. However, beyond bacteria, this cell-to-cell communication mechanism is poorly understood. Here we show that a methanogenic archaeon, Methanosaeta harundinacea 6Ac, encodes an active quorum sensing system that is used to regulate cell assembly and carbon metabolic flux. The methanogen 6Ac showed a cell density-dependent physiology transition, which was related to the AHL present in the spent culture and the filI gene-encoded AHL synthase. Through extensive chemical analyses, a new class of carboxylated AHLs synthesized by FilI protein was identified. These carboxylated AHLs facilitated the transition from a short cell to filamentous growth, with an altered carbon metabolic flux that favoured the conversion of acetate to methane and a reduced yield in cellular biomass. The transcriptomes of the filaments and the short cell forms differed with gene expression profiles consistent with the physiology. In the filaments, genes encoding the initial enzymes in the methanogenesis pathway were upregulated, whereas those for cellular carbon assimilation were downregulated. A luxI-luxR ortholog filI-filR was present in the genome of strain 6Ac. The carboxylated AHLs were also detected in other methanogen cultures and putative filI orthologs were identified in other methanogenic genomes as well. This discovery of AHL-based quorum sensing systems in methanogenic archaea implies that quorum sensing mechanisms are universal among prokaryotes.
Collapse
Affiliation(s)
- Guishan Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, PR China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Chernin L, Toklikishvili N, Ovadis M, Kim S, Ben-Ari J, Khmel I, Vainstein A. Quorum-sensing quenching by rhizobacterial volatiles. ENVIRONMENTAL MICROBIOLOGY REPORTS 2011; 3:698-704. [PMID: 23761359 DOI: 10.1111/j.1758-2229.2011.00284.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
We show that volatile organic compounds (VOCs) produced by rhizospheric strains Pseudomonas fluorescens B-4117 and Serratia plymuthica IC1270 may act as inhibitors of the cell-cell communication quorum-sensing (QS) network mediated by N-acyl homoserine lactone (AHL) signal molecules produced by various bacteria, including strains of Agrobacterium, Chromobacterium, Pectobacterium and Pseudomonas. This quorum-quenching effect was observed when AHL-producing bacteria were treated with VOCs emitted by strains B-4117 and IC1270 or with dimethyl disulfide (DMDS), the major volatile produced by strain IC1270. LC-MS/MS analysis revealed that treatment of strains Pseudomonas chlororaphis 449, Pseudomonas aeruginosa PAO1 or Ps. fluorescens 2-79 with VOCs emitted by strain IC1270 or DMDS drastically decreases the amount of AHLs produced by these bacteria. Volatile organic compounds produced by Ps. chlororaphis 449 were able to suppress its own QS-induction activity, suggesting a negative interaction between VOCs and AHL molecules in the same strain. Quantitative RT-PCR analysis showed that treatment of Ps. chlororaphis 449 with VOCs emitted by cells of IC1270, B-4117 or 449 itself, or with DMDS, leads to significant suppression of transcription of AHL synthase genes phzI and csaI. Thus, along with AHLs, bacterial volatiles might be considered another type of signal molecule involved in microbial communication in the rhizosphere.
Collapse
Affiliation(s)
- Leonid Chernin
- Otto Warburg Center for Agricultural Biotechnology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel. Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia
| | | | | | | | | | | | | |
Collapse
|
22
|
Prashanth SN, Bianco G, Cataldi TRI, Iacobellis NS. Acylhomoserine lactone production by bacteria associated with cultivated mushrooms. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:11461-11472. [PMID: 21942309 DOI: 10.1021/jf202313j] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The main bacterial pathogens of cultivated mushroom as well as mushroom-associated bacteria, which were isolated from Agaricus bisporus, Pleurotus ostreatus and Pleurotus eryngii mushroom niches, were evaluated for the production of N-acyl-L-homoserine lactones (AHLs) by using four bioreporters. Furthermore, identification of AHLs by LC-ESI-FTICR MS was performed on culture filtrates of selected pathogens and mushroom-associated bacteria strains, which resulted in inducing at least one of the four bioreporters. Strains of Burkolderia gladioli pv. agariciola, Pseudomonas agarici and Pseudomonas gingeri, but not those of Pseudomonas tolaasii and Pseudomonas reactans, produced an array of AHLs depending on the strain. This is the first report of AHL production by mushroom bacterial pathogens. Forty-four of 236 bacterial isolates obtained from different niches of cultivated mushrooms, in part identified by the Biolog identification system, were demonstrated to produce AHLs. Among them, seven mushroom-associated bacterial species were for the first time demonstrated to produce the above signal molecules. In the culture filtrates of a certain number of isolates/strains the AHL-hydrolyzed forms were also present. The minimal signal inducing concentration (MSIC) of selected pure AHLs was also determined for the four bioreporters used in this study.
Collapse
Affiliation(s)
- Shanmugam N Prashanth
- Dipartimento di Biologia, Difesa e Biotecnologie Agro-Forestali, Università degli Studi della Basilicata, Via dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | | | | | | |
Collapse
|
23
|
Cataldi TRI, Bianco G, Abate S, Losito I. Identification of unsaturated N-acylhomoserine lactones in bacterial isolates of Rhodobacter sphaeroides by liquid chromatography coupled to electrospray ionization-hybrid linear ion trap-Fourier transform ion cyclotron resonance mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2011; 25:1817-1826. [PMID: 21638357 DOI: 10.1002/rcm.5054] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The identification of two unsaturated N-acylhomoserine lactones (AHLs) produced by Rhodobacter sphaeroides bacteria, based on liquid chromatography (LC) coupled to a hybrid quadrupole linear ion trap (LTQ)-Fourier transform ion cyclotron resonance (FTICR) mass spectrometer upon electrospray ionization (ESI), is presented. Besides the confirmation of the signaling molecule already described in the literature, i.e. (Z)-N-tetradec-7-enoyl-homoserine lactone (C(14:1)-HSL), we have discovered the occurrence, at low, yet significant levels, of another monounsaturated compound, C(12:1) -HSL, which may extend the number of small diffusible chemical signals known for R. sphaeroides. Both unsaturated AHLs were identified by high-resolution FTICR mass spectrometry in extracts of bacterial culture media and the occurrence of a C=C bond was assessed upon their conversion into bromohydrins. Collision-induced dissociation (CID) spectra were then collected on the LTQ mass analyzer. A careful comparison of tandem MS spectra of monounsaturated (i.e., C(12:1)-HSL and C(14:1)-HSL) and saturated AHLs (i.e. C(12)-HSL and C(14)-HSL) led to the emphasis of two series of product ions, exhibiting 14 Da spaced m/z ratios. Both series were referred to progressive fragmentations at the aliphatic end of the AHL acyl chains, followed by neutral losses of terminal alkenes (i.e. CH(2)=CH(CH(2))(n)H). In particular, the series located at the higher end of the explored m/z range (>200 Da), observed only for monounsaturated species, enabled the location of the C=C bond between carbons 7 and 8 of the acyl chain.
Collapse
Affiliation(s)
- Tommaso R I Cataldi
- Dipartimento di Chimica, Università degli Studi di Bari 'Aldo Moro', Campus Universitario, Via E. Orabona 4, 70126 Bari, Italy.
| | | | | | | |
Collapse
|
24
|
Gamage AM, Shui G, Wenk MR, Chua KL. N-Octanoylhomoserine lactone signalling mediated by the BpsI–BpsR quorum sensing system plays a major role in biofilm formation of Burkholderia pseudomallei. Microbiology (Reading) 2011; 157:1176-1186. [DOI: 10.1099/mic.0.046540-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The genome of Burkholderia pseudomallei encodes three acylhomoserine lactone (AHL) quorum sensing systems, each comprising an AHL synthase and a signal receptor/regulator. The BpsI–BpsR system produces N-octanoylhomoserine lactone (C8HL) and is positively auto-regulated by its AHL product. The products of the remaining two systems have not been identified. In this study, tandem MS was used to identify and quantify the AHL species produced by three clinical B. pseudomallei isolates – KHW, K96243 and H11 – three isogenic KHW mutants that each contain a null mutation in an AHL synthase gene, and recombinant Escherichia coli heterologously expressing each of the three B. pseudomallei AHL synthase genes. BpsI synthesized predominantly C8HL, which accounted for more than 95 % of the extracellular AHLs produced in stationary-phase KHW cultures. The major products of BpsI2 and BpsI3 were N-(3-hydroxy-octanoyl)homoserine lactone (OHC8HL) and N-(3-hydroxy-decanoyl)homoserine lactone, respectively, and their corresponding transcriptional regulators, BpsR2 and BpsR3, were capable of driving reporter gene expression in the presence of these cognate lactones. Formation of biofilm by B. pseudomallei KHW was severely impaired in mutants lacking either BpsI or BpsR but could be restored to near wild-type levels by exogenous C8HL. BpsI2 was not required, and BpsI3 was partially required for biofilm formation. Unlike the bpsI mutant, biofilm formation in the bpsI3
mutant could not be restored to wild-type levels in the presence of OHC8HL, the product of BpsI3. C8HL and OHC8HL had opposite effects on biofilm formation; exogenous C8HL enhanced biofilm formation in both the bpsI3
mutant and wild-type KHW while exogenous OHC8HL suppressed the formation of biofilm in the same strains. We propose that exogenous OHC8HL antagonizes biofilm formation in B. pseudomallei, possibly by competing with endogenous C8HL for binding to BpsR.
Collapse
Affiliation(s)
- Akshamal Mihiranga Gamage
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, 117597 Singapore
| | - Guanghou Shui
- Life Science Institute, National University of Singapore, 28 Medical Drive, 117456 Singapore
| | - Markus R. Wenk
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117543 Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, 117597 Singapore
| | - Kim Lee Chua
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, 117597 Singapore
| |
Collapse
|
25
|
Abstract
Bioactive natural products often possess uniquely functionalized structures with unusual modes of action; however, the natural product itself is not always the active species. We discuss molecules that draw on protecting group chemistry or else require activation to unmask reactive centers, illustrating that nature is not only a source of complex structures but also a guide for elegant chemical transformations which provides ingenious chemical solutions for drug delivery.
Collapse
Affiliation(s)
| | - Hendrik Luesch
- Department of Medicinal Chemistry, University of Florida, 1600 SW Archer Road, Gainesville, FL 32610, USA
| |
Collapse
|
26
|
Cataldi TRI, Bianco G, Abate S, Mattia D. Analysis of S-adenosylmethionine and related sulfur metabolites in bacterial isolates of Pseudomonas aeruginosa (BAA-47) by liquid chromatography/electrospray ionization coupled to a hybrid linear quadrupole ion trap and Fourier transform ion cyclotron resonance mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2009; 23:3465-3477. [PMID: 19813285 DOI: 10.1002/rcm.4274] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
A comprehensive and highly selective method for detecting in bacterial supernatants a modified sulfur nucleoside, S-adenosyl-L-methionine (SAM), and its metabolites, i.e., S-adenosylhomocysteine (SAH), adenosine (Ado), 5'-deoxy-5'-methylthioadenosine (MTA), adenine (Ade), S-adenosyl-methioninamine (dcSAM), homocysteine (Hcy) and methionine (Met), was developed. The method is based on reversed-phase liquid chromatography with positive electrospray ionization (ESI+) coupled to a hybrid linear quadrupole ion trap (LTQ) and 7-T Fourier transform ion cyclotron resonance mass spectrometry (FTICRMS). A gradient elution was employed with a binary solvent of 0.05 M ammonium formate at pH 4 and acetonitrile. The assay involves a simultaneous cleanup of cell-free bacterial broths by solid-phase extraction and trace enrichment of metabolites with a 50-fold concentration factor by using immobilized phenylboronic and anion-exchange cartridges. While the quantitative determination of SAM was performed using stable-isotope-labeled SAM-d3 as an internal standard, in the case of Met and Ade, Met-13C and Ade-15N2 were employed as isotope-labeled internal standards, respectively. This method enabled the identification of SAM and its metabolites in cell-free culture of Pseudomonas aeruginosa grown in Davis minimal broth (formulation without sulphur organic compounds), with routine sub-ppm mass accuracies (-0.27 +/- 0.68 ppm). The resulting contents of S(C)S(S)-SAM, S(S)-dcSAM, MTA, Ado and Met in the free-cell supernatant of P. aeruginosa was 56.4 +/- 2.1 nM, 32.2 +/- 2.2 nM, 0.91 +/- 0.10 nM, 19.6 +/- 1.2 nM and 1.93 +/- 0.02 microM (mean +/- SD, n = 4 extractions), respectively. We report also the baseline separation (Rs > or = 1.5) of both diastereoisomeric forms of SAM (S(C)S(S) and S(C)R(S)) and dcSAM (S(S) and R(S)), which can be very useful to establish the relationship between the biologically active versus the inactive species, S(C)S(S)/S(C)R(S) and S(S)/R(S) of SAM and dcSAM, respectively. An additional confirmation of SAM-related metabolites was accomplished by a systematic study of their MS/MS spectra.
Collapse
Affiliation(s)
- Tommaso R I Cataldi
- Dipartimento di Chimica, Università degli Studi di Bari, Campus Universitario, Via E. Orabona 4, 70126 Bari, Italy.
| | | | | | | |
Collapse
|