1
|
Monzani PS, Sangalli JR, Sampaio RV, Guemra S, Zanin R, Adona PR, Berlingieri MA, Cunha-Filho LFC, Mora-Ocampo IY, Pirovani CP, Meirelles FV, Wheeler MB, Ohashi OM. Human proinsulin production in the milk of transgenic cattle. Biotechnol J 2024; 19:e2300307. [PMID: 38472101 DOI: 10.1002/biot.202300307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 01/16/2024] [Accepted: 01/24/2024] [Indexed: 03/14/2024]
Abstract
BACKGROUND The worldwide growing demand for human insulin for treating diabetes could be supplied by transgenic animals producing insulin in their milk. METHODS AND RESULTS Pseudo-lentivirus containing the bovine β-casein promoter and human insulin sequences was used to produce modified adult fibroblasts, and the cells were used for nuclear transfer. Transgenic embryos were transferred to recipient cows, and one pregnancy was produced. Recombinant protein in milk was evaluated using western blotting and mass spectrometry. One transgenic cow was generated, and in milk analysis, two bands were observed in western blotting with a molecular mass corresponding to the proinsulin and insulin. The mass spectrometry analysis showed the presence of human insulin more than proinsulin in the milk, and it identified proteases in the transgenic milk that could convert proinsulin into insulin and insulin-degrading enzyme that could degrade the recombinant protein. CONCLUSION The methodologies used for generating the transgenic cow allowed the detection of the production of recombinant protein in the milk at low relative expression compared to milk proteins, using mass spectrometry, which was efficient for detecting recombinant protein with low expression in milk. Milk proteases could act on protein processing converting recombinant protein to functional protein. On the other hand, some milk proteases could act in degrading the recombinant protein.
Collapse
Affiliation(s)
- Paulo S Monzani
- Center for Biological and Health Sciences, University of Northern Paraná, Londrina, Paraná, Brazil
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Juliano R Sangalli
- Department of Veterinary Medicine, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Rafael V Sampaio
- Department of Veterinary Medicine, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Samuel Guemra
- Center for Biological and Health Sciences, University of Northern Paraná, Londrina, Paraná, Brazil
| | - Renato Zanin
- Laffranchi Agriculture, Tamarana, Paraná, Brazil
| | - Paulo R Adona
- Center for Biological and Health Sciences, University of Northern Paraná, Londrina, Paraná, Brazil
| | - Maria A Berlingieri
- Center for Biological and Health Sciences, University of Northern Paraná, Londrina, Paraná, Brazil
| | - Luiz F C Cunha-Filho
- Center for Biological and Health Sciences, University of Northern Paraná, Londrina, Paraná, Brazil
| | - Irma Y Mora-Ocampo
- Department of Biological Sciences, State University of Santa Cruz (UESC), Ilhéus, Bahia, Brazil
| | - Carlos P Pirovani
- Department of Biological Sciences, State University of Santa Cruz (UESC), Ilhéus, Bahia, Brazil
| | - Flávio V Meirelles
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Matthew B Wheeler
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Otavio M Ohashi
- Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| |
Collapse
|
2
|
Tundo GR, Grasso G, Persico M, Tkachuk O, Bellia F, Bocedi A, Marini S, Parravano M, Graziani G, Fattorusso C, Sbardella D. The Insulin-Degrading Enzyme from Structure to Allosteric Modulation: New Perspectives for Drug Design. Biomolecules 2023; 13:1492. [PMID: 37892174 PMCID: PMC10604886 DOI: 10.3390/biom13101492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/11/2023] [Accepted: 09/17/2023] [Indexed: 10/29/2023] Open
Abstract
The insulin-degrading enzyme (IDE) is a Zn2+ peptidase originally discovered as the main enzyme involved in the degradation of insulin and other amyloidogenic peptides, such as the β-amyloid (Aβ) peptide. Therefore, a role for the IDE in the cure of diabetes and Alzheimer's disease (AD) has been long envisaged. Anyway, its role in degrading amyloidogenic proteins remains not clearly defined and, more recently, novel non-proteolytic functions of the IDE have been proposed. From a structural point of view, the IDE presents an atypical clamshell structure, underscoring unique enigmatic enzymological properties. A better understanding of the structure-function relationship may contribute to solving some existing paradoxes of IDE biology and, in light of its multifunctional activity, might lead to novel therapeutic approaches.
Collapse
Affiliation(s)
- Grazia Raffaella Tundo
- Department of Clinical Science and Traslational Medicine, University of Rome Tor Vergata, Via Della Ricerca Scientifica 1, 00133 Rome, Italy; (G.R.T.)
| | - Giuseppe Grasso
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy;
| | - Marco Persico
- Department of Pharmacy, University of Naples “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy; (M.P.); (O.T.)
| | - Oleh Tkachuk
- Department of Pharmacy, University of Naples “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy; (M.P.); (O.T.)
| | - Francesco Bellia
- Institute of Crystallography, CNR, Via Paolo Gaifami 18, 95126 Catania, Italy
| | - Alessio Bocedi
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Stefano Marini
- Department of Clinical Science and Traslational Medicine, University of Rome Tor Vergata, Via Della Ricerca Scientifica 1, 00133 Rome, Italy; (G.R.T.)
| | | | - Grazia Graziani
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy;
| | - Caterina Fattorusso
- Department of Pharmacy, University of Naples “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy; (M.P.); (O.T.)
| | | |
Collapse
|
3
|
Kemeh MM, Lazo ND. Modulation of the Activity of the Insulin-Degrading Enzyme by Aβ Peptides. ACS Chem Neurosci 2023; 14:2935-2943. [PMID: 37498802 DOI: 10.1021/acschemneuro.3c00384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023] Open
Abstract
The insulin-degrading enzyme (IDE) is an evolutionarily conserved protease implicated in the degradation of insulin and amyloidogenic peptides. Most of the biochemical and biophysical characterization of IDE's catalytic activity has been conducted using solutions containing a single substrate, i.e., insulin or Aβ(1-40). IDE's activity toward a particular substrate, however, is likely to be influenced by the presence of other substrates. Here, we show by a kinetic assay based on insulin's helical circular dichroic signal and MALDI TOF mass spectrometry that Aβ peptides modulate IDE's activity toward insulin in opposing ways. Aβ(1-40) enhances IDE-dependent degradation of insulin, whereas Aβ(pyroE3-42), the most pathogenic pyroglutamate-modified Aβ peptide in AD, inhibits IDE's activity. Intriguingly, Aβ(pyroE3-42) also inhibits IDE's ability to degrade Aβ(1-40). Together, our results implicate Aβ peptides in the abnormal catabolism of IDE's key substrates.
Collapse
Affiliation(s)
- Merc M Kemeh
- Gustaf H. Carlson School of Chemistry and Biochemistry, Clark University, Worcester, Massachusetts 01610, United States
| | - Noel D Lazo
- Gustaf H. Carlson School of Chemistry and Biochemistry, Clark University, Worcester, Massachusetts 01610, United States
| |
Collapse
|
4
|
Distefano A, Caruso G, Oliveri V, Bellia F, Sbardella D, Zingale GA, Caraci F, Grasso G. Neuroprotective Effect of Carnosine Is Mediated by Insulin-Degrading Enzyme. ACS Chem Neurosci 2022; 13:1588-1593. [PMID: 35471926 PMCID: PMC9121383 DOI: 10.1021/acschemneuro.2c00201] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
![]()
l-Carnosine
is an endogenous dipeptide that has high potential
for therapeutic purposes, being an antioxidant with metal chelating,
anti-aggregating, anti-inflammatory, and neuroprotective properties.
Despite its potential therapeutic values, the biomolecular mechanisms
involved in neuroprotection are not fully understood. Here, we demonstrate,
at chemical and biochemical levels, that insulin-degrading enzyme
plays a pivotal role in carnosine neuroprotection.
Collapse
Affiliation(s)
- Alessia Distefano
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, Catania 95125, Italy
| | - Giuseppe Caruso
- Department of Drug and Health Sciences, University of Catania, Viale Andrea Doria 6, Catania 95125, Italy
- Oasi Research Institute-IRCCS, Via Conte Ruggero 73, Troina 94018, Italy
| | - Valentina Oliveri
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, Catania 95125, Italy
| | - Francesco Bellia
- Institute of Crystallography, CNR, Via Paolo Gaifami 18, Catania 95126, Italy
| | | | - Gabriele Antonio Zingale
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, Catania 95125, Italy
| | - Filippo Caraci
- Department of Drug and Health Sciences, University of Catania, Viale Andrea Doria 6, Catania 95125, Italy
- Oasi Research Institute-IRCCS, Via Conte Ruggero 73, Troina 94018, Italy
| | - Giuseppe Grasso
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, Catania 95125, Italy
| |
Collapse
|
5
|
Azam MS, Wahiduzzaman M, Reyad-Ul-Ferdous M, Islam MN, Roy M. Inhibition of Insulin Degrading Enzyme to Control Diabetes Mellitus and its Applications on some Other Chronic Disease: a Critical Review. Pharm Res 2022; 39:611-629. [PMID: 35378698 DOI: 10.1007/s11095-022-03237-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 03/14/2022] [Indexed: 12/14/2022]
Abstract
PURPOSE This review aims to provide a precise perceptive of the insulin-degrading enzyme (IDE) and its relationship to type 2 diabetes (T2D), Alzheimer's disease (AD), obesity, and cardiovascular diseases. The purpose of the current study was to provide clear idea of treating prevalent diseases such as T2D, and AD by molecular pharmacological therapeutics rather than conventional medicinal therapy. METHODS To achieve the aims, molecular docking was performed using several softwares such as LIGPLOT+, Python, and Protein-Ligand Interaction Profiler with corresponding tools. RESULTS The IDE is a large zinc-metalloprotease that breakdown numerous pathophysiologically important extracellular substrates, comprising amyloid β-protein (Aβ) and insulin. Recent studies demonstrated that dysregulation of IDE leads to develop AD and T2D. Specifically, IDE regulates circulating insulin in a variety of organs via a degradation-dependent clearance mechanism. IDE is unique because it was subjected to allosteric activation and mediated via an oligomer structure. CONCLUSION In this review, we summarised the factors that modulate insulin reformation by IDE and interaction of IDE and some recent reports on IDE inhibitors against AD and T2D. We also highlighted the latest signs of progress of the function of IDE and challenges in advancing IDE- targetted therapies against T2D and AD.
Collapse
Affiliation(s)
- Md Shofiul Azam
- Department of Chemical and Food Engineering, Dhaka University of Engineering & Technology, Gazipur, 1707, Bangladesh.
| | - Md Wahiduzzaman
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Md Reyad-Ul-Ferdous
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital affiliated to Shandong University, Shandong University, Jinan, 250021, Shandong, China
| | - Md Nahidul Islam
- Department of Agro-Processing, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Mukta Roy
- Department of Food Engineering and Tea Technology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| |
Collapse
|
6
|
Wacławczyk D, Silberring J, Grasso G. The insulin-degrading enzyme as a link between insulin and neuropeptides metabolism. J Enzyme Inhib Med Chem 2021; 36:183-187. [PMID: 33401948 PMCID: PMC7801110 DOI: 10.1080/14756366.2020.1850712] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/08/2020] [Accepted: 11/09/2020] [Indexed: 10/28/2022] Open
Abstract
We have applied a recently developed HPLC-MS enzymatic assay to investigate the cryptic peptides generated by the action of the insulin-degrading enzyme (IDE) on some neuropeptides (NPs) involved in the development of tolerance and dependence to opioids. Particularly, the tested NPs are generated from the NPFF precursor (pro-NPFF (A)): NPFF (FLFQPQRF) and NPAF (AGEGLSSPFWSLAAPQRF). The results show that IDE is able to cleave NPFF and NPAF, generating specific cryptic peptides. As IDE is also responsible for the processing of many other peptides in the brain (amyloid beta protein among the others), we have also performed competitive degradation assays using mixtures of insulin and the above mentioned NPs. Data show that insulin is able to slow down the degradation of both NPs tested, whereas, surprisingly, NPAF is able to accelerate insulin degradation, hinting IDE as the possible link responsible of the mutual influence between insulin and NPs metabolism.
Collapse
Affiliation(s)
- Dorota Wacławczyk
- Department of Biochemistry and Neurobiology, AGH University of Science and Technology, Krakow, Poland
| | - Jerzy Silberring
- Department of Biochemistry and Neurobiology, AGH University of Science and Technology, Krakow, Poland
| | - Giuseppe Grasso
- Department of Chemical Sciences, University of Catania, Catania, Italy
| |
Collapse
|
7
|
García-Viñuales S, Sciacca MFM, Lanza V, Santoro AM, Grasso G, Tundo GR, Sbardella D, Coletta M, Grasso G, La Rosa C, Milardi D. The interplay between lipid and Aβ amyloid homeostasis in Alzheimer's Disease: risk factors and therapeutic opportunities. Chem Phys Lipids 2021; 236:105072. [PMID: 33675779 DOI: 10.1016/j.chemphyslip.2021.105072] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/15/2021] [Accepted: 03/01/2021] [Indexed: 12/19/2022]
Abstract
Alzheimer's Diseases (AD) is characterized by the accumulation of amyloid deposits of Aβ peptide in the brain. Besides genetic background, the presence of other diseases and an unhealthy lifestyle are known risk factors for AD development. Albeit accumulating clinical evidence suggests that an impaired lipid metabolism is related to Aβ deposition, mechanistic insights on the link between amyloid fibril formation/clearance and aberrant lipid interactions are still unavailable. Recently, many studies have described the key role played by membrane bound Aβ assemblies in neurotoxicity. Moreover, it has been suggested that a derangement of the ubiquitin proteasome pathway and autophagy is significantly correlated with toxic Aβ aggregation and dysregulation of lipid levels. Thus, studies focusing on the role played by lipids in Aβ aggregation and proteostasis could represent a promising area of investigation for the design of valuable treatments. In this review we examine current knowledge concerning the effects of lipids in Aβ aggregation and degradation processes, focusing on the therapeutic opportunities that a comprehensive understanding of all biophysical, biochemical, and biological processes involved may disclose.
Collapse
Affiliation(s)
| | - Michele F M Sciacca
- Consiglio Nazionale delle Ricerche, Istituto di Cristallografia, Catania, Italy
| | - Valeria Lanza
- Consiglio Nazionale delle Ricerche, Istituto di Cristallografia, Catania, Italy
| | - Anna Maria Santoro
- Consiglio Nazionale delle Ricerche, Istituto di Cristallografia, Catania, Italy
| | - Giulia Grasso
- Consiglio Nazionale delle Ricerche, Istituto di Cristallografia, Catania, Italy
| | - Grazia R Tundo
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | | | - Massimiliano Coletta
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Giuseppe Grasso
- Department of Chemistry, University of Catania, Catania, Italy
| | - Carmelo La Rosa
- Department of Chemistry, University of Catania, Catania, Italy
| | - Danilo Milardi
- Consiglio Nazionale delle Ricerche, Istituto di Cristallografia, Catania, Italy.
| |
Collapse
|
8
|
Milardi D, Gazit E, Radford SE, Xu Y, Gallardo RU, Caflisch A, Westermark GT, Westermark P, Rosa CL, Ramamoorthy A. Proteostasis of Islet Amyloid Polypeptide: A Molecular Perspective of Risk Factors and Protective Strategies for Type II Diabetes. Chem Rev 2021; 121:1845-1893. [PMID: 33427465 PMCID: PMC10317076 DOI: 10.1021/acs.chemrev.0c00981] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The possible link between hIAPP accumulation and β-cell death in diabetic patients has inspired numerous studies focusing on amyloid structures and aggregation pathways of this hormone. Recent studies have reported on the importance of early oligomeric intermediates, the many roles of their interactions with lipid membrane, pH, insulin, and zinc on the mechanism of aggregation of hIAPP. The challenges posed by the transient nature of amyloid oligomers, their structural heterogeneity, and the complex nature of their interaction with lipid membranes have resulted in the development of a wide range of biophysical and chemical approaches to characterize the aggregation process. While the cellular processes and factors activating hIAPP-mediated cytotoxicity are still not clear, it has recently been suggested that its impaired turnover and cellular processing by proteasome and autophagy may contribute significantly toward toxic hIAPP accumulation and, eventually, β-cell death. Therefore, studies focusing on the restoration of hIAPP proteostasis may represent a promising arena for the design of effective therapies. In this review we discuss the current knowledge of the structures and pathology associated with hIAPP self-assembly and point out the opportunities for therapy that a detailed biochemical, biophysical, and cellular understanding of its aggregation may unveil.
Collapse
Affiliation(s)
- Danilo Milardi
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Via P. Gaifami 18, 95126 Catania, Italy
| | - Ehud Gazit
- Department of Molecular Microbiology and Biotechnology, The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Yong Xu
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Rodrigo U Gallardo
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Amedeo Caflisch
- Department of Biochemistry, University of Zürich, Zürich CH-8057, Switzerland
| | - Gunilla T Westermark
- Department of Medical Cell Biology, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Per Westermark
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-751 85 Uppsala, Sweden
| | - Carmelo La Rosa
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Ayyalusamy Ramamoorthy
- Biophysics, Department of Chemistry, Biomedical Engineering, Macromolecular Science and Engineering, University of Michigan, Ann Arbor, Michigan 41809-1055, United States
| |
Collapse
|
9
|
A novel NIR fluorescence probe with cysteine-activated structure for specific detection of cysteine and its application in vitro and in vivo. Talanta 2021; 223:121758. [DOI: 10.1016/j.talanta.2020.121758] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 02/05/2023]
|
10
|
Grasso G. THE USE OF MASS SPECTROMETRY TO STUDY ZN-METALLOPROTEASE-SUBSTRATE INTERACTIONS. MASS SPECTROMETRY REVIEWS 2020; 39:574-585. [PMID: 31898821 DOI: 10.1002/mas.21621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 12/19/2019] [Indexed: 06/10/2023]
Abstract
Zinc metalloproteases (ZnMPs) participate in diverse biological reactions, encompassing the synthesis and degradation of all the major metabolites in living organisms. In particular, ZnMPs have been recognized to play a very important role in controlling the concentration level of several peptides and/or proteins whose homeostasis has to be finely regulated for the correct physiology of cells. Dyshomeostasis of aggregation-prone proteins causes pathological conditions and the development of several different diseases. For this reason, in recent years, many analytical approaches have been applied for studying the interaction between ZnMPs and their substrates and how environmental factors can affect enzyme activities. In this scenario, mass spectrometric methods occupy a very important role in elucidating different aspects of ZnMPs-substrates interaction. These range from identification of cleavage sites to quantitation of kinetic parameters. In this work, an overview of all the main achievements regarding the application of mass spectrometric methods to investigating ZnMPs-substrates interactions is presented. A general experimental protocol is also described which may prove useful to the study of similar interactions. © 2020 John Wiley & Sons Ltd. Mass Spec Rev.
Collapse
Affiliation(s)
- Giuseppe Grasso
- Department of Chemical Sciences, Università degli Studi di Catania, Viale Andrea Doria 6, Catania, 95125, Italy
| |
Collapse
|
11
|
Bottinelli C, Cartiser N, Bévalot F, Fanton L, Guitton J. Is insulin intoxication still the perfect crime? Analysis and interpretation of postmortem insulin: review and perspectives in forensic toxicology. Crit Rev Toxicol 2020; 50:324-347. [PMID: 32458714 DOI: 10.1080/10408444.2020.1762540] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Insulin is an anabolic hormone essential to glucose homeostasis. Insulin therapy, comprising human insulin (HI) or biosynthetic analogs, is critical for the management of type-1 diabetes and many of type-2 diabetes. However, medication error including non-adapted dose and confusion of insulin type, and misuse, such as massive self-administration or with criminal intent, can have lethal consequences. The aim of this paper is to review the state of knowledge of insulin analysis in biological samples and of the interpretation of insulin concentrations in the situation of insulin-related death investigations. Analytic aspects are considered, as quantification can be strongly impacted by methodology. Immunoanalysis, the historical technique, has a prominent role due to its sensitivity and ease of implementation. Recently, liquid chromatography coupled to mass spectrometry has provided indispensable selectivity in forensic contexts, distinguishing HI, analogs, and degradation products. We review the numerous antemortem (dose, associated pathology, injection-to-death interval, etc.) and postmortem parameters (in corpore degradation, in vitro degradation related to hemolysis, etc.) involved in the interpretation of insulin concentration. The interest and limitations of various alternative matrices providing a valuable complement to blood analysis are discussed. Vitreous humor is one of the most interesting, but the low diffusion of insulin in this matrix entails very low concentrations. Injection site analysis is relevant for identifying which type of insulin was administered. Muscle and renal cortex are matrices of particular interest, although additional studies are required. A table containing most case reports of fatal insulin poisoning published, with analytical data, completes this review. A logic diagram is proposed to highlight analytical issues and the main parameters to be considered for the interpretation of blood concentrations. Finally, it remains a challenge to provide reliable biological data and solid interpretation in the context of death related to insulin overdose. However, the progress of analytical tools is making the "perfect crime" ever more difficult to commit.
Collapse
Affiliation(s)
| | - Nathalie Cartiser
- Département de médecine légale, Hôpital Edouard-Herriot, Hospices Civils de Lyon, Lyon, France
| | | | - Laurent Fanton
- Département de médecine légale, Hôpital Edouard-Herriot, Hospices Civils de Lyon, Lyon, France.,Faculté de médecine Lyon Est, Institut de Médecine Légale, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Jérôme Guitton
- Laboratoire de Toxicologie, ISPB-Faculté de Pharmacie, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France.,Hospices Civils de Lyon, Laboratoire de Pharmacologie-Toxicologie, Centre Hospitalier Lyon-Sud, Pierre Bénite Cedex, France
| |
Collapse
|
12
|
Bellia F, Lanza V, Ahmed IMM, Garcia-Vinuales S, Veiss E, Arizzi M, Calcagno D, Milardi D, Grasso G. Site directed mutagenesis of insulin-degrading enzyme allows singling out the molecular basis of peptidase versus E1-like activity: the role of metal ions. Metallomics 2020; 11:278-281. [PMID: 30627720 DOI: 10.1039/c8mt00288f] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Four specifically designed IDE mutants have been used to unveil the molecular basis of peptidase versus E1-like activity of the enzyme. We have found that physiological concentrations of copper(ii) ions inhibit the proteolytic activity of the enzyme towards small and large substrates but have no effect on the E1-like activity of the enzyme.
Collapse
Affiliation(s)
- Francesco Bellia
- Institute of Biostructures and Bioimaging, National Research Council, Catania, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Zingale GA, Bellia F, Ahmed IMM, Mielczarek P, Silberring J, Grasso G. IDE Degrades Nociceptin/Orphanin FQ through an Insulin Regulated Mechanism. Int J Mol Sci 2019; 20:E4447. [PMID: 31509943 PMCID: PMC6770469 DOI: 10.3390/ijms20184447] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/05/2019] [Accepted: 09/06/2019] [Indexed: 01/21/2023] Open
Abstract
Insulin-degrading enzyme (IDE) was applied to catalyze hydrolysis of Nociceptin/Orphanin 1-16 (OFQ/N) to show the involvement of the enzyme in degradation of neuropeptides engaged in pain transmission. Moreover, IDE degradative action towards insulin (Ins) was inhibited by the OFQ/N fragments, suggesting a possible regulatory mechanism in the central nervous system. It has been found that OFQ/N and Ins affect each other degradation by IDE, although in a different manner. Indeed, while the digestion of OFQ/N is significantly affected by the presence of Ins, the kinetic profile of the Ins hydrolysis is not affected by the presence of OFQ/N. However, the main hydrolytic fragments of OFQ/N produced by IDE exert inhibitory activity towards the IDE-mediated Ins degradation. Here, we present the results indicating that, besides Ins, IDE cleaves neuropeptides and their released fragments act as inhibitors of IDE activity toward Ins. Having in mind that IDE is present in the brain, which also contains Ins receptors, it cannot be excluded that this enzyme indirectly participates in neural communication of pain signals and that neuropeptides involved in pain transmission may contribute to the regulation of IDE activity. Finally, preliminary results on the metabolism of OFQ/N, carried out in the rat spinal cord homogenate in the presence of various inhibitors specific for different classes of proteases, show that OFQ/N proteolysis in rat spinal cord could be due, besides IDE, also to a cysteine protease not yet identified.
Collapse
Affiliation(s)
| | - Francesco Bellia
- Institute of Crystallography, National Research Council, 95126 Catania, Italy
| | | | - Przemyslaw Mielczarek
- Maj Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland
- Department of Biochemistry and Neurobiology, AGH University of Science and Technology, Mickiewicza Ave. 30, 30-059 Krakow, Poland
| | - Jerzy Silberring
- Department of Biochemistry and Neurobiology, AGH University of Science and Technology, Mickiewicza Ave. 30, 30-059 Krakow, Poland
- Centre for Polymer and Carbon Materials, Polish Academy of Sciences, M.Curie-Sklodowskiej 34, 41-819 Zabrze, Poland
| | - Giuseppe Grasso
- Department of Chemical Sciences, University of Catania, 95125 Catania, Italy.
| |
Collapse
|
14
|
Drabik A, Bellia F, Mielczarek P, Silberring J. Hyphenated Techniques. Mass Spectrom (Tokyo) 2019. [DOI: 10.1002/9781119377368.ch5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
15
|
Bellia F, Lanza V, García-Viñuales S, Ahmed IMM, Pietropaolo A, Iacobucci C, Malgieri G, D'Abrosca G, Fattorusso R, Nicoletti VG, Sbardella D, Tundo GR, Coletta M, Pirone L, Pedone E, Calcagno D, Grasso G, Milardi D. Ubiquitin binds the amyloid β peptide and interferes with its clearance pathways. Chem Sci 2019; 10:2732-2742. [PMID: 30996991 PMCID: PMC6419943 DOI: 10.1039/c8sc03394c] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 01/09/2019] [Indexed: 12/22/2022] Open
Abstract
Several lines of evidence point to a compromised proteostasis associated with a reduction of the Ubiquitin Proteasome System (UPS) activity in patients affected by Alzheimer's Disease (AD) and suggest that the amyloid β peptide (Aβ) is an important player in the game. Inspired also by many reports, underlining the presence of ubiquitin (Ub) in the amyloid plaques of AD brains, here we set out to test whether Ub may bind the Aβ peptide and have any effect on its clearance pathways. By using an integrated array of MALDI-TOF/UPLC-HRMS, fluorescence, NMR, SPR, Microscale Thermophoresis (MST) and molecular dynamics studies, we consistently demonstrated that Aβ40 binds Ub with a 1 : 1 stoichiometry and K d in the high micromolar range. In particular, we show that the N-terminal domain of the Aβ peptide (through residues D1, E3 and R5) interacts with the C-terminal tail of Ub (involving residues K63 and E64), inducing the central region of Aβ (14HQKLVFFAEDVGSNK28) to adopt a mixed α-helix/β-turn structure. ELISA assays, carried out in neuroblastoma cell lysates, suggest that Aβ competitively binds Ub also in the presence of the entire pool of cytosolic Ub binding proteins. Ub-bound Aβ has a lower tendency to aggregate into amyloid-like fibrils and is more slowly degraded by the Insulin Degrading Enzyme (IDE). Finally, we observe that the water soluble fragment Aβ1-16 significantly inhibits Ub chain growth reactions. These results evidence how the non-covalent interaction between Aβ peptides and Ub may have relevant effects on the regulation of the upstream events of the UPS and pave the way to future in vivo studies addressing the role played by Aβ peptide in the malfunction of proteome maintenance occurring in AD.
Collapse
Affiliation(s)
- F Bellia
- Consiglio Nazionale delle Ricerche , Istituto di Biostrutture e Bioimmagini , Via P. Gaifami 18 , 95126 Catania , Italy .
| | - V Lanza
- Consiglio Nazionale delle Ricerche , Istituto di Biostrutture e Bioimmagini , Via P. Gaifami 18 , 95126 Catania , Italy .
| | - S García-Viñuales
- Consiglio Nazionale delle Ricerche , Istituto di Biostrutture e Bioimmagini , Via P. Gaifami 18 , 95126 Catania , Italy .
| | - I M M Ahmed
- Consiglio Nazionale delle Ricerche , Istituto di Biostrutture e Bioimmagini , Via P. Gaifami 18 , 95126 Catania , Italy .
| | - A Pietropaolo
- Dipartimento di Scienze della Salute , Università degli Studi Magna Graecia di Catanzaro , Viale Europa , 88100 , Catanzaro , Italy
| | - C Iacobucci
- Department of Pharmaceutical Chemistry & Bioanalytics , Institute of Pharmacy , Martin Luther University Halle-Wittenberg , 06120 Halle/Saale , Germany
| | - G Malgieri
- Department of Environmental , Biological and Pharmaceutical Sciences and Technologies , University of Campania "Luigi Vanvitelli" , Via Vivaldi 43 , 81100 Caserta , Italy
| | - G D'Abrosca
- Department of Environmental , Biological and Pharmaceutical Sciences and Technologies , University of Campania "Luigi Vanvitelli" , Via Vivaldi 43 , 81100 Caserta , Italy
| | - R Fattorusso
- Department of Environmental , Biological and Pharmaceutical Sciences and Technologies , University of Campania "Luigi Vanvitelli" , Via Vivaldi 43 , 81100 Caserta , Italy
| | - V G Nicoletti
- Dipartimento di Scienze Biomediche e Biotecnologiche (BIOMETEC) , sez. Biochimica medica , Università di Catania , Via Santa Sofia 97 , 95124 Catania , Italy
| | - D Sbardella
- Dipartimento di Scienze Cliniche e Medicina Traslazionale , Università di Roma Tor Vergata , Via Montpellier 1 , 00133 , Roma , Italy
| | - G R Tundo
- Dipartimento di Scienze Cliniche e Medicina Traslazionale , Università di Roma Tor Vergata , Via Montpellier 1 , 00133 , Roma , Italy
| | - M Coletta
- Dipartimento di Scienze Cliniche e Medicina Traslazionale , Università di Roma Tor Vergata , Via Montpellier 1 , 00133 , Roma , Italy
| | - L Pirone
- Consiglio Nazionale delle Ricerche , Istituto di Biostrutture e Bioimmagini , Via Mezzocannone, 16 , Naples I-80134 , Italy
| | - E Pedone
- Consiglio Nazionale delle Ricerche , Istituto di Biostrutture e Bioimmagini , Via Mezzocannone, 16 , Naples I-80134 , Italy
| | - D Calcagno
- Dipartimento di Scienze Chimiche , Università di Catania , V.le Andrea Doria 6 , 95125 Catania , Italy .
| | - G Grasso
- Dipartimento di Scienze Chimiche , Università di Catania , V.le Andrea Doria 6 , 95125 Catania , Italy .
| | - D Milardi
- Consiglio Nazionale delle Ricerche , Istituto di Biostrutture e Bioimmagini , Via P. Gaifami 18 , 95126 Catania , Italy .
| |
Collapse
|
16
|
Grasso G. Mass spectrometry is a multifaceted weapon to be used in the battle against Alzheimer's disease: Amyloid beta peptides and beyond. MASS SPECTROMETRY REVIEWS 2019; 38:34-48. [PMID: 29905953 DOI: 10.1002/mas.21566] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 03/09/2018] [Indexed: 06/08/2023]
Abstract
Amyloid-β peptide (Aβ) accumulation and aggregation have been considered for many years the main cause of Alzheimer's disease (AD), and therefore have been the principal target of investigation as well as of the proposed therapeutic approaches (Grasso [2011] Mass Spectrom Rev. 30: 347-365). However, the amyloid cascade hypothesis, which considers Aβ accumulation the only causative agent of the disease, has proven to be incomplete if not wrong. In recent years, actors such as metal ions, oxidative stress, and other cofactors have been proposed as possible co-agents or, in some cases, main causative factors of AD. In this scenario, MS investigation has proven to be fundamental to design possible diagnostic strategies of this elusive disease, as well as to understand the biomolecular mechanisms involved, in the attempt to find a possible therapeutic solution. We review the current applications of MS in the search for possible Aβ biomarkers of AD to help the diagnosis of the disease. Recent examples of the important contributions that MS has given to prove or build theories on the molecular pathways involved with such terrible disease are also reviewed.
Collapse
Affiliation(s)
- Giuseppe Grasso
- Department of Chemical Sciences, University of Catania, Catania, Italy
| |
Collapse
|
17
|
Enzyme kinetics from circular dichroism of insulin reveals mechanistic insights into the regulation of insulin-degrading enzyme. Biosci Rep 2018; 38:BSR20181416. [PMID: 30305381 PMCID: PMC6239264 DOI: 10.1042/bsr20181416] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/03/2018] [Accepted: 10/05/2018] [Indexed: 12/17/2022] Open
Abstract
Insulin-degrading enzyme (IDE) is a zinc metalloprotease that selectively degrades biologically important substrates associated with type 2 diabetes and Alzheimer’s disease (AD). As such, IDE is an attractive target for therapeutic innovations. A major requirement is an understanding of how other molecules present in cells regulate the activity of the enzyme toward insulin, IDE’s most important physiologically relevant substrate. Previous kinetic studies of the IDE-dependent degradation of insulin in the presence of potential regulators have used iodinated insulin, a chemical modification that has been shown to alter the biological and biochemical properties of insulin. Here, we present a novel kinetic assay that takes advantage of the loss of helical circular dichroic signals of insulin with IDE-dependent degradation. As proof of concept, the resulting Michaelis–Menten kinetic constants accurately predict the known regulation of IDE by adenosine triphosphate (ATP). Intriguingly, we found that when Mg2+ is present with ATP, the regulation is abolished. The implication of this result for the development of preventative and therapeutic strategies for AD is discussed. We anticipate that the new assay presented here will lead to the identification of other small molecules that regulate the activity of IDE toward insulin.
Collapse
|
18
|
Lanza V, Bellia F, Rizzarelli E. An inorganic overview of natural Aβ fragments: Copper(II) and zinc(II)-mediated pathways. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.04.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
19
|
Van Bibber-Krueger CL, Miller KA, Amachawadi RG, Scott HM, Gonzalez JM, Drouillard JS. Interaction between supplemental zinc oxide and zilpaterol hydrochloride on growth performance, carcass traits, and blood metabolites in feedlot steers. J Anim Sci 2018; 95:5573-5583. [PMID: 29293781 DOI: 10.2527/jas2017.1761] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Interactive effects of supplemental Zn and zilpaterol hydrochloride (ZH) were evaluated in feedlot steers ( = 40; 652 kg ± 14 initial BW) to determine their impact on feedlot performance, blood constituents, and carcass traits. The study was conducted as a randomized complete block design with a 2 × 2 factorial treatment arrangement. Steers were blocked by BW and randomly assigned to treatments. Factors consisted of supplemental Zn (60 or 300 mg/kg diet DM) and ZH (0 or 8.33 mg/kg) in the diets. For diets supplemented with 300 mg Zn/kg DM, 60 mg Zn/kg was supplemented as zinc sulfate and 240 mg Zn/kg was supplemented as zinc oxide, and the diet was fed for 24 d. Zilpaterol hydrochloride was fed for 21 d followed by a 3-d withdrawal. Cattle were housed in partially covered individual feeding pens equipped with automatic waterers and fence-line feed bunks and were fed once daily for ad libitum intake. Plasma samples were collected on d 0 and 21 to assess changes in Zn, plasma urea nitrogen (PUN), glucose, and lactate concentrations, and serum samples were collected on d 21 to assess IGF-1 concentration. On d 25, cattle were weighed and transported 450 km to a commercial abattoir for harvest; HCW and incidence of liver abscesses were recorded. Carcass data were collected after 36 h of refrigeration. Data were analyzed as a mixed model with Zn, ZH, and Zn × ZH as fixed effects; block as a random effect; and steer as the experimental unit. No interaction or effects of Zn or ZH were observed for IGF-1 concentration, plasma glucose, or lactate concentrations ( ≥ 0.25). No interaction between Zn and ZH was observed for PUN concentration, but PUN decreased with ZH ( < 0.01). There were no effects of ZH or Zn on ADG, DMI, final BW, feed efficiency, HCW, back fat, KPH, quality grade, or incidence of liver abscesses ( > 0.05). Zinc supplementation tended ( = 0.08) to improve the proportion of carcasses grading USDA Choice. Feeding ZH decreased yield grade ( = 0.05) and tended to increase LM area ( = 0.07). In conclusion, increasing dietary concentrations of Zn does not impact response to ZH, but feeding ZH altered circulating concentrations of PUN.
Collapse
|
20
|
Naletova I, Nicoletti VG, Milardi D, Pietropaolo A, Grasso G. Copper, differently from zinc, affects the conformation, oligomerization state and activity of bradykinin. Metallomics 2017; 8:750-61. [PMID: 27328010 DOI: 10.1039/c6mt00067c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The sole role of bradykinin (BK) as an inflammatory mediator is controversial, as recent data also support an anti-inflammatory role for BK in Alzheimer's disease (AD). The involvement of two different receptors (B1R and B2R) could be a key to understand this issue. However, although copper and zinc dyshomeostasis has been demonstrated to be largely involved in the development of AD, a detailed study of the interaction of BK with these two metal ions has never been addressed. In this work, we have applied mass spectrometry, circular dichroism as well as computational methods in order to assess if copper and zinc have the ability to modulate the conformation and oligomerization of BK. In addition, we have correlated the chemical data with the effect of metals on the activity of BK analyzed in cell cultures by biochemical procedures. The biochemical analyses on monocyte/macrophage cell culture (THP-1 Cell Line human) in line with the effect of metals on the conformation of BK showed that the presence of copper can affect the signaling cascade mediated by the BK receptors. The results obtained show a further role of metal ions, particularly copper, in the development and outcome of neuroinflammatory diseases. The possible implications in AD are discussed.
Collapse
Affiliation(s)
- Irina Naletova
- Dipartimento di Scienze Biomediche e Biotecnologiche "BIOMETEC", Università degli Studi di Catania, Via S. Sofia 64, 95125 Catania, Italy. and Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici (C.I.R.C.M.S.B.), Piazza Umberto I, 1-70121 Bari, Italy
| | - Vincenzo G Nicoletti
- Dipartimento di Scienze Biomediche e Biotecnologiche "BIOMETEC", Università degli Studi di Catania, Via S. Sofia 64, 95125 Catania, Italy. and Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici (C.I.R.C.M.S.B.), Piazza Umberto I, 1-70121 Bari, Italy
| | - Danilo Milardi
- Istituto di Biostrutture e Bioimmagini, Consiglio Nazionale delle Ricerche, Via Paolo Gaifami 18, 95126 Catania, Italy
| | - Adriana Pietropaolo
- Dipartimento di Scienze della Salute, Università di Catanzaro, Campus Universitario, Viale Europa, 88100 Catanzaro, Italy
| | - Giuseppe Grasso
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale Andrea Doria 6, 95125, Catania, Italy.
| |
Collapse
|
21
|
Sharma V, Sharma I, Sethi I, Mahajan A, Singh G, Angural A, Bhanwer AJS, Dhar MK, Singh V, Rai E, Sharma S. Replication of newly identified type 2 diabetes susceptible loci in Northwest Indian population. Diabetes Res Clin Pract 2017; 126:160-163. [PMID: 28258026 DOI: 10.1016/j.diabres.2017.02.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 01/21/2017] [Accepted: 02/07/2017] [Indexed: 01/01/2023]
Abstract
OBJECTIVE To replicate the association of newly identified variants of TMEM163 (transmembrane protein 163) and COBLL1 (cordon-bleu protein-like 1) with type 2 diabetes (T2D) in Northwest Indian population. METHODS We performed a replication study of variants rs998451 and rs6723108 of gene TMEM163 and rs7607980 of gene COBLL1. The variations were genotyped using Taqman allele discrimination assay in 1209 Northwest Indians (651 T2D cases and 558 controls). The association of each SNP with the disease was evaluated using logistic regression. RESULTS All the three SNPs examined in this study did not show any significant association with T2D. For rs998451 and rs6723108 of TMEM163 the observed odds ratios were 0.71 with a 95% CI of 0.28-1.84 (p=0.484) and 1.80 with a 95% CI of 0.74-4.40 (p=0.196), respectively. For rs7607980 the estimated odds ratio was 1.01 with 95% CI of 0.70-1.44 (p=0.946). CONCLUSION We conclude that lack of association could be because of population structure of Indian Population that is conglomeration of various ethnic groups. For a conclusive association study of T2D in India, it is critical that such studies are carried out among endogamous ethnic groups rather than conventional practice of pooling samples based on Geographical/regional or linguist affiliations like Asian Indian, North or South Indian etc.
Collapse
Affiliation(s)
- Varun Sharma
- Human Genetics Research Group, Department of Biotechnology, Shri Mata Vaishno Devi University, Katra, 182320, India
| | - Indu Sharma
- Human Genetics Research Group, Department of Biotechnology, Shri Mata Vaishno Devi University, Katra, 182320, India
| | - Itty Sethi
- Human Genetics Research Group, Department of Biotechnology, Shri Mata Vaishno Devi University, Katra, 182320, India
| | - Ankit Mahajan
- Department of Biotechnology, University of Jammu, 180006, India
| | - Gurvinder Singh
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, India
| | - Arshia Angural
- Human Genetics Research Group, Department of Biotechnology, Shri Mata Vaishno Devi University, Katra, 182320, India
| | - A J S Bhanwer
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, India
| | - Manoj K Dhar
- Department of Biotechnology, University of Jammu, 180006, India
| | - Vinod Singh
- Human Genetics Research Group, Department of Biotechnology, Shri Mata Vaishno Devi University, Katra, 182320, India
| | - Ekta Rai
- Human Genetics Research Group, Department of Biotechnology, Shri Mata Vaishno Devi University, Katra, 182320, India.
| | - Swarkar Sharma
- Human Genetics Research Group, Department of Biotechnology, Shri Mata Vaishno Devi University, Katra, 182320, India.
| |
Collapse
|
22
|
Pandini G, Satriano C, Pietropaolo A, Gianì F, Travaglia A, La Mendola D, Nicoletti VG, Rizzarelli E. The Inorganic Side of NGF: Copper(II) and Zinc(II) Affect the NGF Mimicking Signaling of the N-Terminus Peptides Encompassing the Recognition Domain of TrkA Receptor. Front Neurosci 2016; 10:569. [PMID: 28090201 PMCID: PMC5201159 DOI: 10.3389/fnins.2016.00569] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 11/25/2016] [Indexed: 12/31/2022] Open
Abstract
The nerve growth factor (NGF) N-terminus peptide, NGF(1–14), and its acetylated form, Ac-NGF(1–14), were investigated to scrutinize the ability of this neurotrophin domain to mimic the whole protein. Theoretical calculations demonstrated that non-covalent forces assist the molecular recognition of TrkA receptor by both peptides. Combined parallel tempering/docking simulations discriminated the effect of the N-terminal acetylation on the recognition of NGF(1–14) by the domain 5 of TrkA (TrkA-D5). Experimental findings demonstrated that both NGF(1–14) and Ac-NGF(1–14) activate TrkA signaling pathways essential for neuronal survival. The NGF-induced TrkA internalization was slightly inhibited in the presence of Cu2+ and Zn2+ ions, whereas the metal ions elicited the NGF(1–14)-induced internalization of TrkA and no significant differences were found in the weak Ac-NGF(1–14)-induced receptor internalization. The crucial role of the metals was confirmed by experiments with the metal-chelator bathocuproine disulfonic acid, which showed different inhibitory effects in the signaling cascade, due to different metal affinity of NGF, NGF(1–14) and Ac-NGF(1–14). The NGF signaling cascade, activated by the two peptides, induced CREB phosphorylation, but the copper addition further stimulated the Akt, ERK and CREB phosphorylation in the presence of NGF and NGF(1–14) only. A dynamic and quick influx of both peptides into PC12 cells was tracked by live cell imaging with confocal microscopy. A significant role of copper ions was found in the modulation of peptide sub-cellular localization, especially at the nuclear level. Furthermore, a strong copper ionophoric ability of NGF(1–14) was measured. The Ac-NGF(1–14) peptide, which binds copper ions with a lower stability constant than NGF(1–14), exhibited a lower nuclear localization with respect to the total cellular uptake. These findings were correlated to the metal-induced increase of CREB and BDNF expression caused by NGF(1–14) stimulation. In summary, we here validated NGF(1–14) and Ac-NGF(1–14) as first examples of monomer and linear peptides able to activate the NGF-TrkA signaling cascade. Metal ions modulated the activity of both NGF protein and the NGF-mimicking peptides. Such findings demonstrated that NGF(1–14) sequence can reproduce the signal transduction of whole protein, therefore representing a very promising drug candidate for further pre-clinical studies.
Collapse
Affiliation(s)
- Giuseppe Pandini
- Endocrinology, Department of Clinical and Experimental Medicine, Garibaldi-Nesima Medical Center, University of CataniaCatania, Italy; Institute of Biostructures and Bioimages - Catania, National Research CouncilCatania, Italy
| | - Cristina Satriano
- Department of Chemical Sciences, University of CataniaCatania, Italy; Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi BiologiciBari, Italy
| | | | - Fiorenza Gianì
- Endocrinology, Department of Clinical and Experimental Medicine, Garibaldi-Nesima Medical Center, University of CataniaCatania, Italy; Institute of Biostructures and Bioimages - Catania, National Research CouncilCatania, Italy
| | | | - Diego La Mendola
- Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi BiologiciBari, Italy; Department of Pharmacy, University of PisaPisa, Italy
| | - Vincenzo G Nicoletti
- Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi BiologiciBari, Italy; Section of Medical Biochemistry, Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of CataniaCatania, Italy
| | - Enrico Rizzarelli
- Institute of Biostructures and Bioimages - Catania, National Research CouncilCatania, Italy; Department of Chemical Sciences, University of CataniaCatania, Italy; Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi BiologiciBari, Italy
| |
Collapse
|
23
|
Thomas A, Brinkkötter P, Schänzer W, Thevis M. Metabolism of human insulin after subcutaneous administration: A possible means to uncover insulin misuse. Anal Chim Acta 2015; 897:53-61. [DOI: 10.1016/j.aca.2015.09.036] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 09/17/2015] [Accepted: 09/19/2015] [Indexed: 12/15/2022]
|
24
|
Kim IH, Kim IJ, Wen Y, Park NY, Park J, Lee KW, Koh A, Lee JH, Koo SH, Kim KS. Vibrio vulnificus Secretes an Insulin-degrading Enzyme That Promotes Bacterial Proliferation in Vivo. J Biol Chem 2015; 290:18708-20. [PMID: 26041774 DOI: 10.1074/jbc.m115.656306] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Indexed: 12/23/2022] Open
Abstract
We describe a novel insulin-degrading enzyme, SidC, that contributes to the proliferation of the human bacterial pathogen Vibrio vulnificus in a mouse model. SidC is phylogenetically distinct from other known insulin-degrading enzymes and is expressed and secreted specifically during host infection. Purified SidC causes a significant decrease in serum insulin levels and an increase in blood glucose levels in mice. A comparison of mice infected with wild type V. vulnificus or an isogenic sidC-deletion strain showed that wild type bacteria proliferated to higher levels. Additionally, hyperglycemia leads to increased proliferation of V. vulnificus in diabetic mice. Consistent with these observations, the sid operon was up-regulated in response to low glucose levels through binding of the cAMP-receptor protein (CRP) complex to a region upstream of the operon. We conclude that glucose levels are important for the survival of V. vulnificus in the host, and that this pathogen uses SidC to actively manipulate host endocrine signals, making the host environment more favorable for bacterial survival and growth.
Collapse
Affiliation(s)
- In Hwang Kim
- From the Department of Life Science, Sogang University, Seoul 121-742, Korea
| | - Ik-Jung Kim
- From the Department of Life Science, Sogang University, Seoul 121-742, Korea
| | - Yancheng Wen
- From the Department of Life Science, Sogang University, Seoul 121-742, Korea
| | - Na-Young Park
- From the Department of Life Science, Sogang University, Seoul 121-742, Korea
| | - Jinyoung Park
- the Division of Life Science, Korea University, Seoul 136-701, Korea
| | - Keun-Woo Lee
- From the Department of Life Science, Sogang University, Seoul 121-742, Korea
| | - Ara Koh
- From the Department of Life Science, Sogang University, Seoul 121-742, Korea
| | - Ji-Hyun Lee
- the Division of Life Science, Korea University, Seoul 136-701, Korea
| | - Seung-Hoi Koo
- the Division of Life Science, Korea University, Seoul 136-701, Korea
| | - Kun-Soo Kim
- From the Department of Life Science, Sogang University, Seoul 121-742, Korea,
| |
Collapse
|
25
|
Grasso G, Satriano C, Milardi D. A neglected modulator of insulin-degrading enzyme activity and conformation: The pH. Biophys Chem 2015; 203-204:33-40. [PMID: 26025789 DOI: 10.1016/j.bpc.2015.05.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 05/19/2015] [Accepted: 05/21/2015] [Indexed: 12/16/2022]
Abstract
Insulin-degrading enzyme (IDE), a ubiquitously expressed zinc metalloprotease, has multiple activities in addition to insulin degradation and its malfunction is believed to connect type 2 diabetes with Alzheimer's disease. IDE has been found in many different cellular compartments, where it may experience significant physio-pathological pH variations. However, the exact role of pH variations on the interplay between enzyme conformations, stability, oligomerization state and catalysis is not understood. Here, we use ESI mass spectrometry, atomic force microscopy, surface plasmon resonance and circular dichroism to investigate the structure-activity relationship of IDE at different pH values. We show that acidic pH affects the ability of the enzyme to bind the substrate and decrease the stability of the protein by inducing an α-helical bundle conformation with a concomitant dissociation of multi-subunit IDE assemblies into monomeric units and loss of activity. These effects suggest a major role played by electrostatic forces in regulating multi-subunit enzyme assembly and function. Our results clearly indicate a pH dependent coupling among enzyme conformation, assembly and stability and suggest that cellular acidosis can have a large effect on IDE oligomerization state, inducing an enzyme inactivation and an altered insulin degradation that could have an impact on insulin signaling.
Collapse
Affiliation(s)
- Giuseppe Grasso
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale Andrea Doria 6, 95125 Catania, Italy.
| | - Cristina Satriano
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Danilo Milardi
- Istituto Biostrutture e Bioimmagini, CNR, Via P. Gaifami 18, 95126 Catania, Italy
| |
Collapse
|
26
|
Grasso G, Bonnet S. Metal complexes and metalloproteases: targeting conformational diseases. Metallomics 2015; 6:1346-57. [PMID: 24870829 DOI: 10.1039/c4mt00076e] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In recent years many metalloproteases (MPs) have been shown to play important roles in the development of various pathological conditions. Although most of the literature is focused on matrix MPs (MMPs), many other MPs have been demonstrated to be involved in the degradation of peptides or proteins whose accumulation and dyshomeostasis are considered as being responsible for the development of conformational diseases, i.e., diseases where non-native protein conformations lead to protein aggregation. It seems clear that, at least in principle, it must be possible to control the levels of many aggregation-prone proteins not only by reducing their production, but also by enhancing their catabolism. Metal complexes that can perform this function were designed and tested according to at least two different strategies: (i) intervening on the endogenous MPs by directly or indirectly modulating their activity; (ii) acting as artificial MPs, replacing or synergistically functioning with endogenous MPs. These two different bioinorganic approaches are widely represented in the current literature and the aim of this review is to rationally organize and discuss both of them so as to give a critical insight into these approaches and highlighting their limitations and future perspectives.
Collapse
Affiliation(s)
- Giuseppe Grasso
- Chemistry Department, Dipartimento di Scienze Chimiche, Università di Catania, Viale Andrea Doria 6, 95125, Catania, Italy.
| | | |
Collapse
|
27
|
Grasso G. Monitoring the biomolecular interactions and the activity of Zn-containing enzymes involved in conformational diseases: experimental methods for therapeutic purposes. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2014; 97:115-42. [PMID: 25458357 DOI: 10.1016/bs.apcsb.2014.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Zinc metalloproteases (ZnMPs) participate in diverse biological reactions, encompassing the synthesis and degradation of all the major metabolites in living organisms. In particular, ZnMPs have been recognized to play a very important role in controlling the concentration level of several peptides and/or proteins whose homeostasis has to be finely regulated for the correct physiology of cells. Dyshomeostasis of aggregation-prone proteins causes pathological conditions and the development of several different diseases. For this reason, in recent years, many analytical approaches have been applied for studying the interaction between ZnMPs and their substrates/inhibitors and how environmental factors can affect enzyme activities. In this scenario, nuclear magnetic resonance, X-ray diffraction, mass spectrometric (MS), and optical methods occupy a very important role in elucidating different aspects of the ZnMPs-substrates/inhibitors interaction, ranging from identification of cleavage sites to quantitation of kinetic parameters and inhibition constants. Here, an overview of all the main achievements in the application of different experimental approaches with special attention to MS methods to the investigation of ZnMPs-substrates/inhibitors interaction is given. A general MS experimental protocol which has been proved to be useful to study such interactions is also described.
Collapse
Affiliation(s)
- Giuseppe Grasso
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Catania, Italy.
| |
Collapse
|
28
|
Grasso G, Mielczarek P, Niedziolka M, Silberring J. Metabolism of cryptic peptides derived from neuropeptide FF precursors: the involvement of insulin-degrading enzyme. Int J Mol Sci 2014; 15:16787-99. [PMID: 25247577 PMCID: PMC4200852 DOI: 10.3390/ijms150916787] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 09/03/2014] [Accepted: 09/09/2014] [Indexed: 11/16/2022] Open
Abstract
The term “cryptome” refers to the subset of cryptic peptides with bioactivities that are often unpredictable and very different from the parent protein. These cryptic peptides are generated by proteolytic cleavage of proteases, whose identification in vivo can be very challenging. In this work, we show that insulin-degrading enzyme (IDE) is able to degrade specific amino acid sequences present in the neuropeptide pro-NPFFA (NPFF precursor), generating some cryptic peptides that are also observed after incubation with rat brain cortex homogenate. The reported experimental findings support the increasingly accredited hypothesis, according to which, due to its wide substrate selectivity, IDE is involved in a wide variety of physiopathological processes.
Collapse
Affiliation(s)
- Giuseppe Grasso
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy.
| | - Przemyslaw Mielczarek
- Department of Biochemistry and Neurobiology, AGH University of Science and Technology, Mickiewicza 30, 30-059 Krakow, Poland.
| | - Magdalena Niedziolka
- Department of Biochemistry and Neurobiology, AGH University of Science and Technology, Mickiewicza 30, 30-059 Krakow, Poland.
| | - Jerzy Silberring
- Department of Biochemistry and Neurobiology, AGH University of Science and Technology, Mickiewicza 30, 30-059 Krakow, Poland.
| |
Collapse
|
29
|
Sinopoli A, Magrì A, Milardi D, Pappalardo M, Pucci P, Flagiello A, Titman JJ, Nicoletti VG, Caruso G, Pappalardo G, Grasso G. The role of copper(II) in the aggregation of human amylin. Metallomics 2014; 6:1841-52. [PMID: 25080969 DOI: 10.1039/c4mt00130c] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Amylin is a 37-residue peptide hormone produced by the islet β-cells of pancreas and the formation of amylin aggregates is strongly associated with β-cell degeneration in type 2 diabetes, as demonstrated by more than 95% of patients exhibiting amylin amyloid upon autopsy. It is widely recognized that metal ions such as copper(II) have been implicated in the aggregation process of amyloidogenic peptides such as Aβ and α-synuclein and there is evidence that amylin self-assembly is also largely affected by copper(II). For this reason, in this work, the role of copper(II) in the aggregation of amylin has been investigated by several different experimental approaches. Mass spectrometric investigations show that copper(II) induces significant changes in the amylin structure, which decrease the protein fibrillogenesis as observed by ThT measurements. Accordingly, solid-state NMR experiments together with computational analysis carried out on a model amylin fragment confirmed the non-fibrillogenic nature of the copper(II) induced aggregated structure. Finally, the presence of copper(II) is also shown to have a major influence on amylin proneness to be degraded by proteases and cytotoxicity studies on different cell cultures are reported.
Collapse
Affiliation(s)
- Alessandro Sinopoli
- Dottorato Internazionale in Biomedicina Traslazionale, Università degli Studi di Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Bellia F, Grasso G. The role of copper(II) and zinc(II) in the degradation of human and murine IAPP by insulin-degrading enzyme. JOURNAL OF MASS SPECTROMETRY : JMS 2014; 49:274-279. [PMID: 24719342 DOI: 10.1002/jms.3338] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 12/20/2013] [Accepted: 01/19/2014] [Indexed: 06/03/2023]
Abstract
Amylin or islet amyloid polypeptide (IAPP) is a 37-residue peptide hormone secreted from the pancreatic islets into the blood circulation and is cleared by peptidases in the kidney. IAPP aggregates are strongly associated with β-cell degeneration in type 2 diabetes, as demonstrated by the fact that more than 95% of patients exhibit IAPP amyloid upon autopsy. Recently, it has been reported that metal ions such as copper(II) and zinc(II) are implicated in the aggregation of IAPP as well as able to modulate the proteolytic activity of IAPP degrading enzymes. For this reason, in this work, the role of the latter metal ions in the degradation of IAPP by insulin-degrading enzyme (IDE) has been investigated by a chromatographic and mass spectrometric combined method. The latter experimental approach allowed not only to assess the overall metal ion inhibition of the human and murine IAPP degradation by IDE but also to have information on copper- and zinc-induced changes in IAPP aggregation. In addition, IDE cleavage site preferences in the presence of metal ions are rationalized as metal ion-induced changes in substrate accessibility.
Collapse
Affiliation(s)
- Francesco Bellia
- Istituto Biostrutture e Bioimmagini, CNR, Viale A. Doria 6, Catania, Italy
| | | |
Collapse
|
31
|
The clearance of misfolded proteins in neurodegenerative diseases by zinc metalloproteases: An inorganic perspective. Coord Chem Rev 2014. [DOI: 10.1016/j.ccr.2013.10.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
32
|
Grasso GI, Arena G, Bellia F, Rizzarelli E, Vecchio G. Copper(II)-chelating homocarnosine glycoconjugate as a new multifunctional compound. J Inorg Biochem 2013; 131:56-63. [PMID: 24246303 DOI: 10.1016/j.jinorgbio.2013.10.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 10/23/2013] [Accepted: 10/23/2013] [Indexed: 10/26/2022]
Abstract
Homocarnosine is an endogenous dipeptide distributed in cerebral regions and cerebrospinal fluid. Homocarnosine may serve as an antioxidant, free radical scavenger, neurotransmitter, buffering system and metal chelating agent, especially for copper(II) and zinc(II). The homeostasis of homocarnosine is regulated by carnosinases; the serum-circulating isoform of these metallodipeptidases partially hydrolyses homocarnosine in the blood. The enzyme activity is also inhibited by homocarnosine itself in a dose-dependent manner. We synthesized a new multifunctional homocarnosine derivative with trehalose, a disaccharide that possesses several beneficial properties, among which the inhibition of protein aggregation (i.e. Aβ amyloid and polyglutamine proteins) involved in widespread neurodegenerative disorders. We studied the copper(II) binding features of the new conjugate by means of potentiometric and spectroscopic techniques (UV-visible and circular dichroism) and the superoxide dismutase-like activity of the copper(II) complexes with homocarnosine and its trehalose conjugate was evaluated. The inhibitory effect of the new homocarnosine derivative on the carnosinase activity and its effects on Aβ aggregation were also investigated.
Collapse
Affiliation(s)
- Giuseppa I Grasso
- Institute of Biostructure and Bioimaging, National Research Council (CNR), Viale A. Doria 6, Catania, Italy
| | - Giuseppe Arena
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, Catania, Italy
| | - Francesco Bellia
- Institute of Biostructure and Bioimaging, National Research Council (CNR), Viale A. Doria 6, Catania, Italy.
| | - Enrico Rizzarelli
- Institute of Biostructure and Bioimaging, National Research Council (CNR), Viale A. Doria 6, Catania, Italy; Department of Chemical Sciences, University of Catania, Viale A. Doria 6, Catania, Italy
| | - Graziella Vecchio
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, Catania, Italy
| |
Collapse
|
33
|
Bellia F, Oliveri V, Rizzarelli E, Vecchio G. New derivative of carnosine for nanoparticle assemblies. Eur J Med Chem 2013; 70:225-32. [PMID: 24158014 DOI: 10.1016/j.ejmech.2013.10.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Revised: 09/21/2013] [Accepted: 10/02/2013] [Indexed: 11/16/2022]
Abstract
Carnosine (β-alanyl-l-histidine) is an endogenous dipeptide, extensively studied owing to its multifunctional activity exhibited in tissues of several animal species. This natural compound may act as a physiological buffer, ion-chelating agent (especially for copper(II) and zinc(II)), antioxidant and antiglycating agent. The main limit for the therapeutical uses of carnosine is the rapid hydrolysis mostly in human plasma by carnosinase. The chemical derivatization of carnosine is a promising strategy to improve the bioavailability of the dipeptide and facilitating the site-specific transport to different tissues. On this basis, a new carnosine derivative with biotin was synthesized and structurally characterized by NMR and MS measurements, with aim of exploiting the avidin-biotin technology that offers a universal system for selective delivery of any biotinylated agent. The stability of the new carnosine derivative towards the hydrolytic action of serum carnosinase as well as the copper(II) binding ability of the carnosine-biotin conjugate were also assessed. The binding affinity of the new molecular entity to avidin and streptavidin, investigated by a spectrophotometric assay, was exploited to functionalize avidin- and streptavidin-gold nanoparticles with the carnosine-biotin conjugate.
Collapse
Affiliation(s)
- Francesco Bellia
- Institute of Biostructure and Bioimaging, CNR, viale A. Doria 6, 95125 Catania, Italy.
| | | | | | | |
Collapse
|
34
|
Grasso G, Magrì A, Bellia F, Pietropaolo A, La Mendola D, Rizzarelli E. The copper(II) and zinc(II) coordination mode of HExxH and HxxEH motif in small peptides: the role of carboxylate location and hydrogen bonding network. J Inorg Biochem 2013; 130:92-102. [PMID: 24184693 DOI: 10.1016/j.jinorgbio.2013.09.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 09/30/2013] [Accepted: 09/30/2013] [Indexed: 10/26/2022]
Abstract
Copper(II) and zinc(II) complexes with two hexapeptides encompassing HExxH and HxxEH motif were characterized by means of a combined experimental and theoretical approach. Parallel tempering and density functional theory (DFT) investigations show the presence of different hydrogen bonding networks between the copper(II) and zinc(II) complexes with the two peptides, suggesting a significant contribution of these non-covalent interactions to the stability constant values. The glutamate carboxylate group has a direct role in metal ion binding. The location of this amino acid along the sequence of the investigated peptides is critical to determine thermodynamic and spectroscopic features of the copper(II) complex species, whereas is less relevant in the zinc(II) complexes formation. Electrospray ionization mass spectrometry (ESI-MS) characterization of the zinc(II) complex species show that in the [ZnH-2L] two deprotonated amide nitrogen atoms are involved in the metal coordination environment, an uncommon behavior in zinc(II) complexes for multi-histidine ligands.
Collapse
Affiliation(s)
- Giuseppe Grasso
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale A. Doria 6, 95125 Catania, Italy
| | | | | | | | | | | |
Collapse
|