1
|
Pekcan G. Determination of Alzheimer's Drugs in a Human Urine Sample by Different Chemometric Methods: Chemometric Determination of Alzheimer's Drugs. Int J Anal Chem 2024; 2024:5535816. [PMID: 39371108 PMCID: PMC11452237 DOI: 10.1155/2024/5535816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 07/03/2024] [Accepted: 08/27/2024] [Indexed: 10/08/2024] Open
Abstract
In this study, spectrophotometric determination of donepezil and rivastigmine in healthy human urine samples was carried out by the statistical method. Partial least squares (PLS) and principal component regression (PCR) from multivariate calibration methods were used to evaluate the data obtained from the UV-Vis spectroscopy analysis of the urine sample. Mixtures of each early substance were prepared prior to urine sample analysis, and simultaneous determination of donepezil and rivastigmine was performed on the established chemometric model without any prior separation. The calibration curves of each drug were analyzed, and linearity values were also analyzed. For donepezil and rivastigmine, they were 0.9989 and 0.9997, respectively, and were linear over the concentration range of the synthetic mixture. When both chemometric methods (PLS and PCR) were evaluated in terms of accuracy and reproducibility, very high recoveries and small standard deviations were determined. In the PLS method, the standard error of prediction (SEC), the sum of the prediction residual errors (PRESS), the limit of quantitation (LOQ), and the limit of detection (LOD) values were 0.015, 0.0030, 0.067, 0.24, 0.018, 0.0042, 0.089, and 0.301 for donepezil and rivastigmine, respectively. In the PCR method, SEC, PRESS, LOD, and LOQ values are 0.016, 0.0054, 0.066, and 0.23 for donepezil and 0.022, 0.0062, 0.091, and 0.300 for rivastigmine. Chemometrics is used for speed, simplicity, and reliability. The proposed methods have been successfully applied to a sample of urine.
Collapse
Affiliation(s)
- Güzide Pekcan
- Department of ChemistryFaculty of Engineering and Natural SciencesSüleyman Demirel University, Isparta 32260, Turkey
| |
Collapse
|
2
|
Deng S, Wang Y, Huang X, Zhou Y, Wang T, Chen X, Xiong L, Wu W, Xia B. Automated online solid-phase extraction-tandem mass spectrometry detection for simultaneous analysis of acidic and alkaline catecholamines and their metabolites in human urine. J Pharm Biomed Anal 2024; 248:116292. [PMID: 38865926 DOI: 10.1016/j.jpba.2024.116292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/29/2024] [Accepted: 06/05/2024] [Indexed: 06/14/2024]
Abstract
Metabolic dysregulation of catecholamines (CAs) is implicated in various human diseases. Simultaneously analyzing these acidic and alkaline CAs and their metabolites poses a significant challenge for clinical detection. This study introduces an efficient method employing automated online solid-phase extraction coupled with tandem mass spectrometry (aoSPE-MS/MS). The method employs weak cation exchange (WCX) and mixed-mode anion exchange (MAX) adsorbents to fabricate an on-line solid-phase extraction (SPE) column, along with an automated injection and multi-valve switching capabilities. The setup allows for automated extraction and analysis of urine samples in 15 minutes while retaining a wide range of acidic and basic CAs and their metabolites. The applicability of this method was demonstrated by optimising the adsorbent dosage volume, extraction solvent, and extraction rate. The limits of detection (LODs) and limits of quantitation (LOQs) for the 8 CAs and their metabolites were determined using the aoSPE-MS/MS approach, with ranges of 0.0625 ∼ 62.5 ng/mL and 0.125 ∼ 125 ng/mL, respectively. Additionally, assessments were made on the linearity, accuracy, and precision within and between batches, as well as matrix and ionic effects, and spiked recoveries. The study discovered that the aoSPE-MS/MS technique simplifies operation, increases efficiency, saves time, and has low detection and quantification limits when detecting a wide range of acid and alkaline CAs and their metabolites in urine. The study successfully demonstrated the high-throughput and automated detection of the 8 CAs and their metabolites with varying acidity and alkalinity in human urine samples. This method is expected to be a potential powerful tool for clinical detection.
Collapse
Affiliation(s)
- Shunyan Deng
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 101408, China
| | - Yu Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 101408, China
| | - Xia Huang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 101408, China
| | - Yan Zhou
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Tianxun Wang
- The First People's Hospital of Guangyuan, Guangyuan 628000, China
| | - Xiquan Chen
- The First People's Hospital of Guangyuan, Guangyuan 628000, China
| | - Lan Xiong
- The First People's Hospital of Guangyuan, Guangyuan 628000, China
| | - Wenlin Wu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 101408, China; Chengdu Institute of Food Inspection, Chengdu 611130, China; Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, Beijing 100029, China
| | - Bing Xia
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| |
Collapse
|
3
|
Jabbari S, Dabirmanesh B, Daneshjou S, Khajeh K. The potential of a novel enzyme-based surface plasmon resonance biosensor for direct detection of dopamine. Sci Rep 2024; 14:14303. [PMID: 38906902 PMCID: PMC11192927 DOI: 10.1038/s41598-024-64796-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 06/13/2024] [Indexed: 06/23/2024] Open
Abstract
Dopamine is one of the significant neurotransmitters and its monitoring in biological fluids is a critical issue in healthcare and modern biomedical technology. Here, we have developed a dopamine biosensor based on surface plasmon resonance (SPR). For this purpose, the carboxymethyl dextran SPR chip was used as a surface to immobilize laccase as a bioaffinity recognition element. Data analysis exhibited that the acidic pH value is the optimal condition for dopamine interaction. Calculated kinetic affinity (KD) (48,545 nM), obtained from a molecular docking study, showed strong association of dopamine with the active site of laccase. The biosensor exhibited a linearity from 0.01 to 189 μg/ml and a lower detection limit of 0.1 ng/ml (signal-to-noise ratio (S/N) = 3) that is significantly higher than the most direct dopamine detecting sensors reported so far. Experiments for specificity in the presence of compounds that can co-exist with dopamine detection such as ascorbic acid, urea and L-dopa showed no significant interference. The current dopamine biosensor with high sensitivity and specificity, represent a novel detection tool that offers a label-free, simple procedure and cost effective monitoring system.
Collapse
Affiliation(s)
- Safoura Jabbari
- Department of Biochemistry and Biophysics, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Bahareh Dabirmanesh
- Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran
| | - Sara Daneshjou
- Department of Nanobiotechnology, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Khosro Khajeh
- Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran.
| |
Collapse
|
4
|
Zhang M, Li Y, Han C, Chu S, Yu P, Cheng W. Biosynthesis of Nanoparticles with Green Tea for Inhibition of β-Amyloid Fibrillation Coupled with Ligands Analysis. Int J Nanomedicine 2024; 19:4299-4317. [PMID: 38766654 PMCID: PMC11102095 DOI: 10.2147/ijn.s451070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/17/2024] [Indexed: 05/22/2024] Open
Abstract
Background Inhibition of amyloid β protein fragment (Aβ) aggregation is considered to be one of the most effective strategies for the treatment of Alzheimer's disease. (-)-Epigallocatechin-3-gallate (EGCG) has been found to be effective in this regard; however, owing to its low bioavailability, nanodelivery is recommended for practical applications. Compared to chemical reduction methods, biosynthesis avoids possible biotoxicity and cumbersome preparation processes. Materials and Methods The interaction between EGCG and Aβ42 was simulated by molecular docking, and green tea-conjugated gold nanoparticles (GT-Au NPs) and EGCG-Au NPs were synthesized using EGCG-enriched green tea and EGCG solutions, respectively. Surface active molecules of the particles were identified and analyzed using various liquid chromatography-tandem triple quadrupole mass spectrometry methods. ThT fluorescence assay, circular dichroism, and TEM were used to investigate the effect of synthesized particles on the inhibition of Aβ42 aggregation. Results EGCG as well as apigenin, quercetin, baicalin, and glutathione were identified as capping ligands stabilized on the surface of GT-Au NPs. They more or less inhibited Aβ42 aggregation or promoted fibril disaggregation, with EGCG being the most effective, which bound to Aβ42 through hydrogen bonding, hydrophobic interactions, etc. resulting in 39.86% and 88.50% inhibition of aggregation and disaggregation effects, respectively. EGCG-Au NPs were not as effective as free EGCG, whereas multiple thiols and polyphenols in green tea accelerated and optimized heavy metal detoxification. The synthesized GT-Au NPs conferred the efficacy of diverse ligands to the particles, with inhibition of aggregation and disaggregation effects of 54.69% and 88.75%, respectively, while increasing the yield, enhancing water solubility, and decreasing cost. Conclusion Biosynthesis of nanoparticles using green tea is a promising simple and economical drug-carrying approach to confer multiple pharmacophore molecules to Au NPs. This could be used to design new drug candidates to treat Alzheimer's disease.
Collapse
Affiliation(s)
- Mai Zhang
- Mass Spectrometry Application Center, Tianjin Guoke Medical Technology Development Co., Ltd, Tianjin, People’s Republic of China
| | - Yan Li
- Mass Spectrometry Application Center, Tianjin Guoke Medical Technology Development Co., Ltd, Tianjin, People’s Republic of China
- Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences (CAS), Suzhou, People’s Republic of China
| | - Chunli Han
- Mass Spectrometry Application Center, Shandong CAS Intelligent Manufacturing Medical Device Technology Co., Ltd, Zaozhuang, People’s Republic of China
| | - Shiying Chu
- Mass Spectrometry Application Center, Tianjin Guoke Medical Technology Development Co., Ltd, Tianjin, People’s Republic of China
| | - Peng Yu
- Mass Spectrometry Application Center, Tianjin Guoke Medical Technology Development Co., Ltd, Tianjin, People’s Republic of China
| | - Wenbo Cheng
- Mass Spectrometry Application Center, Tianjin Guoke Medical Technology Development Co., Ltd, Tianjin, People’s Republic of China
- Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences (CAS), Suzhou, People’s Republic of China
| |
Collapse
|
5
|
Zhang W, Li X, Li W, Zhang Y, Cai J, Feng S, Sun Z. Clinical diagnosis of pheochromocytoma and paraganglioma-induced secondary hypertension through UPLC-MS/MS analysis of plasma catecholamines and their metabolites. J Clin Hypertens (Greenwich) 2024; 26:416-424. [PMID: 38459755 PMCID: PMC11007807 DOI: 10.1111/jch.14779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/11/2024] [Accepted: 01/17/2024] [Indexed: 03/10/2024]
Abstract
This study aimed to elucidate the clinical diagnostic value of plasma catecholamines and their metabolites for pheochromocytoma and paraganglioma (PPGL)-induced secondary hypertension using ultraperformance liquid chromatography-mass spectrometry (UPLC-MS/MS). The study population included 155 patients with PPGL that were divided into the PPGL with hypertension (n = 79) and a PPGL without hypertension (n = 76) groups, and 90 healthy volunteers and 90 patients with primary hypertension as the control groups. UPLC-MS/MS was performed to detect plasma levels of catecholamines and their metabolites, including dopamine, vanillylmandelic acid (VMA), norepinephrine, metanephrine, and normetanephrine. Receiver operating characteristic curves were generated to analyze the diagnostic value of the plasma levels of catecholamines and their metabolites in PPGL-induced secondary hypertension. Patients in the primary hypertension and PPGL without hypertension groups had higher levels of dopamine, VMA, norepinephrine, metanephrine, and normetanephrine than patients in the normal group (all p < .05). On the other hand, patients in the PPGL with hypertension group had higher levels of dopamine, VMA, norepinephrine, metanephrine, and normetanephrine than patients in the normal, primary hypertension, and PPGL without hypertension groups (all p < .05). Collectively, our findings showed that dopamine, VMA, norepinephrine, metanephrine, and normetanephrine are all effective biomarkers for the diagnosis of PPGL and PPGL-induced secondary hypertension.
Collapse
Affiliation(s)
- Weiyun Zhang
- Department of Laboratory Medicine, General Hospital of Southern Theater Command of PLA, Guangzhou, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Xiao Li
- Department of Laboratory Medicine, General Hospital of Southern Theater Command of PLA, Guangzhou, China
| | - Wanqin Li
- Department of Laboratory Medicine, General Hospital of Southern Theater Command of PLA, Guangzhou, China
| | - Yanmei Zhang
- Department of Laboratory Medicine, General Hospital of Southern Theater Command of PLA, Guangzhou, China
| | - Jiajia Cai
- Department of Laboratory Medicine, General Hospital of Southern Theater Command of PLA, Guangzhou, China
| | - Shiyu Feng
- Department of Laboratory Medicine, General Hospital of Southern Theater Command of PLA, Guangzhou, China
| | - Zhaohui Sun
- Department of Laboratory Medicine, General Hospital of Southern Theater Command of PLA, Guangzhou, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
6
|
Armenta-Castro A, Núñez-Soto MT, Rodriguez-Aguillón KO, Aguayo-Acosta A, Oyervides-Muñoz MA, Snyder SA, Barceló D, Saththasivam J, Lawler J, Sosa-Hernández JE, Parra-Saldívar R. Urine biomarkers for Alzheimer's disease: A new opportunity for wastewater-based epidemiology? ENVIRONMENT INTERNATIONAL 2024; 184:108462. [PMID: 38335627 DOI: 10.1016/j.envint.2024.108462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/16/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024]
Abstract
While Alzheimer's disease (AD) diagnosis, management, and care have become priorities for healthcare providers and researcher's worldwide due to rapid population aging, epidemiologic surveillance efforts are currently limited by costly, invasive diagnostic procedures, particularly in low to middle income countries (LMIC). In recent years, wastewater-based epidemiology (WBE) has emerged as a promising tool for public health assessment through detection and quantification of specific biomarkers in wastewater, but applications for non-infectious diseases such as AD remain limited. This early review seeks to summarize AD-related biomarkers and urine and other peripheral biofluids and discuss their potential integration to WBE platforms to guide the first prospective efforts in the field. Promising results have been reported in clinical settings, indicating the potential of amyloid β, tau, neural thread protein, long non-coding RNAs, oxidative stress markers and other dysregulated metabolites for AD diagnosis, but questions regarding their concentration and stability in wastewater and the correlation between clinical levels and sewage circulation must be addressed in future studies before comprehensive WBE systems can be developed.
Collapse
Affiliation(s)
| | - Mónica T Núñez-Soto
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Kassandra O Rodriguez-Aguillón
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico; Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Alberto Aguayo-Acosta
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico; Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Mariel Araceli Oyervides-Muñoz
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico; Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Shane A Snyder
- Nanyang Environment & Water Research Institute (NEWRI), Nanyang Technological University, Singapore
| | - Damià Barceló
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Jordi Girona, 18-26, 08034 Barcelona, Spain; Sustainability Cluster, School of Engineering at the UPES, Dehradun, Uttarakhand, India
| | - Jayaprakash Saththasivam
- Water Center, Qatar Environment & Energy Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Qatar
| | - Jenny Lawler
- Water Center, Qatar Environment & Energy Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Qatar
| | - Juan Eduardo Sosa-Hernández
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico; Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico.
| | - Roberto Parra-Saldívar
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico; Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| |
Collapse
|
7
|
Meng X, He Z, Guo L, Lin H, Feng L. OSCA-finder: Redefining the assay of kidney disease diagnostic through metabolomics and deep learning. Talanta 2023; 264:124745. [PMID: 37290332 DOI: 10.1016/j.talanta.2023.124745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/12/2023] [Accepted: 05/25/2023] [Indexed: 06/10/2023]
Abstract
Liquid chromatography-mass spectrometry (LC-MS) is a platform for urine and blood sample analysis. However, the high variability in the urine sample reduced the confidence of metabolite identification. Therefore, pre and post-calibration operations are inevitable to ensure an accurate urine biomarker analysis. In this study, the phenomenon of a higher creatinine concentration variable in ureteropelvic junction obstruction (UPJO) patient urine samples than in healthy people was revealed, indicating the urine biomarker discovery of UPJO patients is not adapted to the creatinine calibrate strategy. Therefore, we proposed a pipeline "OSCA-Finder" to reshape the urine biomarker analysis. First, to ensure a more stable peak shape and total ion chromatography, we applied the product of osmotic pressure and injection volume as a calibration principle and integrated it with an online mixer dilution. Therefore, we obtained the most peaks and identified more metabolites in a urine sample with peak area group CV<30%. A data-enhanced strategy was applied to reduce the overfit while training a neural network binary classifier with an accuracy of 99.9%. Finally, seven accurate urine biomarkers combined with a binary classifier were applied to distinguish UPJO patients from healthy people. The results show that the UPJO diagnostic strategy based on urine osmotic pressure calibration has more potential than ordinary strategies.
Collapse
Affiliation(s)
- Xuanlin Meng
- Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhian He
- Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lizhen Guo
- Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Houwei Lin
- Department of Pediatric Urology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China; Department of Pediatric Surgery, Jiaxing Women and Children Hospital Affiliated to Wenzhou Medical University, Jiaxing, 314050, China.
| | - Lei Feng
- Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
8
|
Han R, Wang M, Wang L, Zhang Y, Li X, Hou Y, Yan J, Pan X. GC/MS-Based Urine Metabolomics Study on the Ameliorative Effect of Xanthoceras sorbifolia Extract on Alzheimer's Disease in Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:3390034. [PMID: 36164398 PMCID: PMC9509262 DOI: 10.1155/2022/3390034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 08/25/2022] [Indexed: 11/18/2022]
Abstract
The cause of Alzheimer's disease, the most common type of dementia today, is still unclear, and in current research, there are no drugs that work relatively well. Therefore, the study for new drugs to treat Alzheimer's disease is an urgent research need. Research on the improvement of Alzheimer's disease with extracts of Xanthoceras sorbifolia has been increasing in recent years, but the mechanism is not fully understood. The experiments were conducted to validate the model and analyze the treatment effect through D-galactose and Aβ 25-35 induced dementia model mice, using the Morris water maze, to detect the learning behavior and brain tissue section to observe the hippocampal tissue structure of mice. We performed a nontargeted metabolomic analysis of the urine obtained from different groups of mice using gas chromatography-mass spectrometry. Fourteen potential biomarkers were identified in the mice's urine, outlining five metabolic pathways of interest. It was shown that the extracts of Xanthoceras sorbifolia may exert protective effects on mice in dementia models through energy metabolism, neuroinflammation, and antioxidants. This study reveals the potential pathogenesis of Alzheimer's disease and the possible therapeutic mechanism of Xanthoceras sorbifolia, suggests relevant biomarkers, and provides an additional basis for the clinical application of Xanthoceras sorbifolia.
Collapse
Affiliation(s)
- Rui Han
- School of Stomatology, Lanzhou University, Donggang Road No. 199, Lanzhou 730020, China
| | - Min Wang
- School of Basic Medical Sciences, Lanzhou University, Donggang Road No. 199, Lanzhou 730020, China
| | - Li Wang
- School of Stomatology, Lanzhou University, Donggang Road No. 199, Lanzhou 730020, China
| | - Yichen Zhang
- School of Stomatology, Lanzhou University, Donggang Road No. 199, Lanzhou 730020, China
| | - Xin Li
- School of Stomatology, Lanzhou University, Donggang Road No. 199, Lanzhou 730020, China
| | - Yijun Hou
- School of Stomatology, Lanzhou University, Donggang Road No. 199, Lanzhou 730020, China
| | - Jing Yan
- School of Stomatology, Lanzhou University, Donggang Road No. 199, Lanzhou 730020, China
| | - Xiaojing Pan
- School of Stomatology, Lanzhou University, Donggang Road No. 199, Lanzhou 730020, China
| |
Collapse
|
9
|
Shi N, Bu X, Zhang M, Wang B, Xu X, Shi X, Hussain D, Xu X, Chen D. Current Sample Preparation Methodologies for Determination of Catecholamines and Their Metabolites. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092702. [PMID: 35566052 PMCID: PMC9099465 DOI: 10.3390/molecules27092702] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/17/2022] [Accepted: 04/19/2022] [Indexed: 12/18/2022]
Abstract
Catecholamines (CAs) and their metabolites play significant roles in many physiological processes. Changes in CAs concentration in vivo can serve as potential indicators for the diagnosis of several diseases such as pheochromocytoma and paraganglioma. Thus, the accurate quantification of CAs and their metabolites in biological samples is quite important and has attracted great research interest. However, due to their extremely low concentrations and numerous co-existing biological interferences, direct analysis of these endogenous compounds often suffers from severe difficulties. Employing suitable sample preparation techniques before instrument detection to enrich the target analytes and remove the interferences is a practicable and straightforward approach. To date, many sample preparation techniques such as solid-phase extraction (SPE), and liquid-liquid extraction (LLE) have been utilized to extract CAs and their metabolites from various biological samples. More recently, several modern techniques such as solid-phase microextraction (SPME), liquid-liquid microextraction (LLME), dispersive solid-phase extraction (DSPE), and chemical derivatizations have also been used with certain advanced features of automation and miniaturization. There are no review articles with the emphasis on sample preparations for the determination of catecholamine neurotransmitters in biological samples. Thus, this review aims to summarize recent progress and advances from 2015 to 2021, with emphasis on the sample preparation techniques combined with separation-based detection methods such capillary electrophoresis (CE) or liquid chromatography (LC) with various detectors. The current review manuscript would be helpful for the researchers with their research interests in diagnostic analysis and biological systems to choose suitable sample pretreatment and detection methods.
Collapse
Affiliation(s)
- Nian Shi
- Physics Diagnostic Division, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China;
| | - Xinmiao Bu
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases of Henan Province, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; (X.B.); (M.Z.); (B.W.); (X.X.)
| | - Manyu Zhang
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases of Henan Province, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; (X.B.); (M.Z.); (B.W.); (X.X.)
| | - Bin Wang
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases of Henan Province, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; (X.B.); (M.Z.); (B.W.); (X.X.)
| | - Xinli Xu
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases of Henan Province, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; (X.B.); (M.Z.); (B.W.); (X.X.)
| | - Xuezhong Shi
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China;
| | - Dilshad Hussain
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
- Correspondence: (D.H.); (X.X.); (D.C.)
| | - Xia Xu
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases of Henan Province, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; (X.B.); (M.Z.); (B.W.); (X.X.)
- Correspondence: (D.H.); (X.X.); (D.C.)
| | - Di Chen
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases of Henan Province, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; (X.B.); (M.Z.); (B.W.); (X.X.)
- Correspondence: (D.H.); (X.X.); (D.C.)
| |
Collapse
|
10
|
Chen D, Zhang JX, Cui WQ, Zhang JW, Wu DQ, Yu XR, Luo YB, Jiang XY, Zhu FP, Hussain D, Xu X. A simultaneous extraction/derivatization strategy coupled with liquid chromatography-tandem mass spectrometry for the determination of free catecholamines in biological fluids. J Chromatogr A 2021; 1654:462474. [PMID: 34438300 DOI: 10.1016/j.chroma.2021.462474] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 01/04/2023]
Abstract
The current study presents a convenient, rapid and effective simultaneous extraction/derivatization (SEDP) strategy for effective pretreatment of catecholamines (CAs). Commercial zirconium oxide (ZrO2) nanoparticles were employed for the selective capturing of cis-diol containing CAs to remove the biological interferences and phenyl isothiocyanate (PITC) was used for derivatization to improve the ionization and to improve the chromatographic separation. The extraction and derivatization procedures were integrated into one step to simplify the sample pretreatment. Excessive derivatization reagents were removed as well, reducing the degree of contaminations in mass spectrometry. The factors affecting the SEDP process were optimized and the results showed that the detection sensitivity and chromatographic separation of CAs greatly improved compared with underivatized CAs, during LC-MS/MS analysis. Combined with ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS), quantifying the concentration of norepinephrine (NE), epinephrine (E) and dopamine (DA) in biological fluids was validated in ranges of 1-200.0 ng/mL with a satisfactory correlation coefficient (R2 > 0.997). The obtained recoveries were in the range of 91.0-109.5% with RSDs less than 9.4%. Finally, significant changes in CAs levels in urine samples of healthy people and pheochromocytoma patients were detected. The developed method offers comparative advantages in terms of sensitivity, specificity and selectivity.
Collapse
Affiliation(s)
- Di Chen
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R&D and Preclinical Safety, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases of Henan Province, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Jing-Xian Zhang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R&D and Preclinical Safety, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases of Henan Province, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Wei-Qi Cui
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R&D and Preclinical Safety, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases of Henan Province, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Jun-Wei Zhang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R&D and Preclinical Safety, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases of Henan Province, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - De-Qiao Wu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R&D and Preclinical Safety, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases of Henan Province, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Xin-Rui Yu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R&D and Preclinical Safety, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases of Henan Province, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Yan-Bo Luo
- China National Tobacco Quality Supervision and Test Center, Zhengzhou High and New Technology Industries Development Zone, No.6 Cuizhu Street, Zhengzhou 450001, China
| | - Xing-Yi Jiang
- China National Tobacco Quality Supervision and Test Center, Zhengzhou High and New Technology Industries Development Zone, No.6 Cuizhu Street, Zhengzhou 450001, China
| | - Feng-Peng Zhu
- China National Tobacco Quality Supervision and Test Center, Zhengzhou High and New Technology Industries Development Zone, No.6 Cuizhu Street, Zhengzhou 450001, China
| | - Dilshad Hussain
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences University of Karachi, Pakistan
| | - Xia Xu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R&D and Preclinical Safety, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases of Henan Province, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China.
| |
Collapse
|
11
|
Gallo A, Pillet LE, Verpillot R. New frontiers in Alzheimer's disease diagnostic: Monoamines and their derivatives in biological fluids. Exp Gerontol 2021; 152:111452. [PMID: 34182050 DOI: 10.1016/j.exger.2021.111452] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 04/29/2021] [Accepted: 06/08/2021] [Indexed: 10/21/2022]
Abstract
Current diagnosis of Alzheimer's disease (AD) relies on a combination of neuropsychological evaluations, biomarker measurements and brain imaging. Nevertheless, these approaches are either expensive, invasive or lack sensitivity to early AD stages. The main challenge of ongoing research is therefore to identify early non-invasive biomarkers to diagnose AD at preclinical stage. Accumulating evidence support the hypothesis that initial degeneration of profound monoaminergic nuclei may trigger a transneuronal spread of AD pathology towards hippocampus and cortex. These studies aroused great interest on monoamines, i.e. noradrenaline (NA), dopamine (D) ad serotonin (5-HT), as early hallmarks of AD pathology. The present work reviews current literature on the potential role of monoamines and related metabolites as biomarkers of AD. First, morphological changes in the monoaminergic systems during AD are briefly described. Second, we focus on concentration changes of these molecules and their derivatives in biological fluids, including cerebrospinal fluid, obtained by lumbar puncture, and blood or urine, sampled via less invasive procedures. Starting from initial observations, we then discuss recent insights on metabolomics-based analysis, highlighting the promising clinical utility of monoamines for the identification of a molecular AD signature, aimed at improving early diagnosis and discrimination from other dementia.
Collapse
|
12
|
Yang X, Zhao P, Xie Z, Ni M, Wang C, Yang P, Xie Y, Fei J. Selective determination of epinephrine using electrochemical sensor based on ordered mesoporous carbon / nickel oxide nanocomposite. Talanta 2021; 233:122545. [PMID: 34215048 DOI: 10.1016/j.talanta.2021.122545] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/16/2021] [Accepted: 05/19/2021] [Indexed: 11/26/2022]
Abstract
A nanocomposite of ordered mesoporous carbon/nickel oxide (OMC-NiO) was synthesized by hard-templating method. The nanocomposite remained ordered mesostructure and high surface area with the NiO nanocrystals embedded in the wall of the OMC. A sensitive sensor for electrochemical detection of epinephrine (EP) was developed with GCE modified by OMC-NiO nanocomposite. Cyclic voltammogram (CV) and differential pulse voltammetry (DPV) were used as the techniques to explore the electrochemical behavior of EP on OMC-NiO/GCE surface. The result showed that the electrode demonstrated better electrocatalytic performance to EP compared to that seen at OMC/GCE. Under the optimum condition, DPV measurements of the electrode response displayed a linear detection range for 8.0 × 10-7 to 5.0 × 10-5 M with a detection limit of 8.5 × 10-8 M (S/N = 3). It is worth noting that the electrocatalytic redox mechanism of EP on the electrode have studied through experiments and calculations (cyclic voltammetry and molecular electrostatic potential distribution). Moreover, the electrocatalytic behavior for the oxidation of EP and uric acid (UA) on OMC-NiO/GCE surface was investigated. The result showed that the sensor can be used to selectively determinate EP in the presence of an excesses of UA. Finally, the developed sensor was successfully applied to the determination of EP in spiked human blood serum and EP injection with satisfactory results.
Collapse
Affiliation(s)
- Xiao Yang
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China; Hunan Fisheries Science Institute, Changsha, 410153, People's Republic of China
| | - Pengcheng Zhao
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China.
| | - Zhonggui Xie
- Hunan Fisheries Science Institute, Changsha, 410153, People's Republic of China
| | - Meijun Ni
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Chenxi Wang
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China; Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Pingping Yang
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Yixi Xie
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Junjie Fei
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China; Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan, 411105, People's Republic of China.
| |
Collapse
|
13
|
Podjava A, Šilaks A. Synthesis and sorptive properties of molecularly imprinted polymer for simultaneous isolation of catecholamines and their metabolites from biological fluids. J LIQ CHROMATOGR R T 2021. [DOI: 10.1080/10826076.2021.1874980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Anton Podjava
- Laboratory of Chromatography and Mass Spectrometry, Department of Chemistry, Academic Center of Natural Sciences, University of Latvia, Riga, Latvia
| | - Artūrs Šilaks
- Laboratory of Chromatography and Mass Spectrometry, Department of Chemistry, Academic Center of Natural Sciences, University of Latvia, Riga, Latvia
| |
Collapse
|
14
|
Khamis MM, Adamko DJ, El-Aneed A. STRATEGIES AND CHALLENGES IN METHOD DEVELOPMENT AND VALIDATION FOR THE ABSOLUTE QUANTIFICATION OF ENDOGENOUS BIOMARKER METABOLITES USING LIQUID CHROMATOGRAPHY-TANDEM MASS SPECTROMETRY. MASS SPECTROMETRY REVIEWS 2021; 40:31-52. [PMID: 31617245 DOI: 10.1002/mas.21607] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 09/08/2019] [Indexed: 06/10/2023]
Abstract
Metabolomics is a dynamically evolving field, with a major application in identifying biomarkers for drug development and personalized medicine. Numerous metabolomic studies have identified endogenous metabolites that, in principle, are eligible for translation to clinical practice. However, few metabolomic-derived biomarker candidates have been qualified by regulatory bodies for clinical applications. Such interruption in the biomarker qualification process can be largely attributed to various reasons including inappropriate study design and inadequate data to support the clinical utility of the biomarkers. In addition, the lack of robust assays for the routine quantification of candidate biomarkers has been suggested as a potential bottleneck in the biomarker qualification process. In fact, the nature of the endogenous metabolites precludes the application of the current validation guidelines for bioanalytical methods. As a result, there have been individual efforts in modifying existing guidelines and/or developing alternative approaches to facilitate method validation. In this review, three main challenges for method development and validation for endogenous metabolites are discussed, namely matrix effects evaluation, alternative analyte-free matrices, and the choice of internal standards (ISs). Some studies have modified the equations described by the European Medicines Agency for the evaluation of matrix effects. However, alternative strategies were also described; for instance, calibration curves can be generated in solvents and in biological samples and the slopes can be compared through ratios, relative standard deviation, or a modified Stufour suggested approaches while quantifying mainly endogenous metabolitesdent t-test. ISs, on the contrary, are diverse; in which seven different possible types, used in metabolomics-based studies, were identified in the literature. Each type has its advantages and limitations; however, isotope-labeled ISs and ISs created through isotope derivatization show superior performance. Finally, alternative matrices have been described and tested during method development and validation for the quantification of endogenous entities. These alternatives are discussed in detail, highlighting their advantages and shortcomings. The goal of this review is to compare, apprise, and debate current knowledge and practices in order to aid researchers and clinical scientists in developing robust assays needed during the qualification process of candidate metabolite biomarkers. © 2019 John Wiley & Sons Ltd. Mass Spec Rev.
Collapse
Affiliation(s)
- Mona M Khamis
- College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Rd, Saskatoon, Saskatchewan, S7N 5E5, Canada
| | - Darryl J Adamko
- Department of Pediatrics, College of Medicine, University of Saskatchewan, 103 Hospital Drive, Saskatoon, Saskatchewan, Canada
| | - Anas El-Aneed
- College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Rd, Saskatoon, Saskatchewan, S7N 5E5, Canada
| |
Collapse
|
15
|
Gonzalez-Sepulveda M, Laguna A, Carballo-Carbajal I, Galiano-Landeira J, Romero-Gimenez J, Cuadros T, Parent A, Peñuelas N, Compte J, Nicolau A, Guillard-Sirieix C, Xicoy H, Kobayashi J, Vila M. Validation of a Reversed Phase UPLC-MS/MS Method to Determine Dopamine Metabolites and Oxidation Intermediates in Neuronal Differentiated SH-SY5Y Cells and Brain Tissue. ACS Chem Neurosci 2020; 11:2679-2687. [PMID: 32786306 DOI: 10.1021/acschemneuro.0c00336] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Dopamine is a key neurotransmitter in the pathophysiology of various neurological disorders such as addiction or Parkinson's disease. Disturbances in its metabolism could lead to dopamine accumulation in the cytoplasm and an increased production of o-quinones and their derivatives, which have neurotoxic potential and act as precursors in neuromelanin synthesis. Thus, quantification of the dopaminergic metabolism is essential for monitoring changes that may contribute to disease development. Here, we developed and validated an UPLC-MS/MS method to detect and quantify a panel of eight dopaminergic metabolites, including the oxidation product aminochrome. Our method was validated in differentiated SH-SY5Y cells and mouse brain tissue and was then employed in brain samples from humans and rats to ensure method reliability in different matrices. Finally, to prove the biological relevance of our method, we determined metabolic changes in an in vitro cellular model of dopamine oxidation/neuromelanin production and in human postmortem samples from Parkinson's disease patients. The current study provides a validated method to simultaneously monitor possible alterations in dopamine degradation and o-quinone production pathways that can be applied to in vitro and in vivo experimental models of neurological disorders and human brain samples.
Collapse
Affiliation(s)
- Marta Gonzalez-Sepulveda
- Neurodegenerative Diseases Research Group, Vall d’Hebron Research Institute (VHIR)-Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), 08035 Barcelona, Spain
| | - Ariadna Laguna
- Neurodegenerative Diseases Research Group, Vall d’Hebron Research Institute (VHIR)-Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), 08035 Barcelona, Spain
| | - Iria Carballo-Carbajal
- Neurodegenerative Diseases Research Group, Vall d’Hebron Research Institute (VHIR)-Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), 08035 Barcelona, Spain
| | - Jordi Galiano-Landeira
- Neurodegenerative Diseases Research Group, Vall d’Hebron Research Institute (VHIR)-Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), 08035 Barcelona, Spain
| | - Jordi Romero-Gimenez
- Neurodegenerative Diseases Research Group, Vall d’Hebron Research Institute (VHIR)-Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), 08035 Barcelona, Spain
| | - Thais Cuadros
- Neurodegenerative Diseases Research Group, Vall d’Hebron Research Institute (VHIR)-Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), 08035 Barcelona, Spain
| | - Annabelle Parent
- Neurodegenerative Diseases Research Group, Vall d’Hebron Research Institute (VHIR)-Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), 08035 Barcelona, Spain
| | - Nuria Peñuelas
- Neurodegenerative Diseases Research Group, Vall d’Hebron Research Institute (VHIR)-Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), 08035 Barcelona, Spain
| | - Joan Compte
- Neurodegenerative Diseases Research Group, Vall d’Hebron Research Institute (VHIR)-Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), 08035 Barcelona, Spain
| | - Alba Nicolau
- Neurodegenerative Diseases Research Group, Vall d’Hebron Research Institute (VHIR)-Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), 08035 Barcelona, Spain
| | - Camille Guillard-Sirieix
- Neurodegenerative Diseases Research Group, Vall d’Hebron Research Institute (VHIR)-Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), 08035 Barcelona, Spain
| | - Helena Xicoy
- Neurodegenerative Diseases Research Group, Vall d’Hebron Research Institute (VHIR)-Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), 08035 Barcelona, Spain
| | - Jumpei Kobayashi
- Neurodegenerative Diseases Research Group, Vall d’Hebron Research Institute (VHIR)-Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), 08035 Barcelona, Spain
| | - Miquel Vila
- Neurodegenerative Diseases Research Group, Vall d’Hebron Research Institute (VHIR)-Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), 08035 Barcelona, Spain
- Department of Biochemistry and Molecular Biology, Autonomous University of Barcelona, 08193 Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), 08010 Barcelona, Spain
| |
Collapse
|
16
|
Correlation between cognition and plasma noradrenaline level in Alzheimer's disease: a potential new blood marker of disease evolution. Transl Psychiatry 2020; 10:213. [PMID: 32620743 PMCID: PMC7335170 DOI: 10.1038/s41398-020-0841-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 04/17/2020] [Accepted: 04/22/2020] [Indexed: 12/31/2022] Open
Abstract
Recent evidence showing degeneration of the noradrenergic system in the locus coeruleus (LC) in Alzheimer's disease (AD) has motivated great interest in noradrenaline (NA) as a potential brain hallmark of the disease. Despite the current exploration of blood markers for AD, the deregulation of the plasma NA concentration ([NA]plasma) in AD is currently not well understood. This retrospective study includes a cohort of 71 patients (32 AD patients, 22 with other dementia and 17 without dementia) who were given consultations for memory complaints in the Cognitive Neurology Center of Lariboisière (Paris) between 2009 and 2014. As previously described in brain tissue, we show for the first time a linear correlation between [NA]plasma and Mini Mental State Examination (MMSE) score in AD patients. We observed that high [NA]plasma in AD patients was associated with higher [Aβ1-42]CSF than in other AD patients with [NA]plasma similar to NC patients. In parallel, we observed a lower (p-Tau/Tau)CSF in AD patients with low [NA]plasma than in non-AD patients with [NA]plasma similar to [NA]plasma in NC patients. Our data suggest that [NA]plasma could be a potential biomarker of disease evolution in the context of AD and could possibly improve early diagnosis.
Collapse
|
17
|
Zhu S, Wang X, Zheng Z, Zhao XE, Bai Y, Liu H. Synchronous measuring of triptolide changes in rat brain and blood and its application to a comparative pharmacokinetic study in normal and Alzheimer's disease rats. J Pharm Biomed Anal 2020; 185:113263. [PMID: 32203895 DOI: 10.1016/j.jpba.2020.113263] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 03/10/2020] [Accepted: 03/16/2020] [Indexed: 12/11/2022]
Abstract
Triptolide, a major active ingredient of Tripterygium wilfordii Hook F, provides anti-inflammatory and neuroprotective activities. In this study, a microwave-assisted stable isotope labeling derivatization-magnetic dispersive solid phase extraction (MA-SILD-MDSPE) combined with ultra-high-performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) method has been developed for the determination of the triptolide in rat microdialysates. A pair of SILD reagents (d0-/d3-3-N-methyl-2'-carboxyl Rhodamine 6G, d0-/d3-MCR6G) were used to label triptolide in real samples and standards under mild conditions. The introduction of SILD reagents enhanced the sensitivity of MS/MS detection and ensured accurate quantification. A novel molecularly imprinted polymer coating with d0-MCR6G labeled triptolide as template was firstly synthesized by precipitation polymerization method, and used to selectively extract the labeled triptolides from complex matrices. The purified d0-/d3-MCR6G-triptolides were determined by UHPLC-MS/MS analysis. Using the proposed method, a good linearity (R2>0.995), low limits of detection (LOD, 0.45-0.50 pg/mL) and quantification (LOQ, 3.0 pg/mL) were achieved. The intra- and inter-day precision and accuracy were within the acceptable ranges. No significant matrix effect was observed. The derivatization efficiency was more than 96 %. The validated method was successfully applied to a comparative pharmacokinetic study of triptolide synchronously in brain and blood of normal and Alzheimer's disease rats by in vivo microdialysis sampling technique.
Collapse
Affiliation(s)
- Shuyun Zhu
- Key Laboratory of Pharmaceutical Intermediates and Natural Medicine Analysis, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Xin Wang
- Key Laboratory of Pharmaceutical Intermediates and Natural Medicine Analysis, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Zhenjia Zheng
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, Taian, 271018, China
| | - Xian-En Zhao
- Key Laboratory of Pharmaceutical Intermediates and Natural Medicine Analysis, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Yu Bai
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Huwei Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
18
|
Study on the Multitarget Synergistic Effects of Kai-Xin-San against Alzheimer's Disease Based on Systems Biology. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:1707218. [PMID: 31976026 PMCID: PMC6955139 DOI: 10.1155/2019/1707218] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/10/2019] [Accepted: 11/29/2019] [Indexed: 01/07/2023]
Abstract
Kai-Xin-San (KXS), a classical Chinese traditional prescription, was widely applied in the treatment of Alzheimer's disease (AD), while its functional mechanisms still remain unclear. By using systems biology approaches at animal, cellular, and molecular levels, the improvement of KXS on cognitive impairment was achieved by inhibiting abnormal acetylcholinesterase. The function on the nerve skeleton was performed by regulating the Tau phosphorylation pathway. Its antioxidant, anti-inflammatory, and antiapoptotic effects by modulating the aberrant upregulation of ROS, proinflammatory factors, and apoptosis-related proteins in the brain were studied to reveal the synergistic therapeutic efficacy of KXS. Then, formula dismantling in vitro indicated that ginseng was the principal herb, whereas three other herbs served adjuvant roles to achieve the best effect. After that, the in vivo analysis of components into plasma and brain of AD rats showed that 8 of 23 components in blood and 4 of 10 components in brain were from ginseng, respectively, further verifying the principal status of ginseng and the synergistic effects of the formula. Thus, the anti-AD effects of KXS were achieved by multitargets and multichannels. The systems biology approaches presented here provide a novel way in traditional herbal medicine research.
Collapse
|
19
|
Roiffé RR, Ribeiro WD, Sardela VF, de la Cruz MN, de Souza KR, Pereira HM, Aquino Neto FR. Development of a sensitive and fast method for detection of catecholamines and metabolites by HRMS. Microchem J 2019. [DOI: 10.1016/j.microc.2019.104173] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
20
|
Metabolomics analysis of Xanthoceras sorbifolia husks protection of rats against Alzheimer's disease using liquid chromatography mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1126-1127:121739. [DOI: 10.1016/j.jchromb.2019.121739] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 07/25/2019] [Accepted: 07/29/2019] [Indexed: 11/29/2022]
|
21
|
Classic Prescription, Kai-Xin-San, Ameliorates Alzheimer's Disease as an Effective Multitarget Treatment: From Neurotransmitter to Protein Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:9096409. [PMID: 31354916 PMCID: PMC6636599 DOI: 10.1155/2019/9096409] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 05/07/2019] [Indexed: 01/16/2023]
Abstract
Alzheimer's disease (AD) is a widespread neurodegenerative disease caused by complicated disease-causing factors. Unsatisfactorily, curative effects of approved anti-AD drugs were not good enough due to their actions on single-target, which led to desperate requirements for more effective drug therapies involved in multiple pathomechanisms of AD. The anti-AD effect with multiple action targets of Kai-Xin-San (KXS), a classic prescription initially recorded in Bei Ji Qian Jin Yao Fang and applied in the treatment of dementia for thousands of years, was deciphered with modern biological methods in our study. Aβ25-35 and D-gal-induced AD rats and Aβ25-35-induced PC12 cells were applied to establish AD models. KXS could significantly improve cognition impairment by decreasing neurotransmitter loss and enhancing the expression of PI3K/Akt. For the first time, KXS was confirmed to improve the expression of PI3K/Akt by neurotransmitter 5-HT. Thereinto, PI3K/Akt could further inhibit Tau hyperphosphorylation as well as the apoptosis induced by oxidative stress and neuroinflammation. Moreover, all above-mentioned effects were verified and blocked by PI3K inhibitor, LY294002, in Aβ25-35-induced PC12 cells, suggesting the precise regulative role of KXS in the PI3K/Akt pathway. The utilization and mechanism elaboration of KXS have been proposed and dissected in the combination of animal, molecular, and protein strategies. Our results demonstrated that KXS could ameliorate AD by regulating neurotransmitter and PI3K/Akt signal pathway as an effective multitarget treatment so that the potential value of this classic prescription could be explored from a novel perspective.
Collapse
|
22
|
Stable isotope labeling derivatization coupled with magnetic dispersive solid phase extraction for the determination of hydroxyl-containing cholesterol and metabolites by in vivo microdialysis and ultra-high performance liquid chromatography tandem mass spectrometry. J Chromatogr A 2019; 1594:23-33. [DOI: 10.1016/j.chroma.2019.02.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 02/04/2019] [Accepted: 02/10/2019] [Indexed: 01/01/2023]
|
23
|
Plenis A, Olędzka I, Kowalski P, Miękus N, Bączek T. Recent Trends in the Quantification of Biogenic Amines in Biofluids as Biomarkers of Various Disorders: A Review. J Clin Med 2019; 8:E640. [PMID: 31075927 PMCID: PMC6572256 DOI: 10.3390/jcm8050640] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 04/30/2019] [Accepted: 05/06/2019] [Indexed: 01/10/2023] Open
Abstract
Biogenic amines (BAs) are bioactive endogenous compounds which play a significant physiological role in many cell processes like cell proliferation and differentiation, signal transduction and membrane stability. Likewise, they are important in the regulation of body temperature, the increase/decrease of blood pressure or intake of nutrition, as well as in the synthesis of nucleic acids and proteins, hormones and alkaloids. Additionally, it was confirmed that these compounds can be considered as useful biomarkers for the diagnosis, therapy and prognosis of several neuroendocrine and cardiovascular disorders, including neuroendocrine tumours (NET), schizophrenia and Parkinson's Disease. Due to the fact that BAs are chemically unstable, light-sensitive and possess a high tendency for spontaneous oxidation and decomposition at high pH values, their determination is a real challenge. Moreover, their concentrations in biological matrices are extremely low. These issues make the measurement of BA levels in biological matrices problematic and the application of reliable bioanalytical methods for the extraction and determination of these molecules is needed. This article presents an overview of the most recent trends in the quantification of BAs in human samples with a special focus on liquid chromatography (LC), gas chromatography (GC) and capillary electrophoresis (CE) techniques. Thus, new approaches and technical possibilities applied in these methodologies for the assessment of BA profiles in human samples and the priorities for future research are reported and critically discussed. Moreover, the most important applications of LC, GC and CE in pharmacology, psychology, oncology and clinical endocrinology in the area of the analysis of BAs for the diagnosis, follow-up and monitoring of the therapy of various health disorders are presented and critically evaluated.
Collapse
Affiliation(s)
- Alina Plenis
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, Hallera 107, 80-416 Gdańsk, Poland.
| | - Ilona Olędzka
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, Hallera 107, 80-416 Gdańsk, Poland.
| | - Piotr Kowalski
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, Hallera 107, 80-416 Gdańsk, Poland.
| | - Natalia Miękus
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, Hallera 107, 80-416 Gdańsk, Poland.
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland.
| | - Tomasz Bączek
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, Hallera 107, 80-416 Gdańsk, Poland.
| |
Collapse
|
24
|
Amino acid profiling as a method of discovering biomarkers for diagnosis of neurodegenerative diseases. Amino Acids 2019; 51:367-371. [DOI: 10.1007/s00726-019-02705-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 01/22/2019] [Indexed: 01/09/2023]
|
25
|
Galván I, Solano F, Zougagh M, de Andrés F, Murtada K, Ríos Á, de la Peña E, Carranza J. Unprecedented high catecholamine production causing hair pigmentation after urinary excretion in red deer. Cell Mol Life Sci 2019; 76:397-404. [PMID: 30413834 PMCID: PMC11105493 DOI: 10.1007/s00018-018-2962-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/29/2018] [Accepted: 10/31/2018] [Indexed: 10/27/2022]
Abstract
Hormones have not been found in concentrations of orders of magnitude higher than nanograms per milliliter. Here, we report urine concentrations of a catecholamine (norepinephrine) ranging from 0.05 to 0.5 g/l, and concentrations of its metabolite DL-3,4-dihydroxyphenyl glycol (DOPEG) ranging from 1.0 to 44.5 g/l, in wild male red deer Cervus elaphus hispanicus after LC-MS analyses. The dark ventral patch of male red deer, a recently described sexually selected signal, contains high amounts of DOPEG (0.9-266.9 mg/l) stuck in the hairs, while DOPEG is not present in non-darkened hair. The formation of this dark patch is explained by the chemical structure of DOPEG, which is a catecholamine-derived o-diphenol susceptible to be oxidized by air and form allomelanins, nitrogen-free pigments similar to cutaneous melanins; by its high concentration in urine; and by the urine spraying behavior of red deer by which urine is spread through the ventral body area. Accordingly, the size of the dark ventral patch was positively correlated with the concentration of DOPEG in urine, which was in turn correlated with DOPEG absorbed in ventral hair. These findings represent catecholamine concentrations about one million higher than those previously reported for any hormone in an organism. This may have favored the evolution of the dark ventral patch of red deer by transferring information on the fighting capacity to rivals and mates. Physiological limits for hormone production in animals are thus considerably higher than previously thought. These results also unveil a novel mechanism of pigmentation based on the self-application of urine over the fur.
Collapse
Affiliation(s)
- Ismael Galván
- Department of Evolutionary Ecology, Doñana Biological Station, Consejo Superior de Investigaciones Científicas (CSIC), C/ Américo Vespucio 26, 41092, Seville, Spain.
| | - Francisco Solano
- Department of Biochemistry and Molecular Biology B and Immunology, Faculty of Medicine, University of Murcia, Campus de Espinardo, 30100, Murcia, Spain
| | - Mohammed Zougagh
- Regional Institute for Applied Scientific Research (IRICA), University of Castilla-La Mancha, Ciudad Real, Spain
- Department of Analytical Chemistry and Food Technology, Faculty of Pharmacy, University of Castilla-La Mancha, Albacete, Spain
| | - Fernando de Andrés
- Regional Institute for Applied Scientific Research (IRICA), University of Castilla-La Mancha, Ciudad Real, Spain
- Department of Analytical Chemistry and Food Technology, Faculty of Pharmacy, University of Castilla-La Mancha, Albacete, Spain
| | - Khaled Murtada
- Regional Institute for Applied Scientific Research (IRICA), University of Castilla-La Mancha, Ciudad Real, Spain
- Department of Analytical Chemistry and Food Technology, Faculty of Chemical Science and Technology, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Ángel Ríos
- Regional Institute for Applied Scientific Research (IRICA), University of Castilla-La Mancha, Ciudad Real, Spain
- Department of Analytical Chemistry and Food Technology, Faculty of Chemical Science and Technology, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Eva de la Peña
- Ungulate Research Unit, Cátedra de Recursos Cinegéticos y Piscícolas (CRCP), University of Cordoba, Campus de Rabanales, 14071, Córdoba, Spain
| | - Juan Carranza
- Ungulate Research Unit, Cátedra de Recursos Cinegéticos y Piscícolas (CRCP), University of Cordoba, Campus de Rabanales, 14071, Córdoba, Spain
| |
Collapse
|
26
|
Liu Y, Liu Z, Wei M, Hu M, Yue K, Bi R, Zhai S, Pi Z, Song F, Liu Z. Pharmacodynamic and urinary metabolomics studies on the mechanism of Schisandra polysaccharide in the treatment of Alzheimer's disease. Food Funct 2019; 10:432-447. [DOI: 10.1039/c8fo02067a] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
This study was designed to investigate the antagonism of SCP in Aβ25–35-induced AD rats by intervening in neurotransmitters and metabolites.
Collapse
Affiliation(s)
- Yuanyuan Liu
- State Key Laboratory of Electroanalytical Chemistry
- National Center of Mass Spectrometry in Changchun
- Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
| | - Zhongying Liu
- School of Pharmaceutical Sciences
- Jilin University
- Changchun 130021
- China
| | - Mengying Wei
- School of Pharmaceutical Sciences
- Jilin University
- Changchun 130021
- China
| | - Mingxin Hu
- School of Pharmaceutical Sciences
- Jilin University
- Changchun 130021
- China
| | - Kexin Yue
- School of Pharmaceutical Sciences
- Jilin University
- Changchun 130021
- China
| | - Rongbing Bi
- Institute of special animal and plant sciences of CAAS
- Changchun 130112
- China
| | - Shan Zhai
- School of Pharmaceutical Sciences
- Jilin University
- Changchun 130021
- China
| | - Zifeng Pi
- State Key Laboratory of Electroanalytical Chemistry
- National Center of Mass Spectrometry in Changchun
- Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
| | - Fengrui Song
- State Key Laboratory of Electroanalytical Chemistry
- National Center of Mass Spectrometry in Changchun
- Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
| | - Zhiqiang Liu
- State Key Laboratory of Electroanalytical Chemistry
- National Center of Mass Spectrometry in Changchun
- Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
| |
Collapse
|
27
|
Rapid HPLC-ESI-MS/MS Analysis of Neurotransmitters in the Brain Tissue of Alzheimer's Disease Rats before and after Oral Administration of Xanthoceras sorbifolia Bunge. Molecules 2018; 23:molecules23123111. [PMID: 30486507 PMCID: PMC6321314 DOI: 10.3390/molecules23123111] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/22/2018] [Accepted: 11/27/2018] [Indexed: 11/30/2022] Open
Abstract
In order to explore the potential therapeutic effect of Xanthoceras sorbifolia Bunge. against Alzheimer’s disease, an HPLC-MS/MS method has been developed and validated for simultaneous determination in rat brain of eight neurotransmitters, including dopamine, norepinephrine, 5-hydroxy-tryptamine, acetylcholine, l-tryptophan, γ-aminobutyric acid, glutamic acid and aspartic acid with a simple protein precipitation method for sample pre-treatment. The brain samples were separated on a polar functional group embedded column, then detected on a 4000 QTrap HPLC-MS/MS system equipped with a turbo ion spray source in positive ion and multiple reaction monitoring mode. The method was fully validated to be precise and accurate within the linearity range of the assay, and successfully applied to compare the neurotransmitters in the rat brain from four groups of normal, Alzheimer’s disease, and the oral administration group of X. sorbifolia extract and huperzine. The results indicated that brain levels of dopamine, norepinephrine and acetyl choline all decreased in the AD rats, while l-tryptophan showed an opposite trend. After administration of the Xanthoceras sorbifolia extract and huperzine, the level of acetyl choline and tryptophan returned to normal. Combination of the metabolic analysis, the results indicated that acetyl choline and l-tryptophan could be employed as therapy biomarkers for AD, and the results shown that the crude extract of the husks from Xanthoceras sorbifolia might ameliorate the impairment of learning and memory in the Alzheimer’s disease animal model with similar function of AchEI as huperzine. The established method would provide an innovative and effective way for the discovery of novel drug against Alzheimer’s disease, and stimulate a theoretical basis for the design and development of new drugs.
Collapse
|
28
|
Advances and challenges in neurochemical profiling of biological samples using mass spectrometry coupled with separation methods. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.07.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
29
|
Miękus N, Olędzka I, Harshkova D, Liakh I, Plenis A, Kowalski P, Bączek T. Comparison of Three Extraction Approaches for the Isolation of Neurotransmitters from Rat Brain Samples. Int J Mol Sci 2018; 19:ijms19061560. [PMID: 29882927 PMCID: PMC6032232 DOI: 10.3390/ijms19061560] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 05/10/2018] [Accepted: 05/22/2018] [Indexed: 12/22/2022] Open
Abstract
The determination of neurotransmitters (NTs) as relevant potential biomarkers in the study of various central nervous system (CNS) pathologies has been demonstrated. Knowing that NTs-related diseases mostly occupy individual regions of the nervous system, as observed, for instance, in neurodegenerative diseases (Alzheimer’s and Parkinson’s Diseases), the analysis of brain slices is preferred to whole-brain analysis. In this report, we present sample preparation approaches, such as solid-phase extraction, solid-phase microextraction, and dispersive liquid–liquid microextraction, and discuss the pitfalls and advantages of each extraction method. The ionic liquid (1-ethyl-3-methylimidazolium tetrafluoroborate)-assisted solid-phase microextraction (IL-SPME) is found to be, in our research, the relevant step towards the simultaneous determination of six NTs, namely, dopamine (DA), adrenaline (A), noradrenaline (NA), serotonin (5-HT), l-tryptophan (l-Trp), l-tyrosine (l-Tyr) in rat brain samples. The development of a novel bioanalytical technique for the evaluation of biomarkers in the context of green chemistry might be accelerated just with the use of IL, and this approach can be considered an advantageous strategy.
Collapse
Affiliation(s)
- Natalia Miękus
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland.
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, al. Gen. J. Hallera 107, 80-416 Gdańsk, Poland.
| | - Ilona Olędzka
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, al. Gen. J. Hallera 107, 80-416 Gdańsk, Poland.
| | - Darya Harshkova
- Department of Plant Physiology and Biotechnology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland.
| | - Ivan Liakh
- S. I. Gelberg Department of Microbiology, Virology and Immunology, Grodno State Medical University, Vilenskaja str., 19, 230023 Grodno, Belarus.
| | - Alina Plenis
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, al. Gen. J. Hallera 107, 80-416 Gdańsk, Poland.
| | - Piotr Kowalski
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, al. Gen. J. Hallera 107, 80-416 Gdańsk, Poland.
| | - Tomasz Bączek
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, al. Gen. J. Hallera 107, 80-416 Gdańsk, Poland.
| |
Collapse
|
30
|
Bergh MSS, Bogen IL, Andersen JM, Øiestad ÅML, Berg T. Determination of adrenaline, noradrenaline and corticosterone in rodent blood by ion pair reversed phase UHPLC–MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1072:161-172. [DOI: 10.1016/j.jchromb.2017.11.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 08/28/2017] [Accepted: 11/11/2017] [Indexed: 01/05/2023]
|
31
|
Lee W, Park NH, Ahn TB, Chung BC, Hong J. Profiling of a wide range of neurochemicals in human urine by very-high-performance liquid chromatography-tandem mass spectrometry combined with in situ selective derivatization. J Chromatogr A 2017; 1526:47-57. [PMID: 29031967 DOI: 10.1016/j.chroma.2017.10.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 08/28/2017] [Accepted: 10/06/2017] [Indexed: 01/19/2023]
Abstract
Development of a reliable analytical method of neurochemicals in biological fluids is important to discover potential biomarkers for the diagnosis, treatment and prognosis of neurological disorders. However, neurochemical profiling of biological samples is challenging because of highly different polarities between basic and acidic neurochemicals, low physiological levels, and high matrix interference in biological samples. In this study, an ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method combined with in situ selective derivatization for comprehensive profiling of 20 neurochemicals in urine was developed for a wide range of neurochemicals. In situ selective derivatization greatly improved the peak capacity on a reversed-phase C18 column and sensitive mass detection in LC-ESI-MS/MS-positive ion mode due to reduction of the distinct physicochemical properties between acidic and basic neurochemicals. The MS/MS spectra of neurochemicals exhibited specific ions, such as losses of amine, methanol, or methyl formate molecules from protonated molecules, enabling selection of appropriate multiple reaction monitoring (MRM) ions for selective and sensitive detection. The developed method was validated in terms of linearity, limit of detection (LOD) and limit of quantification (LOQ), precision, accuracy, and recovery. The correlation coefficients (R2) of calibration curves were above 0.9961. The ranges of LODs and LOQs were 0.1-3.6ng/mL and 0.3-12.0ng/mL, respectively. The overall precision and accuracy were 0.52-16.74% and 82.26-118.17%, respectively. The method was successfully applied to simultaneously profile the metabolic pathways of tyrosine, tryptophan, and glutamate in Parkinson's disease patient urine (PD, n=21) and control urine (n=10). Significant differences (P≤0.01) between two groups in the activity of phenylethanolamine N-methyltransferase (PNMT) and alcohol dehydrogenase (ADH) were observed. In conclusion, this method provides reliable quantification of a wide range of neurochemicals in human urine and would be helpful for finding biomarkers related to specific neuronal diseases.
Collapse
Affiliation(s)
- Wonwoong Lee
- College of Pharmacy, Kyung Hee University, Seoul 02447, South Korea
| | - Na Hyun Park
- College of Pharmacy, Kyung Hee University, Seoul 02447, South Korea
| | - Tae-Beom Ahn
- Department of Neurology, College of Medicine, Kyung Hee University, Seoul 02447, South Korea
| | - Bong Chul Chung
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul 02792, South Korea
| | - Jongki Hong
- College of Pharmacy, Kyung Hee University, Seoul 02447, South Korea.
| |
Collapse
|
32
|
Fonseca BM, Rodrigues M, Cristóvão AC, Gonçalves D, Fortuna A, Bernardino L, Falcão A, Alves G. Determination of catecholamines and endogenous related compounds in rat brain tissue exploring their native fluorescence and liquid chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1049-1050:51-59. [DOI: 10.1016/j.jchromb.2017.02.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 02/23/2017] [Accepted: 02/26/2017] [Indexed: 12/14/2022]
|
33
|
Shin HJ, Park NH, Lee W, Choi MH, Chung BC, Hong J. Metabolic profiling of tyrosine, tryptophan, and glutamate in human urine using gas chromatography-tandem mass spectrometry combined with single SPE cleanup. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1051:97-107. [PMID: 28340481 DOI: 10.1016/j.jchromb.2017.03.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 03/06/2017] [Accepted: 03/14/2017] [Indexed: 11/25/2022]
Abstract
The tyrosine, tryptophan, and glutamate metabolic pathways play key roles on pathological state of neuronal functions and the change of their levels in biological systems reflects the progress degree of neuronal diseases. Comprehensive profiling of these metabolites is important to find new biomarkers for diagnosis or prognosis of various neuronal diseases. However, the overall profiling analysis of various neurochemicals in biological sample is confronted with several limitations due to their low concentration and physicochemical properties and the coexistence of matrices. We developed an efficient and feasible method using gas chromatography-tandem mass spectrometry (GC-MS/MS). Wide-bore mixed cation exchange (MCX) SPE process enables a rapid and effective cleanup of 20 neurochemicals even including acidic and basic neurochemicals in a single SPE cartridge by using different composition of eluents. Selective derivatization of various types of metabolites was applied to achieve highly chromatographic separation and sensitive mass detection. Appropriate selection of precursor and product transition ions used in multiple reaction-monitoring (MRM) mode based on the MS/MS fragmentations of the derivatized neurochemicals could be significantly minimized the matrix effects and enhanced the reliability of quantification results. The developed method was validated in terms of linearity, limits of detection, precision, accuracy, and matrix effects. The intra- and inter-assay analytical variations were less than 10%. The overall linearity for all of the targets was excellent (R2≥0.996). The detection limits ranged between 0.38 and 8.13ng/mL for the acidic neurochemicals and between 0.02 and 11.1ng/mL for the basic neurochemicals. The developed protocol will be expected to be a promising tool for the understanding of the pathological state and diagnosis of various neuronal diseases.
Collapse
Affiliation(s)
- Hyun Ju Shin
- College of Pharmacy, Kyung Hee University, Seoul 130-701, Korea
| | - Na Hyun Park
- College of Pharmacy, Kyung Hee University, Seoul 130-701, Korea
| | - Wonwoong Lee
- College of Pharmacy, Kyung Hee University, Seoul 130-701, Korea
| | - Man Ho Choi
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul 136-791, Korea
| | - Bong Chul Chung
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul 136-791, Korea
| | - Jongki Hong
- College of Pharmacy, Kyung Hee University, Seoul 130-701, Korea.
| |
Collapse
|
34
|
Analysis of amino acid and monoamine neurotransmitters and their metabolites in rat urine of Alzheimer’s disease using in situ ultrasound-assisted derivatization dispersive liquid-liquid microextraction with UHPLC–MS/MS. J Pharm Biomed Anal 2017; 135:186-198. [DOI: 10.1016/j.jpba.2016.11.056] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 11/16/2016] [Accepted: 11/19/2016] [Indexed: 12/25/2022]
|
35
|
Zhou T, Zeng D, Zhao T, Yang Y, Liu S, Wu J, Xu L, Tan W. In vivo metabolism study of (R)-bambuterol in humans using ultra high performance liquid chromatography with tandem mass spectrometry. J Sep Sci 2016; 39:2896-906. [PMID: 27273913 DOI: 10.1002/jssc.201600424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 05/05/2016] [Accepted: 05/23/2016] [Indexed: 11/08/2022]
Abstract
(R)-Bambuterol, a selective β2-adrenoceptor agonist, has been approved as a new drug for the treatment of asthma and chronic obstructive pulmonary disease by the China Food and Drug Administration and is currently under phase I clinical trials. In this study, a combined method based on ultra high performance liquid chromatography with triple quadrupole mass spectrometry and ultra high performance liquid chromatography with quadrupole time-of-flight mass spectrometry was employed for the identification of the major metabolites of (R)-bambuterol in human plasma and urine after an oral dose of 10 mg. The metabolites were separated by gradient elution program and different sample preparation methods were compared. Totally, 12 metabolites of (R)-bambuterol were identified, including four metabolites in plasma and all 12 metabolites in urine. Among these, four metabolites are reported for the first time. The possible metabolic pathways of (R)-bambuterol were subsequently proposed. The results indicated that (R)-bambuterol was metabolized via hydrolysis, demethylation, oxygenation, glucuronidation, and sulfation pathways in vivo. This study revealed that this combined method was accurate and sensitive to identify the possible metabolites and to better understand the metabolism of (R)-bambuterol in vivo.
Collapse
Affiliation(s)
- Ting Zhou
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China.,Pre-incubator for Innovative Drugs and Medicine, South China University of Technology, Guangzhou, China.,Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou, China
| | - Dan Zeng
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China.,Pre-incubator for Innovative Drugs and Medicine, South China University of Technology, Guangzhou, China.,Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou, China
| | - Ting Zhao
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China.,Pre-incubator for Innovative Drugs and Medicine, South China University of Technology, Guangzhou, China.,Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou, China
| | - Yang Yang
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China.,Pre-incubator for Innovative Drugs and Medicine, South China University of Technology, Guangzhou, China.,Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou, China
| | - Shan Liu
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China.,Pre-incubator for Innovative Drugs and Medicine, South China University of Technology, Guangzhou, China.,Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou, China
| | - Jie Wu
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China.,Pre-incubator for Innovative Drugs and Medicine, South China University of Technology, Guangzhou, China.,Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou, China
| | - Ling Xu
- Keyharma Biomedical Inc, Songshan Lake Science and Technology Industry Park, Dongguan, China
| | - Wen Tan
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China.,Pre-incubator for Innovative Drugs and Medicine, South China University of Technology, Guangzhou, China.,Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
36
|
Analysis of epinephrine, norepinephrine, and dopamine in urine samples of hospital patients by micellar liquid chromatography. Anal Bioanal Chem 2015; 407:9009-18. [DOI: 10.1007/s00216-015-9066-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 09/15/2015] [Accepted: 09/17/2015] [Indexed: 01/01/2023]
|